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PACS (Picture Archiving and Communication System) is a system for archiving, retrieving,
communicating and displaying medical images. The purpose of PACS is to acquire medical
images from medical systems, store them in digital formats, and transmit them to remote users
through networks for diagnostic usages. Furthermore, PACS can be sharing platforms for
various images. As the development of software and computing technologies, PACS is
promising to assist doctors in medical diagnoses, instruction and researches. The success of
PACS depends on not only powerful hardware, but also advanced software utilities and
operating procedures. By means of the developed grid computing technologies, resources of
virtual organizations located in different places can be managed and dispatched. Moreover, the
salient features of fault-tolerance and high availability of data grid can satisfy various kinds
computing and storage requirements in medical applications. We propose a three-year project to
design and implement Smart Broker Centric and adaptive replica management components in
co-allocation data grid environments. By means of introducing Open Source PACS solutions
based on specially designed grid modules, we plan to verify the feasibility of using grid
technologies to support PACS. In addition, the contributions will include promoting the
advantages of PACS, improving the sharing performance of PACS image replica and a
cost-effective PACS solution.

In the first year, we design and implement the prototype, including all components of the
platforms. The architecture is composed of five layers: Application, Smart Broker, Cyber
Abstraction, Grid Middleware and Fabric. The higher layers are user-centric, and use Smart
Broker as the core of the architecture. The bottom layers focus on resource integration, and use
Cyber Abstraction to describe the interconnection of the top layers and the bottom layers. Also,
a grid knowledge management (GKM) model is designed to facilitate the parameter input of all
components. Some research results are published in APSCCO08, ICPADS08 and JNCA.

In the nest first year, we plan to integrate components of all layers by using Globus Tookit,
Cloud Computing and Cross-CA technologies, in order to improve the computing performance
and resource utilization. The implemented Co-Allocator component can provide corresponding
resources by Resource Management System (RMS), and support grid context-awareness by
GKM. For evaluation, we plan to construct client applications for remotely controlling
Workflow, and feedback the work history and results to GKM. Taking Open Source PACS for
examples, we plan to conduct experiments on functionality and compatibility of the prototype.

In the nest second year, we plan to refine the components and the application according to



the experimental results. Also, the proposed system will be compared with a real-world PACS of
hospitals in terms of overall performance.

Keywords: Grid Computing, Data Grid, Medical Grid, PACS, Co-allocation
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Co-allocation architectures can be used to enable parallel transfers of data file from multiple replicas in
data grids which are stored at different grid sites. Schemes based on co-allocation models have been
proposed and used to exploit the different transfer rates among various client-server network links and
to adapt to dynamic rate fluctuations by dividing data into fragments. These schemes show that the
more fragments used the more performance. In fact, some schemes can be applied to specific situations;
however, most situations are not common actually. For example, how many blocks in a data set should
be cut? For this issue, we proposed the anticipative recursively adjusting mechanism (ARAM) in a
previous research work. Its best feature is performance tuning through alpha value adjustment. It relies
on special features to adapt to various network situations in data grid environments. In this paper, the
TCP Bandwidth Estimation Model (TCPBEM) is used to evaluate dynamic link states by detecting TCP
throughputs and packet lost rates between grid nodes. We integrated the model into ARAM, calling the
result the anticipative recursively adjusting mechanism plus (ARAM+); it can be more reliable and
reasonable than its predecessor. We also designed a Burst Mode (BM) that increases ARAM+ transfer
rates. This approach not only adapts to the worst network links, but also speeds up overall performance.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

An increasing number of scientific applications, e.g., arising
from Genomics, Proteomics, and Bioinformatics require exchanges
of large volumes of data to support computation (Allcock et al.,
2002; Czajkowski et al., 1999, 2001; Foster et al., 2001; Hoschek
et al., 2000; Open Grid Forum; Stockinger et al., 2002; The Globus
Alliance). Downloading large data sets from replica locations may
result in different performance rates because replica sites may have
different architectures, system loading, and network connectivity.
Bandwidth quality is the most important factor affecting internet
transfers between clients and servers, with download speeds being
bounded by traffic congestion due to bandwidth limitations.

One method for improving download speeds uses replica
selection techniques to determine the best replica locations
(Chervenak et al., 2001, 2002; Czajkowski et al., 1999, 2001;
Foster and Kesselman, 1997; Yang et al., 2005, 2008; Zhang et al.,
2003; Vazhkudai and Schopf, 2002, 2003; Yang et al.,, 2006).

* This work is supported in part by the National Science Council, Taiwan, ROC,
under Grant nos. NSC 96-2221-E-029-019-MY3 and NSC 97-2622-E-029-003-CC2.
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(M.-F. Yang), wcchiang@mail.hit.edu.tw (W.-C. Chiang).
1 Computer Center, Hsiuping Institute of Technology, Taichung County,
Taiwan, ROC.

1084-8045/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jnca.2009.02.002

However, downloading data sets from single best servers often
results in ordinary transfer rates because bandwidth quality varies
unpredictably due to the shared nature of the Internet.

Another method uses co-allocation (Vazhkudai, 2003)
technology to download data. Co-allocation architectures were
developed to enable clients to download data from multiple
locations by establishing multiple connections in parallel, thus
improving performance over single-server transfers and helping
to alleviate the internet congestion problem (Yang et al., 2007b).
Parallel downloading (Vazhkudai et al., 2002, 2001; Wang et al.,
2006; Yang et al, 2007a) is a technique used to fetch and
download files from multiple sources including Web servers, file
servers, P2P nodes, etc. Parallel downloading has been integrated
into many Internet applications and has become the core of
many P2P systems. It speeds up download times and eliminates
the server selection problem (Vazhkudai, 2003; Venugopal et al.,
2006; Vazhkudai et al., 2002). Several co-allocation strategies
were addressed in previous works (Mathis et al.,, 1997; Yang
et al, 2007a), but drawbacks remain, such as faster servers
having to wait for the slowest one to deliver its final block. As
shown in Mathis et al. (1997) and Padhye et al. (1998), this may
degrade network performance by repeatedly transferring the
same block. Hence, it is important to minimize differences in
finish times among servers, and to prevent the same blocks
from being transferred over different links between servers and
clients.

Please cite this article as: Yang C-T, et al. Enhancement of anticipative recursively adjusting mechanism for redundant parallel file
transfer in data grids. ] Network Comput Appl (2009), doi:10.1016/j.jnca.2009.02.002
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In our previous research work, we presented a method for
regulating next-section workloads by continuously adjusting the
workloads on selected replica servers. The anticipative recursively
adjusting mechanism (ARAM) scheme (Yang et al., 2007a)
measures the actual bandwidth performance during data file
transfers, and, according to previous transfer finish rates,
anticipates bandwidth statuses at the next transfer section. The
basic idea is to assign less data to selected replica servers with
greater network link performance variations since links with more
bandwidth variations will have smaller effective bandwidths, as
well as smaller transfer finish rates. The goal is to make the
expected finish times of all servers be the same.

In this paper, we first present our new approach based on the
ARAM co-allocation strategy for data grid environments. We have
designed and implemented a TCP bandwidth estimation model
and Burst Mode (BM) to enhancing the original ARAM algorithm.
Workloads on all selected replica servers are still adjusted
according to TCP throughputs and packet loss rates, and faster
servers get double or even quadruple throughputs via Burst Mode
enabling. Finally, we present Cyber Transformer, a useful toolkit
for data grid users. Integrated with the Information Service,
Replica Location Service, and Data Transfer Service, its simple,
friendly GUI interface makes it easy for inexperienced users to
manage replicas and download files in data grid environments.
This tool integrates all strategies based on co-allocation archi-
tectures including our previous and proposed algorithms.

The remainder of this paper is organized as follows. Related
background review and studies are presented in Section 2. Our
new approach is outlined in Section 3. Experimental results and a
performance evaluation of our scheme are presented in Section 4.
Section 5 concludes this research article.

2. Background review and related work
2.1. Co-allocation architecture

The architecture proposed in Vazhkudai (2003) consists of
three main components: an information service, a broker/co-
allocator, and local storage systems. Fig. 1 shows co-allocation of
data grid transfers, an extension of the basic template for resource
management (Vazhkudai et al.,, 2001; Vazhkudai and Schopf,
2002) provided by the Globus Toolkit. Applications specify the
characteristics of desired data and pass attribute descriptions to a
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ﬁ
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Fig. 1. Data grid co-allocation architecture.

broker. The broker queries available resources, gets replica
locations from the Information Service (Czajkowski et al., 1999,
2001) and Replica Management Service (Czajkowski et al., 2001),
then gets lists of physical file locations.

2.1.1. Brute-force co-allocation

The Brute-force co-allocation scheme shown in Fig. 2 divides
file sizes equally among available flows; it does not address
bandwidth differences among various client-server links.

2.1.2. History-based co-allocation

The history-based co-allocation scheme shown in Fig. 3 keeps
block sizes per flow proportional to predicted transfer rates, and
disregards the influence of network variations between client and
Server.

2.1.3. Conservative load balancing

The conservative load balancing scheme shown in Fig. 4
divides requested data sets into k disjoint blocks of equal size.
Available servers are allocated single blocks to deliver in parallel.
Servers work in sequential order until all requested files are
downloaded. Loadings on the co-allocated flows are automatically
adjusted because the faster servers deliver larger file portions
more quickly.

2.14. Aggressive load balancing

This method, shown in Fig. 5, adds functions that change block
size in deliveries by: (1) gradually increasing the amounts of data
requested from faster servers and (2) reducing the amounts of
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Fig. 2. The Brute-force co-allocation process.
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Fig. 3. The history-based co-allocation process.
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data requested from slower servers or stopping requesting data
from them altogether.

