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Abstract

In this research project, we accomplish three major things: first, A low-energy effective
theory for interacting bosons on a one-dimensional lattice at and near integer fillings
is proposed. It is found that two sets of bosonic phase fields are necessary in order to
explain the complete phase diagram. Using the present effective theory, the nature of the
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quantum phase transitions among various phases can be identified. Moreover, the general
condition for the appearance of the recently proposed Pfaffian-like state can be realized
from our effective action.

Second, We study the phase diagram of two weakly coupled one-dimensional dipolar
boson chains at half-odd-integer fillings. We find that the system contains a rich phase
diagram. Four different phases are found. They are the Mott insulators, the single-
particle resonant superfluid, the paired superfluid, and the bond- or inter-chain density
waves. Moreover, the Mott insulating phase can be further classified according to a
hidden string order parameter, which is analogous to the one investigated recently in the
one-dimensional boson Mott insulator at integer fillings.

Third, we studied the phases and phase transitions of a lattice boson system with
three-body hard-core constraint. In addition to the usual superfluid and Mott phases, this
system contains an extra paired superfluid phase. Using the effective potential methods
borred from quantum field theory, we successfully derived the quantum Ginzburg-Landau
functional for the order parameter fields of the system within the framework of strong
coupling expansion. Based on this result, we predict the phase boundaries and the nature
of the phase transitions in this system.

Keywords: effective theory, quantum phase transitions.
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Much effort has been devoted to understanding the effects of competing interactions on
quasi-one-dimensional systems. Recent advances in loading ultracold bosonic atoms into
an optical lattice lead to the realization of one-dimensional (1D) lattice boson systems, and
inspire the investigation on many-body quantum phenomena therein. [1, 2, 3, 4] Besides
the nearest-neighbor hopping ¢ and the tunable on-site interaction U, a sizable nearest-
neighbor interaction V' is now within experimental reach by using the dipolar interaction
among atoms. [5, 6] These experiments raise the interest in creating and detecting exotic
quantum phases in 1D interacting lattice boson systems.

For 1D lattice bosons at integer filling, the phase diagram obtained by the mean-field
calculation includes three different phases. They are the Mott insulator (MI) for large U,
a charge density wave (CDW) for large V', and a superfluid (SF) for large ¢. [7, 8] However,
by using the Density Matrix Renormalization Group method, it is found recently that,
at filling of n = 1, there exists a novel insulating phase lying between the CDW and
MI phases in the weak coupling region. [9] The phase transition between this new phase
and the conventional insulating phases (i.e., the CDW and MI phases) is found to be of
second order. Similar to the Haldane phase of quantum spin-one chains, [10] this new
insulating phase can be identified by a highly nonlocal string order parameter, and thus
called as the Haldane insulator (HI) phase. [9] Another investigation employing quantum
Monte Carlo simulations shows that, when ¢ < U < 2V, there exists a supersolid (SS)
phase lying between the 7 = 1 CDW and the n = 1/2 CDW phases. [11] The CDW-SS
transition is found to be of second order with dynamic critical exponent z = 2. Some of
these new phases are untoniced until very recently.

With an eye on these new developments, it is desirable to have a unified understanding
to the rich phases and the quantum phase transitions among them through a suitable
low-energy effective theory. In particular, the traditional one-component hydrodynamic
theory is clearly unable to describe the above new Mott state and the possible new one-
dimensional super-solid state. Our aim in this project is to develop a suitable modified
effective theory to gain a better understanding of the above phenomena. The above
consistute the motivation behind our first year’s research work.

Among many research works devoted to the understanding of the effects of long-
range dipolar interactions, we mention the recent work by Emanuele G. Dalla et al, [9]
who studied the one-dimensional boson insulators within the context of an extended bo-
son Hubbard model (EBHM) by employing the density matrix renormalization group
(DMRG) method. By tuning the ratio of the on-site interaction over the hopping ampli-
tude U/t and the ratio of the longer range interaction over the hopping amplitude V/t,
the mean field analysis shows that three different conventional phases can be reached.
These include the Mott insulator at large U, the density wave state for large V and a
superfluid state for large t. The surprising thing is that a new intermediate insulating
state, the Haldane insulator, which separates itself from the other two insulating states
by second order quantum phase transitions was found in Ref. [9]. Moreover, it was shown
that such a state possesses a non-vanishing non-local string order, similar to the Haldane
phase of the quantum spin-one chain. Such a state is definitely beyond the reach of the
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traditional one-dimensional hydrodynamic effective theory for the one-dimensional boson
superfluid-to-Mott transition. [12]

Knowing the above results, it is desirable to see if similar exotic insulating states can be
found in other one-dimensional or quasi-one-dimensional systems. Coupled boson-chain
systems have already been discussed in a number of previous publications [13, 14, 15],
and the related systems also attracted some renewed interests within the context of cold
atoms in both one [16] and higher dimensions. [17]. As far as we know, no exotic Mott
insulating phase as we mentioned above has been noticed in these works. In this work,
we consider a dipolar boson system of two weakly coupled chains within the framework of
the EBHM. Interestingly, we found that the competition of the inter-chain hopping and
the inter-chain interaction does lead to two different types of Mott insulating states, with
one of them possessing a nontrivial string order. In addition to that, we also found that
the inter-chain attraction can give rise to an interesting paired superfluid state where the
inter-chain bound boson pairs show an algebraic long range superfluid order while the
single-boson superfluid correlations decay exponentially. This is the basic ideas begind
the second year’s research work.

