
Tunghai Science Vol. : 125−141 125

July, 2003

Apply Parallel Bioinformatics Applications on
Linux PC Clusters

Yu-Lun Kuo and Chao-Tung Yang*

Abstract

In addition to the traditional massively parallel computers, distributed workstation clusters now
play an important role in scientific computing perhaps due to the advent of commodity high
performance processors, low-latency/high-band width networks and powerful development tools. As we
know, bioinformatics tools can speed up the analysis of large-scale sequence data, especially about
sequence alignment. To fully utilize the relatively inexpensive CPU cycles available to today’s scientists,
a PC cluster consists of one master node and seven slave nodes (16 processors totally), is proposed and
built for bioinformatics applications. We use the mpiBLAST and HMMer on parallel computer to speed
up the process for sequence alignment. The mpiBLAST software uses a message-passing library called
MPI (Message Passing Interface) and the HMMer software uses a software package called PVM
(Parallel Virtual Machine), respectively. The system architecture and performances of the cluster are
also presented in this paper.

Keywords: Parallel computing, Bioinformatics, BLAST, HMMer, PC Clusters, Speedup.

1. Introduction

Extraordinary technological improvements over the past few years in areas such as

microprocessors, memory, buses, networks, and software have made it possible to assemble

groups of inexpensive personal computers and/or workstations into a cost effective system that

functions in concert and posses tremendous processing power. Cluster computing is not new, but

in company with other technical capabilities, particularly in the area of networking, this class of

machines is becoming a high-performance platform for parallel and distributed applications [1, 2,

11, 12, 13, 14, 15, 16, 17].

Scalable computing clusters, ranging from a cluster of (homogeneous or heterogeneous)

PCs or workstations to SMP (Symmetric MultiProcessors), are rapidly becoming the standard

platforms for high-performance and large-scale computing. A cluster is a group of independent

computer systems and thus forms a loosely coupled multiprocessor system as show in Figure 1.

126

A network is used to provide inter-processor communications. Applications that are distributed

across the processors of the cluster use either message passing or network shared memory for

communication. A cluster computing system is a compromise between a massively parallel

processing system and a distributed system. An MPP (Massively Parallel Processors) system

node typically cannot serve as a standalone computer; a cluster node usually contains its own

disk and equipped with a complete operating systems, and therefore, it also can handle

interactive jobs. In a distributed system, each node can function only as an individual resource

while a cluster system presents itself as a single system to the user.

Since a Beowulf cluster is a parallel computer system, it suits applications that can be

partitioned into tasks, which can then be executed concurrently by a number of processors. These

applications range from high-end, floating-point intensive scientific and engineering problems to

commercial data-intensive tasks. Uses of these applications include ocean and climate modeling

for prediction of temperature and precipitation, seismic analysis for oil exploration, aerodynamic

simulation for motor and aircraft design, and molecular modeling for biomedical research.

System Bus

Shared
Memory

Network
Device

Storage
Device

I/O Bus

CPU
Cache

CPU
Cache

System Bus

Shared
Memory

Network
Device

Storage
Device

I/O Bus

CPU
Cache

CPU
Cache

System Bus

Shared
Memory

Network
Device

Storage
Device

I/O Bus

CPU
Cache

CPU
Cache

Hi
gh

 S
pe

ed
 N

et
w

or
k

System Bus

Shared
Memory

Network
Device

Storage
Device

I/O Bus

CPU
Cache

CPU
Cache

Figure 1: A cluster system by connecting four SMPs.

Inexpensive systems such as Beowulf clusters have become increasingly popular in both the

commercial and academic sectors of the bioinformatics community. Clusters typically consist of

a master node that distributes the bioinformatics application amongst the other nodes (slave

nodes). There exist some parallel version bioinformatics application [22] which can be installed

* Department of Computer Science and Information Engineering, Tunghai University, Taichung 407, TAIWAN

127

and conducted on a PC cluster [5, 6, 7], for example, HMMer, FASTA, mpiBLAST, PARACEL

BLAST [27], ClustalW-MPI [35], Wrapping up BLAST [34], and TREE-PUZZLE [25] et al.