2.1.5. Dynamic co-allocation with duplicate assignments (DCDA)
The co-allocation strategies described above do not handle the
shortcoming of faster servers having to wait for the slowest server
to deliver its final block which, in most cases, wastes much time
and decreases overall performance. Neither the prediction nor the
heuristic approach, the DCDA scheme dynamically co-allocates
duplicate assignments (Bhuvaneswaran et al., 2005, 2007) and
copies nicely with changes in server speed performance, as shown
in Fig. 6. The DCDA scheme is based on an algorithm that uses a

circular queue. Let D be a data set and k the number of blocks of
fixed size in the data set. D is divided into k disjoint blocks of
equal size and all available servers are assigned to deliver blocks
in parallel. When a requested block is received from a server,
one of the unassigned blocks is assigned to that server. The
co-allocator repeats this process until all blocks have been
assigned. DCDA behaves well even when server links are broken
or idled. The DCDA scheme is flawed, however, in that it consumes
network bandwidth by repeatedly transferring the same blocks.
This wastes resources and can easily cause bandwidth traffic jams
in the links between servers and clients.

2.1.6. Recursively adjusting mechanism (RAM)

This co-allocation strategy is the most efficient approach to
reducing the influence of network variations between clients and
servers. However, idle times when faster servers are waiting for
the slowest server to deliver its last block are still a major factor
affecting overall efficiency that conservative load balancing and
aggressive load balancing (Vazhkudai, 2003; The Globus Alliance),
cannot effectively avoid. In real-world networking environments,
a replica server’s available bandwidth might change dynamically
as a result of network configuration or load variations. Previous
algorithms could not adapt to these dynamisms. Therefore,
the greater the degree of bandwidth variation the greater the
download times needed. Thus, overall efficiency depends on
several factors. Our strategy can overcome such obstacles, and
improve data transfer performance. The recursively adjusting
mechanism works by continuously adjusting each replica server’s
workload to correspond to its real-time bandwidth during file
transfers. The goal is to make the expected finish times of all
servers the same. As Fig. 7 shows, when an appropriate file section
is first selected, it is divided into proper block sizes according to
the respective server bandwidths. The co-allocator then assigns
blocks to servers for transfer. At this moment, it is expected that
the transfer finish times will be consistent at E(t;). However, since
server bandwidths may fluctuate during segment deliveries,
actual completion times may vary (solid line, in Fig. 7). When
the quickest server finishes its work at time t;, the next section
is assigned to the servers. This allows each server to finish
its assigned workload by the expected time at E(t;). These
adjustments are repeated until the entire file transfer is finished.

The main purpose of this algorithm is to select appropriate
data sources and download from multiple data servers to a single-
client resource. We proposed a recursively adjusting co-allocation
scheme for parallel downloads from multiple replica servers to a
single client. This is useful in cases like downloading music file
segments and playing continuous music on a single-client
resource. Our algorithms are mainly aimed at transferring
parallel data segments from multiple servers to multiple clients
for execution of parallel numerical applications on the clients.

File A Section 1 |Section2 | ... [...]
Round 1 Round 2
E(ty) 4 E(ty)

[Semeri] == —
Sz ] == — —
[Sera] = —=—> — —

Fig. 7. The adjustment process.
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The challenge in multiple server-multiple client scenarios is
greater since server selections and data downloads on some
clients can impact server selections and data transfer performance
on other clients.

3. Our approach
3.1. Anticipative recursively adjusting mechanism (ARAM)

The recursively adjusting mechanism reduces file transfer
completion times and idle times spent waiting for the slowest
server. It also provides an effective scheme for reducing the cost of
reassembling data blocks. However, our scheme did not consider
the potential effect of server links broken or idled during file
transfers. Therefore, we propose an efficient approach called the
anticipative recursively adjusting mechanism to extend and
improve upon recursively adjusting co-allocation mechanism
(Yang et al., in press). The main idea of the ARAM is to assign
transfer requests to selected replica servers according to the finish
rates for previous transfers, and to adjust workloads on selected
replica servers according to anticipated bandwidth statuses. In
continuously adjusting selected replica server workloads, the
anticipative recursively adjusting mechanism scheme measures
actual bandwidth performance during data file transfers and
regulates workloads by anticipating bandwidth statuses for
subsequent transfers according to the finish rates for previously
assigned transfers. The basic idea is to assign less work to selected
replica servers on network links with greater performance
variability. Links with more bandwidth variation will have smaller
effective bandwidths, as well as smaller finish rates for assigned
transfers. The goal is to have the expected finished times of all
servers be the same. Our approach performs well, even when the
links to selected replica servers are broken or idled. It also reduces
the idle time wasted waiting for the slowest server. As appropriate
file sections are selected, they are first divided into proper block
sizes according to the respective server bandwidths, previously
assigned file sizes, and transfer finish rates. Initially, the finish rate
is set to 1. Next, the co-allocator assigns the blocks to selected
replica servers for transfer. At this moment, it is expected that the
transfer finish times will be consistent with E(t;). However, since
server bandwidths may fluctuate during segment deliveries,
actual completion times may differ from expected times E(t;)
(solid lines in Figs. 8 and 9). When the fastest server finishes at
time t;, the size of unfinished transfer blocks (italic blocks in Figs.
8 and 9) is measured to determine the finish rate. Two outcomes
are possible: the quickest server finish time t; may be slower than
or equal to the expected time, E(t;), indicating that network link
performance remained unchanged or declined during the transfer.
In this case, the difference in transferred size between the
expected time and actual completion time (italic block in Fig. 8)
is then calculated.

Section 1

File A [Section2 | ... [... ]

Round 2
E (t)

Round 1
E (t) t

[Semeri | ===
[Semera ] — b — —

MWV

Fig. 8. Later-than-expected-time adjustment process.
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Fig. 9. Earlier-than-expected-time adjustment process.

The other outcome is that the quickest server finish time t;
may be faster than the expected time, E(t;), indicating an
excessively pessimistic anticipation of network performance, or
an improvement in replica server network link performance
during the transfer. The difference in transferred size between the
expected time (italic block in Fig. 9) and earlier time is then
measured. If the anticipated network performance was exces-
sively pessimistic, it is adjusted for the next section. The next task
is to assign proper block sizes to the servers along with respective
bandwidths and previous finish rates, enabling each server to
finish its assigned workload by the expected time, E(t,). These
adjustments are repeated until the entire file transfer is finished.

Looking more closely at ARAM, some parameter definitions are
shown below:

A: file requested by user

n: selected replica servers

o: rate that determines how much of the section remains to be

assigned

e T;: allocated time for section j

SE;: allocated size for section j

e UnassignedFileSize: portion of file A not yet distributed for
downloading

e UnfinishedFileSize:
previous rounds

e Bj;: real-time transfer rate from the selected replica server

r;: transfer finish rate

rj_1: server transfer finish rate for previously assigned

delivered file

B;: bandwidth available for section j

Sjit block size per flow from SE; for each server i at time T;

ETj;: expected time for server i at section j

RTj;: real finish time for server i at section j

TSj;: actual transfer size at real finish time RTj;

rji: job finish rate

size of unfinished blocks assigned in

When a user requests file A from the data grid environment, the
replica selection server responds with a list of all available servers
defined as maximum performance data sets/servers. Data sets/
servers for the co-allocator to transfer the file are selected, and the
target file is then transferred from the chosen replica data sets/
servers.

Assume that n replica servers are selected and S; denotes server
“i” for 1=i=n. A connection for file downloading is then built to
each server.

The anticipative recursively adjusting mechanism process is as
follows. A new section of a file to be allocated is first defined. The

section size is shown as
SE; = (UnassignedFileSize + TotalUnfinishedFileSize)o, 0<a<1

(1)
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where SE; denotes section j such that 1=j=k, assume k time is
allocated for downloading and there are k sections, while T;
denotes the time allocated to section j. UnassignedFileSize, the
portion of File A awaiting distribution for downloading is initially
equal to total file size and TotalUnfinishedFileSize is equal to zero in
the first round. « is the rate determining how much of the section
remains to be assigned.

In the next step, SE; is divided into several blocks and assigned
to “n” servers. Each server has a real-time transfer rate to the
selected replica server of Bj. r;_; denotes the server transfer finish
rate for previously assigned files, where the initial value is 1. The
block size per flow from SE; for each server “i” at time T; is Sj;:

SE],(BJI X Tj— l)

Sj=—A" NI T ogr—ig] (2)
T LB x 1y — i) !
n
i=1
S
ETji =2 (4)

J

This fulfills our requirement to minimize the time faster servers
must wait for the slowest server to finish. In some cases, network
variations greatly degrade transfer rates. A faster channel may
finish its assigned data blocks at real finish time RTj;, or later or
earlier than expected time ETj;. Then TS; denoting the actual
transfer size at real finish time RTj; is given by

TSj,’ = Bj,‘ X RT], (5)

If the first finish time for RTj; is earlier than expected time ETj;,
the reason may be an excessively pessimistic anticipation of
network performance, or the network links used for improvement
during the transfer. We compare the block sizes transferred
between the earliest and expected times for each server chosen. If
the transferred size TS;; is greater than expected size Sj; at the first
finish time, otherwise, the first finish time for RT; may be the
result of the network link used remaining unchanged or
deteriorating during the transfer:

TS;i
iy RT;; >ETj;
=14 Si (6)
1, RTﬁ < ETji, and TSﬁ ZS]',‘

The co-allocator then measures the bandwidth performance of
each server, and estimates bandwidth statuses for the next
transfer section in order to adjust workflows for the next session.
At the same time, it eliminates server UnfinishedFileSize listings by
summing them up for assignment to the next section.

After allocation, all selected replica servers continue transfer-
ring data blocks. When a faster selected replica server finishes its
assigned data blocks, the co-allocator allocates an unassigned
section of file A. Workflows are continually adjusted during the
data block allocation process until the entire file has been
allocated.

3.2. TCP bandwidth estimation model

TCP/UDP is one of the core protocols in the Internet protocol
suite. TCP provides reliable, in-order delivery of a stream of bytes,
making it suitable for applications such as GridFTP file transfers.
Parallel TCP sockets is a generic “hack” that improves TCP
throughputs during bulk data transfers by opening several TCP
connections and striping the data files over them (Altman et al.,
2006). In practice, it is often unclear how many sockets one needs
to open in order to achieve satisfactory throughput, and opening
too many connections may be undesirable for various reasons

(Altman et al., 2006; Bolliger et al., 1999; Hacker and Athey, 2002;
Padhye et al, 1998). The TCP Bandwidth Estimation Model
(Hacker and Athey, 2002) as a function to assessing TCP packet
loss rate, such as round trip time, maximum segment size, other
miscellaneous parameters, etc.

