
Tunghai Science Vol. 5: 107−124 107

July, 2003

Construct a Grid Computing Environment on
Multiple Linux PC Clusters

Chuan-Lin Lai and Chao-Tung Yang *

Abstract

Internet computing and Grid technologies promise to change the way we tackle complex problems.
They will enable large-scale aggregation and sharing of computational, data and other resources across
institutional boundaries. And harnessing these new technologies effectively will transform scientific
disciplines ranging from high-energy physics to the life sciences. In this paper, a grid computing
environment is proposed and constructed on multiple Linux PC Clusters by using Globus Toolkit (GT)
and SUN Grid Engine (SGE). The experimental results are also conducted by using the pi problem,
prime problem, and matrix multiplication to demonstrate the performance.

Keywords: Cluster Computing, Grid Computing, Globus ToolKit, PC Clusters, SUN Grid Engine.

1. Introduction

Grid computing, most simply stated, is distributed computing taken to the next evolutionary

level. The goal is to create the illusion of a simple yet large and powerful self managing virtual

computer out of a large collection of connected heterogeneous systems sharing various

combinations of resources. The standardization of communications between heterogeneous

systems created the Internet explosion. The emerging standardization for sharing resources,

along with the availability of higher bandwidth, are driving a possibly equally large evolutionary

step in grid computing [1, 14, 15].
The Infrastructure of grid is a form of networking. Unlike conventional networks that focus

on communication among devices, grid computing harnesses unused processing cycles of all

computers in a network for solving problems too intensive for any stand-alone machine. A

well-known grid computing project is the SETI (Search for Extraterrestrial Intelligence) @Home

project [30], in which PC users worldwide donate unused processor cycles to help the search for

signs of extraterrestrial life by analyzing signals coming from outer space. The project relies on

* Department of Computer Science and Information Engineering, Tunghai University, Taichung 407, TAIWAN

108

individual users to volunteer to allow the project to harness the unused processing power of the

user's computer. This method saves the project both money and resources.
Another key technology in the development of grid networks is the set of middleware

applications that allows resources to communicate across organizations using a wide variety of

hardware and operating systems. The Globus Toolkit [2] is a set of tools useful for building a

grid. Its strength is a good security model, with a provision for hierarchically collecting data

about the grid, as well as the basic facilities for implementing a simple, yet world-spanning grid.

Globus will grow over time through the work of many organizations that are extending its

capabilities. More information about Globus can be obtained at http://www.globus.org. The

accepted standard in this application space is the Globus Toolkit. The Globus Toolkit is a

middleware product designed to facilitate grid computing, and also like Linux is available under

an “open source” licensing agreement for free use.
The promise of grid computing is to provide vast computing resources for computing

problems like the SETI example that require supercomputer type resources in a more affordable

way. Grid computing also offers interesting opportunities for firms to tackle tough computing

tasks like financial modeling without incurring high costs for super computing resources. The

developers of the Globus Toolkit envision that grid computing will become the pervasive

paradigm for providing computing recourses to large collaborative projects and virtual

organizations.

The organization of this paper is as follow. In section 2, we make a background review of

Cluster Computing, MetaComputing and Grid Computing. In section 3, it is our hardware and

software configuration. In section 4, grid computing environment is proposed and constructed on

multiple Linux PC Clusters by using Globus Toolkit (GT) and SUN Grid Engine (SGE). The

experimental results are also conducted by using the pi problem, prime problem, and matrix

multiplication to demonstrate the performance. The experimental result are presented and

discussed. We conclude this study in section 4. The software installation and setup detail are

presented in Appendix.

2. Background Review

2.1 Cluster Computing

The first cluster computing was a NASA effort called Beowulf. Beowulf was started in

1994 and the first effort consisted of a 16-node cluster made up of commodity off the shelf

109

(COTS) systems interconnected with Ethernet. While this approach does not try to exploit the

excess computing power in the network, the use of COTS computers and standard network

architectures means that Beowulf class systems are inexpensive to build and operate and can

offer supercomputer levels of processing power.
Scalable computing clusters, ranging from a cluster of (homogeneous or heterogeneous)

PCs or workstations to SMP (Symmetric MultiProcessors), are rapidly becoming the standard

platforms for high-performance and large-scale computing. A cluster is a group of independent

computer systems and thus forms a loosely coupled multiprocessor system. A network is used to

provide inter-processor communications. Applications that are distributed across the processors

of the cluster use either message passing or network shared memory for communication. A

cluster computing system is a compromise between a massively parallel processing system and a

distributed system. An MPP (Massively Parallel Processors) system node typically cannot serve

as a standalone computer; a cluster node usually contains its own disk and equipped with a

complete operating systems, and therefore, it also can handle interactive jobs. In a distributed

system, each node can function only as an individual resource while a cluster system presents

itself as a single system to the user.