Using these parallel programs on sequence alignment can always save much time and cost.

Especially for some companies, the PC clusters can be used to replace mainframe systems or

supercomputers and save much hardware cost. According to efficiency and cost, the use of

parallel version software and cluster system is a good way and it will become more and more

popular [11] in the near feature. As we know, bioinformatics tools can speed up the analysis of

large-scale sequence data, especially for sequence alignment. To fully utilize the relatively

inexpensive CPU cycles available to today’s scientists, a PC cluster consists of one master node

and seven slave nodes (16 processors totally), is proposed and built for bioinformatics

applications. We use the mpiBLAST and HMMER on parallel computer to speed up the process

of sequence alignment [23, 24, 28]. The system architecture and performance of the cluster are

also presented in this paper.

2. Parallel Bioinformatics Applications

2.1 BLAST and mpiBLAST

2.1.1 BLAST

The most popular tool for searching sequence databases is a program called BLAST (Basic

Local Alignment Search Tool) [29]. BLAST compares two sequences by trying to align them,

and is also used to search sequences in a database. The algorithm starts by looking for exact

matches, and then expands the aligned regions by allowing for mismatches. It performs pairwise

comparisons of sequences, seeking regions of local similarity, rather than optimal global

alignments between whole sequences. Actually the NCBI-BLAST implementation is the de facto

standard for biological sequence comparison and search in computational biology.

Here are the four main executable programs in the BLAST distribution [30, 31]:

• [blastall]

 Performs BLAST searches using one of five BLAST programs: blastn, blastp, blastx,

tblastn, or tblastx

The following table summarizes the query, database sequence, and alignment types for

the various BLAST commands.

128

Program Query sequence type Database sequence type Alignment sequence type

blastn nucleotide Nucleotide nucleotide

blastp protein Protein protein

blastx nucleotide Protein protein

tblastn protein nucleotide protein

tblastx nucleotide nucleotide protein

• [blastpgp]

Performs searches in PSI-BLAST or PHI-BLAST mode. blastpgp performs gapped

blastp searches and can be used to perform iterative searches in psi-blast and phi-blast

mode.

• [bl2seq]

Performs a local alignment of two sequences. bl2seq allows the comparison of two

known sequences using blastp or blastn programs. Most of the command-line options

for bl2seq are similar to those for blastall.

• [formatdb]

formatdb is used to format protein or nucleotide source database. It converts a

FASTA-format flat file sequence database into a BLAST database

2.1.2 mpiBLAST

BLAST is a set of programs to find similarity between a query protein or DNA sequence

and a sequence database. A scheme for efficiently running a large number of sequence files

against a variety of BLAST databases has been implemented on pc clusters. The BLAST search

algorithms consume the bulk of compute cycles for most bioinformatics researchers. The

algorithms search for similarities between a short query sequence and a large, unchanging

database of DNA or amino acid sequence. As BLAST is both computationally intensive and

embarrassingly parallel, several paradigms exist for parallelizing BLAST including

multithreading, query segmentation, and database segmentation. Virtually all parallel

implementations use multithreading and query segmentation. Using the ubiquitous

parallel-programming library called MPI: Message Passing Interface, mpiBLAST [32] segments

a database into several fragments such that each node in a computational cluster searches a

unique portion of the database. Database segmentation offers two primary advantages over

existing parallel BLAST algorithms. First, the current size of sequence databases is larger than

core memory on most computers, forcing BLAST searches to use disk I/O. Segmenting the

129

database permits each node to search a smaller portion of the database, eliminating disk I/O and

vastly improving BLAST performance. Second, because database segmentation does not create

heavy interprocessor communication demands, it allows BLAST users to take advantage of

power-efficient, space-efficient, low-cost clusters. The mpiBLAST is a freely available open

source parallelization of NCBI BLAST. The mpiBLAST segments the BLAST database and

distributes it across cluster nodes, permitting BLAST queries to be processed on many nodes

simultaneously. mpiBLAST is based on MPI. The current release runs under Linux and

Windows, and will probably work on other varieties of UNIX as well.

