
行政院國家科學委員會專題研究計畫 期中進度報告

於協同配置資料網格環境中具適應性複本管理的高效能醫
療影像儲傳系統之實作(2/3)

研究成果報告(精簡版)

計 畫 類 別 ：個別型

計 畫 編 號 ： NSC 98-2622-E-029-001-CC2

執 行 期 間 ： 98年 08 月 01 日至 99年 07 月 31 日

執 行 單 位 ：東海大學資訊工程與科學系

計 畫主持人：楊朝棟

共同主持人：楊晴雯

處 理 方 式 ：本計畫可公開查詢

中 華 民 國 99年 04 月 30 日

國國科科會會專專題題研研究究計計畫畫精精簡簡報報告告

學門領域：資訊學門一 平行與分散處理

計畫名稱：於協同配置資料網格環境中具適應性複本管理的高效能醫療影像儲

傳系統之實作(2/3)

計畫編號：NSC 98-2622-E-029-001-CC2

執行期間：自民國 98 年 08 月 01 日貣至民國 99 年 07 月 31 日

執行單位：東海大學 資訊工程學系

主 持 人：楊朝棟

參與學生：羅裕翔 陳龍騰 王冠傑

合作企業簡介

合作企業名稱：亞盾科技股份有限公司

計畫聯絡人：潘介棟

資本額：新台幣 500 萬元

產品簡介：

亞盾科技股份有限公司成立於民國 89 年，成立之初公司的營業方向，是以販售個人電

腦軟體、硬體及其周邊設備、耗材為主。隨著資訊科技的日新月異，產品研發技術不斷的

創新下，亞盾科技公司逐漸轉型以研發「叢集計算系統」及「醫療自動化監控系統」為主，

以販售個人電腦軟體、硬體及其周邊設備、耗材為輔，以期能服務更多的消費族群，滿足

消費者多元化的需求。亞盾科技股份有限公司業務內容如下：

 Cluster 叢集系統之研發與應用

 高效能護理站自動化系統(如附件)（自行研發）

 區域網路及廣域網路規劃架設及維護

 遠距教學架構及規劃

 伺服器架設與設定

網址：www.ardness.com.tw 電話：(04) 23588880

研究摘要(500 字以內)：

影像診斷學中，醫療影像儲傳系統(Picture Archiving and Communication System, PACS)

是一種專門用來儲存、取得、傳送與展示醫療影像的電腦或網路系統。PACS 的主要目的

在於將醫療系統中所有影像，以數位化的方式儲存，並經由網路傳輸至系統中，供使用者

遠端電腦螢幕閱讀影像並判讀。同時也可作為不同影像傳遞交換的工具，隨著軟體及運用

程式的進步，將來更可進一步協助醫師進行診斷、教學及醫學研究。而成功的 PACS 不只

須要強大硬體，更依賴完善軟體功能及作業程序。透過日漸成熟的網格計算 (Grid

Computing)技術，將散佈各地之虛擬組織的資源可以透過網格的概念來調派和集中。再者，

利用資料網格(Data Grid)的容錯特性與高可用性，因此可以滿足各種在醫療資訊應用方面

附件二

http://www.ardness.com.tw/

的計算與檔案儲存需求。

為降低 PACS 系統之擴建成本與設置第二 PACS 系統為考量，本計畫為期 3 年，主要

是研發 Smart Broker Centric 與具有自適性副本管理元件於於協同配置(Co-allocation)資料

網格環境中。藉由導入 Open Source PACS 解決方案，建置於特別設計的網格功能元件之

上，期能證實以網格技術來支援 PACS 系統的可行性，除保有 PACS 的優勢、實際提昇 PACS

影像副本交換效率與一個成本較低廉的 PACS 導入方案。

於上年度，計畫完成平台架構上所有系統元件的雛型設計開發，平台架構區分

Application、Smart Broker、Cyber Abstraction、Grid Middleware 以及 Fabric 等 5 個階層，

其中較高層以使用者為中心，並以 Smart Broker 作為本架構核心；底層專注於資源整合，

並以 Cyber Abstraction 描述高低二階層之間如何連結。另外設計一個網格知識管理(GKM)

模型以支援各元件計算的參數資料輸入。其成果已在 APSCC08, IPCADS08 與 JNCA 發

表。

本年度，計畫完成整合各階層元件，使用 Globus Tookit 與雲端計算(Cloud Computing)

結合 Cross-CA 技術，建構跨網格系統的交互驗證機制，提昇計算與儲存資源利用率。實

作 Co-Allocator 元件，該元件能經由 Resource Management System (RMS)提供對應資源，

並透過 GKM 的知識基礎，設計出具有認識網格環境現況的能力，即為自適性。在資料網

格環境中，資料集被重複製為複本且分送到多重的站台。由於資料集的檔案通常很大，如

何有效率的存取及傳輸成為重大的課題。因此先前有學者發展出協同配置的架構，使得同

時從多重站台平行下載資料變成可能，目前發展出數種協同配置法用來解決傳輸時本地端

與伺服端網路傳輸率不斷變動的問題。本研究中，我們採用 TCP 頻寬估計模型與突發模

式等新策略，藉此強化預測性遞迴調整的協同配置法，進一步提高大量資料集於資料網格

中的傳輸效能。我們的方法能有效地找出一群快速伺服器並分配較多的工作量提高其資源

利用率，動態計算出檔案切割量，有效減少各伺服器間的相互等待時間。藉由各項實驗證

明其傳輸的高效能，並具有網路自適應性與高度容錯性，有效因應不同的網格環境。使用

Open Source PACS 系統為應用實例，進行實驗及測詴雛型系統功能及相容性。其成果已在

Journal of Supercomputing 與 CCPE 發表。

接下來最後一年，我們根據應用實例的實驗結果，進一步改善各階層元件與雛型應用

系統與 GKM 學習樣本調較。並就我們的 PACS 系統實際使用情況與真實醫院 PACS 系統

作整體效能比較。

關鍵詞：網格計算、資料網格、醫療格網、醫療影像儲傳系統、協同配置

English Abstract

PACS (Picture Archiving and Communication System) is a system for archiving, retrieving,

communicating and displaying medical images. The purpose of PACS is to acquire medical

images from medical systems, store them in digital formats, and transmit them to remote users

through networks for diagnostic usages. Furthermore, PACS can be sharing platforms for

various images. As the development of software and computing technologies, PACS is

promising to assist doctors in medical diagnoses, instruction and researches. The success of

PACS depends on not only powerful hardware, but also advanced software utilities and

operating procedures. By means of the developed grid computing technologies, resources of

virtual organizations located in different places can be managed and dispatched. Moreover, the

salient features of fault-tolerance and high availability of data grid can satisfy various kinds

computing and storage requirements in medical applications. We propose a three-year project to

design and implement Smart Broker Centric and adaptive replica management components in

co-allocation data grid environments. By means of introducing Open Source PACS solutions

based on specially designed grid modules, we plan to verify the feasibility of using grid

technologies to support PACS. In addition, the contributions will include promoting the

advantages of PACS, improving the sharing performance of PACS image replica and a

cost-effective PACS solution.

In the first year, we design and implement the prototype, including all components of the

platforms. The architecture is composed of five layers: Application, Smart Broker, Cyber

Abstraction, Grid Middleware and Fabric. The higher layers are user-centric, and use Smart

Broker as the core of the architecture. The bottom layers focus on resource integration, and use

Cyber Abstraction to describe the interconnection of the top layers and the bottom layers. Also,

a grid knowledge management (GKM) model is designed to facilitate the parameter input of all

components. Some research results are published in APSCC08, ICPADS08 and JNCA.

In the second year, we plan to integrate components of all layers by using Globus Toolkit,

Cloud Computing and Cross-CA technologies, in order to improve the computing performance

and resource utilization. The implemented Co-Allocator component can provide corresponding

resources by Resource Management System (RMS), and support grid context-awareness by

GKM. Data grid consists of scattered computing and storage resources located in different regions

yet accessible to users. Co-allocation architectures can be used to enable parallel transfers of data

file from multiple replicas in data grids which are stored at different grid sites. Schemes based on

co-allocation models have been proposed and used to exploit the different transfer rates among

various client-server network links and to adapt to dynamic rate fluctuations by dividing data into

fragments. In this report, the TCP Bandwidth Estimation Model (TCPBEM) is used to evaluate

dynamic link states by detecting TCP throughputs and packet lost rates between grid nodes. We

integrated the model into ARAM, calling the result the anticipative recursively adjusting mechanism

plus (ARAM+); it can be more reliable and reasonable than its predecessor. We also designed a

Burst Mode (BM) that increases ARAM+ transfer rates. This approach not only adapts to the worst

network links, but also speeds up overall performance. Taking Open Source PACS for examples,

we plan to conduct experiments on functionality and compatibility of the prototype.

In the last year, we will plan to refine the components and the application according to the

experimental results. Also, the proposed system will be compared with a real-world PACS of

hospitals in terms of overall performance.

Keywords: Grid Computing, Data Grid, Medical Grid, PACS, Co-allocation

人才培育成果說明：

研究初期工作為叢集計算系統的規劃與設計，參與人員能在叢集系統的架設及應用熟

悉其技巧。對於叢集伺服器管理能更有經驗。參與研究的人員能深切瞭解 PACS 與格網的

功能與意義，應用軟體工程的理論到實際的開發過程。對於未來投入軟體產業有非常大的

幫助。

對於參與本子計畫研究之人員將能對，健康服務格網，醫療資料格網，及 HL7 資料

管理這些重要的技術有更深刻的認識，包含其歷史背景、發展過程、時空環境、遭遇到的

問題與未來發展前景都能有通盤的學習與了解。

對於參與本子計畫研究之人員將能對服務格網資源的擷取有更多的練習，包括服務格

網資訊監控系統技術應用、RRDTool 技術應用、JRobin 圖表繪製，同時為了將資源提供給

其他子計畫之模組來使用，如何把資料整合並有效利用也將會是學習的重點。包含其歷史

背景、系統發展過程、系統整合測詴與技術應用、遭遇到的問題與未來發展前景都能有通

盤的學習與了解。

參與人員可以學習到結合不同理論建構問題以及獨立思考能力，在實驗的過程，參與

者可學習到判斷研究成果的正確性以及回饋修正的能力。另外，也可以學習整套研究的方

法，團隊工作的精神，以及撰寫科技論文的經驗。也可以建立觀摩網站供有志從事高效能

醫療影像儲傳系統工作的朋友學習，規劃未來高效能醫療影像儲傳系統計畫的方向。

由於本計畫為整合資料網格環境與醫療影像儲傳系統，對於參與本計畫研究之人員，

更能訓練橫向整合溝通的能力，與不同團隊之間的協調合作，是一個非常好的訓練。對於

參與研究的學生，不論是作業系統、分散式計算、平行分散式資料庫、PACS、或格網計

算都能有更深一層瞭解。另外，諸如網路與系統安全、網路與系統管理、邏輯分析能力，

如數據的分析技巧及格網計算領域技術問題的處理能力都可以獲得一連貫的訓練。而對碩

士班學生而言，除了核心理論的開發以外，更可以學習到系統整合與系統分析的經驗。

技術研發成果說明：

本計畫將依照研究內容與目標畫分三年進行。第一年計畫完成平台架構上所有系統元

件的雛型設計開發，平台架構區分 Application、Smart Broker、Cyber Abstraction、Grid

Middleware 以及 Fabric 等 5 個階層，其中較高層以使用者為中心，並以 Smart Broker 作為

本架構核心；底層專注於資源整合，並以 Cyber Abstraction 描述高低二階層之間如何連結。

另外設計一個網格知識管理(GKM)模型以支援各元件計算的參數資料輸入，例如嵌入隱藏

式馬可夫模型(Hidden Markov Model, HMM)與決策樹(Diction Tree)的 Know-How、Grid 知

識模型(GKM)及累積的 System Log(如副本運作及配置情形)，以設計學習型知識資料庫。

第二年，計畫整合各階層元件，使用 Globus Tookit 與 Cloud Computing 結合 Cross-CA

技術，建構跨網格系統的交互驗證機制，提昇計算與儲存資源利用率。實作 Co-Allocator

元件，該元件能經由 Resource Management System(RMS)提供對應資源，並透過 GKM 的

知識基礎，設計出具有認識網格環境現況的能力，即為自適性。在資料網格環境中，資料

集被重複製為複本且分送到多重的站台。由於資料集的檔案通常很大，如何有效率的存取

及傳輸成為重大的課題。因此先前有學者發展出協同配置的架構，使得同時從多重站台平

行下載資料變成可能，目前發展出數種協同配置法用來解決傳輸時本地端與伺服端網路傳

輸率不斷變動的問題。本研究中，我們採用 TCP 頻寬估計模型與突發模式等新策略，藉

此強化預測性遞迴調整的協同配置法，進一步提高大量資料集於資料網格中的傳輸效能。

我們的方法能有效地找出一群快速伺服器並分配較多的工作量提高其資源利用率，動態計

算出檔案切割量，有效減少各伺服器間的相互等待時間。藉由各項實驗證明其傳輸的高效

能，並具有網路自適應性與高度容錯性，有效因應不同的網格環境。為了量測效率，另外

建立客戶端應用程式以監控管理 Workflow，並且能將工作歷程與結果回饋給 GKM。而本

計畫「具適應性」的各演算法，即可依據此學習型知識資料庫不斷累積 Grid 領域知識並

作適當的調整，即可達成最適性的目標。導入使用 Open Source PACS 系統為應用實例，

進行實驗及測詴雛型系統功能及相容性。

第三年，根據應用實例的實驗結果，進一步改善各階層元件與雛型應用系統。並就我

們的 PACS 系統實際使用情況與真實醫院 PACS 系統作整體效能比較。設計規劃測詴案例

與系統目標，藉由與醫院實際數據作交差比對，以證實系統有效性與可用性。

此外，本計畫預計提供進階使用者的客製化應用程式，作為資訊整合、管理共享資源

之介面，以滿足進階使用者對平台服務的特殊需求。例如放射科醫生希望 PACS 系統能提

供更快速、安全的資料下載、醫療影像的快速搜尋等。系統平台透過整合的應用程式介面

取得不同來源的影像和資料，滿足使用者需求。此客製化應用程式內建高速多點平行傳輸

技術，提供使用者多點高速平行傳輸功能，例如查詢遠端大型影像檔案，可充份運用此技

術加速下載，以減少使用者等待時間。在整個三年的工作安排規劃內容，較特別的即是將

PACS 整合於已運作許久的大型網格系統之上及引入雲端計算相關技術工具，其詳細將分

述如后：

由於不同網格系統即代表有不同的驗証領域，其二者之間是無法直接跨越，必需透過

Cross-CA 技術結合 TigerGrid 及 UniGrid 資源，在得到近 3 百顆 CPU 計算能力及超過百部

伺服主機的硬碟空間之後，以採用自由軟體的 PACS 系統架構於其上，測詴其相容性與效

能並藉以調整 Smart Broker 之 Grid KM 及 Workflow Engine 效能。

技術特點說明：

本計畫預計開發展一套可以運行在現行醫療院所環境中的以協同配置資料網格環境

中具適應性複本管理的高效能醫療影像儲傳系統，並應用在科學、教育、商業等領域。在

核心技術部份，我們應用各種 Grid Computing and Cloud Computing 技術開發具輕量化，

高速傳輸，與容錯的格網系統。在軟體開發上，與開放原始碼社群整合，預期提供使用者

一個便利、安全的高效能醫療影像儲傳系統平台，提供管理者一個集中式的管理介面，與

提供開發者一個具高度擴充性及相容性的系統架構，使得未來管理的人力及時間成本大幅

降低。執行本計畫所得到的研究理論、工具開發、與實務經驗亦可作為相關領域學術研究

與教學的素材。

學術研究上的預期貢獻：本項研究以創新的方法與高等軟體開發技術解決複雜且難以

設計的格網中介軟體。結合理論與應用，建構高效率、容易操作、管理、與維護的高效能

醫療影像儲傳系統。本項研究所提出方法與技術，預期對研究或發展相似的高效能醫療影

像儲傳系統，有一定的參考的價值。本計畫的研究成果，預期將在國際著名期刊與國際研

討會上發表。另外，透過國內研討會的交流，可以結合國內從事此方面研究的教授研發能

量。未來可以發展具有國際競爭力的系統。

所開發出來的系統教育上的預期貢獻，對於有興趣學習分散式計算、Data Grid 與 Grid

Service 計算、叢集與格網計算的資訊相關科系的高年級學生與研究生，可以作為練習的

平台；同時對於推廣高效能運算教育具有很大的助益。對教師而言，也可以有實際而且容

易操作的高效能醫療影像儲傳系統作為課堂 Demo 的素材。

應用上的預期貢獻：本計劃研發新一代的醫療影像儲傳中介軟體系統，除了能夠透過

Data Grid 技術來達到資料的相容性與容錯度，高彈性的大量管理及部署，也能夠以更好

的系統效能，輕量化的系統結構實現中介資料索引搜尋，虛擬空間等功能。研發成功後預

期的影響，為提供產業、學術以及大眾網路一個可行的商業化高效能醫療影像儲傳系統平

台，並實際導入學術及醫療院所應用。

本計畫若能承蒙貴會支持，透過計畫的功能規畫與研發，建立適合醫療院所之協同配

置資料網格環境中具適應性複本管理的高效能醫療影像儲傳系統平台、相關服務元件及計

算環境、PACS 裝置技術，有助於未來我國面臨高齡化人口所需的健康照護基礎環境建設。

同時透過自由軟體技術及平台對國內相關產業能提供相關技術及支援，對於提昇我國資訊

產業在健康照護方面的競爭力，將有相當助益。

可利用之產業及可開發之產品：

推廣及運用的價值：如增加產值、增加附加價值或營利、增加投資/設廠、增

加就業人數………等。

2008 年國際情勢的變化，美國的二次房貸金融等危機造成產業蕭條，造成 1929 年以

來全世界經濟大蕭條與通縮的危機。有鑑於此；迎合下一波經濟回升與產品競爭力的考量

之下，勢必在研發設計的創新上累積具競爭力之產品，使企業在逆境中化為轉機的具體作

法與籌碼。居家環境是每個人最熟悉的空間，也是停留時間最長的場所，建構於居家環境

下的健康監測系統能提供長期、持續性的健康監測資料。「遠距居家照護(Tele-homecare)」

研究便是希望結合資訊與通訊科技，使能在被照護者的家中便利、有效地提供個人健康管

理與保健服務，並具有價格效能優勢及可延伸性。亞盾科技的目標是提供最先進的技術，

期盼能強化國家整體發展，不論在學術研究、軍事國防、產業升級，並協助客戶快速提昇

國際競爭力。

遏止全經濟蕭條與產品競爭力的頹勢能逆勢成長；本計畫提出「遠距居家健康照護監

測系統之設計開發」的設計開發規劃，廠商在現有技術資源與能力上期能透過專家學者的

診斷以解決問題：使用者在家中量測體溫、血壓等生理訊號，經過電話線、有線電視、或

網際網路傳送到「居家照護服務提供者(home healthcare provider)」的資料庫儲存，並作

進一步的資料管理與分析。如發現生理訊號有異常，居家照護服務提供者可轉介使用者至

醫療單位作進一步診治，醫療單位也可讀取居家照護服務提供者的長期監測資料作為診斷

參考。

悉知東海大學楊朝棟教授於高性能計算與網格計算之研究，在學界為其中之翹楚，為

使得博盛數碼動力公司得以提供客戶在高效能計算與網格計算領域中巨量運算的解決方

案，並滿足周邊相關使用與管理者的需求下，與楊教授合作，期盼能在教授的協助下，將

技術轉移到產業界，並實際應用在各種不同的高效能叢集計算與網格計算領域中。

本計畫之合作企業之合作目的不僅是在培養人才，更重要的是 PACS 與 Grid 相關研

究技術能量的累積。該合作企業已經與本系執行有過五年小產學之經驗，已培養出多位具

Cluster Computing Systems 與 Grid Computing Environments 相關經驗的人才。期望由此次

開發型小產學之經驗，能進入醫療影像儲存系統技術領域，後續將朝醫療網格與居家服務

網格相關產業技術發展。

每年配合款應達當年度計畫總經費 30％以上。合作廠商派二位研發人員參與本計畫。

企業得與計畫執行機構協商繳交先期技轉金，額度不得低於計畫總經費之15％(7年授權)。

產學計畫結束後 3 個月內，計畫執行機構應向本會及企業繳交精簡報告及完整結案報告電

子檔。

計畫成果自評部份

在學術期刊發表或申請專利

專利(申請中)