Since a Beowulf cluster is a parallel computer system, it suits applications that can be

partitioned into tasks, which can then be executed concurrently by a number of processors. These

applications range from high-end, floating-point intensive scientific and engineering problems to

commercial data-intensive tasks. Uses of these applications include ocean and climate modeling

for prediction of temperature and precipitation, seismic analysis for oil exploration, aerodynamic

simulation for motor and aircraft design, and molecular modeling for biomedical research [10, 11,

21, 22].

The previous study [11] lists four benefits that can be achieved with clustering. These can

also be thought of as objectives or design requirements:

• Absolute scalability: It is possible to create large clusters that far surpass the power of even

the largest standalone machines. A cluster can have dozens of machines, each of which is a

multiprocessor.

• Incremental Scalability: A cluster is configured in such a way that it is possible to add new

systems to the cluster in small increments. Thus, a user can start out with a modest system and

expand it as needs grow, without having to go through a major upgrade in which an existing

small system is replaced with a larger system.

• High availability: Because each node in a cluster is a standalone computer, the failure of one

node does not mean loss of service. In many products, fault tolerance is handled automatically

in software.

110

• Superior price/performance: By using commodity building blocks, it is possible to put

together a cluster with equal or greater computing power than a single large machine, at much

lower cost.

2.2 MetaComputing and Grid Computing

The term “MetaComputing” was coined around 1987 by NCSA Director, Larry Smarr [12].

But the genesis of metacomputing at NCSA took place years earlier, when the center was

founded in 1986. Smarr's goal was to provide the research community with a “Seamless Web”

linking the user interface on the workstation and supercomputers. With the advent of networking

technologies such as Ethernet and ATM. it has become possible to connect computers for the

widespread, efficient sharing of data. As high performance local- and wide-area networks have

become less expensive, and as the price of commodity computers has dropped, it is now possible

to connect a number of relatively cheap computers with a high-speed interconnect, to affect a

local distributed computing cluster.
Clusters of distributed computers, as well as high performance serial and parallel machines

can be interconnected, speaking common communications protocols, to form a large virtual

supercomputer. The general trend for computational capacity has thus been to move from

monolithic single-processor computers in the early 1970's, to multi-processor parallel computers,

in which the interprocessor bandwidth was high and the latency quite low, to clusters of

commodity workstations with comparatively high bandwidth and latency, and ultimately to

so-called MetaComputing environments, which connect heterogeneous clusters of high-end and

low-end computers to form a virtual supercomputer.

The term metacomputer was coined to describe a collection of possibly heterogeneous

computational nodes which can be treated as a single virtual computer for both resource

management and remote execution purposes. General metacomputing environments allow users

to submit serial or parallel programs and have tasks or jobs run on the virtual computer. An

alternative definition of metacomputing is provided by Gehring and Reinefeld: “a monolithic

computational resource provided by software that allows the transparent use of a network of

heterogeneous, distributed computers” [12, 13].
The Globus project [2] provides a new infrastructure to metacomputing. The globus make

the metacomputing standardized and normalized. To take the metacomputing into the Grid

Computing.

Grid computing (or the use of a computational grid) is applying the resources of many

computers in a network to a single problem at the same time - usually to a scientific or technical

111

problem that requires a great number of computer processing cycles or access to large amounts

of data. A well-known example of grid computing in the public domain is the ongoing SETI

(Search for Extraterrestrial Intelligence) @Home project [30] in which thousands of people are

sharing the unused processor cycles of their PCs in the vast search for signs of “rational” signals

from outer space. According to John Patrick, IBM's vice-president for Internet strategies, “the

next big thing will be grid computing.”
Grid computing requires the use of software that can divide and farm out pieces of a

program to as many as several thousand computers. Grid computing can be thought of as

distributed and large-scale cluster computing and as a form of network-distributed parallel

processing. It can be confined to the network of computer workstations within a corporation or it

can be a public collaboration (in which case it is also sometimes known as a form of peer-to-peer

computing).
A number of corporations, professional groups, university consortiums, and other groups

have developed or are developing frameworks and software for managing grid computing

projects. The European Community (EU) is sponsoring a project for a grid for high-energy

physics, earth observation, and biology applications. In the United States, the National

Technology Grid is prototyping a computational grid for infrastructure and an access grid for

people.

Grid computing appears to be a promising trend for three reasons: (1) its ability to make

more cost-effective use of a given amount of computer resources, (2) as a way to solve problems

that can't be approached without an enormous amount of computing power, and (3) because it

suggests that the resources of many computers can be cooperatively and perhaps synergistically

harnessed and managed as a collaboration toward a common objective. In some grid computing

systems, the computers may collaborate rather than being directed by one managing computer.