2.2 HMMer

Profile hidden Markov models (profile HMMs) [20, 21] can be used to do sensitive

database searching using statistical descriptions of a sequence family's consensus. HMMer uses

profile HMMs for several types of homology searches. HMMer is a software package which is

an implementation of profile hidden Markov model (HMM) methods for sensitive database

searches using multiple sequence alignment as queries. About HMMer’s sequence file format, it

attempts to read most common biological sequence file formats. The programs automatically

detect what format the file is in and whether the sequences are DNA, RNA, or protein..

Unaligned sequence files may be in FASTA, SWISS-PROT, EMBL, GenBank, PIR, or GCG

format. And aligned sequence files (multiple sequence alignments) may be in CLUSTALW,

SELEX, or GCG MSF format. HMMer’s main functionality is located in the hmmbuild program

and the hmmcalibrate program. The first program creates profile HMMs from sequence

alignment, and the second program calibrates search statistics for the HMMs. The HMMs

software packages also contain many useful programs such like hmmpfam, hmmindex,

hmmsearch. List some HMMer tools here:

• [hmmpfam] Searches a profile HMM database with a query sequence, trying to annotate an

unknown sequence.

• [hmmindex] Create a binary SSI index for HMM database.

• [hmmsearch] Searches a sequence database with a profile HMM, looking for more instances

of a pattern in a sequence database.

• [hmmalign] Align multiple sequences to a profile HMM.

• [hmmbuild] Builds a profile HMM from a multiple sequence alignment.

• [hmmcalibrate] Reads an HMM and calibrates its search statistics.

• [hmmconvert] Converts an HMM into other profile formats.

130

• [hmmemit] Generates sequences probabilistically based on a profile HMM. It can also

generate a consensus sequence.

[hmmfetch] Retrieves a profile HMM from HMM database.

2.2.1 Hmm Database-Pfam Database

Pfam [19] is a database of alignments of protein domain families and a database of profile

Hidden Markov Models. Pfam includes two sub-dataset: Pfam-A and Pfam-B. Pfam-A contains

over 2700 gapped profiles, and most of them cover whole protein domains; Pfam-B entries are

generated automatically by applying a clustering method to the sequences left over from the

creation of Pfam-A. Pfam-A entries being with a “seed alignment”, it is a biologically

meaningful multiple sequence alignment and sometimes may involve some manual editing. From

each seed alignment, a profile hidden Markov model is constructed and used to search more

protein sequences available. The process can be iterated to make the family domain more

complete. The latest Pfam version is 10.0 (July 2003), which contains alignments and models for

6190 protein families, based on the SWISS-PROT 41.10 and SP-TrEMBL 23.15 protein

sequence databases.

3 System Environment and Applications Installation

3.1 Our System Environment

We used dual-processor motherboards to reduce the number of boxes to eight, thus

minimizing the space needed for storage (and the footprint of the cluster). This structure impacts

performance because two processors share the memory bus (which causes bus contention but

reduces the hardware cost) since only one case, motherboard, hard drive, etc., are needed for two

processors. We ruled out the option of rack-mounting the nodes, essentially to reduce cost, but

chose to use standard mid-tower cases on shelves. This approach is sometimes given the name

LOBOS (“lots of boxes on shelves”).

Our SMP cluster is a low cost Beowulf-type class supercomputer that utilizes

multi-computer architecture for parallel computations. It consists of eight PC-based symmetric

multiprocessors (SMP) connected by one 24-port 100Mbps Ethernet switches with Fast Ethernet

interface. There are one server node and seven computing nodes. The server node has two AMD

ATHLON MP 2000+ processors and 1GBytes of shared local memory. Each AMD ATHLON

processor has 128K on-chip instruction and data caches (L1 cache), a 256K on-chip four-way

131

second-level cache with full speed of CPU. Each computing node has dual AMD ATHLON MP

1800+ with 512MB shared-memory.

The Redhat 8.0 Linux distribution has been installed on each node. The idea of the Linux

cluster is to maximize the performance-to-cost ratio of computing by using low-cost commodity

components and free-source Linux and GNU software to assemble a parallel and distributed

computing system. Software support includes the standard Linux/GNU environment, including

compilers, debuggers, editors, and standard numerical libraries. Coordination and

communication among the processing nodes is a key requirement of parallel-processing clusters.