台灣申請案：

「進階預測遞迴式調整協同配置法」，申請案號：098105346，申請日期為 2009/2/19。

美國申請案：

申請日：September 9, 2009 (主張台灣優先權申請日)

申請案號：12/556,413

專利名稱：ANTICIPATIVE RECURSIVELY-ADJUSTING CO-ALLOCATION MECHANISM

Journal Papers

[1] Chao-Tung Yang*, I-Hsien Yang, and Chun-Hsiang Chen, "RACAM: Design and
Implementation of a Recursively-Adjusting Co-Allocation Method with Efficient Replica
Selection in Data Grids," Concurrency and Computation: Practice and Experience, 2010.
(ISSN: 1532-0626, SCI JCR IF=1.791, EI)

[2] Chao-Tung Yang*, Yao-Chun Chi, Ming-Feng Yang, and Ching-Hsieh Hsu, "An
Anticipative Recursively-Adjusting Mechanism for Parallel File Transfer in Data Grids,"
Concurrency and Computation: Practice and Experience, 2010. (ISSN: 1532-0626, SCI JCR
IF=1.791, EI)

[3] Chao-Tung Yang*, Shih-Yu Wang, and William C. Chu, “A Dynamic Adjustment Strategy
for Parallel File Transfer in Co-Allocation Data Grids,” Journal of Supercomputing,
Springer Netherlands, 2010. (ISSN: 1573-0484, SCI JCR IF=0.615, EI)

[4] Chao-Tung Yang*, Chun-Pin Fu, and Ching-Hsien Hsu, “File Replication Maintenance
and Consistency Management Services in Data Grids,” Journal of Supercomputing,
Springer Netherlands, 2010. (ISSN: 1573-0484, SCI JCR IF=0.615, EI)

[5] Chao-Tung Yang*, Chih-Hao Lin, Ming-Feng Yang, and Wen-Chung Chiang, “A Heuristic
QoS Measurement with Domain-based Network Information Model for Grid Computing
Environments”, International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC),
Volume 5, Number, 4, pp. 235-241, 2010. (ISSN Online: 1743-8233 - ISSN Print:
1743-8225, SCI JCR IF=0.66, EI)

※ 備註：精簡報告係可供國科會立即公開之資料，並以四至十頁為原則，如

有圖片或照片請以附加檔案上傳，若涉及智財權、技術移轉案及專

利申請而需保密之資料，請勿揭露。

http://www3.interscience.wiley.com/journal/123340553/abstract?CRETRY=1&SRETRY=0
http://www3.interscience.wiley.com/journal/123340553/abstract?CRETRY=1&SRETRY=0
http://www3.interscience.wiley.com/journal/123340553/abstract?CRETRY=1&SRETRY=0
http://www3.interscience.wiley.com/journal/123323926/abstract
http://www3.interscience.wiley.com/journal/123323926/abstract
http://www.springerlink.de/content/f237n156qw688527/?p=13fe82b7514a4040993fd702599bee92&pi=1
http://www.springerlink.de/content/f237n156qw688527/?p=13fe82b7514a4040993fd702599bee92&pi=1
http://www.springerlink.de/content/ph333037r07k2767/?p=13fe82b7514a4040993fd702599bee92&pi=0
http://www.springerlink.de/content/ph333037r07k2767/?p=13fe82b7514a4040993fd702599bee92&pi=0

Int. J. Ad Hoc and Ubiquitous Computing, Vol. 5, No. 4, 2010 235

Copyright © 2010 Inderscience Enterprises Ltd.

A heuristic QoS measurement with domain-based
network information model for grid computing
environments

Chao-Tung Yang*, Chih-Hao Lin
and Ming-Feng Yang
Department of Computer Science,
Tunghai University,
Taichung 40704, Taiwan, ROC
E-mail: ctyang@thu.edu.tw
E-mail: ljerome86@gmail.com E-mail: orsonyang@gmail.com
*Corresponding author

Wen-Chung Chiang
Department of Information and Networking Technology,
Hsiuping Institute of Technology,
Taichung 41280, Taiwan, ROC
E-mail: wcchiang@mail.hit.edu.tw

Abstract: Recently, Grid computing is more and more widespread. Therefore, there exists
a common issue, i.e., how to manage and monitor numerous resources of grid computing
environments. Mostly, we use Ganglia and Network Weather Service (NWS) to monitor
machines’ status and network-related information, respectively. But, information provided
by Ganglia and NWS is not sufficient in some scenarios owing to varied user requirements.
Therefore, we propose a heuristic Quality of Service (QoS) measurement constructed with
domain-based information model that provides more effective information to meet user
requirements. Furthermore, we expect that users could manage and monitor numerous resources
of grid environments more effectively and efficiently.

Keywords: grid computing; heuristic; QoS; quality of service; network information model.

Reference to this paper should be made as follows: Yang, C-T., Lin, C-H., Yang, M-F. and
Chiang, W-C. (2010) ‘A heuristic QoS measurement with domain-based network information
model for grid computing environments’, Int. J. Ad Hoc and Ubiquitous Computing, Vol. 5,
No. 4, pp.235–243.

Biographical notes: Chao-Tung Yang received his BS in Computer Science from Tunghai
University, Taichung, Taiwan, in 1990, and the MS in Computer Science from National Chiao
Tung University, Hsinchu, Taiwan, in 1992. He received the PhD in Computer Science from
National Chiao Tung University in July 1996. He is a Professor of Computer Science at Tunghai
University in Taichung, Taiwan. He got the excellent research award by Tunghai University in
2007. In 2007 and 2008, he got the Golden Penguin Award by Industrial Development Bureau,
Ministry of Economic Affairs, Taiwan. His present research interests are in grid and cluster
computing, parallel and multi-core computing, and web-based applications.

Chih-Hao Lin received his BS in Computer Science from Feng Chia University in 1999,
and his MS in Computer Science from the Tunghai University, Taiwan, in July 2009.
His research interests include grid computing, cloud computing, and parallel computing.

Ming-Feng Yang received his BS in Hsiuping Institute of Technology in 2004. He received his
MS in Department of Computer Science from Tunghai University in July 2009. He is a software
engineer at Hsiuping Institute of Technology. His research interests include grid computing,
cloud computing, and parallel computing.

Wen-Chung Chiang received his BS from the Department of Applied Mathematics in 1991, and
his PhD from the Department of Applied Mathematics of the National Chung-Hsing University
in 2002. He is an Assistant Professor of Department of Information and Networking Technology
of Hsiuping Institute of Technology. His current research interests include grid computing,
medical image processing and communication networks.

236 C-T. Yang et al.

1 Introduction
As we known, Grid computing is increasingly used by
organisations to achieve high-performance computing and
heterogeneous resources sharing. All tasks executed in grid
environments will be influenced by network status owing
to complicated and numerous communications between
computing resources (Krauter et al., 2002; Krefting et al.,
2008). While we design algorithms for specific usages or
assign tasks into grid environments, we will evaluate the
influence of network-bandwidth-related information
and then adjust algorithms to match up real-time state
of network. The best-case scenario is that our grid
environments have some mechanism to provide network
state automatically. And then our applications or web
service agents could achieve higher performance owing to
dynamic parameters adjustment and algorithms
optimisation.

While grid computing becomes widespread gradually,
it brings about a common issue, i.e., how to manage
and monitor numerous resources of grid computing
environments. Mostly, we use Ganglia and NWS to monitor
machines’ status and network-related information,
respectively. But, information provided by Ganglia and
NWS is not sufficient in some scenarios owing to varied
user requirements.

According to the mechanism that we designed earlier,
we could retrieve both real-time and historical network
information in real-time manner; even advanced
customisation for special purpose is available. With the
customised shell scripts that we wrote for NWS service,
we could easily and quickly deploy NWS service to grid
nodes and fetch network-related information automatically
and regularly. And with the database we built, we could
obtain both historical information and some statistics from
our grid computing environments. Statistics is indeed
helpful in many fields, for example, job dispatching or
replicas selection.

Maybe the mechanism that we designed earlier is
helpful in most conditions, but it will not work efficiently
if grid environment changed frequently. We found some
inconveniences resulting from the technique that NWS
adopted make this mechanism inefficient. The service
provided by NWS will be affected if grid environment
changed and we have to re-deploy NWS service manually
and frequently. For network management, ‘manual’ is
equivalent to ‘inefficiency’.

A typical example is illustrated in Figure 1. If we have
registered an NWS clique into for grid nodes A1, A2,
A3 and A4 and the header is node A1, i.e., node A1
has stored network measurements between these nodes.
While hardware failure occurs to node A1, or node A1 has
just forced to reboot owing to software updating operations,
the NWS clique fails, too. Network administrators have to
restart clique manually again and again. Besides, we would
not be notified if any nodes fail by default. Therefore,
we lead in a Network Management System (NMS) using
Simple Network Management Protocol (SNMP) technique
to co-work with NWS service to resolve this issue.

Figure 1 A typical NWS clique deployment in grid nodes
(see online version for colours)

In this paper, we propose a heuristic QoS measurement
constructed with domain-based information model that
provides more effective information to meet user
requirements. Furthermore, we hope that users could
manage and monitor numerous resources of grid
environments more effectively and efficiently.

2 Backgrounds

2.1 Machine information provider

The Ganglia (http://ganglia.info/) is an open-source project
grew out of the University of California, Berkeley’s
Millennium initiative. This project was a scalable
distributed system for monitoring status of nodes (processor
collections) in wide-area systems based on Grid or clusters.
It adopts a hierarchical, tree-like communication structure
among its components to accommodate information from
large arbitrary collections of multiple Grid or clusters.
The information collected by the Ganglia monitor includes
hardware and system information, such as processor type,
CPU load, memory usage, disk usage, operating system
information, and other static/dynamic scheduler-specific
details. It also provides a web portal for users to observe all
machines via web interface. Our grid environments are
currently overseen by the Ganglia (as shown in Figures 2
and 3).

Figure 2 Multi-grid resource broker with Ganglia web portal
(see online version for colours)

A heuristic QoS measurement with domain-based network information model 237

Figure 3 Multi-grid has integrated clusters and grids
environments into a single Ganglia web portal
(see online version for colours)

As shown in Figure 3, we could oversee several clusters
or grids environments via web portal provided by Ganglia.

2.2 Network information provider

The NWS (http://nws.cs.ucsb.edu/ewiki/) (Wolski et al.,
1999) is a distributed system that detects computational
resource and network status by periodic monitors and
dynamic forecasts over a given time interval. The service
operates a distributed set of performance sensors (network
monitors, CPU monitors, etc.) from which it gathers system
condition information. It then uses numerical models to
generate forecasts of what the conditions will be for a given
time period. The NWS system includes sensors for
end-to-end TCP/IP performance (bandwidth and latency),
available CPU percentage and available non-paged memory.
The sensor interface, however, allows new internal sensors
to be configured into the system. Some functions provided
by NWS have overlapped with Ganglia; therefore, we
primarily use NWS for end-to-end TCP/IP measurements.

As Wolski et al. (1999) mentioned, NWS was designed
to maximise four possible conflicting functional
characteristics. It must meet these goals despite the highly
dynamic execution environment and evolving software
infrastructure provided by shared meta-computing systems.

• predictive accuracy

• non-intrusiveness

• execution longevity

• ubiquity.

So, we choose NWS as primary tool for end-to-end TCP/IP
measurements and we have excellent work in previous
project. Except Ganglia, we also successfully deployed
NWS service into our clusters and grids environments and
then monitor network status via integrated web portal
(as shown in Figures 4 and 5).

Figure 4 NWS service integrated with Ganglia web portal
(see online version for colours)

Figure 5 Network statistics produced by NWS measurements
demonstrated in web portal (see online version for
colours)

2.3 Quality of Service

Quality of Service is the ability to provide different service
priority to different applications, users, or data flows, or to
guarantee a certain level of performance to a data flow.
It was widespread adopted in the field of computing
networking, and we use it as a quality measurement of grid
environments.

Quality of Service sometimes refers to the level
of QoS, i.e., the guaranteed service quality. High QoS
is an expectable crucial factor of highly reliable and
high-performance grid environments.

Some characteristics, like ‘Availability’, ‘Accessibility’
or ‘Maintainability’, will also influence user experiences
about the services provided by our system or services.
To meet user requirements in diverse scenarios with
sufficient quality, we are expected to have the ability to
evaluate our performance in advance or in real-time manner.
If not, how could we guarantee a certain level of QoS?
Some researchers have proposed network performance

238 C-T. Yang et al.

evaluation model (Que et al., 2008) to aided network
administrators to effectively analyse network performance
and then adjust network devices properly. For us,
we investigate how to propose a heuristic QoS measurement
that could provide various, specific combinations of
information from our grid environments.

2.4 Network management system

In our previous project, we have constructed a web portal
composed of Ganglia and NWS service for overseeing grid
environments. As time goes on, we find that it is inefficient
to manage these resources passively. We had better made
use of NMS, which could help us to manage and monitor
numerous resources of grid environments actively. NMS is
a combination of hardware and software used to monitor
and administer a network. The primary communication
mechanism between NMS and network devices and
grid nodes is based on SNMP. Then, we chose NINO
(http://nino.sourceforge.net/nino/index.html) as shown in
Figure 6 for ourgrid computing environments before long.
NINO is not the most powerful NMS, but we choose it
owing to some proper features to for our need.

For device and network discovery:

• Network discovery: NINO is able to discover network.

• IP address or default gateway and an optional alternate
community string, and NINO will scan all devices and
store it in the database. NINO uses the routing table
of each router to scan the network.

• Scan IP range: NINO is able to scan network for
SNMP capable devices. Just enter a range, start IP
address, end IP address and an optional alternate
community string, and NINO will scan all devices
and store it in the database.

• Network info: NINO is also able to look inside
a router, find routing tables and scan all attached
networks. All network info per device will be stored
into the database. In the device view, also the current
routing table can be displayed, showing routing
protocol, age, next hop, metric, etc.

For monitoring:

• Monitoring: NINO can monitor servers, routers,
switches and applications.

• Events: NINO can send and receive SNMP traps.
Traps are stored in the event log. Event actions can be
defined to send e-mail alerts, escalation traps or
command line scripts. NINO also has a trap-forwarding
functionality to integrate NINO into larger networks.
Traps can be forwarded per event or using source filters
(i.e., forward all traps coming from: 10.1.1.*).

• Monitoring presets and preset groups: NINO uses
monitoring presets to monitor devices. Presets can be
stored in a preset group, i.e., all Windows presets
(CPU, Disk, memory, network statistics) are grouped

in a Windows preset group. Monitoring presets can use
SNMP, WMI or Service Response to monitor a device.
It is possible to create customised monitoring presets.
Default presets are available for Cisco routers or
switches, Windows, Linux and hosts using the standard
Host Resources MIB.

For administration and diagnostics:

• Database: Browse SQL table content and edit rows.
The import/export utility can be used to import/export
SQL tables from/to a tab-delimited file.

After evaluation, we believe that we could integrate
NINO with our previous work and help us to manage grid
environments more actively. Meanwhile, we are working
on integration of Ganglia, NWS and NINO.

Figure 6 NINO’s screenshot – the device browser, with severity
status, monitoring drill down and plug-ins (see online
version for colours)

3 Heuristic QoS measurement
In our previous project, we have built an integrated grid
environment including a web portal composed of Ganglia
and NWS service. Afterwards, we start another project
about Picture Archive and Communication System (PACS)
(Yang et al., 2008a) and most experiments were done
in the same platform. The primary mission in this project
is to exchange medical images efficiently with specific
application developed by our team. The application, named
‘Cyber’ (Yang et al., 2008b), has successfully integrated
eight algorithms. For exchanging medical images efficiently
with these algorithms integrated in Cyber, we have to
configure a lot of parameters before tasks submitted.
Unfortunately, we have no idea what is best combination
of parameters we should take in advance. Therefore,
we adopt “try and error method” unavoidably. But, it is
definitely not practical for most conditions. For this
reason, we expect to establish an automation of parameters

A heuristic QoS measurement with domain-based network information model 239

self-optimisation. To guarantee a degree of QoS, we regard
user requirements as constraints of tasks. With these
constraints and heuristic QoS measurements we proposed
in this paper, we could provide more QoS to meet user
requirements.