One likely area for the use of grid computing will be pervasive computing applications - those in

which computers pervade our environment without our necessary awareness.

The establishment, management, and exploitation of dynamic, cross-organizational sharing

relationships require new technology. This technology is Grid architecture and supporting

software protocols and middleware [1, 2, 7, 9, 13, 14, 15, 16, 17, 18, 20]

2.3.1 Globus Toolkit

The Globus Project [2] provides software tools that make it easier to build computational

grids and grid-based applications. These tools are collectively called The Globus Toolkit. The

Globus Toolkit is used by many organizations to build computational grids that can support their

112

applications.

The composition of the Globus Toolkit can be pictured as three pillars: Resource

Management, Information Services, and Data Management. Each pillar represents a primary

component of the Globus Toolkit and makes use of a common foundation of security. GRAM

implements a resource management protocol, MDS implements an information services protocol,

and GridFTP implements a data transfer protocol. They all use the GSI security protocol at the

connection layer [2, 20].

GRAM [1, 2, 26] is designed to provide a single common protocol and API for requesting

and using remote system resources, by providing a uniform and flexible interface to local job

scheduling systems. The Grid Security Infrastructure (GSI) provides mutual authentication of

both users and remote resources using GSI (Grid-wide) PKI-based identities. GRAM provides a

simple authorization mechanism based on GSI identities and a mechanism to map GSI identities

to local user accounts.

MDS [1, 2, 27, 28] is designed to provide a standard mechanism for publishing and

discovering resource status and configuration information. It provides a uniform and flexible

interface to data collected by lower-level information providers. It has a decentralized structure

that allows it to scale, and it can handle static (e.g., OS, CPU types, system architectures) or

dynamic data (e.g., disk availability, memory availability, and loading). A project can also

restrict access to data by combining GSI (Grid Security Infrastructure) credentials and

authorization features provided by MDS.

GridFTP [1, 2, 23, 24, 25] is a high-performance, secure, reliable data transfer protocol

optimized for high-bandwidth wide-area networks. The GridFTP protocol is based on FTP, the

highly-popular Internet file transfer protocol. GridFTP provides the following protocol features:

1, GSI security on control and data channels. 2, Multiple data channels for parallel transfers. 3,

Partial file transfers. 4, Direct server-to-server transfers. 5, Authenticated data channels. 6,

Reusable data channels. 7, Command pipelining

2.3.2 MPICH-G2

MPI is a message-passing library standard that was published in May 1994. The “standard”

of MPI is based on the consensus of the participants in the MPI Forums [3], organized by over

40 organizations. Participants include vendors, researchers, academics, software library

developers and users. MPI offers portability, standardization, performance and functionality

[22].

The advantage for the user is that MPI is standardized on many levels. For example, since

the syntax is standardized, you can rely on your MPI code to execute under any MPI

113

implementation running on your architecture. Since the functional behavior of MPI calls is also

standardized, your MPI calls should behave the same regardless of the implementation. This

guarantees the portability of your parallel programs. Performance, however, may vary between

different implementations.

MPICH-G2 [4, 5] is a grid-enabled implementation of the MPI v1.1 standard. That is,

using services from the Globus Toolkit® (e.g., job startup, security), MPICH-G2 allows you to

couple multiple machines, potentially of different architectures, to run MPI applications.

MPICH-G2 automatically converts data in messages sent between machines of different

architectures and supports multiprotocol communication by automatically selecting TCP for

intermachine messaging and (where available) vendor-supplied MPI for intramachine messaging.

Existing parallel programs written for MPI can be executed over the Globus infrastructure just

after recompilation [19].

2.3.3 SUN Grid Engine

Sun Grid Engine is new generation distributed resource management software which

dynamically matches users' hardware and software requirements to the available (heterogeneous)

resources in the network, according to policies usually defined by management.

Sun Grid Engine acts as the central nervous system of a cluster of networked computers.

Via so-called daemons, the Grid Engine Master supervises all resources in the network to allow

full control and achieve optimum utilization of the resources available.

Sun Grid Engine aggregates the compute power available in dedicated compute farms,

networked servers and desktop workstations, and presents a single access point to users needing

compute cycles. This is accomplished by distributing computational workload to available

systems, simultaneously increasing the productivity of machines and application licenses while

maximizing the number of jobs that can be completed.

In addition, Sun Grid Engine software helps lower the costs of purchasing, installing,

setting up and administering the computing environment because it allows: Maximized use of

new/existing resources, Lower administration costs, Lower upgrade costs, More efficient reuse

of existing legacy, Resources [6, 22].