Finally, it was recently suggested that intriguing quantum critical behaviors can occur
in attractive bosonic lattice gases with three-body on-site constraint [19, 20]. The sys-
tem is described by the Bose-Hubbard model with a three-body constraint. The on-site
constraint can arise naturally due to large three-body loss processes [21, 22], and it stabi-
lizes the attractive bosonic system against collapse. Therefore, besides the conventional
atomic superfluid state (ASF) with non-vanishing order parameters (a) # 0 and {a*) # 0
appearing in the weakly-interacting limit, a dimer superfluid phase (DSF) with vanish-
ing atomic order parameter ({a) = 0) but nonzero pairing correlation ({a?) # 0) can be
realized for sufficiently strong attraction [21]. It was shown in Refs. [19, 20] that this
model provides a simple realization of the physics of Ising quantum transition together
with the Coleman-Weinberg mechanism [23] without resorting to the Feshbach-resonant
mechanism [24, 25, 26]. While the nature around the ASF-DSF transition has been dis-
cussed, the detailed physics of the Mott insulator (MI) to superfluid (either ASF or DSF)
transitions is not addressed in Refs. [19, 20]. In the present work, we focus our attention
on the MI-ASF and the MI-DSF transitions in this three-body constrained attractive Bose
lattice gas.
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To summarize, in first year’s work, a low-energy description, which successfully capture
the rich phases of the 1D lattice boson model near integer fillings, is constructed. We
believe that the present effective theory provides general applications to related problems.
For example, parallel approaches can be used to study models of coupled 1D hard-core
lattice bosons, where similar effective theories can be constructed. When local density
fluctuations become stronger, more local states with different particle numbers should be
kept. Following the above reasoning, an effective theory with more bosonic phase fields
should be reached. It is interesting to see if more novel phases can be found in this case.

In the second year’s work, we analyze the possible phases of a two-chain boson Hubbard
model with long-range interactions. The results of the strong coupling analysis, when one
of the inter-chain coupling is dominant, is consistent with the results we gained in the
weak-coupling bosonization analysis. Since one of the most important conclusion that
follows from the bosonization study is that the interplay between the inter-chain hopping
and inter-chain interaction results in two exotic phases — the paired superfluid state and
the Mott insulating state with a string order, it is tempting to speculate that the major
results of the bosonization analysis in this paper should be valid even when the inter-chain
coupling strength is not so weak and can be extended to larger regions in the whole phase
diagram.

Using the analytic results obtained in this paper as a guide, we hope that it is helpful
for future numerical works to determine the exact phase boundaries of the two-chain
EBHM, and more importantly, the exotic insulating phase and the paired superfluid
phase can be observed in the future experiments.

Finally, in the last year’s work, we have two major results. In the first part, we
use the renormalization group method analyze the Feshbach-resonant interacting boson
near its unitary limit. Within the framework of epsilin expansion, we found that the
systemis always unstable near its unitary limit. In particular, in the molecular side, the
system tends to collapses. However, in the atomic side, the the system can exist as a
meta-stable state, and we successfully analysize certain thermodynamic properties of the
atomic superfluid state including its density distribution and its sound velocity.

In the second part, we analyze the Mott-to-superluid transition of a lattice boson sys-
tem with three-body hard-core constraint. Due to the constraint, the analytic study of
the system becomes notoriously difficult. Another nontrivial part of the system is that
when the bosons have attractive two-body interactions, it was predicted that the system
can sustain a exoic paired superfluid state — a state where the single particle condensate
vanishes while the pair condensate is non-zero. This also increases the difficulty of the
theoretical analysis of the system since a straightforward mean-field decoupling is impos-
sible due to the absence of the pairing tunneling term in the original model. Our anaytic
approach based on the quantum effective action resolve these two problems simultane-
ously. It naturally take the constraint into account, and the nontrivial order parameter
field does not pose any serious problem to this method. We therefore successfully ob-
tained the phase diagram of the system. Besides, based on the functional form of the
Ginzburg-Landau action, we predicted that there is a window of first order phase transi-



tion in the phase diagram. In particular, it is found that the DSF phase exists only in a
narrow region of chemical potential p/|U| for small hopping parameters ¢/|U|. Therefore,
carefully tuning system parameters into the suggested parameter regime are necessary to
uncover experimentally this novel phase in real ultracold Bose gas in optical lattices.
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