3.1 Domain-based network information model

In this paper, we adopt Domain-based Network Information
Model (Yang et al., 2005, 2007a, 2007b) for NWS services
deployment. The Domain-based Network Information
Model is designed for solving a complete point-to-point
bandwidth measurement problem. After investigating
by experiments in physical environments, we can be sure
that Domain-based Network Information Model is helpful
for reducing network measurements. The measurement
model and design of Domain-based Network Information
Model are shown as Figures 7 and 8.

Figure 7 The domain-based network measurement model

Figure 8 The design of domain-based network information
model (see online version for colours)

For example, assume a Grid with n nodes. Each node
measures the links between itself and all other nodes every
T seconds (e.g., T = 1~3 s) for a total of NMN (n) network
measurements.

NMN() (1).n n n= × − (1)

In large-scale Grid environments, the number of network
measurements grows quickly. UniGrid and TigerGrid with,
respectively, 96 and 46 nodes generate NMN(96) = 9120
and NMN(46) = 2070 measurements. Thus, network traffic
will be very heavy, particularly when underlying Grid
intra-traffic is originally busy.

Our previous work (Yang et al., 2007c) used the
domain-based network information model shown in
Figure 9. Figure 10 shows four sites, each containing
four nodes. The sites each have a head node, e.g., A1, B1,
C1 and D1, are, respectively, the head nodes of sites
A, B, C and D. Each head node in this model periodically
measures the links between itself and the other three
head nodes. Each head node also periodically measures
the links between itself and all other nodes in its site.
Hence, using the domain-based network information
model, the measurement number will be dramatically
reduced to

NMS(, []) NMN() NMN()i in n n n= + (2)

where ni is the total number of nodes in site i. In UniGrid
and TigerGrid, the numbers of network measurements will
be decreased to NMS(31, [4, 8, 8, 5, 8, 5, 7, 2, 1, 1, 3, 1, 4,
1, 3, 1, 1, 4, 8, 1, 1, 1, 1, 2, 2, 1, 4, 1, 2, 4, 1]) = 1316 and
NMS(12, [4, 4, 4, 4, 8, 2, 3, 4, 4, 4, 4, 1]) = 292,
respectively. The reduction rate R is defined as:

NMN() NMS(, [])
.

NMN()
in n n

R
n

−
= (3)

Compared with NMN(96) and NMN(46), the Rs are 86.01%
and 85.94%, respectively, which shows the obvious
efficiency of the model.

Figure 9 Previous design of domain-based network information
model (see online version for colours)

Even though this model can eliminate huge amounts
of measurement effort and bandwidth use, it lacks network
information between pairs of nodes belonging to different
sites (unless both are borders). For example, the link (target)
between nodes A2 and B1 shown in Figure 7 is not
measured.

In this model, it reduces a large number of connections,
but it lacks network information of nodes except head nodes
in two different sites. This model carries out an estimation

240 C-T. Yang et al.

model that provides network information of nodes in two
different sites, but one of the two nodes should be a head
node of site. For example, the link between Node A2
and B1 is not performed in this model, which is shown in
Figure 3.

The Domain-based Network Information Model reduced
the number of bandwidth measurement between all Grid
Nodes, but it lacks network information between two Nodes
other than the head Node located in two different sites other
than the head Node. For example, the bandwidth
measurement between Nodes A2 and B3 is not performed in
this model.

We further enhanced the static model by improving
the switching mechanism in the dynamic domain-based
network information model. Figure 10 shows an example.
The principal improvement is switching the site head node
to the next free node. For example, when node A1 is busy,
the next free node, node A2, becomes the head node of site
A, and measures the bandwidth between itself and nodes
B3, C2 and D4, if they are the respective free nodes in sites
B, C and D. The purpose is to avoid having a busy node still
act as a border, which would decrease system performance.
There are three obvious advantages in using this model.

• first, the number of bandwidth measurements is the
same as that for a static model; the measurement
time complexity is not worsened

• second, bandwidth measurements between pairs
of arbitrary nodes belonging to different sites are
easily obtained

• finally, network bandwidth measurements obtain
real values instead of estimated values, thus enabling
the Resource Broker to effectively schedule jobs
allocated to multiple sites.

If we could dynamically change each header of all Grid
Nodes, we could obtain the advantages described earlier.
There is an issue derived from this requirement
consequently, i.e., how to choose headers dynamically
instead of manual operation. Hence, we regard Heuristic
QoS Measurement as a solution for this issue. After
integration with NINO, we expect to attain this goal as soon
as possible.

Figure 10 The design of domain-based network information
model (see online version for colours)

3.2 NWS deployment and flowchart

While deploying NWS services, we paid attention to
try to get rid of intruding existed services on each
grid nodes. In most cases, we deploy only one nameserver
and multiple sensors on each computing resources.
Besides, arbitrary ‘Persistence State’ may be set up in
different locations. In this paper, we simply designate one
nameserver, one memory server and one clique for a group
of grid nodes.

We regard several grid nodes as a group, and each group
has a header to deploy nameserver and memoryserver.
A simple NWS services deployment procedure that we used
is divided into three steps:

• clean all NWS process

• load NWS services

• register NWS clique.

And the standard procedure we wrote in shell scripts is
shown as Figure 11. Owing to the non-intrusiveness
characteristic of NWS, these shell scripts we wrote could be
executed without root privilege.

Figure 12 has shown a simple flowchart we used.
In this paper, we have edited crontab to schedule some
routines for loading NWS information into database
automatically and backing up raw data as plain text files
locally.

Figure 11 Procedure of NWS services deployment

Figure 12 The flowchart of gathering network information
(see online version for colours)

While routines that we scheduled in crontab are invoked,
customised shell scripts that we wrote are executed.
The first step of the shell script is to get host groups from
database for NWS information gathering. Each host group is
pre-defined in database and will be assigned a clique for
measuring network status. After the clique is created,

A heuristic QoS measurement with domain-based network information model 241

it will measure network information in an equal time
interval, for example, 30 s. Then, the script will extract
bandwidth and latency from NWS clique, respectively.
If successes, it will load bandwidth and latency information
into database.

The second routine that we defined to keep raw data as
plain text files locally is designed for future use. Currently,
it just provides a different storage than database to keep raw
information of NWS services.

3.3 Heuristic approach

Statistics is helpful in many fields, especially for prediction.
In this paper, we gathered historical network information of
grid environments and stored it into database. Applications
could simply query database for network statistics with
aggregative functions provided by RDBMS, like Max (),
Min (), AVG () and so on. After analysing these statistics,
applications can dynamically adjust their parameters about
network for better performance without sending request
to estimate network status between all grid nodes in
real-time manner.

Besides, we have planned an innovative method
to obtain real-time network state that worked with
Dynamic Domain-based Network Information Model,
i.e., dynamically deploying clique into dedicated node,
measuring network state, and then reporting results to
database, users, or applications. The enhanced version of
shell scripts that support Dynamic Domain-based Network
Information Model is currently under development.

We have designed a simple model for integration
of Ganglia, NWS and NINO (as shown in Figure 13).
Ganglia and NINO provide UI for users to manage and
monitor grid environments. NWS and Ganglia collect
related information from hosts and network regularly.
And ‘Smart Broker’ provides parameters to applications
like Cyber.

Figure 13 Integration of Ganglia, NWS and NINO
(see online version for colours)

Smart Broker is the key component for QoS measurement.
Original version of Cyber provides users an interface for
tuning up parameters, which is shown as Figure 14. Smart
Broker will help us to achieve automation of parameters
self-optimisation in diverse scenarios. Smart Broker works
as evaluation layer between applications and information
collection layer. We have pre-defined four task types that
perform QoS measurement in various ways.

• download

• upload

• computational

• hybrid.

For example, Cyber is a typical application for ‘Download’
tasks. The QoS measurement we designed is to calculate the
formula as follows:

(QoS) (1) .E RM HMα α= × + − × (4)

E(QoS) is expected value of QoS and RM is real-time
bandwidth measurement between nodes. HM is historical
statistics. α is the constant between real-time measurement
and historical statistics. In the initial stage, we may set α to
0.5. With more and more tasks submitted, Smart Broker will
adjust α dynamically. α is not always the same in different
grid environments. We just try to use α to predict QoS in
diverse grid environments more effectively.

Figure 14 Strategy selection – UI provided by Cyber
for parameters input (see online version for colours)

4 Experimental environment and results
To verify the architect we proposed in the initial stage,
we do not deploy NWS services and RDBMS onto physical
environments. And we have built our test bed on virtualised
environments instead. We have created four virtual
machines and then installed Fedora 9 as default operation
system. After deploying NWS services with customised
scripts we wrote, we also built an open-source database
for experiment. In this paper, we chose MySql as default
RDBMS. Figure 15 shown here lists our experimental grid
nodes in the initial stage.

242 C-T. Yang et al.

Figure 15 Experimental grid nodes’ information (see online
version for colours)

Figures 16 and 17 shown here demonstrate raw data and
bandwidth information that we gathered with NWS services
and loaded into database with our customised scripts.
In this paper, we schedule a routine to extract and load
network information into database every 5 min. Owing to
Domain-based Network Information Model, overheads
of measurement have been highly reduced and it would not
take lots of time to load data into databases.

Figure 16 Raw data gathered from NWS services (see online
version for colours)

Figure 17 Bandwidth information between grid nodes
(see online version for colours)

Figures 18 and 19 shown here demonstrate a simple web
portal prototype for users to query bandwidth between host
pairs and rank of grid nodes. Certainly, we could also

provide more functions for variety of purposes.
For example, a formula given by the MSRA Algorithm
(Yang and Chen, 2008) to compute total performance power
of the site or site pair is shown as follows:

(1)TP CP NPβ β= × + − × (5)

where CP is the computing performance power of site of
site pair, NP is the network performance power of a set
of links that among sites in a site pair, and β is the effect
ratio used to regulate the percentage of CP and NP. If NP is
estimated imprecisely, TP will be computed imprecisely,
too. To provide more accurate network information, we pay
close attention to both historical and dynamic network
information.

Figure 18 Web portal prototype for users to query bandwidth
between grid nodes (see online version for colours)

Figure 19 Grid nodes bandwidth rank (see online version
for colours)

Historical network information is available with
current work and dynamical network information
measurement via web portal is under development. We are
dedicated to rewrite a couple of shell scripts to
measure network information dynamically without
root privilege of grid nodes.

A heuristic QoS measurement with domain-based network information model 243

5 Conclusions and future work
In this paper, we use Domain-based Network Information
Model for experiments, but it is not a proper model for
dynamic grid environments. If any grid nodes that cause
hardware failure or just have been reassigned to another IP,
we have to manually reconstruct NWS cliques. This has
already mentioned as drawback of NWS (Legrand and
Quinson, 2004). In large-scale grid environments, it is a
complicated task to manage these cliques and hosts’
relations. Our future work will be adopting Dynamic
Domain-based Network Information Model for next
deployment so as to reduce overheads come from
complicated management tasks.

Besides, we defined a standard operation procedure for
managing grid nodes semi-automatically. And, we could
simply manage grid nodes via web portal instead of writing
shell scripts. To guarantee a certain degree of QoS, we
also proposed a heuristic method to predict QoS from
diverse grid environments for Download-oriented tasks.
Furthermore, we expect that users could manage and
monitor numerous resources of grid environments more
effectively and efficiently.

Acknowledgement
This work is supported in part by the National Science
Council, Taiwan ROC, under grants no. NSC 96-2221-E-
029-019-MY3, NSC 97-2622-E-029-003-CC2 and NSC
98-2622-E-029-001-CC2.

References
Krauter, K., Buyya, R. and Maheswaran, M. (2002) ‘A taxonomy

and survey of grid resource management systems for
distributed computing’, Softw. Pract. Exper., Vol. 32, No. 2,
pp.135–164.

Krefting, D., Vossberg, M. and Tolxdorff, T. (2008) ‘Simplified
grid implementation of medical image processing
algorithms using a Workflow management system’, in
Olabarriaga, S.D., Lingrand, D. and Montagnat, J. (Eds.):
Medical Imaging on Grids: Achievements and Perspectives,
MICCAI-Grid Workshop, 6 September, New York,
NY, http://www.i3s.unice.fr/~johan/MICCAI-Grid08/pdf/
kreftingMICCAIG.pdf

Legrand, A. and Quinson, M. (2004) ‘Automatic deployment of
the network weather service using the effective network
view’, Paper presented at the Parallel and Distributed
Processing Symposium, Proceedings, 18th International,
Santa Fe, New Mexico.

Que, W-K., Zhang, G-Q. and Wei, Z-H. (2008) ‘Model for
IP network synthetical performance evaluation’, Computer
Engineering, Vol. 34, No. 8, pp.99–101, ISSN:1000-3428
(2008)08-0099-03.

Wolski, R., Spring, N.T. and Hayes, J. (1999) ‘The network
weather service: a distributed resource performance
forecasting service for metacomputing’, Future Generation
Computer Systems, Vol. 15, Nos. 5, 6, pp.757–768.

Yang, C-T. and Chen, S-Y. (2008) ‘A multi-site resource
allocation strategy in computational grids’, Advances in Grid
and Pervasive Computing, 25–28 May, Kunming, China,
pp.199–210.

Yang, C-T., Chen, C-H., Yang, M-F. and Chiang, W-C. (2008a)
‘MIFAS: medical image file accessing system in co-allocation
data grids’, IEEE Asia-Pacific Services Computing
Conference, December, Ilan, Taiwan, pp.769–774.

Yang, C-T., Yang, M-F. and Chiang, W-C. (2008b)
‘Implementation of a cyber transformer for parallel download
in co-allocation data grid environments’, in Shenzhen, G.D.
(Ed.): Proceedings of the 7th International Conference
on Grid and Cooperative Computing (GCC2008) and
Second EchoGRID Conference, 24–26 October, China,
pp.242–253.

Yang, C-T., Shih, P-C., Lin, C-F. and Chen, S-Y. (2007a)
‘A resource broker with an efficient network information
model on grid environments’, The Journal of
Supercomputing, Vol. 40, No. 3, pp.249–267.

Yang, C-T., Chen, S-Y. and Chen, T-T. (2007b) ‘A grid resource
broker with network bandwidth-aware job scheduling for
computational grids’, Advances in Grid and Pervasive
Computing, Paris, France, pp.1–12.

Yang, C-T., Chen, T-T. and Tung, H-Y. (2007c) ‘A dynamic
domain-based network information model for computational
grids’, Paper Presented at the Future Generation
Communication and Networking (FGCN), Jeju-Island, Korea,
Vol. 1, pp.575–578.

Yang, C-T., Shih, P-C., Chen, S-Y. and Shih, W-C. (2005)
‘An efficient network information model using NWS for
grid computing environments’, Grid and Cooperative
Computing – GCC 2005, Vol. 3795, pp.287–299.

Websites
Ganglia: http://ganglia.info/
Network Weather Service (NWS): http://nws.cs.ucsb.edu/

ewiki/
NINO: http://nino.sourceforge.net/nino/index.html

J Supercomput
DOI 10.1007/s11227-009-0302-9

File replication, maintenance, and consistency
management services in data grids

Chao-Tung Yang · Chun-Pin Fu · Ching-Hsien Hsu

© Springer Science+Business Media, LLC 2009

Abstract Data replication and consistency refer to the same data being stored in dis-
tributed sites, and kept consistent when one or more copies are modified. A good file
maintenance and consistency strategy can reduce file access times and access laten-
cies, and increase download speeds, thus reducing overall computing times. In this
paper, we propose dynamic services for replicating and maintaining data in grid envi-
ronments, and directing replicas to appropriate locations for use. To address a prob-
lem with the Bandwidth Hierarchy-based Replication (BHR) algorithm, a strategy
for maintaining replicas dynamically, we propose the Dynamic Maintenance Service
(DMS). We also propose a One-way Replica Consistency Service (ORCS) for data
grid environments, a positive approach to resolving consistency maintenance issues
we hope will strike a balance between improving data access performance and replica
consistency. Experimental results show that our services are more efficient than other
strategies.

Keywords File replication · Dynamic maintenance · Consistency management ·
Data grids

1 Introduction

In recent years, many fields such as bioinformatics, climate transition, earthquake
simulation, space shuttle flight simulation, weather prediction, and high-energy

C.-T. Yang (�) · C.-P. Fu
Department of Computer Science, Tunghai University, Taichung, 40704 Taiwan, ROC
e-mail: ctyang@thu.edu.tw

C.-P. Fu
e-mail: socollkimo@pchome.tw

C.-H. Hsu
Department of Computer Science and Information Engineering, Chung Hua University, Hsinchu,
30013 Taiwan, ROC
e-mail: chh@chu.edu.tw

mailto:ctyang@thu.edu.tw
mailto:socollkimo@pchome.tw
mailto:chh@chu.edu.tw

C.-T. Yang et al.

physics in Europe [3] have come to require more and more computing power to
generate results. Those simulation results in turn produce terabytes, even petabytes
of data. Only computer centers with many supercomputers and storage devices are
sufficient to handle these data. However, data grid technologies, developed to solve
these kinds of problems, offer an effective alternative means of utilizing large-
scale computing power and storage capacities to compute and store data. Grids
[11, 12, 20, 21, 27, 29–34] enable sharing of computing power and storage capacities
geographically distributed around the world such that they work together as tremen-
dous virtual computers [1, 2] on experiments and simulations. The Globus Toolkit
[13, 27] is open-source software for building data grid environments. It provides mid-
dleware for creating information infrastructures including resource management, data
management, communication, fault detection, security, and portability.