3 Hardware and Software Configuration

The test environment, described in the next table, we build 2 clusters to form a multiple

cluster environment. Each cluster has two slave nodes and one master node. Each nodes are

interconnected through 3COM 3C9051 10/100 Fast Ethernet Card to Accton CheetahSwitch

114

AC-EX3016B Switch HUB; Each master node is running SGE QMaster daemon and SGE

execute daemon to running, manage and monitor incoming job and Globus Toolkit v2.4. Each

slave node is running SGE execute daemon to execute income job only.

Cluster 1

Hostname Grid Grid1* Grid2

FQDN
grid.hpc.csie.thu.edu.t

w

grid1.hpc.csie.thu.edu.t

w

Grid2.hpc.csie.thu.edu.t

w

IP 140.128.101.172 140.128.101.188 140.128.101.188

CPU
Intel Pentium 3 - 1Ghz

*2
Intel Celeron 1.7GHz Intel Celeron 1.7GHz

RAM 512MB SDRAM 768MB DDR RAM 256MB DDR RAM

Cluster 2

Hostname Grid3* Grid4 Grid5

FQDN
grid3.hpc.csie.thu.edu.t

w

grid4.hpc.csie.thu.edu.t

w

grid5.hpc.csie.thu.edu.t

w

IP 140.128.101.187 140.128.101.188 140.128.101.189

CPU Intel Celeron 1.7GHz
Intel Pentium 3 -

866Mhz *2

Intel Pentium 4 -

2.53GHz

RAM 256MB DDR RAM 1.5GB DDR RAM 256MB DDR RAM

* stand for Master node of the cluster, the others is slave node.

Table 1. Hardware Configuration

4 Experimented Result

The experiment consists of three scenarios: single Personal Computer, Cluster environment

and Grid environment. First step, we run a MPI program on a PC or PC-based SMP system to

evaluate the system performance. Second step, we connect 3 Personal Computer together to form

a Cluster environment (In our testbed is Cluster1 and Clutser2) Then, running the same MPI

program to evaluate the system performance. Third step, through the WAN connection, we

connect the Cluster1 and Cluster2 together to form a grid environment. Then, the same MPI

program is executed to evaluate the system performance.

115

4.1 Compute PI

It computes the value of by numerical integration. Since π

()
4

1tan
1

1 11

0 2
π

==
+

−∫ dx
x

We can compute by integration the function π () 214 xxf += from 0 to 1. We compute

an approximation by dividing the interval [0, 1] into some number of subintervals and then

computing the total area of these rectangles by having each process compute the areas of some

subset.

The subintervals are 1,000,000,000 (1 billion) in our experiment.
 Grid Grid1 Grid2 Grid3 Grid4 Grid5

Single PC 43.239s 98.542s 95.239s 98.344s 49.873s 50.091s

Cluster Environment 25.756s 26.461s

Grid Environment 12.968s

4.2 Prime Number

For example, if you want to find the prime numbers between 1 and 20,000,000 (20 million).

It proceeds to write code that initially runs on a lead node and sends the task of testing 101-200

to node 1, and sends the task of testing 201-300 to node 2, and so on. Along with the testing task,

there would also be an instruction to return whatever primes a slave node discovered to the lead

node. When all nodes have completed their tasks, there will have a message to tell you how

many prime be found and what the biggest prime number is.

In our experiment, we try to fine the prime numbers between 1 and 20,000,000 (20 million).
 Grid Grid1 Grid2 Grid3 Grid4 Grid5

Single PC 43.139s 53.089s 51.512s 53.145s 49.817s 34.416s

Cluster Environment 21.541s 24.833s

Grid Environment 12.411s

4.3 Matrix Multiplication

The matrix operation derives a resultant matrix by multiplying two input matrices, x and y,

where matrix x is a matrix of N rows by P columns and matrix y is of P rows by M columns. The

resultant matrix c is of N rows by M columns. The serial realization of this operation is quite

straightforward as listed in the following:
 for (k=0;k<M;k++)

116

 for (i=0;i<N;i++) {

 c[i][k]=0.0;

 for (j=0;j<P;j++)

 c[i][k]+=a[i][j]*b[j][k]; }

Its algorithm requires multiplications and n additions, leading to a sequential time

complexity of

3n 3

()3nO . Use parallel technique to get the fastest multiplication speed.