- Winax 1
TCP ~ min s MSS
5w (P) ( RTT " #7/2bp/3 + To min(1, 3+/3bp/8)p(1 + 32p2>

(7)

TCPgyp): bytes transmitted per second

MSS: maximum segment size

Winax: Maximum congestion window size

RTT: round trip time

b: number of transmitted data packets acknowledged by one

acknowledgement (ACK) from the receiver (usually b = 2)

e Ty: timeout value

e p: packet loss ratio, number of retransmitted packets divided
by the total number of packets transmitted

e C: a constant value, initially set to 1.0

In Eq. (7), TCPpw(p) represents bytes transmitted per second, and
three factors need to be considered: MSS, RTT, and p. These
represent overall TCP bandwidth. For TCP performance assess-
ment, another researcher has simplified them into one:

MSS C
BW < RIT b (8)

In Eq. (8), MSS, RTT, and p are the same variables used in Eq. (7),
C is a constant factor, and BW represents the number of bytes
transmitted per second.

Thus, how the TCP Bandwidth Estimation Model measures
server bandwidth makes it more reliable and fair.

3.3. k-means algorithm

The k-means algorithm clusters n objects according to
attributes into k partitions, k<n. It is similar to the expectation-
maximization algorithm for Gaussian mixtures in that they both
attempt to find natural cluster centers in data. Assuming object
attributes form vector spaces, it tries to minimize total intra-
cluster variance, or, the squared error function:

k
v=> > llx—m? ()

i=1 xeS;

According to the k-means algorithm, where there are random k
clusters S;, i =1, 2, ..., k, the Euclid distance of each x point to m;
in S;, m; is the cancroids or mean point of all the points xeS;.
Egs. (10)-(13) not only calculate Euclid distances by means of
each §;, but also recursively renew the mean point m; depending
on the cost function V. After calculations, 10 servers with different

#+ Bandwitdh (Mbps)

80

m 7
- N e
50 —

Mbps

server

Fig. 10. 10 hosts classification according to bandwidth using k-means algorithm.
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network bandwidths have been placed in three groups (k = 3).
The simulation results are shown in Fig. 10:

k: number of partitions

x: number of points

S;: partition attributes form a vector space

m;: the mean point of all of S; points

XBoolean;;: determines whether or not an x point belongs to S;
V: distance cost function

d: distance between two point

D xes, d(Xi, ;)
m = S

(10)

Tif 1% = Sill><llx; = Sl vk#1

11
0 otherwise an

xBoolean;; = {

K k
V:Zvi:Z<Z d(Xj,m,‘)) (12)
=1 i1 \knges;
1
new(m;) = @kge; Xj (13)

3.4. Burst Mode

Like many network accelerator methods, and multithreading,
Burst Mode first splits one huge bandwidth into small
pipelines all working at the same time. Burst Mode focuses on
the fastest group of servers and can differentiate among the
various candidate server network bandwidths. Second, BM
chooses the faster one then others (as shown in Egs. (10)-(13)).
Ultimately, the BM has made single jobs into many, as shown in
Fig. 11.

The k-means simulation results showed that fewer local replica
servers are high efficiency than many remote replica servers.
Accordingly, the main ideas in Burst Mode are to find the fastest
server group, and to make it download via multithreading. BM
also deals with cutting blocks properly for various data sets.

Burst Mode function is shown below:

e N;TCPgy: candidate server bandwidth
e FTS: the fastest group of servers

MSS C
N; TCPw =RIT /5 (14)
FTS=Simax{51,52,...,5n},mieS,» (15)

File A | Segction 1

t
80Mbps | Server1 | —— %
sMovs [Savera ] — — ——
2Mbps [(Server3 | — — —— —

|Section2 | | |

Round 2

i \ V)

R RA A

| — -:Burst Mode Enable |

Fig. 11. Burst Mode enables higher bandwidths.

The algorithm is listed below:

[Initialization]

Measure bandwidths and find the fastest servers using Egs.
(14) and (15).

BigBlockUnit set to 100 MB initially

[Allocate blocks to the fastest servers and download via
multithreading.]

Step 1: Group m; and rank the most powerful server FTS

Step 2: Allocate SE; and download via multithreading

Step 3: Monitor job progress statuses

LOOP WHEN (UnassignedFileSize and total UnfinishedFileSize are
greater than BigBlockUnit (initial BigBlockUnit = 100 MB))
THEN

{

IF (Job finish rate is just 100% (r;; = 1) and UnassignedFi-
leSize and total UnfinishedFileSize are greater than BigBlockUnit)
THEN
{

Let data transfer in multiple parts between client and FTS
server
SE;j = (UnassignedFileSize+TotalfinishedFileSize)x, 0 <o
<1 (UnassignedFileSize+TotalUnfinishedFileSize)
> BigBlockUnit
}

}
END LOOP;

3.5. Grid network congestion control

Grid network congestion control is concerned with controlling
traffic entry into data grid networks to prevent congestive
collapse by avoiding oversubscription of any grid node processing
or link capacity and taking resource reduction steps, such as
reducing packet sending rates when Burst Mode is active.

The modern theory of congestion control (Kelly, 2003; Mamatas
et al., 2007), describes how individuals controlling their own pack
lost rate can interact to achieve an optimal network-wide rate
allocation. Examples of “optimal rate” allocation are max-min fair
allocation and Kelly’s (2003) suggestion of proportional fair
allocation, although many others are possible. The mathematical
expression (Eq. (16)) for optimal rate allocation is as follows. Let x;
be the rate of flow i. Let x, c and R be the corresponding vectors and
matrix. Let U(x) be an increasing, strictly convex function, called
the utility, which measures how much benefit a user obtains by
transmitting at rate x. The optimal rate allocation will then satisfy:

m;axZ U(x;), Rx<c (16)

3.6. Anticipative recursively adjusting mechanism plus (ARAM+)

3.6.1. Assumptions
We outline our system design model assumptions below.

e All grid nodes are installed GlobusToolkit4 previously.

e All grid nodes are supporting Simple Network Management
Protocol (SNMP).

e The time for transferring, stopping/assigning processes, and
calculating TCPgy, to selected replica servers is negligible.

3.6.2. Anticipative recursively adjusting mechanism plus (ARAM+)
The ARAM+ is not merely inherited from ARAM. It has been
enhanced also in the following two areas: its TCP Bandwidth
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Estimation Model (TCPBEM) and its Burst Mode. ARAM+ con-
tinually adjusts the workloads on selected replica servers by
measuring actual bandwidth performance via TCPBEM during
data file transfers and, according to previous job finish rates, and
adjusting alpha values for subsequent transfer sections.

Some interesting ideas have arisen from P2P networks and
distributed denial-of-service (DDoS) attacks. As is well known,
P2P networking is share based; it shares data and downloads in
parallel, more numbers of share point get more speedup. Another
typical example is DDoS attacks that occur when multiple
compromised systems flood the bandwidth or resources of a
targeted system. We have combined these elements in our
approach. The multithreading in the Burst Mode design came
from DDoS attacks, BM “floods” the target replica server
bandwidth to speed up download performance. The other idea
from P2P networking was applied to ARAM+. It pre-selects many
candidate replicas from various servers, then chooses appropriate
servers and allocates only enough workload to fit server
capacities.

Both of our previous works (Vazhkudai et al., 2001; Wang
et al,, 2006; Yang et al., 2005, 2007b, in press), the anticipative
recursively adjusting mechanism and recursively adjusting me-
chanism (RAM) were based on co-allocation architecture and
relied on tuning alpha values by hand to adapt to specific data grid
situations. The ARAM+ uses the same strategies, but differs in that
alpha values are tuned dynamically.

ARAM+ adapts to real-time network statuses and calculates
appropriate alpha o values continually with TCPBEM TotalTCPgy,
to ensure good download flexibility and to speed up overall
performance. The equations are as follows:

eTotalTCPgy: overall bytes transmitted per second

N
MSS C
TotalTCPgy = >  ——n — (17)
2L RIT b
1
o=1-|—"——>| 0O<a<l (18)
TotalTCPygy,

3.6.3. ARAM+ algorithm

[Initialization]

Current bandwidths for all candidate servers are measured
using the TCP Bandwidth Estimation Model (TCPBEM) and
calculating appropriate alpha values with Egs. (14) and (15).

[Allocating blocks to selected servers]
LOOP WHEN (UnassignedFileSize and total UnfinishedFileSize is
greater than zero)
THEN
{
IF (UnassignedFileSize and Total UnfinishedFileSize are greater
than TotalTCPgyy)
THEN
{*
IF (UnassignedFileSize and Total UnfinishedFileSize multi-
plied by o are greater then TotalTCPgyy)
THEN
{
Define new section for allocation
SE; = (UnassignedFileSize+TotalUnfinishedFileSize)o,
O<ax<1
}
ELSE

{

Define finial section
SE; = UnassignedFileSize+TotalUnfinishedFileSize

}
}
END LOOP;
Step 1: Define new section for allocation SE;
Step 2: Monitor all selected replica servers
Step 3: Allocate blocks to selected replica servers, according to
the TCPgyy, of the selected replica server, and the previous finish
rates R;_; for the selected replica server (initial Rop = 1)
Step 4: Monitor all download flows
LOOP WHEN (The fastest flow finishes its assigned data blocks)
THEN
{
IF (First finish time for RT}; is earlier then expected time ETj; and
transferred size TSj; is greater than expected size S;;) THEN

{

}
ELSE

{
Measure the finish rate for the previously delivered file
(0<m;i<1)

The rji =1

}
TS;i
57}1 RT; > Et;
Tji = ji
1, RTﬂ <ET]',', and TSJ, 2511
}
END LOOP;

4. Experimental
4.1. Our grid environment: Tiger grid

The experiments in this work were conducted and evaluated
on the TigerGrid, which consists of more than 100 processors
distributed over 10 clusters located at 5 educational institutions
(Tunghai University—THU, National Taichung University—NTCU,
Hsiuping Institute of Technology—HIT, National Dali Senior High
School—DALI, Lizen High School—LZSH, and Tungs’ Taichung
Metro Harbor Hospital-TUNG). A logical diagram of the Tiger
grid network environment is shown in Fig. 12. Fig. 13 shows
statuses for all machines used in the grid testbed on one monitor
page.