Data replication and consistency [5, 26] refer to the same data being stored in
distributed sites, and kept consistent when one or more copies are modified. A good
file maintenance and consistency strategy can reduce file access times and access
latencies, and increase download speeds, thus reducing overall computing times. And
if one storage site breaks, users can fetch desired data from another storage site, which
improves overall fault tolerance and contributes to making the entire grid environment
more stable and reliable. Another advantage of data grids is the ability grid users
have to download data in parallel from the better sites they choose or an application
chooses automatically after evaluating with a grid environment evaluation model. The
bandwidth utilization of those parallel links is the most important factor affecting
overall download speeds. Network environments vary, which means that replica sites
also vary in their ability to download data efficiently. Replica files should be kept
consistent and downloaded from storage sites nearest users to reduce download times
and ensure high performance.

This paper presents two services, the Dynamic Maintenance Service (DMS) for
maintaining files in data grid systems, and the One-way Replica Consistency Service
(ORCS) for keeping all copies of files consistent when one is modified. The DMS
automatically maintains data statuses such as access frequency, space available on
storage elements to which data will be replicated or migrated, and the network sta-
tuses of file source sites to other sites. The ORCS provides asynchronous data repli-
cation and replica consistency mechanisms that can reduce replica maintenance costs
and free up storage space for new data or temporary data produced by experiments
or simulations to avoid creating too many identical replicas. Users can easily find the
best replica sites for downloading desired data, thus increasing replica usage rates,
and improving storage device usage efficiency ratios over other strategies.

The contribution of this paper is to help make data grid environments more effi-
cient by using the DMS and ORCS algorithms. Using DMS adjusts data to locations
appropriate to the sites that request the data more often, thus reducing the times re-
quired by those sites to get needed data and improving performance. Using ORCS
improves accessing performance by keeping replica content consistent and improving
data grid storage device usage ratios. The DMS and ORCS algorithms also consider
storage element free space when storing new and temporary data produced while
computing. This decreases the probability of applications crashing or having to re-
submit jobs to other computing resources for processing. Our experimental results

File replication, maintenance, and consistency management services

show that DMS and ORCS are more efficient than other strategies, increase comput-
ing performance, and make storage element usage ratios more efficient.

The rest of this paper is organized as follows. In Sect. 2 we give background in-
formation on data grids, grid computing, some grid middleware, and previously pro-
posed related works on data replication strategies. In Sect. 3, we describe DMS and
ORCS system components, component details and data grid framework design and
algorithms. We also introduce the parameters and evaluation model that determine
when replica adjustment data should be sent to appropriate locations to keep them
consistent. In Sect. 4, we give experimental results and comparisons of the DMS and
ORCS algorithms with other strategies. Section 5 concludes the paper and indicates
areas for future work.

2 Related work

2.1 Replica management

Replica management involves creating and removing replicas at data grid sites
[28, 29]. Most often, these replicas are exact copies of original files, created only to
harness certain performance benefits. A replica manager typically maintains a replica
catalog containing replica site addresses and file instances. The replica management
service is responsible for managing replication of complete and partial copies of
datasets, defined as collections of files.

The replica management service is just one data grid environment component pro-
viding support for high-performance, data-intensive applications. A replica or loca-
tion is a subset of a collection stored on a particular physical storage system. There
may be multiple, possibly overlapping, subsets of collections stored on multiple stor-
age systems in a data grid. These grid storage systems may use a variety of underlying
storage technologies and data movement protocols independent of replica manage-
ment.

Many studies on data maintenance in data grids have been published. In [24, 29],
Ranganathan and Foster introduced six dynamic replication strategies, and compared
them using a simulator called PARSEC to measure average response times and total
bandwidth consumed by each strategy. The authors concluded that if grid users are
concerned about lower response times, the cascading strategy is the better choice. On
the other hand, if grid users consider bandwidth consumption to be the most important
issue, fast spread is the best choice among all six strategies. These strategies do not
consider whether there is enough free space to store temporary data and job results.
Data no longer popular will occupy space that could be used to store temporary data
and job results, which affects overall performance.

In [9, 16, 22, 23], the authors all mentioned an issue called the p-median problem:
“given a set of n client points, find a set of p server points for those client points
that minimizes the distance between each client point and its nearest server point”.
In grid environments, minimizing total distance minimizes total response time. In
[9, 16], and many other works, the authors indicate that the complexity class of the
p-median problem is NP-hard in two or more dimensions, which means that find-
ing p nodes to serve all nodes in a grid environment is also an NP-hard problem. In

C.-T. Yang et al.

[22, 23], Rashedur M. Rahman et al., proposed a static replica placement algorithm
for placing replicas in the best p candidate nodes to minimize the total response time
of each node using Lagrangian relaxation, which is a heuristic approach [10] to mea-
suring the response time of each client node to its nearest server node. The algorithm
is most likely the p-median problem. They also use user requests and network la-
tency as parameters in deciding when to maintain replicas dynamically. They use a
simulator called OptorSim [19], developed by the EU Data Grid project, to compare
their method, and called dynamic p-median, with static p-median and Best_client.
Static p-median replicates no files to other nodes in the data grid environment when
user requests or network latency change. Best_client replicates the desired data to
client nodes when request ratios for certain files in a node are very high. Simula-
tion results show average response times for the authors’ method are the lowest over
various network loadings and user requests. Although dynamic p-median is a good
method for dynamic replica maintenance, it can’t be used in real grid environments
since p-median is an NP-hard problem that consumes too much computing power
determining new replica locations.

In [20], Sang-Min Park et al. proposed a dynamic replica maintenance algorithm
called Bandwidth Hierarchy based Replication (BHR) that divides sites into many
regions putting sites close to one another in the same regions in the bandwidth hier-
archy. The BHR optimizer terminates replication if a replica duplicate already exists
in another site in the same region. In [4], Ruay-Shiung Chang and Jih-Sheng Chang
indicated that the BHR algorithm performs better than other strategies only when the
storage element capacity is small. We found the following problem in BHR: If a file
must be replicated in a region, BHR replicates it to one other site in the region. If an
attempt is made to replicate the same file to a third site in the same region, BHR will
see that there is already a duplicate file in the region and terminate. Thus, files will
have at most two copies in each region, which means only two links will be available
for parallel data downloading [1, 2, 30–34] in any one region. This limitation leads to
high time costs, thus reducing the effectiveness of an important grid computing fea-
ture and adversely affecting overall performance. Furthermore, the two-copy practice
will cause load imbalances on the sites where the copies are stored.

2.2 Replica consistency

Grid environment files modified by grid users raise the critical problem of maintain-
ing data consistency among the replicas distributed across various machines. Over the
past decade, considerable effort has been devoted to developing several consistency
models. These studies concentrated on trading off consistency for performance and
availability. The various consistency models developed include Strong, Weak, Con-
tinuous, Data-centric, Strict, Sequential, Eventual, Causal, FIFO, and Release. For
instance, the strong consistency approach keeps data consistent across all replicas
simultaneously, which requires many more resources and expensive protocols than
other consistency models. The converse of strong consistency is weak consistency,
which can tolerate inconsistencies for certain periods of time.

Many studies on replica consistency in data grid environments have been pub-
lished [2, 4, 7, 8, 14, 15]. Data grid environments need consistency services to syn-
chronize them when replicas are modified by grid users. The European Data Grid

File replication, maintenance, and consistency management services

Project laid out a Replica Consistency Service in [7] that provides an interface for
grid users to update or add new files. It uses a “single master approach” in which
replicas modified by grid users are updated by the Replica Consistency Service. In [8]
Dirk Düllmann et al. proposed the high-level Grid Consistency Service (GCS), that
performs updating, file synchronization, consistency maintenance, and allows grid
users to choose dynamically adjusting the degree of replica consistency from entirely
synchronized to loosely synchronized.

In [15], Jiafu Hu et al. proposed an asynchronous model for avoiding replica in-
consistency in grid environments despite system failures and network traffic conges-
tion. They suggest that consistency concerns can be divided into data consistency and
metadata replica consistency. Their model is based on the work of the HEP commu-
nity, which established the Particle Physics Data Grid (PPDG) and the Grid Physics
Network (GriPhyN) projects. These projects used the Primary-copy (master–slave)
approach in which only one copy (the master) can be updated, and secondary copies
are updated by changes propagated from the master. There is one site that always has
all updates; consequently, the load on the primary copy can be large. A pilot project
called the Grid Data Management Pilot (GDMP) in the EDG adopted the Subscrip-
tion and Relatively Independent Sites method, which regards data consistency more
flexibly and local sites as independent.

Several replication and data consistency solutions are discussed in [7], includ-
ing Eager (Synchronous) replication and Lazy (Asynchronous) replication, Single-
Master and Multi-Master Models, and pull-based and push-based. In [14], Changqin
Huang et al. proposed differentiated replication in order to improve accessing perfor-
mance and replica availability. It is effective on performance, availability, and con-
sistency, but the maintenance consistency algorithm does not take storage capacity
into account. Replicas accessed only infrequently will consume free space on storage
devices.

In this paper, we propose the Dynamic Maintenance Service (DMS) which is in-
tended to address the issues discussed above and to correct the problem we pointed
out in [20]. We use request frequency and storage element free space as parameters
in determining when files should be adjusted. We also propose the One-way Replica
Consistency Service (ORCS), which puts emphasis on increasing storage device us-
age ratios. Our algorithm allows more than two replicas of the same data at one site,
thus increasing parallel download speeds and more fully utilizing data grid environ-
ment storage resources. Files with low access frequencies are automatically deleted,
freeing space on storage elements to store temporary data and job results, and in-
creasing storage element usage ratios.

3 System design and implementation

3.1 Software stack diagram

Software stack diagrams for each node and all sites in our data grid system are shown
in Figs. 1 and 2. The functions of the three layers, bottom, middle, and top, are de-
scribed below.

C.-T. Yang et al.

Fig. 1 The software stack
diagram of each node

Fig. 2 The software stack
diagram of all sites, services,
and portals

• Bottom Layer: shows the software installed on each node in the grid environment.
The major components of the Bottom Layer are the Information Provider and Grid
Middleware. The Information Provider consists of the Ganglia [35] and Network
Weather Service (NWS) [18]. Ganglia gathers machine information such as num-
bers of processors and how many cores each has, the loading on each processor,
total memory size and free space, and disk usage. The NWS gathers inter-node
network bandwidths and each link’s latency. The Grid Middleware consists of the
Globus Toolkit [27], which is used to join nodes to the grid environment.

• Middle Layer: This layer is the Site, consisting of several nodes usually located
in the same place or connected to the same switch or hub. Nodes in the Site are
connected to one another via the Internet. Sites are usually built up as clusters, but
each node has a real IP; the Site’s first node is called the head node.

• Top Layer: This layer holds Applications, Services, the Monitoring Service, and
Records [17]. Services consist of the Anticipative-Recursively-Adjusting Mecha-
nism, Replica Selection Service, One-way Replica Consistency Service, and Dy-
namic Maintenance Service. Services operate on information gathered from the
Monitoring Service and Records. Records can provide machine and file informa-
tion prior to downloading files or adjusting file locations. The Monitoring Service
provides a web front-end page for users to observe variations during job process-
ing.

Relations among the components described above are shown in Fig. 3. The four
services mentioned above are classified as User-side and System-side. The User-

File replication, maintenance, and consistency management services

F
ig

.3
Sy

st
em

ar
ch

ite
ct

ur
e

of
da

ta
gr

id
en

vi
ro

nm
en

t

C.-T. Yang et al.

side, which allows users to monitor application operations as the applications serve
their needs, includes the Anticipative-Recursively-Adjusting Mechanism (ARAM)
and Replica Selection Service (RSS). The System-side includes the Dynamic Main-
tenance Service (DMS) and One-way Replica Consistency Service (ORCS), which
automatically direct files to appropriate locations and keep them consistent. Func-
tional details of these services are described below.

• Replica Selection Service: gathers relevant information from the RLS and Infor-
mation Service to determine which sites are better for the ARAM to use for down-
loading files.

• Anticipative-Recursively-Adjusting Mechanism: enables users to download de-
sired data in parallel, dynamically adjusting download speeds according to net-
work bandwidths between server nodes and client nodes, and balancing file site
loadings.

• One-way Replica Consistency Service: keeps files consistent with duplicates stored
in distributed nodes. When one file in a node is updated, it will notify the other
nodes that have the same file to update to the newest version.

• Dynamic Maintenance Service: dynamically replicates, migrates, and deletes grid
environment files according to parameter variations. It reduces execution times,
promotes system stability, and improves storage device usage ratio efficiency.

3.2 ORCS and DMS operation

The DMS maintains replicas; the ORCS keeps file copies consistent. Figure 4 shows
general DMS and ORCS operation. Prior to file maintenance, the Information Service
and Replica Location Service store relevant information in the database for DMS
measurement using the cost model described below. The Information Service and
Replica Location Service functions are described below:

• Information Service [6]: periodically gathers statuses such as CPU idle ratio, mem-
ory usage, storage device free space, and network bandwidth, and records them in
real time in the Information Database (Info. DB) for the DMS to use.

• Replica Location Service (RLS): stores file information such as logical file name,
file size, file physical location, time of file creation or updating, and file access fre-
quency in the File Information Database (File Info. DB). Users can use the Replica
Location Service to search for desired files and the closest sites in the grid envi-
ronment where the files are stored.

Before the Replica Manager triggers the ORCS and DMS, it first queries the In-
formation Service and Replica Location Service, which then separately query the
Information Database and File Information Database to get all file and system status
information. If a Replica Manager determines some files need to be adjusted or kept
consistent, it directs the ORCS and DMS to make the necessary adjustments. After
all adjustments have been made, the ORCS and DMS query the Replica Location
Service to check the new statuses of all files in the grid environment. After checking,
the Replica Location Service records the new information in the File Information
Database.

File replication, maintenance, and consistency management services

F
ig

.4
D

M
S

an
d

O
R

C
S

op
er

at
io

ns

C.-T. Yang et al.

3.3 Parameters and evaluation model

In this subsection we introduce our affect parameters, define measurable parameters,
and present the evaluation models we use to measure the performance of the two
services described above.

3.3.1 Affect parameters

Because grid environments have many factors that affect performance, we calculated
how the following static and dynamic factors affect overall performance.

• Static Parameters: These factors do not change when the grid environment changes.
As Xuanhua Shi et al. indicated in [25], they include system site attributes such
as CPU type and frequency, each storage element’s hard disk capacity, memory
capacity, and network card transfer rate. In general, faster frequency CPUs, larger
memory and hard disk capacities, and network cards with faster transfer rates are
better choices for executing jobs. Since these cannot be major factors in measuring
grid environment performance due to the changeable nature of grid environments,
we focus on the dynamic factors.

• Dynamic Parameters: These factors change when the grid environment changes.
Job execution consumes computing power and uses memory space downloading
or uploading data, and storing computational results. Thus, CPU usage rate, mem-
ory space, bandwidth, and node free space may all change. Among these, network
bandwidth has the most important influence on performance. The NWS [18] mon-
itors and periodically forecasts the performance of various network and computa-
tional elements. Real-time requirements must be met to achieve high performance.
We use the NWS to measure network bandwidth, and the Linux commands “sar”
and “df” to measure CPU, memory, and hard disk free space.

3.3.2 Cost model

Before files are replicated, migrated, or deleted, their affect factors must be measured
to determine what operations are necessary. Below, we define our strategic parame-
ters.

• BWLAN(i − j): LAN connection bandwidth between node i and node j in Mbit
• BWWAN(i − j): WAN connection bandwidth between site i and j in Mbit
• F_size: File size for transfer in MB
• T_trans(i − j): Time to transfer data from node i to node j

• T_auth(i − j): Time for authenticating transfer of data file from node i to node j

• T_replica_local(i − j): Time for local file replication from node i to node j

• T_replica_remote(i − j): Time for remote file replication from node i to node j

• F_space(i): Node i storage device free space
• FA_Min: Minimum file access rate
• FA_Max: Maximum file access rate
• α: Adjustable parameter for checking whether the storage element free space is

sufficient for replication

File replication, maintenance, and consistency management services

• P_choice(i): Permission to transfer data to site i

• D_Replica(j): Check to determine whether the replica at node j needs deleting
• N_AF: Replica access frequency
• NA: Replica access time threshold
• T : Access frequency threshold.

Files in local and remote sites with access frequencies less than FA_Min will be
deleted. The evaluation models are as follows: we assume that if file access frequency
is more than FA_Max or between FA_Max and FA_Min, the file should be replicated
or migrated. It is very important to check for sufficient free space at the destination
site before replicating or migrating. The measurement model for determining whether
there is enough free space to store generated temporary data and job execution results
is:

P_choice(i) =
{

0, F_space(i) × α < F_size,
1, F_space(i) × α ≥ F_size,

(1)

where α is an adjustable parameter. Files are then replicated or migrated to appro-
priate locations. We measure the time required for local and remote site transfers as
follows.

• Local: For files replicated or migrated from node i to node j within the same site,
the time required for the server node to transfer files to the client node is

T_replica_local(i − j) = T_auth(i − j) + (F_size × 8)/BWLAN(i − j). (2)

• Remote: For files replicated or migrated from site i to site j , the time cost is

T_replica_remote(i − j) = T_auth(i − j) + (F_size × 8)/BWWAN(i − j). (3)

File size and network bandwidth are the most important factors in replicating or
migrating files locally and remotely, and if i = j , we can assume that BWLAN(i − j)
between site i and site j is ∞ and that T_auth(i − j) is zero.

In measuring storage capacity, D_Replica(i) determines whether the replica of
node i should be deleted or not. When F_space(j) ≤ F_size or N_AF < T is satis-
fied and the result of the D_Replica(j) is True, then the replica file will be deleted.
A D_Replica(j) result of False is opposite. The formula is as follows:

D_Replica(j) =

⎧⎪⎪⎨
⎪⎪⎩

True =
{

F_space(j) ≤ F_size(i)
N_AF < T

False =
{

F_space(j) > F_size(i)
N_AF ≥ T

. (4)

When a destination node’s storage resource is not adequate for replication, then the
next nearest node with sufficient free space and appropriate performance is chosen.

3.4 The DMS and ORCS algorithms

3.4.1 DMS algorithm

The DMS algorithm shown in Fig. 5 consists of three parts, replication, migration,
and deletion.

C.-T. Yang et al.