The problem sizes were 1024×1024 in our experiment.
 Grid Grid1 Grid2 Grid3 Grid4 Grid5

Single PC 80.102s 117.978s 115.526s 118.125s 67.292s 110.367s

Cluster Environment 41.008s 35.133s

Grid Environment 23.241s

5 Conclusions and Future Work

In this paper, we construct a grid computing environment testbed on multiple Linux PC

Clusters by using Globus Toolkit (GT) and SUN Grid Engine (SGE). Then, we execute some

MPI programs on ours testbed: PI, Prime problem, Matrix multiplication to evaluate the system

performance. The experiment consists of three scenarios: Single PC, Cluster computing

environment and Grid computing environment. After the experiment, we compare the different

system environment performance. As the experiment result, single PC although can process the

same problem like Cluster or Grid can do, but the processing time is always slow than the cluster

or grid. Cluster Computing, it consists several of PC to form a Cluster system. So, it is obvious

that Cluster’s computing performance is better than single PC. Cluster, when a job is submitted

to a master node of the cluster, then the master node will divide the incoming job into several

part and send the subjob to the other slave nodes synchronously and cooperatively solve the

problem. As the experiment result, we can find from the Single PC to Cluster system, we gain

50% performance improvement. Finally, we use our idea to connect multiple Linux PC Clusters

to form a Grid Computing environment and run the same problem on. As the experiment, the

performance improves 50% than cluster computing experiment. After this paper, it is no doubt

that Grid computing technology will become a new way to tackle complex problem from the

scientific, engineering to biotechnology. High-Speed computing performance makes every

complicated thing easy. In our future work, we will extend the Grid testbed for job execution by

job scheduling policy to efficiently use CPU idle time. Make the system fully utilized.

117

References

[1] http://www.ggf.org, Global Grid Forum.

[2] http://www.globus.org/, The Globus Project.

[3] http://www.mpi-forum.org/, MPI Forum.

[4] http://www-unix.mcs.anl.gov/mpi/mpich/ , MPICH.

[5] http://www.hpclab.niu.edu/mpi/ , MPICH-G2.

[6] http://wwws.sun.com/software/gridware/ , Sun ONE Grid Engine.

[7] http://lhc-new-homepage.web.cern.ch/, LHC - The Large Hadron Collider Home Page.

[8] http://www.teragrid.org/ , TeraGrid.

[9] http://gridtest.hpcnet.ne.kr/ , KISTI Grid Testbed.

[10] Chao-Tung Yang and Chi-Chu Hung (2001) “High-Performance Computing on
Low-Cost PC-Based SMPs Clusters,” Proc. of the 2001 National Computer Symposium
(NCS 2001), Taipei, Taiwan, pp 149-156 Dec..

[11] Brewer, E. (1997) “Clustering: Multiply and Conquer.” Data Communications, July.

[12] Catlett C.,and Smarr L. (1992) Metacomputing, Communications of the ACM, vol. 35(6),
pages 44-52,.

[13] Heath A. James, BSc(Ma&Comp Sc)(Hons) Scheduling in Metacomputing Systems

[14] I. Foster, and C. Kesselman, eds. (1999) The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann; 1st edition January.

[15] I. Foster. (2002) The Grid: A New Infrastructure for 21st Century Science. Physics Today,
55(2):42-47.

[16] I. Foster, C. Kesselman. Intl J. (1997) Globus: A Metacomputing Infrastructure Toolkit.
Supercomputer Applications, 11(2):115-128.

[17] Mark A. Baker and Geoffery C. Fox (1999) Metacomputing: Harnessing Informal
Supercomputers. High Performance Cluster Computing. Prentice-Hall, May. ISBN
0-13-013784-7.

[18] I. Foster, C. Kesselman, S. Tuecke., and International J. (2001) The Anatomy of the Grid:
Enabling Scalable Virtual Organizations. Supercomputer Applications, 15(3).

[19] I. Foster, N. Karonis. (1998 November) A Grid-Enabled MPI: Message Passing in
Heterogeneous Distributed Computing Systems. Proc. 1998 SC Conference.

[20] Introduction to Grid Computing with Globus, ibm.com/redbooks, 2002.

[21] R. Buyya (1999) High Performance Cluster Computing:System and Architectures, vol.1,
Prentice Hall PTR, NJ.

[22] Thomas Sterling, Gordon Bell, and Janusz S. Kowalik, (March 2002) Beowulf Cluster
Computing with Linux, MIT Press, Paperback.

[23] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, S. Meder, S. Tuecke. and
GGF GridFTP Working Group Document, (September 2002) GridFTP Protocol
Specification.

http://www.globus.org/
http://www.mpi-forum.org/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.hpclab.niu.edu/mpi/
http://wwws.sun.com/software/gridware/
http://lhc-new-homepage.web.cern.ch/
http://gridtest.hpcnet.ne.kr/

118

[24] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kesselman, S. Meder, V.
Nefedova, D. Quesnal, and S. Tuecke. (2002 May) Data Management and Transfer in High
Performance Computational Grid Environments. Parallel Computing Journal, Vol. 28 (5),
pp. 749-771.

[25] B. Allcock, S. Tuecke, I. Foster, A. Chervenak, and C. Kesselman. (2000) Protocols and
Services for Distributed Data-Intensive Science. ACAT2000 Proceedings, pp. 161-163,.

