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Abstract

By means of the recently proposed algorithm
based on the tensor product states[H. C. Jiang, Z. Y.
Weng, and T. Xiang, Phys. Rev. Lett. 101, 090603
(2008)], the magnetization process of the spin-1/2
anti-ferromagnetic XXZ model on a square lattice is
investigated. In the large spin-anisotropy limit, clear
evidence of afirst-order spin-flip transition is observed
as an external magnetic field isincreased. Our findings

of the critical field and the discrete jumpsin various

local order parameters are in good agreement with the
guantum Monte Carlo datain the literature. Our results
imply that this algorithm can be an accurate and
efficient numerical approach in studying first-order

guantum phase transitions in two dimensions.

Keywords: XXZ model, tensor product states, quantum

phase transitions
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Numerical simulations are usually required in the
theoretical investigation on strongly correlated systems,
because analytical solutions are not available in most
cases. Consequently, developing accurate and efficient
numerical tools becomes one of the central issuesin the
understanding of quantum many-body systems.
Recently, based on an efficient representation of
two-dimensional system’s wave function through a
tensor network, a series of new simulation algorithms
has been achieved. In particular, the infinite projected
entangled-pair states (iPEPS) algorithm [1] has been
proposed and applied to various interesting systems
with success [2-6]. In this approach, the ground-state
wave function is described by the so-called tensor
state (TPS) [7,8] or the projected
entangled-pair state (PEPS) [9,10]. Taking into account

product

possible translational symmetry in the ground state,
such a tensor network can be simply represented by
copies of asmall number of tensors even for systems on
infinite lattices. After optimizing these tensors under
specific prescriptions, a number of physical properties
can be calculated from the optimized TPS/PEPS.

By handling tensor-product wave functions in
iPEPS

different manners, schemes distinct from



algorithm have also been put forward [11,12]. A virtue
of these approaches is that they can be implemented
with ease. In Ref. [11], the optimized TPSs are
determined via direct variational approach, where the
variational energies of systems of very large sizes are
efficiently evaluated by means of the tensor
renormalization group (TRG) method [13,14]. The
expectation values of physical quantities are then
calculated from the optimized TPS again under the
TRG method. This algorithm has been tested for several
two-dimensional (2D) quantum spin models [11], and
the results agree well
Alternatively in Ref. [12], the ground states of a TPS

form are obtained by using the power method through

with previous findings.

iterative projections. This approach can be considered
as a generaization of the 1D infinite time-evolving
block decimation (iTEBD) method [15] to the two
dimensional cases. After getting the ground states, the
TRG method [13] is employed to calculate the
expectation values of physical observables. It is shown
that accurate results for the Heisenberg model on a
honeycomb lattice can be reached under this approach
[12].

Due to the simplicity and efficiency of the iTEBD
and the TRG algorithms, the approach proposed in Ref.
[12] can become one of the promising numerical
methods in studying quantum many-body systems once
its general validity is established. Recently, it is shown
that TPS/PEPS ansatz is suited to study the first-order
phase transition [3]. However, because of the difference
in optimizing ground states and in evaluating
expectation values, one may wonder if the combined
iTEBD and TRG algorithm can determine the
first-order phase transitions to the same accuracy as the
iPEPS algorithm does.

In order to provide further benchmark on the
performance of the combined ITEBD and TRG
algorithm, in this work [16] we investigate the
magnetization process of the spin-1/2
anti-ferromagnetic XXZ model on a square lattice. Here
the large spin-anisotropy case is considered, where the
existence of first-order spin-flip transitions in the

magnetization process has been established by means

of quantum Monte Carlo (QMC) simulations. We find
that various local order parameters defined below
change discontinuously at a critical field, which clearly
indicates the appearance of a first-order transition.
Moreover, satisfactory results of the critical field and
the discrete jumps in the local order parameters are be
obtained as compared to the previous QMC findings.
Our present investigation suggests that this combined
algorithm should also be an effective numerical method
in studying first-order quantum phase transitions in two

dimensions.
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