In order to accommodate this coordination, developers have created software to carry out the

coordination and hardware to send and receive the coordinating messages. Messaging

architectures such as MPI or Message Passing Interface, and PVM or Parallel Virtual Machine,

allow the programmer to ensure that control and data messages take place as needed during

operation.

MPI is a message-passing library standard that was published in May 1994. The “standard”

of MPI is based on the consensus of the participants in the MPI Forum, organized by over 40

organizations. Participants included vendors, researchers, academics, software library developers

and users. MPI offers portability, standardization, performance, and functionality. The advantage

for the user is that MPI is standardized on many levels. For example, since the syntax is

standardized, you can rely on your MPI code to execute under any MPI implementation running

on your architecture. Since the functional behavior of MPI calls is also standardized, your MPI

calls should behave the same regardless of the implementation. This guarantees the portability of

your parallel programs. Performance, however, may vary between different implementations.

MPI includes point-to-point message passing and collective (global) operations. These are all

scoped to a user-specified group of processes. MPI provides a substantial set of libraries for the

writing, debugging, and performance testing of distributed programs. Our system currently uses

LAM/MPI, a portable implementation of the MPI standard developed cooperatively by Notre

Dame University. LAM (Local Area Multicomputer) is an MPI programming environment and

development system and includes a visualization tool that allows a user to examine the state of

the machine allocated to their job as well as provides a means of studying message flows

between nodes.

PVM, or Parallel Virtual Machine, started out as a project at the Oak Ridge National

Laboratory and was developed further at the University of Tennessee. PVM is a complete

distributed computing system, allowing programs to span several machines across a network.

PVM utilizes a Message Passing model that allows developers to distribute programs across a

variety of machine architectures and across several data formats. PVM essentially collects the

132

network’s workstations into a single virtual machine. PVM allows a network of heterogeneous

computers to be used as a single computational resource called the parallel virtual machine. As

we have seen, PVM is a very flexible parallel processing environment. It therefore supports

almost all models of parallel programming, including the commonly used all-peers and

master-slave paradigms. A typical PVM consists of a (possibly heterogeneous) mix of machines

on the network, one being the “master” host and the rest being “worker” or “slave” hosts. These

various hosts communicate by message passing. The PVM is started at the command line of the

master which in turn can spawn workers to achieve the desired configuration of hosts for the

PVM. This configuration can be established initially via a configuration file. Alternatively, the

virtual machine can be configured from the PVM command line (master’s console) or during run

time from within the application program.

3.2 mpiBLAST Installation

mpiBLAST is a parallelization of NCBI BLAST. mpiBLAST is a pair of programs that

replace formatdb and blastall with versions that execute BLAST jobs in parallel on a cluster of

computers with MPI installed. There are two primary advantages to using mpiBLAST versus

traditional BLAST. First, mpiBLAST splits the database across each node in the cluster. Because

each node's segment of the database is smaller it can usually reside in the buffer-cache, yielding a

significant speedup due to the elimination of disk I/O. Second, it allows BLAST users to take

advantage of efficient, low-cost Beowulf clusters because interprocessor communication

demands are low. The installation steps are descried as below [32].

1. mpiBLAST requires that an MPI [4] implementation is installed.

2. mpiBLAST also requires that the computers have some shared storage directory. This can be

an NFS mount, samba share, AFS, or any other type of shared network file system. The

location of the shared directory must be specified in the mpiblast.conf config file.

3. mpiBLAST requires the NCBI libraries and the formatdb executable. So to build mpiBLAST

from source you will also need to compile the NCBI Toolbox [33].

• Take the sources of NCBI toolkit and put the archive to the new empty directory. This

directory be called toolkit.