They are interconnected by the 1Gbps Taiwan Academic
Network (TANET). The Tiger grid platform is built around 60
computing nodes, more than 224 CPUs with differing speeds, and
total storage of more than 5 TB. All the institutions are in Taiwan,
at least 10 km from THU. All machines have Globus 4.0.7 or above
installed.

We performed wide-area data transfer experiments using
Cyber Transformer, our GridFTP GUI client tool, on our co-
allocation testbed at Tunghai University (THU), Taichung City,
Taiwan, and fetched files from replica servers at National Da-Li
Senior High School (DL), Li-Zen High School (LZ), Tungs’ Taichung
Metro Harbor Hospital (TUNG), and Hsiuping Institute of
Technology School (HIT). These institutions are all in Taichung,
Taiwan, 10-30 km from THU.

4.2. Our experimental tool: Cyber Transformer

In a previous work Yang et al. (2006), we gave experimental
results for Cyber Transformer, a powerful new toolkit for replica
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management and data grid environment data transfers. It can
accelerate data transfer rates, and also manage replicas over
various sites. The friendly interface enables users to easily
monitor replica sources, and add files as replicas for automatic
cataloging by our Replica Location Service. Moreover, we provide a

function for administrators to delete and modify replicas. Cyber
Transformer can be invoked with either the logical file name of a
data file or a list of replica source host names. When users search
for files using logical file names, Cyber Transformer queries the
Replica Location Services to find all corresponding replicas, and
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Fig. 14. Parallel download strategy selection.

directs the replica sources to start parallel transfers. Cyber
Transformer users can easily gather replica resources and
combine them into single entities with the “strategy selection”
user interface, accomplishing the task with various parallel
download strategies, as shown in Fig. 14.

4.3. Experimental results and analyses

An experiment and a case design were devised to test Burst
Mode, our proposed approach to speeding up local and remote
performance, and dynamically adjusting alpha values to adapt to
variable network situations. Details of the test cases we designed
are shown in Fig. 15.

4.3.1. Case study—*
transfers

We designed two scenarios to verify the efficiency of enabling
Burst Mode. All test cases are listed in Tables 1 and 2.

Generally, more replicas and local placement will yield better
parallel file transfer performance. Our results, shown in Figs. 16
and 17, show that we found more replicas remotely so user
performance improvement was not obvious, even worse than the
few replica found locally. However, Burst Mode function could get
more performance even two copies only (refer to scenario:
Rx2_local).

cross-grid” vs. “local grid” replica selects and

4.3.2. Case study—RAM and ARAM vs. ARAM+

RAM (Yang et al., 2007c) and ARAM (Yang et al., 2007a) both
used constant alpha values; our approach, ARAM+, relied on
dynamic alpha values to adapt to data grid network link
fluctuations. The case study for RAM and ARAM is listed in Table
4. We set the constant alpha values at 0.9, 0.5, and 0.1 for
comparison with ARAM+, and replicas were selected from inside
and outside regions. In order to distinguish among replica
locations, these two kinds of replica selection plans are listed in
Table 3.

In our next experiment, two scenarios, sets A and B, are listed
in Table 4 and used to accentuate the advantages of the Burst
Mode method and dynamic alpha value adjustment. Overall
performances in Scenario B have obviously been improved over
those in Scenario A. The total amounts of TCP bandwidth in

Hsiuping Institute of
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s

\él l
100Mb 1 GbpS
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Fig. 15. Scenarios for our test-bed of Tiger grid.

Table 1
Scenario for replica local or not.

Scenario Replica server list

ARAMplus_4: non-local
ARAMplus_4: local-1
ARAMplus_4: local-2
ARAMDplus_4: local-3
ARAMplus_4: all-local

THU-S1, S2; LZ1, 2

HIT-S1, S2; THU-betal, beta2
HIT-S1, S2; THU-beta 1; LZ-1
HIT-S1, S2; LZ-1, 2

HIT-S1, S2, S3, S4

Table 2
Scenario for various replica numbers and selections.

Scenario Replica server list

R x 6_non-local LZ-1, 2, 3; THU-beta 1, beta 2, beta 3

R x 6_local HIT-S1, S2, S3, S4, S5, S6
R x 2_local HIT-S1, S2

R x 2_non-local-THU THU-S1, S2

R x 2_non-local-LZ LZ-S1, S2

Scenario A differed slightly, but there were significant differences
in Scenario B. In all these case studies, especially in Scenario B,
Burst Mode yielded huge performance improvements, as shown in
Figs. 18 and 19.

4.3.3. Case study—comparison of 9 co-allocation schemes
To evaluate the performance of our proposed technique, we
implemented the following nine co-allocation schemes: Brute-
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Fig. 18. Performance results for scenario A.

force (Brute), history-based (history), conservative load balancing
(conservative), aggressive load balancing (aggressive), dynamic
co-allocation with duplicate assignments (DCDA), recursively
adjusting mechanism (RAM), dynamic adjustment strategy
(DAS), anticipative recursively adjusting mechanism (ARAM),
and anticipative recursively adjusting mechanism plus (ARAM+).
Using the case setups listed in Table 3 for each scheme, we
analyzed their performance by comparing transfer finish times
and overall performance, as shown Figs. 20 and 21.

We found that ARAM+ performed better than the others. An
interesting outcome shows the Brute scheme’s “local” perfor-
mance differed greatly from its “mixed” performance. ARAM+ is
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Fig. 19. Performance results for scenario B.

Table 3
Replica placement and selection plan.

Mix HIT-S1, S2; LZ-1, 2; THU-betal, beta2
Local HIT-S1, S2, S3, S4, S5, S6
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Fig. 20. Comparing 9 schemes on “local” cases.
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Fig. 21. Comparing 9 schemes on “mixed” cases.

comparable to Brute or any others. The advantages of ARAM+ are
the following:

e ARAM+ uses TCP bandwidth measurement technology, relia-
bility and accuracy of the best.
e ARAM+ can enhance GridFTP to become multiplexing.
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Table 4
Scenario for alpha value tuning.

Scenario A Scenario B
RAM(0.1)_local RAM(0.1)_mix
ARAM(0.1)_local ARAM(0.1)_mix
RAM(0.5)_local RAM(0.5)_mix
ARAM(0.5)_local ARAM(0.5)_mix
RAM(0.9)_local RAM(0.9)_mix
ARAM(0.9)_local ARAM(0.9)_mix
ARAM+_local ARAM+_mix

e ARAM+ used k-means for classifying numbers grid node. It
quickly finds out the most efficient computing nodes.

o ARAMH+ gives the longest amount of computing job to powerful
grid node but small data set could ignore some advance option,
for example, dynamic o, server classification (k-mean) algo-
rithm and congestion control.

e ARAM+ can really adapt to different grid environments,
rather than to just specific experiments designed grid
system.

5. Conclusion

Co-allocation architectures can be used to enable parallel
transfers of data files from multiple replicas in data grids, which
mean all replicas stored in the various grid sites. Many schemes
based on the Co-Allocation Model have been proposed and used to
exploit the different transfer rates among various client-server
network links and to adapt to dynamic rate fluctuations by
dividing data into fragments. In these schemes, the applicable
piece fragments achieve more performance. In fact, some schemes
can be applied to specific situations; however, most situations are
not common actually. For this issue, we propose the anticipative
recursively adjusting Mechanism plus (ARAM+), based on ARAM.
The best part is performance tuning through continual dynamic
alpha value adjustment. It relies on special features to adapt to
various network situations in data grid environments. The TCP
Bandwidth Estimation Model was used to evaluate dynamic link
states in our experiments by detecting TCP throughputs and
packet lost rates between grid nodes. TCP Bandwidth Estimation
Model also can be more reliable and fair than ARAM and any other
scheme. Burst Mode function truly can increase transfer rates and
speed up total performance especially considering congestion
control. The ARAM+ not only adapts to the worst network links,
but also speeds up the overall performance especially in wide-
area grid networks.

References

Allcock B, Bester ], Bresnahan ], Chervenak A, Foster I, Kesselman C, et al. Data
management and transfer in high-performance computational grid environ-
ments. Parallel Computing 2002;28(5):749-71.

Altman Eitan, Barman Dhiman, Tuffin Bruno, Vojnovic Milan. Parallel TCP sockets:
simple model, throughput and validation. In: INFOCOM 2006, April 2006.
Bhuvaneswaran RS, Katayama Y, Takahashi N. Dynamic co-allocation scheme for
parallel data transfer in grid environment. In: Proceedings of first international

conference on semantics, knowledge, and grid (SKG 2005), 2005. p. 17.

Bhuvaneswaran RS, Katayama Y, Takahashi N. A framework for an integrated co-
allocator for data grid in multi-sender environment. IEICE Transactions on
Communications 2007;E90-B(4):742-9.

Bolliger Juerg, Gross Thomas, Hengartner Urs. Bandwidth modelling for network-
aware applications. In: INFOCOM ’99, March 1999.

Chervenak A, Foster I, Kesselman C, Salisbury C, Tuecke S. The data grid: towards
an architecture for the distributed management and analysis of large
scientific datasets. Journal of Network and Computer Applications 2001;23(3):
187-200.

Chervenak A, Deelman E, Foster I, Guy L, Hoschek W, Iamnitchi A, et al. Giggle: a
framework for constructing scalable replica location services. In: Proceedings
of the 2002 ACM/IEEE conference on supercomputing, November 2002.
p. 1-17.

Czajkowski K, Foster I, Kesselman C. Resource co-allocation in computational grids.
In: Proceedings of the eighth IEEE international symposium on high
performance distributed computing (HPDC-8 '99), August 1999.