Fig. 5 DMS replication
algorithm Check all file access rates

If (File i′s access rate is greater than FA_Max in site j) Then
{

Check site j storage device free space
If (Not enough free space) Then

Find an alternative site closest to site j

If (The same file exists intra-region) Then
Replicate file i to site j from intra-region file site

Else
Replicate file i to site j from best inter-region file site

Else
If (The same file exists intra-region) Then

Replicate file i to site j from intra-region file site
Else

Replicate file i to site j from best inter-region file site
}

If (File i’s access rate is greater than FA_Min in site j) and
(File i’s access rate is less than FA_Max in site j) Then

{
Find the nearest file site j that no longer needs file i

Check site j storage device free space
If (Not enough free space) Then

Find an alternative site closest to site j

Migrate file i to alternative site from file site
Else

Migrate file i to site j from file site
}

If (File i’s access rate is less than FA_Min in site j) Then
{

Check the File Info. DB for another site with the same file
If (A site with the file is found) Then

Delete file i in site j

Else
Keep file i

}

• Replication: If the access frequency for file i at site j exceeds the maximum access
rate FA_Max, the DMS first checks to see if the storage device at site j has enough
free space to store the replicated file. If it does, the DMS duplicates the data to site
j using the intra-region copy of file i if such a copy exists, or it creates a duplicate
of file i at site j in the intra-region. If site j does not have enough free space, the
DMS first checks to see if it can duplicate file i in the inter-region. If not, it stores
the duplicated data in the site closest to site j .

• Migration: When an original file site no longer needs a file, or has insufficient free
space to store duplicated data, temporary data, or computing results, but other sites
still need the file, migration is used to move the file to an appropriate location. This
avoids generation of excessive file copies in the data grid system and saves free
space for storing temporary data and job execution results. If the request frequency
of file i in site j is between FA_Min and FA_Max, the DMS first checks to see if

File replication, maintenance, and consistency management services

other sites need the file. If it is needed, the DMS finds a suitable site to transmit the
file data to the destination site. If there is insufficient free space in the destination
site’s storage device, it migrates the file to the site nearest the destination site.

• Deletion: If file i’s access rate is less than FA_Min and another site has a copy of
the file, the DMS deletes it; otherwise the DMS keeps it to ensure there is at least
one copy in the grid environment.

The DMS algorithm increases storage device and file usage ratios. It dynamically
maintains data in the grid environment and fixes the BHR algorithm problem de-
scribed in [20]. More than two replicas in one region are allowed, thus users have
more choices of sites for parallel file downloads. It also improves grid system perfor-
mance by considering free space when storing computed results and temporary job
data.

3.4.2 ORCS algorithm

The ORCS algorithm maintains replica consistency with synchronous and asynchro-
nous approaches. We assume only source files can be modified by grid users, and
these files are then replicated to other nodes in the grid environment. All replicas in
distributed nodes are read-only. Where a replica is stored in the data grid system and
when it is replicated depend on grid user parameter settings and storage capacities.

Our replica distribution topology has three type nodes: super node (SN), master
node (MN), and child node (CN). The data source saved in SN can only be added or
modified by grid users, called original data. The original data were replicated from
SN to MN automatically when added or modified by grid users, called master replica.
The child replica replicated to CN depends on two factors: the access frequency of
files and the storage capacity. The master replica and child replica are read only files.
These files are one way replicated from SN to MN, from MN to CN.

The first function of the ORCS algorithm is shown in Fig. 6. When original data
is updated, the super node (SN) immediately replicates the file to all master nodes
(MNs). Original data may be modified by file owners and others with updating rights.
The MN then checks the parameter N_AF for each grid site to determine whether to
replicate the files from the MN to the CN.

The second section of the ORCS maintenance algorithm is shown in Fig. 7. When
a user submits a request from a CN, the algorithm checks the file N_AF parameter. If
the replica exists in the grid site node, its last update time is compared with that of the
MN. If the replica needs updating, the algorithm checks storage capacity. If there is
not enough free space in the storage device, the old replicated file in the CN is deleted
and a new replica is copied from the MN to the CN nearest the previous CN with the
best resource status. Finally, replica-update records are added to the database for later
tracing.

Figure 8 shows original data automatically replicated from an SN to an MN after
an addition or modification by a grid user. When the replication is complete, each grid
site MN will check whether the replica’s access frequency is greater than its threshold
value and the site’s storage capacity is sufficient, as shown in Fig. 9. The red line in
Fig. 10 indicates the CN does not have adequate storage capacity, which means the

C.-T. Yang et al.

// Once Original Data has been updated
If original data is updated from a super node then

Copy the original data to all master nodes
Add update records to the replication database for tracing

End
// For each Grid Site
If a replica’s access frequency by CN to MN is greater than its threshold then

If the CN has sufficient storage capacity then
Copy a replica from MN to CN
Add a replica update record to the database

Else
Find all replicas with access frequencies smaller than the CN threshold

Sort these CN replica access frequencies in ascending order
Delete replicas one by one from small to large until CN has sufficient storage capacity
If the storage capacity of CN is sufficient then

Copy a replica from MN to CN
Add a replica update record to the database

Else
Copy a replica from MN to a CN with the best resource status
Add a replica update record to the database

End
End

End

Fig. 6 First section of the ORCS algorithm

algorithm must find the nearest CN with the best resource status that has sufficient
storage capacity, as shown in Fig. 11.

In Fig. 12, Node j replica’s access frequency is lower than its threshold value,
thus Node j accesses the MN replica. In contrast, in Fig. 13, grid users access Node j

directly if the last update time of the CN replica is the same as that of the MN replica.
If the latest update times are not equal, the replica will be copied automatically from
the MN to the CN, as shown in Fig. 14. Figures 15 and 16 show the algorithm finding
the nearest CN with the best resource status and sufficient storage capacity because
node j has insufficient storage capacity.

4 Experimental environment and results

We compared and evaluated the performance of the DMS and ORCS algorithms
against other strategies. The Least Frequently Used (LFU), Least Recently Used
(LRU) strategies, and the Bandwidth Hierarchy-based Replication algorithm (BHR)
were tested against the DMS algorithm. The LFU and LRU always replicate when
requests occur, but choose files for deletion differently when storage element free
space is insufficient for replication. LRU chooses the oldest files for deletion, while
LFU chooses the least frequently requested files. The synchronous and asynchronous
consistency strategies were tested against the ORCS. We used a simulator called Op-
torSim, developed by the EU Data Grid [3], to compare the strategies mentioned
above. Our experimental grid environment is shown in Fig. 17. It consisted of four

File replication, maintenance, and consistency management services

// For each access to the MN by a Grid Site CN
If a replica’s access frequency by a CN to the MN is smaller than its threshold then

Change the access directory to MN.Replica
Else

If the CN.Replica.LastUpdateTime = the MN.Replica.LastUpdateTime then
Change the access directory to CN.Replica

Else
If the CN has sufficient storage capacity then

Copy a replica from the MN to the CN
Add a replica update record to the database

Else
Find all replicas in the CN with access frequencies smaller than the threshold

Sort these replica access frequencies in ascending order
Delete replicas one by one from small to large until the CN storage capacity is sufficient
If the CN storage capacity is sufficient then

Copy a replica from the MN to the CN
Add a replica update record to the database

Else
Find the node with the best resource status and sufficient storage capacity nearest the CN
If this node is the MN then

Direct-access the replica to the MN
Else

Copy a replica from the MN to the CN
Add a replica update record to the database

End
End

End
End

End

Fig. 7 Second section of the ORCS algorithm

Fig. 8 Operation 1 of the first
section

regions, each containing 8 sites. Initially, all files were randomly stored, and sites in
the four regions then requested files from appropriate sources.

C.-T. Yang et al.

Fig. 9 Operation 2 of the first
section

Fig. 10 Operation 3 of the first
section

Fig. 11 Operation 4 of the first
section

File replication, maintenance, and consistency management services

Fig. 12 Operation 1 of the
second section

Fig. 13 Operation 2 of the
second section

4.1 Parameter setting

4.1.1 DMS parameter setting

As Table 1 shows, we assumed 500 total jobs, and each site in the four regions sent
requests to file sites at random. There were 30 job types, each job requiring accessing
15 files when executed. Files were 250, 500, 750, and 1000 MB in size; see Table 2
for the quantities of each file size. Each site’s hard disk had 50 GB of free space.
Intra-region bandwidth was 500 Mbps, and inter-region bandwidth was 250 Mbps.
The FA_Max in our simulation was set to 10, and the FA_Min was set to 5. The job
delay time was 2500 milliseconds. The DMS could perform migration and deletion
operations up to the total job size and the total hard disk free space in each region.
Also, we assumed temporary data and results would be produced during job execu-
tion. Before comparing the DMS with other replication strategies, values had to be
assigned to the important factors. We evaluated α for the grid environment shown in
Fig. 17 with the parameters in Table 1.

C.-T. Yang et al.

Fig. 14 Operation 3 of the
second section

Fig. 15 Operation 4 of the
second section

Fig. 16 Operation 5 of the
second section

The evaluation results are shown in Figs. 18 and 19. Figure 18 shows the execution
time for 500 jobs was best when α was set to 0.9, and Fig. 19 shows the storage

File replication, maintenance, and consistency management services

Fig. 17 The experimental grid environment

Fig. 18 Execution times for
various alpha values

element usage rate was better when α was set to 1. But setting α to 1 led to greater
execution times than setting α to 0.9 because when there was not enough free space to
store temporary data and results produced during job execution, time was consumed
finding other computing elements to continue execution. Even though the storage
element usage ratio was better when α was set to 1 than when α was set to 0, overall
performance was better when α was set to 0.9 than when α was set to 1. Thus, we set
α to 0.9 for our experiments.

C.-T. Yang et al.

Table 1 Parameters used in the
simulation Parameters Values

Number of jobs 500

Number of job types 30

Number of files accessed per job 15

File sizes 250/500/750/1000 MB

Intra-region bandwidth 500 Mbps

Inter-region bandwidth 250 Mbps

Hard disk space at each site 50 GB

FA_Max 10

FA_Min 5

Job Delay 2500 ms

Table 2 Numbers of files in
each size File size Number

250 MB 175

500 MB 90

750 MB 100

1000 MB 85

Fig. 19 Free space for various
alpha values

4.1.2 ORCS parameter setting

In Table 3, we define several parameters used to derive the experimental results shown
below. We submitted 100 writing jobs from the SN and 1000 read jobs from each CN.
Files were 100 MB in size and the access threshold was 10. We used synchronous
replication, asynchronous replication, and the ORCS algorithms in our experimental
environment.

4.2 Results

4.2.1 File management results

Figures 20 and 21 show, respectively, DMS execution times and storage element free
space with and without the migration mechanism. Experimental results show exe-
cution times were better with the migration mechanism than without the migration

File replication, maintenance, and consistency management services

Table 3 Experimental
parameters Parameter Value

Number of write jobs 100

Number of read jobs 1000

Various file sizes (MB) 5, 50, 100, 1000, 2000

Access threshold 10, 20, 30, 40, 50

Replication frequency 200

Fig. 20 DMS performance
comparison with/without
migration

Fig. 21 DMS free space
comparison with/without
migration

mechanism. But the storage element usage ratio results show the opposite because
when the migration mechanism is used, files are adjusted to appropriate locations for
job use, and numbers of copies will reflect job needs. Storage elements will need more
free space to store temporary data and job results. Not using the migration mecha-
nism results in more replicas being generated than when the migration mechanism is
used, causing unnecessary waste of storage element free space. Thus, the probability
is higher that storage elements will not have enough space to store temporary files
and job results than when the migration mechanism is used.

We used the assumptions explained above to compare and evaluate the perfor-
mance of the DMS algorithm against three other replication strategies. Figures 22
and 23 show, respectively, the results of comparing the DMS strategy execution time
and free space performance with migration mechanism to the LFU, LRU, and BHR
replication strategies. Figure 22 shows the DMS had better execution times than the
other strategies. LFU and LRU always replicate when file accesses occur, which con-
sumes a lot of free space. Although the LRU and LFU usage ratios for storing tem-

C.-T. Yang et al.

Fig. 22 Performance
comparison of four strategies

Fig. 23 Free space comparison
of four strategies

Fig. 24 Execution time
comparison for various
bandwidth ratios with 50 G H.D.

porary data and job results were better than those of the DMS, choosing files for
deletion and downloading files for job execution took considerable time. The BHR
strategy caused jobs to spend excessive time getting needed files. Although the BHR
strategy saved a lot of free space, its execution times were greater than those of the
DMS strategy. Thus, the DMS performed more efficiently than other three replication
strategies.

Figures 24 to 28 show the use of various network bandwidths and storage ele-
ment capacities to demonstrate variations in the four strategies’ performance. For all
variations in hard disk size, LFU and LRU performed better when WAN bandwidth
equaled LAN bandwidth. When there was not enough space to store replicas, tempo-
rary files, and job results, computing elements spent less time getting relevant files

File replication, maintenance, and consistency management services

Fig. 25 Execution time
comparison for various
bandwidth ratios with 80 G H.D.

Fig. 26 Execution time
comparison for various
bandwidth ratios with 120 G
H.D.

Fig. 27 Execution time
comparison for various
bandwidth ratios with 160 G
H.D.

from other storage elements or choosing other computing elements to continue job
execution, shortening total execution times. When WAN bandwidth was smaller than
LAN bandwidth, computing elements spent less time downloading and transferring
files to appropriate LAN computing elements, but if the files computing elements
needed were stored in inter-region storage elements, much time was wasted replicat-
ing and transferring files via the WAN, increasing total execution times. Total exe-

C.-T. Yang et al.

Fig. 28 Execution time
comparison for various
bandwidth ratios with 200 G
H.D.

cution times decreased gradually as the ratio of WAN bandwidth to LAN bandwidth
was increased.

The DMS replication strategy performed better than other replication strategies
when storage element capacity was small because it provided more storage ele-
ment free space for storing replicas, temporary files, and job results. But increas-
ing the storage element capacity sufficiently provided enough free space for the
LFU and LRU replication strategies to store replicas, temporary files, and job re-
sults, reducing the time computing elements needed to get required files from other
storage elements in the LAN and even in the WAN, thus shortening total execu-
tion times. And increasing storage element capacity also increased DMS replication
strategy execution times. This means that as capacity was increased, DMS repli-
cation strategy performance worsened due to inefficient storage element usage ra-
tios, and that the DMS was more effective when the storage element capacity was
small.

4.2.2 File consistency results

There were three replication algorithms in our experiment, Synchronous, Asynchro-
nous, and our ORCS algorithm. We assumed that each file was 100 MB and the
access frequency threshold was 10. When a replica in the CN was the same as the
one in the MN, no transfer was necessary. The experimental file replication times are
shown in Fig. 29. The ORCS replicated files according to grid users’ needs. It con-
sumed less network bandwidth than the Synchronous algorithm and accessed files
more efficiently than the Asynchronous algorithm.

In the next experiment, we compared the storage capacity usage of our ORCS
with that of the Massive Data Oriented Replication Algorithms (MDORA) proposed
by Changqin Huang et al. in [14]. We assumed CN storage capacities of 80 G, a
replication frequency of 200, and file sizes of 5 MB, 50 MB, 100 MB, 1000 MB,
and 2000 MB. The result is shown in Fig. 30. If the CN storage capacity is inade-
quate, MDORA cannot store replicas. ORCS deletes files in ascending order of ac-
cess frequency until there is adequate storage space for replicas. Thus, replicas can
be written, even though the storage space was initially inadequate.

File replication, maintenance, and consistency management services

Fig. 29 Comparison of three replication algorithms

Fig. 30 Storage capacity usage

There were 1400 read jobs in our experiment, each file was 100 MB in size, and
threshold values of 10, 15, 20, 25, and 30 were used. In Figs. 31 and 32, we note that
the replication time costs increased as the threshold value was increased, resulting in
fewer and fewer replications. Therefore, the smaller the threshold value, the higher
the data access availability.

C.-T. Yang et al.

Fig. 31 Replication times for various threshold values

Fig. 32 Numbers of replications for various threshold values

5 Conclusions and future work

This paper presents the Dynamic Maintenance Service (DMS) and the One-way
Replica Consistency Service (ORCS) for improving grid environment performance.
DMS is also aimed at the “one-replica” problem the BHR incurs. It improves grid
system performance and increases storage element usage ratio efficiency by handling
temporary data and results that jobs produce during execution. Via ORCS, we ad-
dressed the principal problems with maintaining consistency among existing repli-
cas. Experimental results show that DMS and ORCS both perform more efficiently
than other strategies and make storage element usage ratios more efficient as well. We
conducted the design and implementation of a data grid system using the components
and services proposed in Sect. 3 to enable general users to use data grid systems and
monitor details of grid resource and file statuses.

File replication, maintenance, and consistency management services

Our future work will entail enhancing the accuracy of the DMS and ORCS evalu-
ation models for various applications and situations. The DMS and ORCS algorithms
need improved fault tolerance and adaptability to render them better able to handle
various challenges than other strategies. We are also considering development of a
simulator based on real-world grid topology to determine which applications these
two strategies are best suited to, after which we can combine the data grid system
with a good job scheduling strategy and develop applications that require grid tech-
nology.

Acknowledgements This work is supported in part by the National Science Council, Taiwan, ROC,
under Grant nos. NSC 96-2221-E-029-019-MY3, NSC 97-2622-E-029-003-CC2, and NSC 97-3114-E-
007-001-.