• cd toolkit

• download ncbi.tar.Z and compress –d < ncbi.tar.Z | tar xvf

• run the command: env CC = gcc ./ncbi/make/makedis.csh - |& tee out.makedis.txt

4. From the mpiblast directory:

• > ./configure

• > make

133

• And (optionally as root):

• > make install

5. Useful options for ‘configure’:

• --prefix=/path/to/install/directory Specifies the location where mpiBLAST should be

installed

• --with-ncbi=/path/to/ncbi/ Specifies the path to the NCBI Toolbox

• --enable-many-fragments Causes mpiBLAST too look for 3 digit fragment identifiers

instead of 2, permitting mpiBLAST to use up to 1000 database fragments. The NCBI

Toolbox must be patched for this to work.

• --enable-mpe Causes mpiBLAST to use MPE logging to measure the running time of its

components

• --enable-debug Causes mpiBLAST to be compiled with debug options

6. Creating the config file. This config called mpiblast.conf. And the config file contains three

lines, and looks like this:

 /path/to/shared/storage

 /path/to/local/storage

 /path/to/NCBI/BLAST/binaries

The first line designates the location of the shared storage that will be used for communication

of database fragments, queries, and BLAST results. The second line designates the location of

a directory on the node's local hard drive where that node's database fragments can be stored.

The third line designates the path where the NCBI BLAST programs can be found.

7. Creating a file named “a.ncbirc”. And the contents is such like below:

 [NCBI]

 Data=/path/toolkit/ncbi/data

• This file is used to calculate the value by BLOSUM45 matrix.

8. Formatting the database. And we use the yeast.nt database. This yeast.nt database’s size near

about 12 MB.

• ./mpiformatdb -f /path/to/mpiblast.conf -N 8 -i yeast.nt -o T -p F

• Because our system includes 8 computing nodes. So we use mpiformatdb format yeast.nt

into 8 fragments.

• Option: -i means “Input file for formatting. And input file is yeast.nt database.

• Option: -p means the type of file: (1) T = Protein (2) F = Nucleotide

134

9. Then the multiple alignment tool can use now. Type a command to execution mpiBLAST

software such like below.

• mpirun -np 8 mpiblast --config-file=/path/to/mpiblast.conf -p blastn -d yeast.nt -i

blast_query.fas -o blast_results.txt

• Option: -d means the database name

• Option: -i means the query file

• Option: -o means the BLAST report output file

3.3 HMMer Installation

The Washington University HMMer homepage [18] provide much information and

software version about HMMer software package. The latest HMMer version is HMMer 2.2g. It

provides many platform version, such like FreeBSD, OpenBSD, Solaris (Intel x86 and Sun

SPARC), IBM AIX, Compaq Alpha, and Intel Linux. In this paper, Intel Linux version is used to

install and conduct experiment. The installation steps are descried as below.

1. Download the HMMer package and select one version which you want use.

• hmmer-2.2g.bin.intel-linux.tar

• uncompress the tar file and will bring to a new directory which called

hmmer-2.2g.bin.intel-linux

2. Go into the hmmer-2.2g.bin.intel-linux directory and type two command:

• env CC = gcc CFLAGS=“-06” ./configure

• ./configure –with-pvm

• The first command execute, if you want to change the choice of compilation flags

(CFLAGS) or the compiler (CC). And the second command is order to include the optional

PVM support.

3. Then copy all file which exist in the directory hmmer-2.2g.bin.intel-linux/binaries into

/usr/local/bin, and then HMMer can be executing at any different directory.

4. At the master node, it must install full HMMer program. But at the other slave nodes, just

need to copy hmmcalibrate-pvm, hmmsearch-pvm, hmmpfam-pvm into /usr/local/bin

directory. It is not necessary to install complete HMMer programs on each slave node.

5. Use hmmindex to create a binary SSI index for HMM database Pfam_fs. Type a command

like below: (At server node)

• hmmindex /home/ct/pack/Pfam_fs

• Hint: The query sequence Artemia.fa is store in /home/ct/pack and the HMMer database

Pfam_fs is store in /home/ct/pack/pfam

135

6. Set execution path way (At all nodes)

• cd /usr/share/pvm3/bin/LINUX

• And type one command ln –s /home/ct/hmmpfam-pvm

7. Then the multiple alignment tool can use now. Type a command to execution HMMer

software such like below.