[26] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, S. Tuecke. Proc.
(1998) A Resource Management Architecture for Metacomputing Systems. IPPS/SPDP
'98 Workshop on Job Scheduling Strategies for Parallel Processing, pg. 62-82.

[27] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman (August 2001) Grid
Information Services for Distributed Resource Sharing. Proceedings of the Tenth IEEE
International Symposium on High-Performance Distributed Computing (HPDC-10), IEEE
Press,.

[28] X. Zhang, J. Freschl, and J. Schopf. (2003.) A Performance Study of Monitoring and
Information Services for Distributed Systems, Proceedings of HPDC, August.

[29] Sun ONE Grid Engine Administration and User’s Guide, Sun Microsystem, Inc. (2002)

[30] http://setiathome.ssl.berkeley.edu/, SETI@home: Search for Extraterrestrial Intelligence at
home.

Appendix

Globus Installation and Setup

The Globus Toolkit v2.4 [1] uses the GPT (Grid Packaging Technology) for installation.
[4,5] You have two choices for installing the Globus Toolkit: 1, Install from a Binary distribution
or 2, Install from a Source distribution. In our Test Enviorment, We choice Source distribution to
install Globus Toolkit.
1. Before you build and install the Globus Toolkit, you need to setup your environment. You

will need to set the environment variable GLOBUS_LOCATION to the directory in which
you plan to install the Globus Toolkit and GPT_LOCATION to the packaging tools you
need to build the Globus Toolkit.
export GPT_LOCATION=/usr/local/gpt
export GLOBUS_LOCATION=/usr/local/globus

2. Untar the GPT distribution and enter the following commands. (Note: GPT requires perl
5.005 or later.)
% tar –zxvf gpt-2.2.9-src.tar.gz-
% cd gpt-2.2.9
% ./build_gpt

3. After installation GPT, then use the GPT to build Globus Toolkit. You can download a
bundle file from the globus.org download page. gpt-build is the command used to install
source boundles. Many bundles distributed by Globus Project are built by using this
command. The example to build a bundle is as follow:
%$GPT_LOCATION/sbin/gpt-build <bundle> <flavors>

BUNDLE FLAVORS

http://setiathome.ssl.berkeley.edu/

119

Data Management Client gcc32dbg

Data Management SDK gcc32dbg

Data Management Server gcc32dbg

Information Services Client gcc32dbgpthr

Information Services SDK gcc32dbgpthr

Information Services Server gcc32dbgpthr

Resource Management Client gcc32dbg

Resource Management SDK gcc32dbg

Resource Management Server gcc32dbg

This chart shows what substitutions to make in the above command. Be sure to use the
actual name of the bundle (e.g.,
globus_data_management_bundle-client-src.tar.gz) in the command.

4. Once you have installed all of the source bundles, run the following command to complete
your installation:
% $GPT_LOCATION/sbin/gpt-postinstall

5. To install the Globus Simple Certificate Authority, We will install the CA and a Globus
server on the “Grid3” machine.
As root, run:
export PATH=$PATH:$GPT_LOCATION/sbin
gpt-build –nosrc gcc32
gpt-build globus_simplee_ca_bundle-0.9.tar.gz gcc32
gpt-postinstall

A unique subject name for this CA in our grid enviorment:
cn=HPC Lab CA, ou=grid3.hpc.csie.thu.edu.tw, ou=demotest, o=grid

6. During the above process, a hash number is generated and used as part filename, please note
this number for use in the next steps. Run the script name printed at the end of the prior
install, substituting the hex number printed by the above process in place of the <hash>
shown below, adding the “-default” argument:
/usr/local/globus/setup/globus_simple_ca_<hash>_setup-gsi –default

Choice ‘y’ to continue then press ‘q’ save with exit.
7. Then, to install the CA’s certificate on each of the other grid machine.

/root/.globus/simpleCA/globus_simple_ca_<hash>_setup-0.9.tar.gz is the
file containing the public CA key and other information needed to participate in this grid.
This must be copied to each of the other machines and installed using the gpt-build
command.

8. Next, issue the following commands on each of those machines as root:
gpt-build globus_simple_ca_<hash>_setup-0.9.tar.gz
gpt-postinstall
/usr/local/globus/setup/
globus_simple_ca_<hash>_setup/setup-gsi –default

Choice ‘y’ to continue then press ‘q’ save with exit.
9. Requesting and signing gatekeeper certificates for servers. On each of the server machines,

we perform the grid-ca-request to request a certificates:
grid-ca-request –host <hostname of requesting server machine>

10. Use ftp or e-mail to copy the /etc/grid-security/hostcert_request.pem file to the
CA machine and put it into the /root directory. On the CA machine, as root, sign the

120

certificate using the following:
grid-ca-sign –in /root/hostcert_request.pem –out /root/hostcert.pem

11. Then, ftp the /root/hostcert.pem file back to the server machine and place it in the
/etc/grid-security directory.

12. For each user who will use the grid, the following procedure must be executed by the user
and Certificate Authority. On the normal user’s logon, run:
Grid-cert-request
<userspassphrase>
<userspassphrase>

The user should make up his own passphrase for his certificate. He will use this same
passphrase later with the grid-proxy-init command to authenticate with the grid.