Czajkowski K, Fitzgerald S, Foster I, Kesselman C. Grid information services for
distributed resource sharing. In: Proceedings of the tenth IEEE international
symposium on high-performance distributed computing (HPDC-10 '01),
August 2001. p. 181-94.

Foster I, Kesselman C. Globus: a metacomputing infrastructure toolkit. Interna-
tional Journal of High Performance Computing Applications 1997;11(2):
115-28.

Foster I, Kesselman C, Tuecke S. The anatomy of the grid: enabling scalable virtual
organizations. International Journal of High Performance Computing Applica-
tions 2001;15(3):200-22.

Hacker Thomas ], Athey Brian D. The end-to-end performance effects of parallel
TCP sockets on a lossy wide-area network, parallel and distributed processing
symposium. In: Proceedings international, IPDPS 2002, 10.1109/
IPDPS.2002.1015527.

Hoschek W, Jaen-Martinez ], Samar A, Stockinger H, Stockinger K. Data manage-
ment in an international data grid project. In: Proceedings of the first IEEE/
ACM international workshop on grid computing-grid 2000, Bangalore, India,
December 2000.

Kelly Frank. Fairness and stability of end-to-end congestion control. European
Journal of Control 2003:159-76.

Mamatas Lefteris, Harks Tobias, Tsaoussidis Vassilis. Approaches to congestion
control in packet networks. Journal of Internet Engineering 2007;1(1):2.

Mathis M, Semke ], Mahdavi J, Ott T. The macroscopic behavior of the TCP
congestion avoidance algorithm. Computer Communication Review 1997;
27(3).

Open Grid Forum. {http://www.ogf.org/>.

Padhye ], Firoiu V, Towsley D, Kurose J. Modeling TCP throughput: a simple model
and its empirical validation. In: ACMSIGCOMM, September 1998.

Stockinger H, Samar A, Allcock B, Foster I, Holtman K, Tierney B. File and
object replication in data grids. Journal of Cluster Computing 2002;5(3):
305-14.

The Globus Alliance. ¢http://www.globus.org/>.

Vazhkudai S. Enabling the co-allocation of grid data transfers. In: Proceedings
of fourth international workshop on grid computing, 17 November 2003.
p. 44-51.

Vazhkudai S, Schopf J. Predicting sporadic grid data transfers. In: Proceedings of
11th IEEE international symposium on high performance distributed comput-
ing (HPDC-11 '02), July 2002. p. 188-96.

Vazhkudai S, Schopf ]. Using regression techniques to predict large data transfers.
International Journal of High Performance Computing Applications (IJHPCA)
2003;17(3):249-68.

Vazhkudai S, Tuecke S, Foster 1. Replica selection in the globus data grid. In:
Proceedings of the first international symposium on cluster computing and the
grid (CCGRID 2001), May 2001. p. 106-13.

Vazhkudai S, Schopf ], Foster I. Predicting the performance of wide area data
transfers. In: Proceedings of the 16th international parallel and distributed
processing symposium (IPDPS 2002), April 2002. p. 34-43.

Venugopal S, Buyya R, Ramamohanarao K. A taxonomy of data grids for distributed
data sharing, management, and processing. ACM Computing Surveys
2006;38(1) (Article 3).

Wang CM, Hsu CC, Chen HM, Wu J]. Efficient multi-source data transfer in data
grids. In: Proceedings of the sixth IEEE international symposium on cluster
computing and the grid (CCGRID '06), 16-19 May 2006. p. 421-4.

Yang CT, Chen CH, Li KC, Hsu CH. Performance analysis of applying replica
selection technology for data grid environments. In: PaCT 2005,
Lecture Notes in Computer Science, vol. 3603. Berlin: Springer; 2005.
p. 278-87.

Yang CT, Yang IH, Chen CH, Wang SY. Implementation of a dynamic adjustment
mechanism with efficient replica selection in co-allocation data grid environ-
ments. Proceedings of the 21st Annual ACM Symposium on Applied Computing
(SAC 2006) - Distributed Systems and Grid Computing Track, France, April
23-27, 2006. pp. 797-804.

Yang CT, Chi YC, Han TF, Hsu CH. Redundant parallel file transfer with anticipative
recursively-adjusting scheme in data grids. Distributed and Parallel Comput-
ing: 7th International Conference on Algorithms and Architectures for Parallel
Processing, ICA3PP 2007, Lecture Notes in Computer Science, vol. 4494, 2007a.
p. 242-53.

Yang CT, Yang IH, Li KC, Wang SY. Improvements on dynamic adjustment
mechanism in co-allocation data grid environments. Journal of Supercomput-
ing 2007b;40(3):269-80.

Yang CT, Wang SY, Fu CP. A dynamic adjustment mechanism for data transfer in
data grids. In: Network and parallel computing: IFIP international conference,
NPC 2007, Lecture Notes in Computer Science, vol. 4672, September 17-20.
Berlin: Springer; 2007c. p. 61-70, ISSN 1611-3349.

Yang CT, Yang MF, Chiang WC. Implementation of a cyber transformer for parallel
download in co-allocation data grid environments. Proceedings of the 7th
International Conference on Grid and Cooperative Computing (GCC2008) and
Second EchoGRID Conference, October 24-26, 2008, in Shenzhen, Guangdong,
China. pp. 242-53.

Please cite this article as: Yang C-T, et al. Enhancement of anticipative recursively adjusting mechanism for redundant parallel file
transfer in data grids. ] Network Comput Appl (2009), doi:10.1016/j.jnca.2009.02.002



http://www.ogf.org/
http://www.globus.org/
dx.doi.org/10.1016/j.jnca.2009.02.002

12 C.-T. Yang et al. / Journal of Network and Computer Applications 1 (1iin) nn-am

Yang CT, Yang IH, Wang SY, Hsu CH, Li KC. A recursively-adjusting co-allocation symposium on cluster computing and the grid (CCGrid '05), 9-12 May 2005.
scheme with cyber-transformer in data grids. Future Generation Computer p. 734-42.
Systems, in press (available online 21 January 2007). Zhang X, Freschl ], Schopf J. A performance study of monitoring and information services
Yang L, Schopf J, Foster I. Improving parallel data transfer times using predicted for distributed systems. In: Proceedings of 12th IEEE international symposium on
variances in shared networks. In: Proceedings of the fifth IEEE international high performance distributed computing (HPDC-12 ‘03), August 2003. p. 270-82.

Please cite this article as: Yang C-T, et al. Enhancement of anticipative recursively adjusting mechanism for redundant parallel file
transfer in data grids. ] Network Comput Appl (2009), doi:10.1016/j.jnca.2009.02.002



dx.doi.org/10.1016/j.jnca.2009.02.002

2008 IEEE Asia-Pacific Services Computing Conference

MIFAS: Medical Image File Accessing System in Co-allocation Data Grids’

Chao-Tung Yang' Chiu-Hsiung Chen Ming-Feng Yang
High-Performance Computing Laboratory
Department of Computer Science and Information

Engineering

Tunghai University, Taichung, Taiwan R.O.C.

ctyang@thu.edu.tw

Abstract

We have encountered two challenges when using
the PACS system. First, PACS users are limited to
certain bandwidths and locations. Second, Web PACS
machine replacement is too costly, management is
difficult, and better image stability is needed. There
are also speed variations for different users at different
locations. For instance, radiologists use medical image
workstations  with direct access to the PACS
information system and so have a greater speed for
querying and file retrieval. Physicians, on the other
hand, use web browsers with no direct access to the
PACS information system, which leads to slower
network speeds. Physicians also affect one another in
overall network speed by processing queries and file
retrievals via web browser. There are also insufficient
network bandwidth concerns. These often arise when
exchanging medical images with other hospitals or
downloading large numbers of images. Since these
large file volumes are transferred via WANS,
insufficient network bandwidths limit upload and
download speeds. And if the Web PACS breaks down,
the hospital must ask professional engineers for
replacements, and spend large amounts of money
about a NT$ million or more per unit. This is not only
troublesome for system managers, but also costly for
the hospital.

1. Introduction

Hospitals are increasingly acquiring 2D, 3D, and
4D medical imaging devices, along with treatment and
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surgery simulators. These produce image files ranging
from several MB to several hundred MB. High-level
medical images, such as 64/128-slice CT scans, 3.0T
MRI, and PET often exceed one hundred MB or more.

Advancing technology has led to the development
of many high-quality imaging devices, resulting in the
collection of massive amounts of medical image files
unaccompanied by sufficient handling infrastructure.
Consequently, Picture Archiving and Communication
Systems (PACS) are unable to provide efficient query
response services. Processing queries and file retrievals
causes slowdowns in the overall Web PACS network.
And conventional access methods for large numbers of
image exchanges and downloads affect transfer times
where bandwidth is limited.

Today, the related issues of medical imaging and
file transfer speed demand attention to viewing and
processing images and videos [1, 3].

We first present our new method for processing
medical image queries, which is based on the Co-
allocation [13, 14, 15, 16] strategy for data grid
environments. A data grid is defined as a collaboration
of distributed resources across institutional borders.
The system we designed and implemented is called the
Medical Image File Accessing System for Co-
allocation Data Grids (MIFAS). It uses the Co-
allocation model to get images in parallel download [7]
on independently or another site.

The remainder of this paper is organized as follows.
Background review and studies are presented in
Section 2. Cyber Agent Transformer design and
implementation are given in Section 3. Medical image,
experiments, results and performance evaluation are
presented in Section 4. Section 5 concludes this
research article.

2. Background
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2.1. Medical Images

Medical images usually provide human body
information to assist disease diagnosis. Medical
imaging refers to the techniques and processes that use
special equipments to create images of different body
areas for clinical purposes (medical procedures seeking
to reveal, medical diagnose or examined disease) or
medical science study (including normal anatomy and
function). As a discipline and in its widest sense, it is
part of biological imaging and incorporates radiology,
radiological sciences, endoscopy, thermography,
medical photography and microscopy (e.g. for human
pathological investigations).

Measurement and recording techniques, which are
not primarily designed to produce images, such as
electroencephalogram (EEG), magneto-
encephalography (MEG) and others, but for data
susceptible to be represented as maps, can be seen as
forms of medical imaging.