• hmmpfam --pvm /home/ct/pack/pfam/Pfam_fs /home/ct/pack/Artemia.fa

And we can get some message about result.

4 Experimental Results

4.1 The Performance of mpiBLAST

The mpiBLAST sequence alignment result message is such like below. The result messages

are showed the alignment score and E-value, which is calculating by BLOSUM45 matrix. And

the sequence alignment results express which base pair is match, which base pair is unmatched,

and the inserted gap. According these messages, we can understand the degree of similarity

about the sequences as shown in the following:

nodes 2 4 6 8

1 1478 1109 873 807

2 1471 1166 900 799

3 1485 1195 860 809

4 1498 1100 869 803

136

5 1494 1167 866 808

Avg(ms

)

1485.

2

1147.

4
873.6 805.2

Table 1: The execution time of mpiBLAST using nodes from 2 to 8.

The Table 1 is the mpiBLAST software experimental result. The software is execution by 2,

4, 6, and 8 nodes to compare the time. In order to aspire get more accurate data, we execute 5

times per experiment and calculate the average time. And By the Table 1 and the Figure 2, we

can easily to nose out the parallel system can save more time to do the sequence alignment.

According to the Table 1 and Figure 2, we can easily to discover the speedup is near two times

as we used the fore nodes to executing the mpiBLAST.

0
200
400
600
800

1000
1200
1400
1600

8 6 4 2

Number of nodes

Pr
oc

es
sin

g
tim

e
(m

s)

Figure 2: The average execution time of mpiBLAST using node from 2 to 8.

4.2 The Performance of HMMer

The HMMer sequence alignment result messages:

TLC: domain 1 of 1, from 1184 to 1207: score -0.6, E = 2.6
 ->tskeekffsKlraiiWPIeryELk<-
 t e+ +f +++ ++ P+ ++ Lk
 S13421 1184 TNVERRHFQAFSNALIPVMQHDLK 1207

Adeno_Penton_B: domain 1 of 1, from 1277 to 1288: score -0.5, E = 1.1
 ->tDHGtlPLkNsL<-
 tDHG +PL+++L
 S13421 1277 TDHGYQPLFSNL 1288

Macscav_rec: domain 2 of 2, from 1309 to 1323: score 0.4, E = 10
 ->VLLQLnsLissvqeh<-
 V+ QL +L+ s+q
 S13421 1309 VMAQLDTLVGSLQNS 1323

FliD: domain 1 of 1, from 1310 to 1322: score 1.5, E = 0.47
 ->FtamDtlmgkmne<-
 + ++Dtl+g++++
 S13421 1310 MAQLDTLVGSLQN 1322

137

The result messages are showed the alignment score and E-value. And the sequence

alignment results express which base pair is match, which base pair is unmatched, and the

inserted gap. According these messages, we can understand the degree of similarity about the

sequences.

According the time measurement, we can get some conclusion about the HMMers execution
on PC cluster.

Processors

number
2 4 6 8 10 12 14 16

1 3m30.749 1m51.007 1m15.694 57.512 46.344 39.215 33.961 30.808

2 3m32.231 1m51.541 1m15.602 57.144 46.973 39.065 33.315 29.876

3 3m32.071 1m50.748 1m15.754 58.309 46.936 38.579 32.824 29.371

4 3m31.890 1m50.687 1m15.366 57.817 46.267 38.542 32.973 29.806

5 3m31.260 1m51.292 1m16.140 57.898 45.891 38.921 33.566 29.237

Avg (ms) 211640.2 111055 75711.2 57736 46482.2 38864.4 33327.8 29819.6

Table 2: The execution time of HMMer using processor from 2 to 16.

The Table 2 is the experimental result about 2, 4, 6, 8, 10, 12, 14, 16-processor’s execution

time. And every experiment is executing five times and calculating its average. By Table 2, it is

get more speed up and save more time to do multiple sequences alignments. Let us look the time

of 2 processors and the time of 16 processors, it saves near 3 minutes. And it does not spend

much money to construct this PC cluster system.