13. The user must send the /home/<userid>/.globus/usercert_request.pem file to the
Certificate Authority (machine Grid3) for signing. The procedure of Certificate Authority
same as above hostcert.

14. Ths user should also be added to the grid mapfile, and copy the grid-mapfile to all of the
grid server machine. By the grid-mapfile, server will check who have the right to connect to
server.

15. Setup the gatekeepers and gsiftp to binding port 2119 and 2811. On each server, add the
following two lines to /etc/services file:
gsigatekeeper 2119/tcp #globus gatekeeper
gsiftp 2811/tcp #globus wuftp

16. Create the file /etc/xinetd.d/gsigatekeeper on each server, containing the lines:
service gsigatekeeper
{
disable = no
socket_type = stream
protocol = tcp
wait = no
user = root
env = LD_LIBRARY_PATH=/usr/local/globus/lib
server = /usr/local/globus/sbin/globus-gatekeeper
server_args = -conf /usr/local/globus/etc/globus-gatekeeper.conf
}

17. Create the file /etc/xinetd.d/gsiftp on each server, containg the lines:
service gsiftp
{
disable = no
Instances = 1000
Socket_type = stream
wait = no
user = root
env = LD_LIBRARY_PATH=/usr/local/globus/lib
server = /usr/local/globus/sbin/in.ftpd
server_args = -l -a -G /usr/local/globus
log_on_success += DURATION USERID
log_on_failure += USERID
nice = 10
}

18. After making all of these changes, the server machine should be rebooted.
19. Checking the installation. Check the installation on each machine as root using the

command:

121

$GPT_LOCATION/sbin/gpt-verify
20. The following commands can be used on server machine to see if the GRAM and gridftp

are listing on their respective ports:
netstat –an | grep 2119
netstat –an | grep 2811

If you can not find port 2119 or 2811 binding to the globus toolkit then recheck step 11.
21. From the client machine logged on as the grid user (non-root), do the following:

$GLOBUS_LOCATION/etc/globus-user-env.sh
This command sets up the environment variable so that Globus commands can be issued by
the user. You can add this line to the login profile, then you will not execute this file
everytime.

22. This command build the proxy certificate for the user
grid-proxy-init
<userpassphrase>

23. The following command send a simple job to the server machine and has to it return the
remote machine system time. This test whether jobs can be submitted to each of the server
machine:
globus-job-run grid1 “/bin/date”
globus-job-run grid4 “/bin/date”

If the test is successful, you should now be ready to install MPICH-G2 and Sun Grid

Engine.

MPICH-G2 Installation and Setup

1. Copy the mpich.tar.gz file to the where you want to install the mpich directory.
2. Then, untar and decompress the file

%tar zxvf mpich.tar.gz
3. Configure MPICH specifying the globus2 device, and specify one of the Globus flavors are

available to you.
%./configure –device=globus2:-flavor=gcc32dbg

4. Build MPICH-G2 by typing make.
%make

5. Complete.

Sun Grid Engine Installation and Setup (Master Node – Grid1, 3)

1. Before Setup, you must make sure you have set the NIS service in Cluster.
2. Download the latest SGE [4,9] from Sun’s website then place the tar.gz files where you

want to install the distribution (/usr/local/sge). Untar and decompress the file.
 %tar -xvpf sge-5_3p2-bin-glinux.tar.gz
 %tar -xvpf sge-5_3p2-common.tar.gz

Create a new user account named sge or sgeadmin and change the ownership of the
/usr/local/sge directory to this user

 %chown sgeadmin /usr/local/sge –R
3. Add a new tcp service in /etc/services file. It is best to use a privileded port below 600

to avod conflicts. All host in the cluster must use the same port number. Add the following
line.
sge_commd 536/tcp # Sun Grid Engine

122

4. Make sure your /etc/hosts file contains a proper mapping for each of the compute nodes.
 # Do not remove the following line, or various programs

that require network functionality will fail.
127.0.0.1 localhost
140.128.101.188 grid1.hpc.csie.thu.edu.tw grid1
140.128.101.189 grid2.hpc.csie.thu.edu.tw grid2
140.128.102.187 grid3.hpc.csie.thu.edu.tw grid3
140.128.102.188 grid4.hpc.csie.thu.edu.tw grid4
140.128.102.189 grid5.hpc.csie.thu.edu.tw grid5