In clinical applications, medical imaging is also
known as radiology or "clinical imaging". Diagnostic
radiography designates the technical aspects of medical
imaging and especially the acquisition of medical
images. The radiologic technologists or physicians are
responsible for acquiring medical images of diagnostic
quality, and performing radiological interventions.

In the fields of Medicine, Medical Engineering,
Medical Physics and Bioformatics, Medical Imaging is
usually defined as the technology of image formation,
retrieval and storage with the research and
development of instrumentation. As for the research on
medical image application and interpretation, it is
classified as radiology, other relevant medical sub-
disciplines, or areas of medical science (neuroscience,
cardiology, psychology, and etc.) Many techniques
developed for medical imaging also have scientific and
industrial applications.

Medical imaging is often perceived to designate the
set of techniques that noninvasively produce images of
the internal body. In this restricted sense, medical
imaging can be seen as the solution of mathematical
inverse problems. This means that cause is inferred
from the observed signal. In the case of ultrasonic
device, the probe consists of ultrasonic pressure waves
and echoes inside the tissue to show the structure of
internal body. In the case of projection radiography,
the probe is X-ray radiation which is absorbed at
different rates in different tissue types such as bone,
muscle and fat.

2.2. Data Grid

770

Grid computing or grid clusters is a technology
closely related to cluster computing. The key
differences (by definitions which distinguish the two at
all) between grids and traditional clusters are that grids
connect collections of computers which do not fully
trust each other, or which are geographically dispersed.
Grids are thus more like a computing utility than like a
single computer. In addition, grids typically support
more heterogeneous collections than are commonly
supported in clusters.

Grid Computing started as a generalization of
Cluster Computing, promising to deliver large scale
levels of parallelism to high-performance applications
by crossing administrative boundaries. Moreover, the
use of computational and data resources in high-
performance applications, undertaken over Grid
infrastructure, have started to become a reality. Today,
we face the large challenge of making on-demand
access to any computational service.

2.3. Co-allocation Model

The architecture proposed [10, 11, 13] consists of
three main components: an information service, a
broker/co-allocator, and local storage systems. Figure 1
shows co-allocation of Grid Data transfers, which is an
extension of the basic template for resource
management [3] provided by the Globus Toolkit.
Applications specify the characteristics of desired data
and pass attribute descriptions to a broker. The broker
searches for available resources, and gets replica
locations from the Information Service [2] and Replica
Management Service [8] and replica selection [9, 12];
then, obtains the lists of physical file locations.

We have implemented the following eight co-
allocation schemes: Brute-Force (Brute), History-based
(History), Conservative Load Balancing (Conservative),
Aggressive Load Balancing (Aggressive) [6], Dynamic
Co-allocation with Duplicate Assignments (DCDA),
Recursively-Adjusting Mechanism (RAM), Dynamic
Adjustment ~ Strategy (DAS), and Anticipative
Recursively-Adjusting Mechanism (ARAM).
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2.4 Image Processing Program ImageJ

ImageJ [4] is a public domain image processing
software based on Java. It is developed by the National
Institutes of Health. ImageJ can run on Windows, Mac
0OS, Mac OS X, Linux, and Sharp PDA, and other
platforms.

This application can display, edit, analyze, process,
save and print 8-bit, 16-bit and 32-bit images. It can
read many image formats including TIFF, GIF, JPEG,
BMP, DICOM, FITS and raw. It supports stacks, a
series of images that share a single window. It is
multithreaded, so time-consuming operations such as
image file reading can be performed in parallel with
other operations.

Imagel is a free open source software, supporting
custom upgrade, edit and plug-in. ImageJ has built-in
editor and java compiler. With any IDE, users can
directly process images using Imagel.

3. System Design and Implementation

3.1. System Architecture

Our proposed solution, MIFAS in Co-allocation
Data Grid, was developed using grid computing
technology, and integrating Co-allocation with Globus
Toolkit 4.xx. We incorporated desktop PCs and servers
in the data grid, then used them to run the data grid
components. In previous experiments, data grid nodes
used high-speed network bandwidth. As recommended,
we proposed a system architecture that does not
interfere with theirs.  Descriptive medical image
information (metadata) about logical data items is
stored in the MIFAS Catalog Service. The four-layer
architecture of the Data Grid is shown in Figure 2.
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3.2. System Flow
3.2.1. System Workflow

Our design for the Co-allocation grid is as shown in
Figure 3. Every Client node access point uses Cyber
Agent to enter the Co-allocation data grid and manage
queries and image retrievals, as with the Web-based
Enquiries PACS. Overall, the greatest benefit of our
method is that it speeds up query accesses and image
retrievals. It also provides security for queries and
image retrievals in the data grid environment.
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Figure 3: Workflow Overview of Medical Image
in Co-allocation Data Grid

3.2.2. The Cyber Agent Transformer

In a previous work [15], we gave experimental
results for Cyber Agent Transformer, a powerful new
toolkit for replica management and data transfers in
data grid environments. It not only accelerates data



transfer rates, but also manages replicas over various
sites. The friendly interface enables users to easily
monitor replica sources, and add files as replicas for
automatic cataloging by our Replica Location Service.
Moreover, we provide a function for administrators to
delete and modify replicas. Cyber Agent Transformer
can be invoked with either the logical file name of a
data file or a list of replica source host names. When
users search for files by logical file name, Cyber Agent
Transformer searches Replica Location Services to
find all corresponding replicas, and notifies each
source to start parallel transfers. The file is then
gathered from replica sources and finally combined
into a single file.

3.3. GUI and System Operations

We developed a user-friendly GUI for Cyber Agent
Transformer to help users unfamiliar with downloading
and managing files in data grid environments. It was
implemented in the Java CoG library, and can be run
on any operating system with JVM. The entire set up
and operation process is shown below. Such as
authentication setup, strategy selection, user tools,
message box.

We designed tools to assist users in downloading
medical image files, and setting up some environment
configurations. Figure 4 shows the user tools.
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Figure 4: User Tools
4. Experimental Environments and Results
4.1. Cross-hospital PACS Architecture
Using the TIGER Grid system, we tried to simulate

a PACS system serving two or more hospitals, and
performed several experiments on issues of concern.
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Figure 5: Cross-hospital PACS Architecture

4.2 Compare query and retrieve using ARAM
in local Grid node and Web PACS

In this experiment, we simulated a Web PACS
system in a local Grid node and used the best transfer
method, ARAM, to do other comparison tests.
Physicians may need to search and retrieve the files
listed in Table 1 for diagnosis or to compare medical
cases. These files are usually X-Ray images, CT scans,
or series’ of CT scans. In order to compare the
difference in data retrieval performance between the
Web PACS system and Cyber Agent Transformer, we
customized test-bed A, as shown in Figure 6. Cyber
Agent Transformer retrieved images via parallel-
download from Medical Data Grid B (Data Flow B,
Figure 6), whereas the Web PACS system retrieved
from the Web PACS (Data Flow A, Figure 6). The
times for the MIFAS Co-allocation ARAM and Web
PACS are shown in Figures 7 and 8. The results show
the performance in end-to-end query and retrieval of
the first medical image by ARAM was better for all
sizes than Web PACS. And the average transfer time
was better than Web PACS. We then tested retrieving
Image J from the Medical Data Grid, as shown in
Figure 9.
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Table 1: Query and Retrieve for X-Ray and CT

Image Query and Retrieve Image Data
CT 42 512*512 ~22MB
X-Ray Chest 5 2320%2828 ~65MB
A series of CT case 180 512*512 ~79MB
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Figure 7: Compare Query/Retrieval Times for
the First Image from Local Grid Node and Web
PACS using ARAM
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5. Conclusions

We can enhance quality of two important aspects of
the overall health care environment. For users, we
provide a fast, secure, stable, reliable system for
obtaining medical images. Co-allocation architecture
enables parallel downloading from a data grid. It can
also speed up downloads and overcome network faults.
For managers, we provide easy management, reduced
expense, and increased medical image system stability.



In this paper, we reported on successfully moving
medical images on the MIFAS Co-allocation data grid.
We proposed a means of integrating a medical image
file accessing system with a co-allocation data grid to
improve medical image query, retrieval, exchange, and
download speeds. Our user experiments showed
ARAM to be the best among the eight Co-allocation
schemes. We found that parallel downloading via File
Transfer Protocols yields better performance than
single-point downloading. ARAM also overcomes the
problem of broken network links. It completes transfer
jobs by continuing from the previous point.

Furthermore, we enhanced security with a data grid
authentication environment: User Certificate, Private
Key, Certificate Authority (CA) File, and Proxy File.
In conclusion, Medical Image File Accessing in a Co-
allocation Data Grid provides users with a reliable and
secure environment for processing queries and medical
image retrievals efficiently.
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Abstract

In data grid, co-allocation architecture can be used
to enable parallel transferring of data file from mul-
tiple replicas which stored in the different grid sites.
Some schemes base on co-allocation model were pro-
posed and used to exploit the different transfer rates
among various client-server network links and to adapt
dynamic rate fluctuations by dividing data into frag-
ment. These schemes showed the more fragments used
the more performance conducted when data transfer in
parallel with evidence. In our previous work, we pro-
pose a scheme named Anticipative Recursively-
Adjusting Mechanism (ARAM) in previous research
work. The best thing is performance tuning through the
alpha value, it’s rely on special feature to adapt differ-
ent network situations in a data grid environment. In
this paper, the TCP Bandwidth Estimation Model
(TCPBEM) is used to evaluate dynamic link state by
detect TCP throughput and packet lost rate between
grid nodes. We integrate the model into ARAM, called
Anticipative Recursively-Adjusting Mechanism Plus
(ARAM+), that can be more reliable and reasonable
then previous one. In the meanwhile, we also design a
Burst Mode which could increase transfer rate of
ARAM+. This approach not only adapts worst network
link but also speedup the overall performance.

1. Introduction

Data grids gather distributed resources to solve
large-size dataset management problems, and enable
the selection, sharing, and connection of a wide variety
of geographically distributed computational and sto-
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rage resources to deal with large-scale data-intensive
application requests [2, 8, 9, 10, 11, 14, 17, 18, 19, 20,
32, 33]. Most data grid applications, for instance, high-
energy physics, bioinformatics, and virtual astrophysi-
cal observatories, and so on, simultaneously access and
execute large numbers of data files in the Grid envi-
ronment.