And according to this experimental data, draw a bar chart. By this bar chart, we can easier

to find out the time cost change. When we use 4 processors to executing the software, it saved

about a half time. So the speedup is near two degree which compare with 2 processors. And it

produced near two degree speedup as we used 8 processors which compares with 4 processors.

The Graph is draw below (Figure 3).

138

0
25000
50000
75000

100000
125000
150000
175000
200000
225000

16 14 12 10 8 6 4 2

Number of processors

Pr
oc

es
sin

g
tim

e
(m

s)

Figure 3: The average execution time of HMMer using processor from 2 to 16.

5 Conclusion and Future Work

In this paper, we have shown a great improvement about multiple sequences alignment time

costs. But we know that the speed up is not enough, because we don’t have so much PC can

build a more high performance PC Cluster. The present day, biology data is increasing quickly.

According this reason, bioinformatics requires high performance computing facilities for

homology search, molecular simulation, cell simulation et al. Grid computing has a potential for

expansion in computing performance by connecting a large number of computers or PC clusters

with high performance networks. So Grid system can help us speedup the experimentation time.

In the future, we want to integrate the Grid technology and bioinformatics to implement all kind

of sequence alignment applications or bioinformatics tools [26]. And this hybrid system

sometimes called BioGrid. BioGrid is a large-scale distributed computing environment,

including couple of computers, storage systems, and other devices. By this BioGrid computing

system, we can speed up the sequence alignment time by many computers of the grid system.

And BioGrid system can improve performance more than parallel computing on PC Clusters. In

this paper, the mpiBLAST bioinformatics application software is used on MPI, and we can

re-compile it by MPICH-G2. And the mpiBLAST can execution on Grid System. So construct

the BioGrid System is our future work and hope to accelerate the sequence alignment time by it.

References

[1] R. Buyya (1999), High Performance Cluster Computing: System and Architectures, Vol. 1,
Prentice Hall PTR, NJ.

139

[2] R. Buyya (1999), High Performance Cluster Computing: Programming and Applications,
Vol. 2, Prentice Hall PTR, NJ.

[3] http://www.netlib.org/benchmark/hpl, HPL – A Portable Implementation of the
High-Performance Linpack Benchmark for Distributed-Memory Computers.

[4] http://www.lam-mpi.org, LAM/MPI Parallel Computing.

[5] http://www.haveland.com/povbench, POVBENCH – The Official Home Page.

[6] http://parlweb.parl.clemson.edu/pvfs, Parallel Virtual File System.

[7] http://www.epm.ornl.gov/pvm, PVM – Parallel Virtual Machine.

[8] Lie, W. N. (2001), Distributed Computing Systems for Satellite Image Processing,
Technical Report, EE, National Chung Cheng University.

[9] Lillesand, Thomas M. and Kiefer, Ralph W. (1994), Remote Sensing and Image
Interpretation, Third Edition, John Wiley & Sons.

[10] Richards, John A. (1999), Remote Sensing Digital Image Analysis: An Introduction,
Springer-Verlag.

[11] T. L. Sterling, J. Salmon, D. J. Backer, and D. F. Savarese (1999), How to Build a Beowulf:
A Guide to the Implementation and Application of PC Clusters, 2nd Printing, MIT Press,
Cambridge, Massachusetts, USA.

[12] B. Wilkinson and M. Allen (1999), Parallel Programming: Techniques and Applications
Using Networked Workstations and Parallel Computers, Prentice Hall PTR, NJ.

[13] M. Wolfe (1996), High-Performance Compilers for Parallel Computing, Addison-Wesley
Publishing, NY.

[14] C. T. Yang, S. S. Tseng, M. C. Hsiao, and S. H. Kao (1999), “A Portable parallelizing
compiler with loop partitioning,” Proc. of the NSC ROC(A), Vol. 23, No. 6, pp. 751-765.

[15] Chao-Tung Yang, Shian-Shyong Tseng, Yun-Woei Fan, Ting-Ku Tsai, Ming-Hui Hsieh,
and Cheng-Tien Wu (2001), “Using Knowledge-based Systems for research on portable
parallelizing compilers,” Concurrency and Computation: Practice and Experience, vol. 13,
pp. 181-208.