References

1. Allcock B, Bester J, Bresnahan J, Chervenak A, Foster I, Kesselman C, Meder S, Nefedova V, Quesnel
D, Tuecke S (2002) Data management and transfer in high-performance computational grid environ-
ments. Parallel Comput 28(5):749–771

2. Allcock B, Bester J, Bresnahan J, Chervenak A, Foster I, Kesselman C, Meder S, Nefedova V, Ques-
nel D, Tuecke S (2001) Secure, efficient data transport and replica management for high-performance
data-intensive computing. In: Proceedings of the eighteenth IEEE symposium on mass storage sys-
tems and technologies, pp 13–28

3. CERN. http://public.web.cern.ch/Public/Welcome.html
4. Chang RS, Chang JS (2006) Adaptable replica consistency service for data grids. In: Proceeding of

the third international conference of information technology (ITNG’06), pp 646–651
5. Chervenak A, Foster I, Kesselman C, Salisbury C, Tuecke S (2001) The data grid: towards an archi-

tecture for the distributed management and analysis of large scientific datasets. J Netw Comput Appl
23:187–200

6. Czajkowski K, Fitzgerald S, Foster I, Kesselman C (2001) Grid information services for distributed
resource sharing, In: Proceedings of the tenth IEEE international symposium on high-performance
distributed computing (HPDC-10’01), August 2001, pp 181–194

7. Domenici A, Donno F, Pucciani G, Stockinger H, Stockinger K (2004) Replica consistency in a data
grid. Nucl Instr Methods Phys Res A 534(1–2):24–28

8. Düllmann D, Hoschek W, Martinez JJ, Segal B (2001) Models for replica synchronisation and consis-
tency in a data grid. In: Proceedings of the 10th IEEE international symposium on high performance
distributed computing (HPDC-10’01), October 2001, pp 67

9. Fathali J (2006, to appear) A genetic algorithm for the p-median problem with pos/neg weights. Appl
Math Comput 8 (August)

10. Fisher ML (1981) The Lagrangian relaxation method for solving integer programming problems.
Manag Sci 27:1–18

11. Foster I (2002) The grid: a new infrastructure for 21st century science. Phys Today 55(2):42–47
12. Foster I, Kesselman C (1999) The grid 2: blueprint for a new computing infrastructure, 2nd edn.

Morgan Kaufmann, San Mateo (Elsevier series in grid computing)
13. Foster I, Kesselman C (1997) Globus: a metacomputing infrastructure toolkit. Int J Supercomput Appl

High Perform Comput 11(2):115–128
14. Huang CQ, Xu FY, Hu XY (2006) Massive data oriented replication algorithms for consistency main-

tenance in data grids. ICCS 2006, Part I, LNCS 3991, pp 838–841
15. Hu JF, Xiao N, Zhao YJ, Fu W (2005) An asynchronous replica consistency model in data grid. In:

Parallel and distributed processing and applications (ISPA 2005 workshops), pp 475–484
16. Jackson LE, Rouskas GN, Stallmann MFM (2007) The directional p-median problem: defini-

tion, complexity, and algorithms. Eur J Oper Res 179:1097–1108. http://people.engr.ncsu.edu/mfms/
Publications/2007-EJOR-Jackson.pdf

17. Java CoG. http://www-unix.globus.org/cog/
18. NWS. http://nws.cs.ucsb.edu/

http://public.web.cern.ch/Public/Welcome.html
http://people.engr.ncsu.edu/mfms/Publications/2007-EJOR-Jackson.pdf
http://people.engr.ncsu.edu/mfms/Publications/2007-EJOR-Jackson.pdf
http://www-unix.globus.org/cog/
http://nws.cs.ucsb.edu/

C.-T. Yang et al.

19. OptorSim. http://edg-wp2.web.cern.ch/edg-wp2/optimization/optorsim.html
20. Park SM, Kim JH, Ko YB, Yoon W-S (2003) Dynamic data grid replication strategy based on Internet

hierarchy. In: The second international workshop on grid and cooperative computing (GCC2003), pp
838–846

21. Park SM, Kim JH (2003) Chameleon: a resource scheduler in a data grid environment. In:
Proceedings of third international symposium on cluster computing and the grid, p. 258.
http://portal.acm.org/citation.cfm?id=792481

22. Rahman RM, Barker K, Alhajj R (2006) Replica placement design with static optimality and dynamic
maintainability. In: Proceedings of the sixth IEEE international symposium on cluster computing and
the grid (CCGRID’06), pp 434–437

23. Rahman RM, Barker K, Alhajj R (2006) Effective dynamic replica maintenance algorithm for the
grid environment. In: Proceedings of advances in grid and pervasive computing, vol 3947: Grid and
pervasive computing 2006 (GPC2006), pp 336–345

24. Ranganathan K, Foster I Design and evaluation of dynamic replication strategies for a high perfor-
mance data grid. In: Proceedings of international conference on computing in high energy and nuclear
physics

25. Shi XH, Jin H, Qiang WZ, Zou DQ (2003) An adaptive meta-scheduler for data-intensive applications.
In: Proceedings of grid and cooperative computing (GCC’03), pp 830–837

26. Stockinger H, Samar A, Allcock B, Foster I, Holtman K, Tierney B (2002) File and object replication
in data grids. J Cluster Comput 5(3):305–314

27. The Globus Alliance. http://www.globus.org/
28. Vazhkudai S, Tuecke S, Foster I (2001) Replica selection in the globus data grid. In: Proceedings of

the 1st international symposium on cluster computing and the grid (CCGRID 2001), pp 106–113
29. Venugopal S, Buyya R, Ramamohanarao K (2006) A taxonomy of data grids for distributed data

sharing, management, and processing. ACM computing surveys, vol 38, Article 3, March 2006
30. Yang CT, Yang IH, Li KC, Wang SY (2007) Improvements on dynamic adjustment mechanism in

co-allocation data grid environments. J Supercomput 40(3):269–280
31. Yang CT, Wang SY, Fu CP (2007) A dynamic adjustment mechanism for data transfer in data grids. In:

Network and parallel computing: IFIP international conference, NPC 2007. Lecture notes in computer
science, vol 4672. Springer, Berlin, pp 61–70. ISSN 1611-3349

32. Yang CT, Yang MF, Chiang WC (2008) Implementation of a cyber transformer for parallel download
in co-allocation data grid environments. In: Proceedings of the 7th international conference on grid
and cooperative computing (GCC2008) and second EchoGRID conference, October 24–26, 2008 in
Shenzhen, Guangdong, China, pp 242–253

33. Yang CT, Yang IH, Chen CH, Wang SY (2006) Implementation of a dynamic adjustment mechanism
with efficient replica selection in co-allocation data grid environments. In: Proceedings of the 21st
annual ACM symposium on applied computing (SAC 2006) – distributed systems and grid computing
(DSGC) track, vol 1, pp 797–804, Dijon, France, April 23–27, 2006

34. Yang CT, Yang IH, Wang SY, Li KC, Hsu CH (2009) A recursively-adjusting co-allocation scheme
with cyber-transformer in data grids. Future Gener Comput Syst 25(7):695–703

35. Ganglia. http://ganglia.info/

Chao-Tung Yang is Professor of Computer Science at Tunghai Uni-
versity in Taiwan. He was born on November 9, 1968 in Ilan, Taiwan,
R.O.C. and received his B.Sc. degree in Computer Science from Tung-
hai University, Taichung, Taiwan, in 1990, and the M.Sc. degree in
Computer Science from National Chiao Tung University, Hsinchu, Tai-
wan, in 1992. He received the Ph.D. degree in Computer Science from
National Chiao Tung University in July 1996. He won the 1996 Acer
Dragon Award for an outstanding Ph.D. dissertation. He has worked
as Associate Researcher for ground operations in the ROCSAT Ground
System Section (RGS) of the National Space Program Office (NSPO)
in Hsinchu Science-based Industrial Park since 1996. In August 2001,
he joined the faculty of the Department of Computer Science at Tunghai
University. He got the excellent research award by Tunghai University
in 2007. In 2007 and 2008, he got the Golden Penguin Award by Indus-
trial Development Bureau, Ministry of Economic Affairs, Taiwan. His

http://edg-wp2.web.cern.ch/edg-wp2/optimization/optorsim.html
http://portal.acm.org/citation.cfm?id=792481
http://www.globus.org/
http://ganglia.info/

File replication, maintenance, and consistency management services

researches have been sponsored by Taiwan agencies National Science Council (NSC), National Center for
High Performance Computing (NCHC), and Ministry of Education. His present research interests are in
grid and cluster computing, parallel and multicore computing, and web-based applications. He is a member
of both the IEEE Computer Society and ACM.

Chun-Pin Fu was born on August 3, 1982, in Tainan City, Taiwan,
R.O.C. He received the B.Sc. degree in Department of Computer Sci-
ence and Information Engineering from Leader University in 2005, and
he also received M.Sc. degree in Department of Computer Science from
Tunghai University in 2007, respectively. He is working at Household
Registration Office, North District in Tainan City now. His present re-
search interests are in grid and cluster computing and web-based appli-
cations.

Ching-Hsien Hsu received his B.Sc. degree in Computer Science from
Tunghai University in 1995, and the Ph.D. degree in Information En-
gineering and Computer Science from Feng Chia University in 1999,
respectively. From 2001 to 2002, Dr. Hsu had been Assistant Profes-
sor in the Department of Electrical Engineering at Nan Kai College.
He joined the department of Computer Science and Information En-
gineering, Chung Hua University, in 2002, and has become Associate
Professor since August 2005. He was awarded as annual outstanding
researcher by Chung Hua University in 2005, 2006 and 2007 and got
the excellent research award in 2008. Doctor Hsu has published more
than 100 academic papers in journals, books and conference proceed-
ings. Doctor Hsu is serving in a number of journal editorial boards, in-
cluding International Journal of Communication Systems, International
Journal of Computer Science, International Journal of Grid and High
Performance Computing, International Journal of Smart Home, and In-

ternational Journal of Multimedia and Ubiquitous Engineering. He has edited more than 10 international
journal special issues as a guest editor, such as IEEE Transactions on Services Computing, Future Gen-
eration Computer Systems, Journal of Supercomputing, etc. Doctor Hsu’s research interest is primarily
in parallel and distributed computing, grid computing, P2P computing, RFID and services computing.
Doctor Hsu is currently an IEEE senior member and serves as an executive committee of IEEE Technical
Committee on Scalable Computing (TCSC).

J Supercomput
DOI 10.1007/s11227-009-0307-4

Implementation of a dynamic adjustment strategy
for parallel file transfer in co-allocation data grids

Chao-Tung Yang · Shih-Yu Wang ·
William Cheng-Chung Chu

© Springer Science+Business Media, LLC 2009

Abstract Co-allocation architecture was developed to enable parallel transferring
of files from multiple replicas stored in the different servers. Several co-allocation
strategies have been coupled and used to exploit the different transfer rates among
various client-server links and to address dynamic rate fluctuations by dividing files
into multiple blocks of equal sizes. The paper presents a dynamic file transfer scheme,
called dynamic adjustment strategy (DAS), for co-allocation architecture in concur-
rently transferring a file from multiple replicas stored in multiple servers within a data
grid. The scheme overcomes the obstacle of transfer performance due to idle waiting
time of faster servers in co-allocation based file transfers and, therefore, provides re-
duced file transfer time. A tool with user friendly interface that can be used to manage
replicas and downloading in a data grid environment is also described. Experimental
results show that our DAS can obtain high-performance file transfer speed and reduce
the time cost of reassembling data blocks.

Keywords Data grid · File replica · Parallel file transfer · Co-allocation · Dynamic
adjustment

C.-T. Yang (�) · S.-Y. Wang · W.C.-C. Chu
Department of Computer Science, Tunghai University, Taichung, 40704, Taiwan
e-mail: ctyang@thu.edu.tw

W.C.-C. Chu
e-mail: cchu@thu.edu.tw

S.-Y. Wang
Communication System Division Service-Oriented Network System Department, Information and
Communications Research Laboratories, Industrial Technology Research Institute, Hsinchu, 31040,
Taiwan
e-mail: Laurence@itri.org.tw

mailto:ctyang@thu.edu.tw
mailto:cchu@thu.edu.tw
mailto:Laurence@itri.org.tw

C.-T. Yang et al.

1 Introduction

Data grid traditionally represents the network of distributed storage resources from
archival systems to caches and databases, which are linked using a logical name
space to create global, persistent identifiers and provide uniform access mecha-
nisms. Data grid aggregates distributed resources to resolve large-size dataset man-
agement problems [1–6, 8, 10, 11, 14, 17, 21, 22]. Increasingly, large collections
of measured and computed data are emerging as important resources in many data-
intensive applications. Certain data-intensive scientific applications, such as high-
energy physics, bioinformatics applications, and virtual astrophysical observations,
entail huge amounts of data that require data file management systems to replicate
files and manage data transfers and distributed data access. In physics experiments,
for example, data file sizes can range from 2 to 10 gigabytes. These high-performance
and data-intensive computing applications require efficient management and trans-
fer of terabytes or petabytes of information in wide-area, distributed-resource envi-
ronments. Data grid infrastructure integrates data storage devices and data manage-
ment services in grid environments consisting of scattered computing and storage
resources, perhaps located in different countries/regions yet accessible to users [11,
14, 17–19].

Replicating popular content in distributed servers is widely used in practice [14,
17, 21, 22]. Recently, large-scale, data-sharing scientific communities such as those
described in [3, 4] used this technology to replicate their large datasets over several
sites. Downloading large datasets from several replica locations may result in varied
performance rates, because the replica sites may have different architectures, system
loadings, and network connectivity. Bandwidth quality is the most important factor
affecting transfers between clients and servers since download speeds are limited by
the bandwidth traffic in the links connecting the servers to the clients.

One way to improve download speed is to use replica selection techniques to de-
termine the best replica locations [21]. The replica selection algorithms may aim at
maximizing network throughput, reducing load on “expensive” links or reducing the
response time perceived by the user. Most replica selection algorithms aim at selec-
tion of “nearby” replicas to either reduce response time or the load on network links.
This method selects the servers most likely to provide optimum transfer rates because
bandwidth quality can vary unpredictably due to the sharing nature of the Internet.
Another way is to use co-allocation technology [17, 21, 22, 27, 28] to download data.
Co-allocation of data transfers enables the clients to download data from multiple
locations by establishing multiple connections in parallel. This can improve the per-
formance over single-server downloads and alleviate the Internet congestion problem
[17].

Several co-allocation strategies were presented in our previous work [25–27]. An
idle-time drawback remains since faster servers must wait for the slowest server to
deliver its final block. Thus, reducing the differences in finish times among replica
servers is important. In this paper, we propose a dynamic file-transfer scheme with
co-allocation architecture, called the dynamic adjustment strategy (DAS), which re-
duces file-transfer times and also improves data transfer performance in data grid en-
vironments. Our approach can reduce file server idle times and decrease file-transfer

Implementation of a dynamic adjustment strategy

completion times. We also present a new toolkit, called cyber-transformer, with a
friendly client-side GUI interface integrated with the information service, replica lo-
cation service, and data transfer service [25] that makes it easy for inexperienced
users to manage replicas and download files in data grid environments. And we pro-
vide an effective scheme for reducing the cost of reassembling data blocks. Experi-
mental results show that our approach is superior to previous methods and achieves
the best overall performance. We also discuss combination cost and provide an effec-
tive improvement.

The remainder of this paper is organized as follows. Related background review
and studies are presented in Sect. 2 and the co-allocation architecture and our research
approaches are outlined in Sect. 3. In Sect. 4, a powerful toolkit, cyber-transformer, is
proposed by us, and experimental results and a performance evaluation of our scheme
are presented in Sect. 5. Section 6 concludes this research paper.

2 Background review

2.1 Data grid and replications

In data grid environments, access to distributed data is typically as important as ac-
cess to distributed computational resources [1–5, 7, 22]. Distributed scientific and
engineering applications require transfers of large amounts of data between storage
systems, and access to large amounts of data generated by many geographically dis-
tributed applications and users for analysis and visualization, among others.

We used the grid middleware Globus Toolkit [9, 10, 12, 13, 16] as our data grid
infrastructure. The Globus Toolkit provides solutions for such considerations as se-
curity, resource management, data management, and information services. One of its
primary components, MDS [7, 13, 16], is designed to provide a standard mechanism
for discovering and publishing resource status and configuration information. It pro-
vides a uniform and flexible interface for data collected by lower-level information
providers in two modes: static (e.g., OS, CPU types, and system architectures) and
dynamic data (e.g., disk availability, memory availability, and loading). And it uses
GridFTP [3, 13, 16] to provide efficient management and transfer data in a wide-area,
distributed-resource environment. We use GridFTP to enable parallel data transfers.
Among its many features, its partial file transfer ability allows files to be retrieved
from data servers by specifying the start and end offsets of file partitions. This pro-
tocol, which extends the standard FTP protocol, provides a superset of the features
offered by the various grid storage systems currently in use.

The data grid community tries to develop secure, efficient data transport mech-
anisms and replica management services. Another key technology from the Globus
project, called the Replica Catalog [16], is used to register and manage complete and
partial copies of data sets. The Replica Catalog contains mapping information from
a logical file or collection to one or more physical files.

Replica management involves creating or removing replicas at a data grid site
[21]. A replica manager typically maintains a replica catalog containing replica site
addresses and file instances. The replica management service is responsible for man-
aging the replication of complete and partial copies of datasets, defined as collections

C.-T. Yang et al.

of files. The replica management service in a data grid environment provides support
for high-performance, data-intensive applications. A replica or location is a subset of
a collection that is stored in a particular physical storage system, which means that
multiple possibly overlapping subsets of collections may be stored in multiple storage
systems in a data grid. These grid storage systems may use a variety of underlying
storage technologies and data movement protocols, which are independent of replica
management.

A data grid may contain multiple replica catalogs. It is possible to create hierar-
chies of replica catalogs to impose a directory-like structure on related logical col-
lections. The purpose of the replica catalog is to provide mappings between logical
names for files or collections and one or more copies of objects in physical storage
systems. The catalog registers three types of entries: logical collections, locations,
and logical files. A logical collection is a user-defined group of files. We expect that
users will find it convenient and intuitive to register and manipulate groups of files as
collections, rather than require that every file be registered and manipulated individ-
ually.

Despite the benefits of registering and manipulating collections of files using log-
ical collection and location objects, there may be a need for users and applications to
characterize individual files. For this purpose, the Replica Catalog includes optional
entries that describe individual logical files. Logical files are entities with globally
unique names and one or more physical instances. The catalog may optionally con-
tain one logical file entry in the Replica Catalog for each logical file in a collection.

Replica selection [16] is used to select replicas from among the sites in a data grid.
The selection criteria depend on application characteristics. This mechanism enables
users to efficiently manage replicas of data sets at their sites. Much previous effort
has been devoted to solving replica selection problems. The replica selection process
commonly consists of three steps: data preparation, preprocessing, and prediction.
Applications then select replicas according to their specific attributes.

Replica selection is important to data-intensive applications, and it can provide
location transparency. When a user requests access to a data set, the system will
determine an appropriate way to deliver the replica. Another issue concerning replica
selection is the predicting transfer time, a complex task involving the inspection of
many characteristics.