An increasing number of scientific applications
ranging from Genomics, and Proteomics, and Bioin-
formatics to support computational require exchange
large volume of data, therefore downloading large da-
tasets from replica locations may result in varied per-
formance rates because replica sites may have different
architectures, system loading, and network connectivi-
ty. Bandwidth quality is the most important factor af-
fecting internet transfers between clients and servers,
and download speeds are bounded by traffic congestion
due to bandwidth limitations.

One method for improving download speeds uses
replica selection techniques to determine the best repli-
ca locations [28]. However, by downloading datasets
from the single best server often results in ordinary
transfer rates, because bandwidth quality varies unpre-
dictably due to the shared nature of the Internet.
Another method uses co-allocation [27] technology to
download data.

Co-allocation architectures were developed to ena-
ble clients to download data from multiple locations by
establishing multiple connections in parallel, thus im-
proving performance as compared to the single server
case and alleviating the internet congestion problem
[27]. Parallel downloading [22, 23, 25, 26] is a tech-
nique used to fetch and download files from multiple
sources including Web servers, file servers, P2P nodes,
etc. Parallel downloading has been integrated into
many Internet applications and has become the core of
many P2P systems. It speeds up download time and
eliminates the server selection problem [21, 23, 24]. In
previous works [15, 27], several co-allocation strate-
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gies were addressed. However there are still drawbacks
in these approaches, such as: faster servers wait for the
slowest one to deliver its final block. As shown in [15,
16], this may degrade network performance by repeat-
edly transferring the same block. Hence, it is important
to minimize the differences in finishing time among
different servers, and to prevent the same block from
being transferred in different links between servers and
clients.

In our previous research work, by means of conti-
nuous adjusting the workload of each selected replica
server, the Anticipative Recursively-Adjusting Me-
chanism (ARAM) scheme measures the actual band-
width performance during the term of transferring data
file, and according to the previous assigned transfer
size finished rate, anticipates bandwidth status at the
next transfer section to regulate the workload on the
next section. The basic idea is to assign less data on the
selected replica server with performance of a greater
variability network link. In other words, for a link with
more variable bandwidth, effective bandwidth will be
smaller, and the finished rate of the previous assigned
transfer size would be smaller as well. The goal is to
make the expected finished time of each server to be
the same.

In this paper, we first present our new approach
based on ARAM co-allocation strategy in data grid
environment, we have design and implement TCP
bandwidth estimation model and Burst mode to en-
hancing original algorithm for ARAM, which mean all
selected replica server will continue to adjust work
load by TCP throughput and packet lost rate, in the
mean time faster servers will get double or even
quadruple throughput through Burst mode enable.

The remainder of this paper is organized as follows.
Related background review and studies are presented
in section 2. Our new approach is outlined in section 3.
Experimental results and a performance evaluation of
our scheme are presented in section 4. Section 5 con-
cludes this research article.

2. Background review and related work

The architecture proposed in [29] consists of three
main components: an information service, a broker/co-
allocator, and local storage systems. Figure 1 shows
co-allocation of Grid Data transfers, which is an exten-
sion of the basic template for resource management [7]
provided by the Globus Toolkit. Applications specify
the characteristics of desired data and pass attribute
descriptions to a broker. The broker queries available
resources and gets replica locations from the Informa-
tion Service [6] and Replica Management Service [31],
then gets lists of physical file locations.
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Figure 1: Data grid co-allocation architecture

In [21], the authors propose architecture for co-
allocating Grid data transfers across multiple connec-
tions by exploiting the partial copy feature of GridFTP.
They supply strategies such as Brute-Force, History-
based, and two Dynamic Load Balancing techniques,
conservative and aggressive, for allocating data blocks.
Several co-allocation strategies presented in previous
works are described below.

Brute-Force Co-Allocation [21]: The Brute-Force
Co-allocation scheme divides file sizes equally among
available flows; it does not address bandwidth differ-
ences among various client-server links.

History-based Co-Allocation [21]: The History-
based Co-allocation scheme keeps block sizes per flow
proportional to predict transfer rates, and disregards the
influence of network variations between client and
server.

Conservative Load Balancing [21]: The Conserva-
tive load balancing scheme divides requested datasets
into k disjoint blocks of equal size. Available servers
are allocated single blocks to deliver in parallel. Serv-
ers work in sequential order until all requested files are
downloaded. Loadings on the co-allocated flows are
automatically adjusted because the faster servers deliv-
er larger file portions more quickly.

Aggressive Load Balancing [21]: This method adds
functions that change block size in deliveries by: (1)
gradually increasing the amounts of data requested
from faster servers, and (2) reducing the amounts of
data requested from slower servers or stopping request-
ing data from them altogether.

Dynamic Co-allocation with Duplicate Assignments
(DCDA) [3, 4]: The co-allocation strategies described
above do not handle the shortcoming of faster servers
having to wait for the slowest server to deliver its final
block which, in most cases, wastes much time and de-
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creases overall performance. Neither prediction nor
heuristics approaches, the DCDA scheme dynamically
co-allocates duplicate assignments and copes nicely
with changes in server speed performance, as shown in
Figure 2. The DCDA scheme is based on an algorithm
that uses a circular queue. Let D be a dataset and k the
number of blocks of fixed size in the dataset. D is di-
vided into k disjoint blocks of equal size and all avail-
able servers are assigned to deliver blocks in parallel.
When a requested block is received from a server, one
of the unassigned blocks is assigned to that server. The
co-allocator repeats this process until all blocks have
been assigned. DCDA behaves well even when server

links are broken or idled. The DCDA scheme is flawed:

it consumes network bandwidth by repeatedly transfer-
ring the same blocks. This wastes resources and can
easily cause bandwidth traffic jams in the links be-
tween servers and clients.

3. Our Approach

3.1. Anticipative Recursively-Adjusting Mechanism
(ARAM)

Grid Recursively-Adjusting mechanism can reduce
file transfer completion times and idle times spent
waiting for the slowest server. It also provides an ef-
fective scheme for reducing the cost of reassembling
data blocks. However, our scheme did not consider the
potential effect of server links broken or idled during
file transfers. Therefore, we propose an efficient ap-
proach called the Anticipative Recursively-Adjusting
Mechanism (ARAM) to extend and improve upon Re-
cursive-Adjustment Co-Allocation [12]. The main idea
of the ARAM is to assign transfer requests to selected
replica servers according to the finish rates for pre-
vious transfers, and adjusts workloads on selected rep-

lica servers according to anticipated bandwidth statuses.

By continuously adjusting selected replica server
workloads, the Anticipative Recursively-Adjusting
Mechanism scheme measures actual bandwidth per-
formance during data file transfers and regulates work-
loads by anticipating bandwidth statuses for subse-
quent transfers according to the finish rates for pre-
viously assigned transfers.

The basic idea is to assign less work to selected rep-
lica servers on network links with greater performance
variability. Links with more bandwidth variation will
have smaller effective bandwidth, and the finish rates
for previous assigned transfers will be smaller as well.
The goal is to have the expected finished times of all
servers be the same. Our approach performs well, even
when the links to selected replica servers are broken or
idled. It also reduces the idle time wasted waiting for
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the slowest server. As appropriate file sections are se-
lected, they are first divided into proper block sizes
according to the respective server bandwidths, pre-
viously assigned file sizes, and transfer finish rates.

Initially, the finish rate is set to 1. Next, the co-
allocator assigns the blocks to selected replica servers
for transfer. At this moment, it is expected that the
transfer finish times will be consistent with E(#).
However, since server bandwidths may fluctuate dur-
ing segment deliveries, the actual completion times
may differ from the expected time E(#;) (solid lines in
Figures 2 and 3). When the fastest server finishes at
time ¢, the size of unfinished transfer blocks (italic
blocks in Figures 2 and 3) is measured to determine the
finish rate. Two outcomes are possible: the quickest
server finish time #; may be slower than or equal to the
expected time, E(#), indicating that network link per-
formance remained unchanged or declined during the
transfer. In this case, the difference in transferred size
between the expected time and actual completion time
(italic block in Figure 2) is then calculated.

File A | Section 1 [Section2 | ... [.. |

Round 1 Round 2
E(ty) f1 E(tz)
|
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_—— — c—
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Figure 2: Later-than-expected-time adjustment
process
Section 1 [Section2 [ .. [..]

File A |

Round 1 Round 2
tr E(t) E(ty)
|

[Severt] == _ _
——i= — —
===
. ! 1 [
Figure 3: Earlier-than-expected-time adjust-
ment process

The other outcome is that the quickest server finish
time # may be faster than the expected time, E(¢), in-
dicating an excessively pessimistic anticipation of net-
work performance, or an improvement in replica server
network link performance during the transfer. The dif-
ference in transferred size between the earliest and the
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expected time (italic block in Figure 3) is then meas-
ured. If the anticipated network performance was ex-
cessively pessimistic for the previous transfer, it is
adjusted for the next section. The next task is to assign
proper block sizes to the servers along with respective
bandwidths and previous finish rates, enabling each
server to finish its assigned workload by the expected
time, E(%,). These adjustments are repeated until the
entire file transfer is finished.

3.2. TCP Bandwidth Estimation Model

TCP/UDP is one of the core protocols of the Inter-
net protocol suite. TCP provides reliable, in-order deli-
very of a stream of bytes, making it suitable for appli-
cations like file transfer such as for example GridFTP.
Parallel TCP sockets is a generic “hack” to improve
throughput attained by TCP for bulk data transfers by
opening several TCP connections and striping the data
file over them [1]. In practice, it is often unclear how
many sockets one needs to open in order to achieve
satisfactory throughput since opening too many con-
nections may be undesirable for various reasons [1, 5,
13, 16]. The TCP Bandwidth Estimation Model [13] as
a function of packet loss, round trip time, maximum
segment size, along with a handful of other miscella-
neous parameters across a wide range of packet losses.
Now we understand how TCP Bandwidth Estimation
Model to measure server bandwidth, its make more
reliable and reasonable.