[16] Chao-Tung Yang, Chi-Chu Hung, and Chia-Cheng Soong (July 2001), “Parallel Computing
on Low-Cost PC-Based SMPs Clusters,” Proc. of the 2001 International Conference on
Parallel and Distributed Computing, Applications, and Techniques (PDCAT 2001), Taipei,
Taiwan, pp 149-156.

[17] Chao-Tung Yang and Chi-Chu Hung (Dec. 2001), “High-Performance Computing on
Low-Cost PC-Based SMPs Clusters,” Proc. of the 2001 National Computer Symposium
(NCS 2001), Taipei, Taiwan, pp 149-156.

[18] http://hmmer.wustl.edu/ Washington University in St.Louis

[19] http://pfam.wustl.edu/ Pfam Database Home

[20] PIERRE BALDI, YVES CHAUVIN, TIM HUNKAPILLER, and MARCELLA A.
McCLURE. Hidden Markov models of biological primary sequence information.

[21] Lior Pachter, Marina Alexandersson, and Simon Cawley. Applications of Generalized Pair
Hidden Markov Models to Alignment and Gene Finding Problems.

[22] Oswaldo Trelles. On the Parallelization of Bioinformatic Applications.

http://www.lam-mpi.org/
http://www.haveland.com/povbench
http://parlweb.parl.clemson.edu/pvfs
http://hmmer.wustl.edu/
http://pfam.wustl.edu/

140

[23] Jens Kleinjung, Nigel Douglas and Jaap Heringa. Parallelized multiple alignment.

[24] Thomas Royce and Rance Necaise. A parallel Algorithm for DNA Alignment

[25] Heiko A. Schmidt, Korbinian Strimmer, Martin Vingron and Arndt von Haeseler.
TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel
computing.

[26] Michael Karo, Christopher Dwan, John Freeman, Jon Weissman, and Miron Livny, Ernest
Retzel. Applying Grid Technologies to Bioinformatics.

[27] PARACEL BLAST-Accelerated BLAST software optimized for Linux clusters.

[28] Dmitry Korkin. A New Dominant Point-Based Parallel Algorithm for Multiple Longest
Common Subsequence Problem.

[29] Altschul, S.F., W. Miller, E. W. Myers, and D. J. Lipman. (1990). Basic local alignment
search tool. J. Mol. Biol. 215:403-410.

[30] http://www.ncbi.nlm.nih.gov/BLAST/, NCBI BLAST main page

[31] http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/information3.html, NCBI BLAST
information guide

[32] http://mpiblast.lanl.gov/index.html, mpiBLAST main page

[33] ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools/, NCBI Toolbox download site

[34] Karsten Hokamp, Denis C. Shields, Kenneth H. Wolfe and Daniel R. Caffrey. Wrapping up
BLAST and other applications for use on Unix clusters.

[35] Kuo-Bin Li, and ClustalW-MPI: ClustalW Analysis Using Distributed and Parallel
Computing

http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/information3.html
http://mpiblast.lanl.gov/index.html
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools/

141

平行生物資訊軟體在個人電腦叢集上之應用

楊朝棟* 郭育倫

摘 要

除了傳統的大型平行電腦之外，由於許多高效能處理器的誕生以及擁有高速傳輸頻寬的網路

和許多有用發展工具的出現，使得分散式電腦叢集在現今的科學計算領域中扮演了非常重要的角

色。如我們所知，生物資訊領域的相關軟體可以加速巨量序列資料的分析，尤其是針對序列的分

析比對。因此我們利用了目前處理器價格低廉的特點，利用八台雙處理器的電腦建構一組主從式

架構的個人電腦叢集以作為生物資訊之計算平台。在此篇論文中，利用mpiBLAST與HMMer兩種

平行版本的生物資訊應用軟體，並且紀錄與比較其序列比對所需的時間與效能。而論文中也會提

及關於此系統之架構以及叢集電腦的效能分析等。

關鍵詞：平行計算、生物資訊、BLAST、HMMer、個人電腦叢集、加速

* 高效能計算實驗室，東海大學資訊工程與科學系