2.2 The co-allocation architecture and related work

Candidate replica locations are passed to the replica selection service, which was pre-
sented in a previous work [5, 6, 17, 18, 21, 28]. This replica selection service provides
estimates of candidate transfer performance based on a cost model and chooses ap-
propriate amounts to request from the better locations. The architecture proposed in
[17] consists of three main components: an information service, a broker/co-allocator,
and local storage systems. Figure 1 shows data transfer in a co-allocation architecture,
which is an extension of the basic template for resource management [6] provided by
the Globus Toolkit. Applications specify the characteristics of desired data and pass
the attribute description to a broker. The broker queries available resources and gets
replica locations from an information service [7, 15, 28] and a replica management

Implementation of a dynamic adjustment strategy

Fig. 1 The co-allocation
architecture in data grids

service [21] creates a list of the desired files physical locations. The co-allocation
agent then downloads the data in parallel from the selected servers.

Data grids consist of scattered computing and storage resources located in differ-
ent countries/regions yet accessible to users [8]. As datasets are replicated within grid
environments for reliability and performance, clients require the abilities to discover
existing data replicas, and create and register new replicas. A replica location ser-
vice (RLS) [5] provides a mechanism for discovering and registering existing repli-
cas. Several prediction metrics have been developed to help replica selection. For
instance, Vazhkudai and Schopf [19–21] used past data transfer histories to estimate
current data transfer throughputs.

In [17], the author proposes a co-allocation architecture for co-allocating grid
data transfers across multiple connections by exploiting the partial-copy feature of
GridFTP. It also provides brute-force, history-based, and dynamic load balancing for
allocating data blocks.

• Brute-force co-allocation: brute-force co-allocation (see Fig. 2) works by dividing
files equally among “n” available flows (locations). Thus, if the data to be fetched
is size “S” and there are “n” locations to fetch it from, then this technique assigns
to each flow a data block of size, “S/n”. For example, if there are three sources,
the target file will be divided into three blocks equally. And each source provides
one block for the client. With this technique, although all the available servers
are utilized, bandwidth differences among the various client-server links are not
exploited.

• History-based co-allocation: The history-based co-allocation (see Fig. 3) scheme
keeps block sizes per flow proportional to transfer rates predicted by the previous
results of file transfer results. In the history-based allocation scheme, the block

C.-T. Yang et al.

Fig. 2 The brute-force
co-allocation process

Fig. 3 The history-based
co-allocation process

size per flow is commensurate to its predicted transfer rate, decided based on a
previous history of GridFTP transfers. Thus, the file-range distribution is based
on the predicted merit of the flow. If these predictions are not accurate enough,
re-negotiations of flow sizes might be necessary as slower links can get assigned
larger portions of data, which could be weight heavily on the eventual bandwidth
achieved. With the history-based approach, client divides the file into “n” disjoint
blocks, corresponding to “n” servers. Each server “i”, 1≤ i ≤ n, has a predicted
transfer rate of “Bi” to the client. In theory then, the aggregate bandwidth “A”
achievable by the client for the entire download is A = ∑i=n

i=1 Bi . For each server
“i”, 1≤ i ≤ n, and for the data to be fetched is the size of “S”, the block size per
flow is Si = Bi

A
× S.

• Conservative load balancing: One of the proposed dynamic co-allocation algo-
rithms [17] is conservative load balancing (Fig. 4). The conservative load balancing
dynamic co-allocation strategy divides requested datasets into “k” disjoint blocks
of equal size. Available servers are assigned single blocks to deliver in parallel.
When a server finishes delivering a block, another is requested, and so on, until
the entire file is downloaded. The loadings on the co-allocated flows are automati-
cally adjusted because the faster servers will deliver more quickly providing larger
portions of the file.

Implementation of a dynamic adjustment strategy

Fig. 4 The conservative load
balancing process

Fig. 5 The aggressive load
balancing process

• Aggressive load balancing: This method is shown in Fig. 5 and adds functions that
change block size in deliveries by: (1) gradually increasing the amounts of data
requested from faster servers, and (2) reducing the amounts of data requested from
slower servers or stopping requesting data from them altogether.

In our previous work [24, 26], we proposed a replica selection cost model and
a replica selection service to perform replica selection. These co-allocation strate-
gies do not address the shortcoming of faster servers having to wait for the slowest
server to deliver its final block. In most cases, this wastes much time and decreases
overall performance. Thus, we propose an efficient approach, called the dynamic ad-
justment strategy, and based on the co-allocation architecture. It improves dynamic
co-allocation and reduces waiting time, thus improving overall transfer performance.

3 The dynamic adjustment strategy

Dynamic co-allocation, described above, is the most efficient approach to reducing
the influence of network variations between clients and servers. However, the idle
time of faster servers waiting for the slowest server to deliver its last block is still

C.-T. Yang et al.

a major factor affecting overall efficiency, which conservative load balancing and
aggressive load balancing [17] cannot effectively avoid. The approach proposed in the
present paper, a dynamic allocation mechanism, called dynamic adjustment strategy,
can overcome this, and thus, improve data transfer performance.

Co-allocation technology [17] enables the clients to download data from multiple
locations by establishing multiple connections in parallel. We proposed a replica se-
lection cost model and a replica selection service to perform replica selection. We
now propose a new data transfer strategy based on this model. It consists of three
phases: (1) initial phase, (2) steady phase, and (3) completion phase.

• Initial phase: We assign equal block sizes to all GridFTP servers. In this phase, our
system determines the next block size for each replica server.

• Steady phase: As job transfers are completed, servers are assigned their next jobs.
Jobs sizes are determined by multiplying the client bandwidth by the weighting.

• Completion phase: To avoid the generating excessively small job sizes, we set an
end condition such that if the remaining target file size is smaller than the initial
block size, it is transferred immediately.

The parameters used for our algorithm are listed in the following:

• Job size: the next job size for a server sending to the client.
• initialPT: the initial job size of the transferred file.
• remnantFileSize: the remnant file size of the transferred file.
• ClientBandwidth: the bandwidth of current client.
• ClientMaxBandwidth: the current client max bandwidth.
• Number of Replica Source: the number of replica sources for parallel transferring.
• Scorei : the replica selection cost model for server i such that 1 ≤ i ≤ n.
• P CPU

i : percentage of server i CPU idle states [15].
• RCPU: CPU load ratio defined by the user.
• P Mem

i : percentage of server i memory free space [15].
• RMem: memory free space ratio defined by the user.
• P BW

i : percentage of bandwidth available from server i to client (user node); current
bandwidth divided by highest theoretical bandwidth [23, 24, 26].

• RBW: network bandwidth ratio defined by users.
• weightingi : the weight model for server i such that 1 ≤ i ≤ n.
• newPT i : the next job size for server i.

To determine the initial block size, we set an upper bound that is dependent on the
relation between the client’s maximum bandwidth and the number of replica sources.
Though multiple replicas can be downloaded in parallel, the gathered portions of files
from different links must be transferred to the client in a single link. It is clear that the
client’s bandwidth could be a bottleneck in co-allocation architecture. The formula
for upper bound is:

initialPT ≤ ClientMaxBandwidth/Number of Replica Source (1)

We proposed a replica selection cost model in which we defined a formula for
calculating the weighting. First, we get a score based on the states of the various

Implementation of a dynamic adjustment strategy

server devices:

Scorei = P CPU
i × RCPU + P Mem

i × RMem + P BW
i × RBW,

and RCPU + RMem + RBW = 1 (2)

After getting the scores for all server nodes, the system calculates the weightingi :

weightingi = Scorei

/ n∑
k=1

Scorek (3)

The weighting is then used to determine the size of the next job:

newPT i = ClientBandwidth × weightingi (4)

where newPT i denotes the next job size for server i, and ClientBandwidth denotes
the current client bandwidth.

When server i finishes transferring of a block, it gets a new job whose size is
calculated according to the real-time status of server i. Each time, our strategy dy-
namically adjusts a job size according to source device loading and bandwidth. The
lighter the loading a source device has, the larger job size is assigned. Figure 6 shows
a flowchart illustrating this new strategy.

Next, the average transfer rate of all replicas can be calculated by total transferred
file size divided the cost time ratio of combination of CPU, memory, and network
bandwidth. We used the dynamic adjustment strategy with various sets of replica
servers and measured overall performances, where overall performance is:

Total Performance = File Size/Total Completion Time (5)

4 An efficient toolkit: cyber-transformer

We gave experimental results for cyber-transformer, a powerful new toolkit for replica
management and data transfer in data grid environments. It not only can accelerate
data transfer rate, but can also manage replicas over all various sites. The friendly
interface enables users to easily monitor replica sources, and add files as replicas
for automatic cataloging by our replica location service. Moreover, we provide a
function for administrators to delete and modify replicas. Cyber-transformer can be
invoked with either the logical file name of a data file or a list of replica sources host
names. When users search for a file by its logical file name, cyber-transformer queries
the replica location services to find all the corresponding replicas, and contacts each
replica source to start parallel transfers. The file is then gathered from replica sources
and finally combined into a single file.

4.1 System components

Cyber-transformer is implemented in the Java Cog Kits [13] library. Figure 7 shows
the system stack of cyber-transformer, consisting of three integrated mechanisms:

C.-T. Yang et al.

Fig. 6 The flowchart of dynamic adjustment strategy

(1) information service, (2) replica management service, and (3) data transfer service.
It also includes a friendly GUI for inexperienced users who may not be familiar with
data grids.

The interface consists of three parts: (1) information monitor, (2) replica manager,
and (3) GridFTP browser, to simplify replica management and data transfers. With
the intuitive interface, users can easily invoke the services to transfer data without
delay. Figure 8 shows the Cyber-Transformer system components and the three main
services they provided.

Implementation of a dynamic adjustment strategy

Fig. 7 The system stack of
cyber-transformer

Fig. 8 The components of cyber-transformer

• Information service: This service is invoked by the information monitor and pro-
vides replica sources statuses allowing users to monitor all replica source sites in
the data grid. Sites status, such as CPU loading, free memory, hard disk free space,
and bandwidth, are gathered by the information service and reported to the infor-
mation monitor.

C.-T. Yang et al.

• Replica management service: This serves as middleware between users and replica
databases. It enables convenient user replica searches by listing logical file names
and replica source host names. Users can also easily upload files as replicas, and
mark the importance of these files.

• Data transfer service: This is the most important cyber-transformer service, and
is easily summoned through the GridFTP Browser. Our dynamic adjustment strat-
egy is integrated into it, and an “option” function enables users to compensate for
various data grid environment conditions by adjusting transfer factors such as ma-
chine loading, bandwidth, partition size, and stripe numbers, thus accelerating data
transfer rates.

4.2 System transaction flow

Figure 9 shows the cyber-transformer transaction flow. Users must first pass the grid
proxy certification provided by Simple CA to get access to the grid. They may then
connect to any data grid site via the GridFTP browser. The system automatically
authenticates site certifications as connections are made. The security mechanism of
our grid environment is depicted below.

Steps 4 and 5 show how users query the replica location service for replica in-
formation, and the replica location service reports on requests. The system ranks all
replica servers according to our replica selection model and users can then choose the
better servers for parallel downloading.

The data transfer service is invoked in Step 6. Information about the replicas cho-
sen by the user is picked up by the GridFTP job controller. The controller then dy-
namically adjusts replica transfer job sizes according to the conditions presented in
the information. Job sizes are continually adjusted until all transfers have been com-
pleted. The portions from the various replica sources are then gathered into complete
file.

To enable users lacking deep knowledge of data grids to easily download and
manage files in data grid environments, we developed a user-friendly GUI for cyber-
transformer. It is implemented in the Java CoG library (see below), and it can be
executed on any operating system with JVM. Figure 10 and Fig. 11 show part of the
file download operating process.

4.3 Improvements in Java CoG for parallel downloading

In [17], the author proposes a co-allocation cost model. He defined that clients down-
loading datasets using GridFTP co-allocation technology incur three time costs: the
time required for client authentication to the GridFTP server, actual data transmis-
sion time, and data block reassembly time. Our approach can reduce the data block
reassembly time to zero. A function in cyber-transformer allows delivered file por-
tions to be written to one destination file in parallel without extra overhead.

The Java Commodity Grid Kit (Java CoG, http://www-unix.globus.org/cog/) com-
bines Java technology with grid computing to develop advanced grid services and
accessibility to basic Globus resources. It allows easier and more rapid application
development by encouraging collaborative code reuse and avoiding duplication of

http://www-unix.globus.org/cog/

Implementation of a dynamic adjustment strategy

Fig. 9 The cyber-transformer transaction flow

effort among problem-solving environments, science portals, grid middleware, and
collaborative pilots.

The Java-based application uses the Java CoG kit to connect to the grid system.
The key characteristics include: GridProxyInit, a JDialog for submitting pass phrases
to grids to extend certificate expiration dates, GridConfigureDialog uses the UITool
in the CoG Kit to enable users to configure process numbers and host names of Grid
servers, and GridJob, which creates GramJob instances. This class represents a simple
gram job and allows for submitting jobs to a gatekeeper, canceling them, sending
signal commands, and registering and unregistering from callbacks. The GetRSL,
RSL provides a common interchange language to describe resources.

The Java CoG GridFTP API does not support downloading files in multiple
streams and simultaneously writing them to the same file, which causes some com-
bination overhead after all transmissions. Thus, we needed an effective method for
writing to a file in parallel. To resolve the situation, we analyzed and rewrote the Java

C.-T. Yang et al.

Fig. 10 Searching for replicas to download

CoG GridFTP codes. We found that the GridFTP write file offers a class that can use
FileRandomIO. The class code is listed below.

public synchronized void write(Buffer buffer) throws IOException {
long bufOffset = buffer.getOffset();

if (bufOffset == -1) {
if (file.getFilePointer() != this.offset) {
throw new IOException(“Invalid offset: “ + bufOffset);
}

} else {
file.seek(bufOffset);

}

file.write(buffer.getBuffer(), 0, buffer.getLength());
this.offset += buffer.getLength();

}

Implementation of a dynamic adjustment strategy

Fig. 11 The file download process

The class, RandomAccessFile in file.seek(bufOffset) provides a function that
can change the write pointer. This allowed us to write another class to inherit
FileRandomIO from Java CoG, and overwrite the method, public synchronized void
write(Buffer buffer). We also added a method to change the write pointer. This gave
us more transmission time to write data to a file at the same time. All streams write
to assigned file positions, not to the beginning of the file. That does not affect other
streams transferring data and writing files. The new code after our changes is listed
below.

protected long filePointer;

/**

* set write pointer

* @param filePointer write pointer

*/

public void setFileOffset(long filePointer) {

this.filePointer = filePointer;

}

C.-T. Yang et al.

/**

* Overwrite FileRandomIO,enable to change write pointer

*/

public synchronized void write(Buffer buffer) throws IOException {

long bufOffset = buffer.getOffset();

if (bufOffset == -1) {

if (file.getFilePointer() != this.offset) {

throw new IOException(“Invalid offset: “ + bufOffset);

}

} else {

file.seek(filePointer + bufOffset);

}

file.write(buffer.getBuffer(), 0, buffer.getLength());

this.offset += buffer.getLength();

}

}

Because the network environment is the key point affecting file transfers, we need

to measure the bandwidth between the client and a desired node. Using another tool

to measure the network environment between a client and a GridFTP server would

be very inefficient; so, the need is to measure the current transfer speed according to

the transmission volume during file transfers. The transfer part of Java CoG offers the

interface, DataSink, which allows applications to decide which methods to use when

writing files. We added some code to measure file transfer speed to this interface, and

the resulting code is listed below.

DataSink lo_DataSink = new DataSink() {

public synchronized void write(Buffer buffer) throws

IOException {

long size = buffer.getLength();

fileRandomIO.write(buffer);

long end = System.currentTimeMillis();

rate = size / (end - start);

start = end;

}

public void close() throws IOException {

fileRandomIO.close();

};

};

Implementation of a dynamic adjustment strategy

The boldface type shows that the key point in measuring the current transfer speed
is using time difference and file-writing duration. This gives the transfer speed during
file transfers, thus there is no separate reassembly time cost. We overcome one co-
allocation shortcoming, and the completion time is just the sum of the authentication
and data transmission times.

5 Experimental results and analysis

In this section, we discuss the performance of our recursive-adjustment co-allocation
strategy. We evaluate four co-allocation schemes: (1) brute-force (Brute), (2) history-
based (History), (3) conservative load balancing (Conservative), (4) aggressive load
balancing (Aggressive) and (5) dynamic adjustment strategy (DAS). We analyze the
performance of each scheme by comparing their transfer finish times, and the total
idle time faster servers spent waiting for the slowest servers to finish delivering the
last block. We also analyze overall performances in the various cases.

5.1 Input parameters

We used the following experiments to determine input parameters for the three factors
in our strategy: CPU idle state, memory free space, and network bandwidth, and
assign ratios to each of the factors.

At first, to determine the effect of network bandwidth on transfer rates, we mea-
sured average rates using various bandwidth ratios. As Fig. 12 shows, there was little
difference for small file sizes, however, as the file size was increased, a curve became
apparent. The transfer rate decreased at bandwidth ratios smaller than 0.6; the peak
transfer rate occurred at a ratio of 0.8. This means that we set RCPU,RMEM, and RBW

in the ratio 0.1:0.1:0.8.
In the second experiment, we assessed the effect of CPU computing power on

transfer rates. We used three machines with different CPU types, memory sizes fixed

Fig. 12 The partition size evaluation result

C.-T. Yang et al.

Fig. 13 Comparison of different CPU types

Fig. 14 Comparison of different memory sizes

at 512 MB, and the same bandwidth: M1, an Intel Celeron 1G; M2, an Intel Celeron
1.7G; and M3, a P4 3G. We set the three machines up as GridFTP sites and measured
the average transfer rates for a 500 MB file download from each site to determine
performance. The results in Fig. 13 show that the more powerful CPUs performed
better, but the increase in efficiency was not proportional to the increase in CPU
computing power.

In the third experiment on memory size, we used one machine with different mem-
ory sizes as a GridFTP server to measure the relation between memory size and trans-
fer rate performance. The results in Fig. 14 clearly show that increasing memory size
has no obvious effect on transfer performance.