3.3. K-means algorithm

The k-means algorithm is an algorithm to cluster n
objects based on attributes into & partitions, £ < n. It is
similar to the expectation-maximization algorithm for
mixtures of Gaussians in that they both attempt to find
the centers of natural clusters in the data. It assumes
that the object attributes form a vector space. The ob-
jective it tries to achieve is to minimize total intra-
cluster variance. The simulation results were shown as
Figure 4.

3.4. Burst Mode

Just like many network accelerators method or mul-
tithreading, Burst Mode (BM) could make one huge
bandwidth split into small pipeline to working at the
same time. Burst Mode focus on the fastest group of all
servers, first, BM can differentiate varieties network
bandwidth of candidate servers, second, BM choose
the faster one then others. Finally, BM makes one sin-
gle job into many in apropos, as shown in Figure 5.
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Figure 4: Grouping number of servers in vari-
ous bandwidths
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Figure 5: Higher bandwidth enable Burst Mode

In the previous experimental results showed that
few replica servers in locally was high-efficiency than
many of remote replica servers. According it, main
idea in Burst Mode (BM) not only find out the fastest
server group but also make them download in multith-
reading. In the mean time, BM could deal cutting block
properly with various datasets.

3.5. Anticipative Recursively-Adjusting Me-
chanism Plus (ARAM+)

3.5.1. Assumptions: We outline the assumptions for
our system design model and list as following:

e High-speed networking equipment with full-
duplex transmission has been seen everywhere.

e Grouping and distinguishing amount of hetero-
geneous servers determine by end-to-end net-
work bandwidth. Higher network bandwidth
could also support multithreading to speedup to-
tal performance.

® According to Moore's Law, modern computer
computing abilities is powerful then before in
continually, such as the new hard drive, 10 Giga-
bit Ethernet backbone and multi-core CPU. Each
I/O device will be act the key of performance.
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e The time in transferring processes of stop-
ping/assigning and calculated TCPgy to the se-
lected replica server is negligible.

3.5.2. Anticipative Recursively-Adjusting Mechan-
ism Plus: Anticipative Recursive-Adjustment Mechan-
ism Plus (ARAM+) base on ARAM, it’s not only inhe-
ritance from ARAM but also enhance two features: 1)
TCP Bandwidth Estimation Model (TCPBEM), 2)
Burst Mode (BM). ARAM+ by means of continuous
adjusting the workload of each selected replica server,
which measures the actual bandwidth performance by
TCPBEM during the term of transferring data file, and
according to the previous job finished rate to adjust
alpha value at next transfer section. There are some
interesting idea from P2P network and distributed
denial-of-service (DDoS) attack, as we know; P2P
network base on share-based, its sharing data and
download in parallel each other but closely demander
will higher priority. Another typical example is DDoS
attack; it occurs when multiple compromised systems
flood the bandwidth or resources of a targeted system.
We have combined those two characters in our ap-
proach. The multithreading in Burst Mode (BM) deign
idea came from DDoS attack, BM “flooding” the
bandwidth of target replica server to make download
performance speedup. Another idea from P2P network
apply to ARAM+, its pre-selection many candidates
replica from different server, then elected properly
servers and allocated only just work load to fit server
capacity.

Compare to previous work [24, 25, 27, 29, 30], An-
ticipative Recursively-Adjusting Mechanism (ARAM)
and Recursively-Adjusting Mechanism (RAM) both
are designed base on Co-Allocation Architecture and
also rely on tuning alpha value by hand to adapt specif-
ic situation in Data Grid. The ARAM+ does the same
way with those strategies, but different in tuning alpha
value dynamically.

3.5.3. ARAM+ Algorithm:

[Initialization]

Total candidate servers current bandwidth measuring
using TCP Bandwidth Estimation Model (TCPBEM)
and calculation the appropriate alpha value by equation
14 and 15.

[Allocation of blocks to the selected servers]

LOOP WHEN (UnassignedFileSize and total Unfini-
shedFileSize are greater than zero) THEN

{

IF (UnassignedFileSize and Total UnfinishedFileSize
are greater than TotalTCPgy) THEN

{

IF (UnassignedFileSize and Total UnfinishedFileSize
multiplied by « greater then Total/TCPgy) THEN
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{

Define new section to be allocated
SEj = (UnassignedFileSize
+ TotalUnfinishedFileSize) * «,
0<ac<1i

}
ELSE
{
Define finial section

SEj = UnassignedFileSize

+ TotalUnfinishedFileSize

~

S

END LOOP;
Step 1. Define new section to be allocated SEj
Step 2. Monitor each selected replica server
Step 3. Allocate blocks to each selected replica
server, according to the TCPgy of the se-
lected replica server, and the previous fi-
nished rate Rj-1 of the selected replica
server (Initial Ry=1)
Step 4. Monitor each download flow
LOOP WHEN (The fastest flow finishes its assigned
data blocks) THEN
{

IF (The first finished time of R7ji is earlier then expect
time ETji and the transferred size 7.Sji is greater than
the expected size Sji ) THEN

{

}
ELSE

{
Measure the finished rate of the previous as-
signed file size to be delivered (0 < rji < 1)

}

The rji=1

TSIt orii > ETi
rji = sji It =R
1, RTji < ETji,and TSji > Sji
}
END LOOP:

4. Experimental Results

4.1. Experimental results and analyses

The experiment and case design to testify our pro-
pose approach, Burst Mode (BM) to speedup perfor-
mance in locally/remotely and dynamic truing alpha
value to adapt uncertain network situation especially.
We have design some test case as follows and detail as
shown in Figure 6.
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Figure 6: Scenarios for our test-bed of TIGER

4.2. Case study - Replica selects and transfers in
“Across Grid” vs. “Local Grid”

To verify the efficiency of Burst Mode been enabl-
ing or not, we design two scenarios to compare, all test
case were list in Table 1 and Table 2.

Table 1: Scenario for replica in locally or not

Scenario Replica server list
ARAMplus 4: non-local THU-S1,S2; LZ1,2
ARAMplus_4: local-1 HIT-S1, S2; THU-betal, beta2
ARAMplus 4: local-2 HIT-S1, S2; THU- beta 1; LZ-1
ARAMplus_4: local-3 HIT-S1,S2;LZ-1,2
ARAMplus 4: all-local HIT-S1, S2, S3, S4

Table 2: Scenario for different replica number
and selection

Scenario Replica server list
Rx6 non-local LZ-1,2,3; THU- beta 1, beta 2, beta 3
Rx6_local HIT-S1, S2, S3, S4, S5, S6
Rx2 local HIT-S1, S2
Rx2 non-local-THU THU-S1, S2
Rx2 non-local-LZ LZ-S1,82

In general case, more number and placement locally
of replicas will gain better performance for parallel
transform file. From our results shown as Figure 7 and
Figure 8, we found more number of replicas remotely
from user performance improvement wasn’t obvious
even worst then few replica in locally. Meanwhile pa-
rallel download in locally, Burst Mode enable meet
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two copied of replica could better than six copied on
unbalanced bandwidth.
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Figure 7: The performance result affected by
different replica location
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Figure 8: The performance result affected by
different number of replica and selection

4.3. Case study - RAM and ARAM vs. ARAM+

Compare to RAM [32] and ARAM [26] both were
using constant alpha value, our approach the ARAM+
could rely on dynamic alpha value to adapt fluctuant
network link in Data Grid. The case study (list in Table
4) of RAM and ARAM, we set constant alpha value to
be 0.9, 0.5 and 0.1 compare to ARAM+, also replica
placement and selection from inside and outside reign.
In order to distinguish replica location between inside
and outside reign, these two kinds of replica selection
plan list as follow table.

Table 3: Replica placement and selection plan

mix HIT-S1, S2; LZ-1, 2; THU-betal, beta2
local HIT-S1, S2, S3, S4, S5, S6
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Table 4: Scenario for alpha value tuning

Scenario A Scenario B
RAM(0.1) local RAM(0.1) mix
ARAM(0.1) local ARAM(0.1) mix
RAM(0.5) local RAM(0.5) mix
ARAM(0.5) local ARAM(0.5) mix
RAM(0.9) local RAM(0.9) mix
ARAM(0.9) local ARAM(0.9) mix
ARAM+ local ARAM+ mix

In order to accentuation the advantages of Burst
Mode method and dynamic alpha value adjustment,
there are two scenario set A and B in our next experi-
ment. The total performances in Scenario B have ob-
viously been improving then Scenario A. In Scenario
A, the total amount of TCP bandwidth in these case
were not quire difference, but in Scenario B were sig-
nificant difference. All those case study especially in
Scenario B, the Burst Mode were affect total perfor-
mance hugely improvement, as shown in Figure 9 and
10.
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Figure 9: The performance result with scena-
rio A
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Figure 10: The performance result with scena-
rioB

5. Conclusions

The Co-Allocation Architecture can be used to ena-
ble parallel transferring of data file from multiple rep-
licas in Data Grid, which mean all replicas stored in the
different grid sites. There are many schemes base on
Co-Allocation Model were proposed and used to ex-
ploit the different transfer rates among various client-
server network links and to adapt dynamic rate fluctua-
tions by dividing data into fragment. These schemes
showed the more fragments used the more performance
conducted when data transfer in parallel with evidence.
In fact, some of schemes can be applied for specific
situations; however, most situations are not common
actually. For this issue, we have proposed a scheme
named Anticipative Recursively-Adjusting Mechanism
Plus (ARAM+) based on ARAM. The best part is per-
formance tuning through the dynamic alpha value ad-
just in continually, it’s rely on special feature to adapt
different network situations in a data grid environment.
In our experimental results, the TCP Bandwidth Esti-
mation Model is used to evaluate dynamic link state by
detect TCP throughput and packet lost rate between
grid nodes, we also found that can be more reliable and
reasonable then ARAM and others. In the meanwhile,
the Burst Mode which can be increase transfer rate
with evidence. The ARAM+ not only adapts worst
network link but also speedup the overall performance
especially in wide area grid network.
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