5. Export the SGE distribution for the node to mount. Add the following in your /etc/exports
file.
/usr/local 140.128.101.0/255.255.255.0(rw,no_root_squash)

If your nfsd is running then restart the NFS service.
%service nfs restart

6. Installing Queue Master
%/usr/local/sge/install_qmaster
- $SGE_ROOT = /usr/local/sge
- service = sge_commd
- admin user account = sgeadmin

 If everything is correct then press enter (default is 'y')
7. On verifying and setting file permissions choose 'n' to be on the safe side.
8. When selecting default hostname resolving method choose 'y' .
9. SGE group id range: set it to 20000-20100.
10. Install the startup script so that SGE can startup on machine boot.
11. Now, It should start sge_master and sge_schedd. If you get any error notice then recheck

that you have done everything above and that you are running this as root.
12. Then, add admin and submit hosts by the host’s hostname. All execution node have to be

admin hosts. submit hosts are those hosts that are permitted to submit a job. You also can
add these hosts later.

13. In order to use the commands of SGE easily, you should source the settings so that the
necessary environment variables are work. Edit the /etc/profile file on each of the
Execution nodes and add the following line:
source /usr/local/sge/default/common/setting.sh

14. You can log out and relogin and check the changes have taken place.
%env

You should see the appropriate values setting in PATH, LD_LIBRARY_PATH,
MANPATH and SGE_ROOT exist.

Sun Grid Engine Installation and Setup(Execution Node – Grid, Grid1~5)

1. In order to have a copy of the SGE, through the NFS service, mount it from the Master node.
Make a directory where you're going to mount SGE. This directory should have the same
path structure as the Master node installation. Edit /etc/fstab and add the following line
grid1:/usr/local/ /usr/local nfs defaults 0 0

This will allow the node to mount the directory from grid1 to the mount defined. Cluster2’s
Execution Node should do the above setting, too.

2. Add a new tcp service in /etc/services file. It is best to use a privileded port below 600
to avod conflicts. All host in the cluster must use the same port number. Add the following
line.

 sge_commd 536/tcp # Sun Grid Engine
3. Make sure your /etc/hosts file contains a proper mapping for each of the compute nodes.

123

 # Do not remove the following line, or various programs
that require network functionality will fail.
127.0.0.1 localhost
140.128.101.188 grid1.hpc.csie.thu.edu.tw grid1
140.128.101.189 grid2.hpc.csie.thu.edu.tw grid2
140.128.102.187 grid3.hpc.csie.thu.edu.tw grid3
140.128.102.188 grid4.hpc.csie.thu.edu.tw grid4
140.128.102.189 grid5.hpc.csie.thu.edu.tw grid5

4. In order to use the commands of SGE easily, you need to source the settings so that the
necessary environment variables are work. Edit the /etc/profile file on each of the
Execution nodes and add the following line:
source /usr/local/sge/default/common/setting.sh

To check that these changes have taken place log out and relogin and check the environment
5. Now add the compute nodes as administrative hosts in the qmaster. Use qconf –ah

<hostname> to do.
6. Now on each of the internal nodes run install_execd.

% $SGEROOT/install_execd
Make sure that SGE default installation settings are
- $SGE_ROOT = /usr/local/sge
- service = sge_commd
- admin user account = sgeadmin

7. Install the startup script so that SGE can start up at machine boot.
8. All done.

124

在多重Linux個人電腦叢集上建立一網格計算環境

楊朝棟* 賴傳霖

摘 要

網路計算與網格計算技術改變了過去我們處理複雜問題的方法。網格計算跨越地點、邊界的

藩籬提供大規模、共享的高計算效能以及其他種種網格計算所帶來的資源。使用這樣的新算技術

在現今高能物理研究或是在生命科學研究上都有不小的影響。在這篇論文裡，我們使用安裝有Linux

作業系統的個人電腦進行平台的建置，在平台的設定上有：PC、叢集環境、網格計算環境，其中

網格計算環境我們使用了網格的中介軟體Globus Toolkit與SUN Grid Engine在2組Cluster進行連線

及工作的排程設定。並在最後我們所建置的平台上執行平行程式的效能測試，如：圓周率、質數

問題、矩陣相乘程式。實驗的結果，在叢集電腦將多台電腦連接，效能從單台到多台PC所組成的

叢集電腦效能增進了一倍的計算速度。在實驗最後，網格計算，利用網格的技術將連線在網路上

的電腦相連接，利用多台電腦的計算能力同時處理共同的問題，由實驗數據得知，網格計算的能

力由叢集電腦上又提了一倍的計算速度。

關鍵詞：叢集計算、網格計算、Globus ToolKit、個人電腦叢集、SUN Grid Engine

* 高效能計算實驗室，東海大學資訊工程與科學系