The results show that more CPU computing power and larger memory size will
improve transfer rates, but not by much. We believe that bandwidth is the most im-

Implementation of a dynamic adjustment strategy

Fig. 15 Our data grid testbed

portant factor affecting transfer rate, and that the bandwidth ratio should be set larger
than the other two factors. CPU power and memory size can be used to make a dif-
ference when the bandwidths of several servers are very close.

5.2 Experimental environments

We performed wide-area data transfer experiments using our GridFTP GUI client
tool. We executed our co-allocation client tool on our testbed at Tunghai University
(THU), Taichung City, Taiwan, and fetched files from four selected replica servers:
one at Providence University (PU), one at Li-Zen High School (LZ), and the other
one at Hsiuping Institute of Technology School (HIT). All these institutions are in
Taichung, Taiwan, and each is at least 10 km from THU. Figure 15 shows our data
grid testbed, and Table 1 is the detailed listing. All servers had Globus 3.2.1 or above
installed.

In the following experiments, we set RCPU,RMEM, and RBW in the ratio
0.1:0.1:0.8. We experimented with file sizes of 10 MB, 50 MB, 100 MB, 500 MB,
1000 MB, 1500 MB, and 2000 MB. For comparison, we measured the performance
of conservative load balancing on each size using the same block numbers.

Table 2 shows average transmission rates between THU and each replica server.
These numbers were obtained by transferring files of 100 MB, 500 MB, 1000 MB,
and 2000 MB from a single replica server using our GridFTP client tool, and each
number is an average over several runs.

5.3 Results and analysis

We examined the effect of faster servers waiting for the slowest server to deliver the
last block for each scheme. Figure 16 shows total idle times for various file sizes. Note
that our Dynamic Adjustment Strategy performed significantly better than the other

C.-T. Yang et al.

Table 1 Detailed list of our Data Grid testbeds

Site Hostname CPU Type Clock RAM NIC Linux Globus

(MHz) kernel version

THU delta1 Intel Pentium 4 3001 1 GB 1 G 2.6.12 4.0.1

THU delta2 Intel Pentium 4 3001 1 GB 1 G 2.6.12 4.0.1

THU delta3 Intel Pentium 4 3001 1 GB 1 G 2.6.12 4.0.1

THU delta4 Intel Pentium 4 3001 1 GB 1 G 2.6.12 4.0.1

LZ lz01 Intel Celeron 898 256 MB 10/100 2.4.20 3.2.1

LZ lz02 Intel Celeron 898 256 MB 10/100 2.4.20 3.2.1

LZ lz03 Intel Celeron 898 384 MB 10/100 2.4.20 3.2.1

LZ lz04 Intel Celeron 898 256 MB 10/100 2.4.20 3.2.1

HIT gridhit0 Intel Pentium 4 2800 512 MB 10/100 2.6.12 3.2.1

HIT gridhit1 Intel Pentium 4 2800 512 MB 10/100 2.6.12 3.2.1

HIT gridhit2 Intel Pentium 4 2800 512 MB 10/100 2.6.12 3.2.1

HIT gridhit3 Intel Pentium 4 2800 512 MB 10/100 2.6.12 3.2.1

PU hpc09 AMD Athlon XP 1991 1 GB 1 G 2.4.22 3.2.1

PU hpc10 AMD Athlon XP 1991 1 GB 1 G 2.4.22 3.2.1

PU hpc11 AMD Athlon XP 1991 1 GB 1 G 2.4.22 3.2.1

PU hpc12 AMD Athlon XP 1991 1 GB 1 G 2.4.22 3.2.1

Table 2 GridFTP end-to-end
transmission rates from THU to
various servers

Replica server Average transmission rate

HIT 61.5 Mbits

LZ 49.5 Mbits

PU 26.7 Mbits

schemes on every file size. These results demonstrate that our approach efficiently
reduces the differences in servers finish times.

Figure 17 shows total completion times in a detailed cost-structure view. Servers
were at PU, LZ, and HIT, with the client at THU. The first three bars for each file size
denote the time to download the entire file from single server, while the other bars
show co-allocated downloads using all three servers. Our co-allocation strategy fin-
ished the jobs faster than the other strategies, and there was no combination time cost.
Thus, we may infer that the main gains our technology offers as a result of the mod-
ifications we presented in Sect. 4.3 are no combination time, and faster transmission
than other co-allocation strategies.

Table 3 lists all experiments we performed and the sets of replica servers used.
The results in Fig. 18 show that using co-allocation technologies yielded no improve-
ment for smaller file sizes such as 10 MB. They also show that in most cases, overall
performance increased as the number of co-allocated flows increased. We observed
that for our testbed and our co-allocation technology, overall performance reached
its highest value in the DAS2_2 case. However, in the DAS3 case, when we added
one flow to the set of replica servers, the performance did not increase. On the con-

Implementation of a dynamic adjustment strategy

Fig. 16 Idle times for various methods; servers at PU, LZ, and HIT

Fig. 17 Completion times for various methods; servers are at PU, LZ, and HIT

trary, it decreased. We can infer that the co-allocation efficiency reached saturation
in the DAS2_2 case, and that additional flows caused additional overhead and re-
duced overall performance because the PU file site had worse network bandwidth,
and DAS2_1 choosing PU for file transfer led to the differences between DAS2_1 and
DAS2_2. This means that more download flows do not necessarily result in higher

C.-T. Yang et al.

Table 3 The sets of replica
servers for all cases Case Replica servers

PU1 PU

LZ1 LZ

DAS2_1 PU, LZ

DAS2_2 LZ, HIT

DAS3 PU, LZ, HIT

Fig. 18 Overall performances for various sets of servers

performance. We must choose appropriate numbers of flows to achieve optimum per-
formance.

In the final experimentation, two data transfer scenarios are performed by using
our cyber-transformer for file download in parallel. Scenario one is used to conduct
the file transfer performance by downloading 1 GB data in LAN environment in THU.
And scenario two is used to conduct the file transfer performance by downloading
2 GB data in WAN environment (THU-HIT-LZ-PU) in a real grid. The performance
is shown in Fig. 19.

By comparing testing result of the two scenarios there was something difference,
as shown in Fig. 20. With less network transformation interference, the overall perfor-
mance will be decreased 41% and 39%, respectively, when the testing environment
was changed from LAN to WAN with brute-force and history schemes. In contrast to
the aggressive and our DAS schemes, due to the main design consideration of those
two schemes was to reduce link down and exactly dispatch future working load when
progressing, there was no obvious performance decrease when the testing environ-
ment changed from LAN to WAN.

Implementation of a dynamic adjustment strategy

Fig. 19 Comparison of cyber-transformer transmission rate between LAN and WAN

Fig. 20 The rate of overall
performance downgrade
between LAN and WAN

6 Conclusions

Using the parallel-access approach to downloading data from multiple servers re-
duces transfer times and increases server resilience. The co-allocation architecture
provides a co-ordinated agent for assigning data blocks. A previous work showed that
the dynamic co-allocation scheme leads to performance improvements. However, it
cannot handle the idle time of faster servers having to wait for the slowest server to
deliver its final block. This paper proposes the dynamic adjustment strategy (DAS) to
improve file transfer performances using the co-allocation architecture in data grids.
In our approach, the workloads on selected replica servers are continuously adjusted
during data transfers, and our approach can also reduce the idle times spent waiting
for the slowest servers, and thus decrease file transfer completion times.

We also developed a new toolkit, called cyber-transformer that enables even inex-
perienced users to easily monitor replica source site statuses, manage replicas, and
download files from multiple servers in parallel. Experimental results show the effec-

C.-T. Yang et al.

tiveness of our proposed technique in improving transfer times and reducing overall
idle time spent waiting for the slowest servers. We also discussed the cost of combina-
tion time and provided an effective improvement. In future work, we will investigate
providing more functions for our user-friendly interface, for example, auto parame-
ters input and auto scan to find better replica servers for downloading. We also plan
to improve replica management, especially on the problem of replica consistency.

Acknowledgements This work is supported in part by National Science Council, Taiwan R.O.C., under
grants no. NSC 96-2221-E-029-019-MY3 and NSC 97-2622-E-029-003-CC2.

References

1. Allcock B, Tuecke S, Foster I, Chervenak A, Kesselman C (2000) Protocols and services for distrib-
uted data-intensive science. In: ACAT2000 proceedings, pp 161–163

2. Allcock B, Bester J, Bresnahan J, Chervenak A, Foster I, Kesselman C, Meder S, Nefedova V, Ques-
nel D, Tuecke S (2001) Secure, efficient data transport and replica management for high-performance
data-intensive computing. In: Proceedings of the eighteenth IEEE symposium on mass storage sys-
tems and technologies, pp 13–28

3. Allcock B, Bester J, Bresnahan J, Chervenak A, Foster I, Kesselman C, Meder S, Nefedova V, Quesnel
D, Tuecke S (2002) Data management and transfer in high-performance computational grid environ-
ments. Parallel Comput 28(5):749–771

4. Chervenak A, Foster I, Kesselman C, Salisbury C, Tuecke S (2001) The data grid: towards an archi-
tecture for the distributed management and analysis of large scientific datasets. J Netw Comput Appl
23:187–200

5. Chervenak A, Deelman E, Foster I, Guy L, Hoschek W, Iamnitchi A, Kesselman C, Kunszt P, Ripeanu
M (2002) Giggle: a framework for constructing scalable replica location services. In: Proceedings of
supercomputing 2002, Baltimore, MD

6. Czajkowski K, Foster I, Kesselman C (1999) Resource co-allocation in computational grids. In: Pro-
ceedings of the eighth IEEE international symposium on high performance distributed computing
(HPDC-8’99), August 1999

7. Czajkowski K, Fitzgerald S, Foster I, Kesselman C (2001) Grid information services for distributed
resource sharing. In: Proceedings of the tenth IEEE international symposium on high-performance
distributed computing (HPDC-10’01), August 2001, pp 181–194

8. Donno F, Gaido L, Ghiselli A, Prelz F, Sgaravatto M (2002) DataGrid Prototype 1. In: Proceed-
ings of the TERENA networking conference, June 2002. http://www.terena.nl/conferences/tnc2002/
Papers/p5a2-ghiselli.pdf

9. Foster I, Kesselman C (1997) Globus: a metacomputing infrastructure toolkit. Int J Supercomput Appl
High Perform Comput 11(2):115–128

10. Foster I, Kesselman C, Tuecke S (2001) The anatomy of the grid: enabling scalable virtual organiza-
tions. Int J Supercomput Appl High Perform Comput 15(3):200–222

11. Hoschek W, Jaen-Martinez J, Samar A, Stockinger H, Stockinger K (2000) Data management in an
international data grid project. In: First IEEE/ACM international workshop on grid computing—Grid
2000, Bangalore, India, December 2000

12. IBM Red Books, Introduction to grid computing with Globus. IBM Press. http://www.redbooks.ibm.
com/redbooks/pdfs/sg246895.pdf

13. Open Grid Forum, http://www.ogf.org/
14. Stockinger H, Samar A, Allcock B, Foster I, Holtman K, Tierney B (2002) File and object replication

in data grids. J Clust Comput 5(3):305–314
15. SYSSTAT utilities home page, http://perso.wanadoo.fr/sebastien.godard/
16. The Globus Alliance, http://www.globus.org/
17. Vazhkudai S (2003) Enabling the co-allocation of grid data transfers. In: Proceedings of fourth inter-

national workshop on grid computing, November 2003, pp 41–51
18. Vazhkudai S, Schopf J (2002) Predicting sporadic grid data transfers. In: Proceedings of 11th IEEE

international symposium on high performance distributed computing (HPDC-11 ‘02), July 2002,
pp 188–196

http://www.terena.nl/conferences/tnc2002/Papers/p5a2-ghiselli.pdf
http://www.terena.nl/conferences/tnc2002/Papers/p5a2-ghiselli.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246895.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246895.pdf
http://www.ogf.org/
http://perso.wanadoo.fr/sebastien.godard/
http://www.globus.org/

Implementation of a dynamic adjustment strategy

19. Vazhkudai S, Schopf J (2003) Using regression techniques to predict large data transfers. Int J High
Perform Comput Appl (IJHPCA) 17:249–268

20. Vazhkudai S, Schopf J, Foster I (2002) Predicting the performance of wide area data transfers. In:
Proceedings of the 16th international parallel and distributed processing symposium (IPDPS 2002),
April 2002, pp 34–43

21. Vazhkudai S, Tuecke S, Foster I (2002) Replica selection in the Globus data grid. In: Proceedings
of the 1st international symposium on cluster computing and the grid (CCGRID 2001), May 2001,
pp 106–113

22. Venugopal S, Buyya R, Ramamohanarao K (2006) A taxonomy of data grids for distributed data
sharing, management, and processing. ACM Comput Surv 38(1):1–53

23. Wolski R, Spring N, Hayes J (1999) The network weather service: a distributed resource performance
forecasting service for metacomputing. Future Gener Comput Syst 15(5–6):757–768

24. Yang CT, Shih PC, Chen SY (2006) A domain-based model for efficient network information on
grid computing environments. IEICE Trans Inf Syst E89-D(2):738–742. Special issue on paral-
lel/distributed computing and networking

25. Yang CT, Yang IH, Chen CH, Wang SY (2006) Implementation of a dynamic adjustment mechanism
with efficient replica selection in co-allocation data grid environments. In: Proceedings of the 21st
annual ACM symposium on applied computing (SAC 2006)—distributed systems and grid computing
track, April 23–27, 2006, pp 797–804

26. Yang CT, Wang SY, Fu CP (2007) A dynamic adjustment mechanism for data transfer in data grids.
In: Network and parallel computing: IFIP international conference, NPC 2007, September 17–20.
Lecture notes in computer science, vol 4672. Springer, Berlin, pp 61–70

27. Yang CT, Yang IH, Li KC, Wang SY (2007) Improvements on dynamic adjustment mechanism in
co-allocation data grid environments. J Supercomput 40(3):269–280

28. Zhang X, Freschl J, Schopf J (2003) A performance study of monitoring and information services
for distributed systems. In: Proceedings of 12th IEEE international symposium on high performance
distributed computing (HPDC-12 ‘03), August 2003, pp 270–282

Chao-Tung Yang is a professor of Computer Science at Tunghai Uni-
versity in Taiwan. He was born on November 9, 1968, in Ilan, Tai-
wan, R.O.C. and received the B.Sc. degree in Computer Science from
Tunghai University, Taichung, Taiwan, in 1990, and the M.Sc. degree in
Computer Science from National Chiao Tung University, Hsinchu, Tai-
wan, in 1992. He received the Ph.D. degree in Computer Science from
National Chiao Tung University in July 1996. He won the 1996 Acer
Dragon Award for an outstanding Ph.D. Dissertation. He has worked as
an Associate Researcher for ground operations in the ROCSAT Ground
System Section (RGS) of the National Space Program Office (NSPO)
in Hsinchu Science-based Industrial Park since 1996. In August 2001,
he joined the faculty of the Department of Computer Science at Tunghai
University. He got the excellent research award by Tunghai University
in 2007. In 2007 and 2008, he got the Golden Penguin Award by Indus-
trial Development Bureau, Ministry of Economic Affairs, Taiwan. His

researches have been sponsored by Taiwan agencies National Science Council (NSC), National Center
for High Performance Computing (NCHC), and Ministry of Education. His present research interests are
in grid and cluster computing, parallel and multi-core computing, and Web-based applications. He is a
member of both the IEEE Computer Society and ACM.

C.-T. Yang et al.

Shih-Yu Wang received the B.Sc. degree in Computer Science at Tung-
hai University, Taichung, Taiwan, in July 2004. He received the M.Sc.
degree in Computer Science at Tunghai University, Taichung, Taiwan,
in July 2006. He also works at Industrial Technology Research Institute
in Hsinchu City, Taiwan. His research interests include data grid, grid
computing, and cluster computing.

William Cheng-Chung Chu is the Dean of the Engineering College,
a Professor of the Department of Computer Science, and the Director
of Software Engineering and Technologies Center of Tunghai Univer-
sity. He had served as the Dean of Research and Development Office
at Tunghai University from 2004 to 2007, Taiwan. From 1994 to 1998,
he was an Associate Professor at the Department of Information En-
gineering and Computer Science at Feng Chia University. He was a
Research Scientist at the Software Technology Center of the Lockheed
Missiles and Space Company, Inc., where he received special contribu-
tion awards in 1992 and 1993 and a PIP award in 1993. In 1992, he was
also a visiting scholar at Stanford University. He is serving as the Asso-
ciate Editor for Journal of Software Maintenance and Evolution (JSME)
and Journal of Systems and Software (JSS). His current research inter-
ests include software engineering, embedded systems, and e-learning.
Doctor Chu received his M.Sc. and Ph.D. degrees from Northwestern

University in Evanston, Illinois, in 1987 and 1989, respectively, both in computer science. He has edited
several books and published over 100 referred papers and book chapters, as well as participated in many
international activities, including organizing international conferences.

	NSC 98-2622-E-029-001-CC2
	組合 1
	cpe.1565
	cpe.1571
	IJAHUC 5(4) Paper 6
	File replication, maintenance, and consistency management services in data grids
	File replication, maintenance, and consistency management services in data grids
	Abstract
	Introduction
	Related work
	Replica management
	Replica consistency

	System design and implementation
	Software stack diagram
	ORCS and DMS operation
	Parameters and evaluation model
	Affect parameters
	Cost model

	The DMS and ORCS algorithms
	DMS algorithm
	ORCS algorithm

	Experimental environment and results
	Parameter setting
	DMS parameter setting
	ORCS parameter setting

	Results
	File management results
	File consistency results

	Conclusions and future work
	Acknowledgements
	References

	Implementation of a dynamic adjustment strategy for parallel file transfer in co-allocation data grids
	Implementation of a dynamic adjustment strategy for parallel file transfer in co-allocation data grids
	Abstract
	Introduction
	Background review
	Data grid and replications
	The co-allocation architecture and related work

	The dynamic adjustment strategy
	An efficient toolkit: cyber-transformer
	System components
	System transaction flow
	Improvements in Java CoG for parallel downloading

	Experimental results and analysis
	Input parameters
	Experimental environments
	Results and analysis

	Conclusions
	Acknowledgements
	References

