T FLfn

MrfeL i ¢Lmy 4 B9 eAHE2

W R ERE TR ERER ‘%ﬁﬁi§;¢$ﬁﬁ§
R B 1 @,x 32 F 1% (2/3
SRR R AC R R
S S LI R
& % % NSC 98-2622-E-029-001-CC2
$fF @ B 9808 01p % 994077 31p
#oFE o RAAETRLEEPEE

e =)
T

=
o W

e

~ >~

SR
R 15

=
&
(N

Rf § L a e

B AR B ‘”??JL?,LF'“— SN A f
VR TR RELTERERERY & REA A g R sa F RO
@k sz (7(203)
3+ 3% %5 0 NSC 98-2622-E-029-001-CC2
HEHF D pAR 98 E 087 01p43 @ 99# 077 317
HEEE LA 28 Thaiig i

FAIHIM
FEgd Ry RATE 2

wd
T

I

=

R Lo N
B
D AT 5% 500 i A

O A
o

el

ﬁx%’ﬁ&%

>

TEARERPF AT X2 NARBIE 22 2P E S e I LR
odcR A2 H UG HEMEL cEFT Hiiimﬂ AR A SFUE T B
@ﬁT’?“%ﬁQF?ﬁ%ﬁUF%riﬁ‘ﬁ Jir%%ﬂ%lif~%J~i’
PR A R MY 1 IR R R S P s é:ﬁ D NLHPRPRAR L Sl B RHE B R
WHE A G RPN ISP EBP FeT
Cluster # 8 & sz P gt
GRS T LR SR ‘fu(ﬁr‘*ﬁr) (p 7%)

TR R BRI R E BHE
BEERE EHE D

PR B2 K BT R T

eyt @ www.ardness.com.iw 7 3% 1 (04) 23588880

FER(G00Z P

P eg e %3)% B ik @k kL(Picture Archiving and Communication System, PACS)
E-BEPY ks @ BELETFRY :z\mm PO B % 48 o PACS i & P b
tt"?;"&-%g-‘)%: gl A o Mt et NG T Gd R @@‘] P f—f—’%l’i’;’*'ﬁ
BHTHEFFREFBGI I - PFy 7 iF2 7 PR Ig\@ LR hI B REF B R E
fetenie o R { TR- H BB FFEELE KT 2 FEFFY o a S #HPACS 7
FRBAAM { ZF 2L HMA R E TLRAE o B E P B PR R (Grid
Computing)# > #4T i & # 2. i o % _'rh?‘ilﬁr? PE=RE L S F S RES S S
fI* FAtet(Data Grid)s g s g v % o FIL P R L L BLFRFTALY > &

http://www.ardness.com.tw/

AR AUE S -PACS i i T AP i3, 3R
4 #3% Smart Broker Centrlc_ei?g’ﬁ B dEml & g s 2l e fe B (Co-allocation) 3 4L
EREJEHY o ;%ﬁ“d E ~ Open Source PACS 24> % » 2 % »M w2 ane st o ~ it 2
o ER R L 32 PACS k Lenw (71 “ﬁ? %5 PACS chig4 3 %3 B PACS
Bm d 2l - B A RN PACS £~ 2 % o

WEEROVFARIATOFER G RSP ARAREYE > T LFERE A
Application ~ Smart Broker ~ Cyber Abstraction ~ Grid Middleware 1+ 2 Fabric % 5 B r¢ & >
HP G AR F 5P s s Smart Broker T3 ARG S AR EATIRES
12 Cyber Abstraction 45 i 3 ™= & 2 B deivig 5 o ¥ b33 — B R oo f 12(GKM)
A LA Aty ﬁv%ﬂz?ﬁﬂ@?} >~ o H %2 4 APSCCO08, IPCADS08 £ JNCA %
E

AER GHERSEL LR~ @& * Globus Tookit_b'i? 2 =42+ ¥ (Cloud Computing)
i & Cross-CA i > 2B kS T Had s BB R ARG T R 5 - F
i* Co-Allocator ~ i+ » 3% = i 5t 5 d Resource Management System (RMS)#t &=+ /& 7 ik >
T4 38 GKM erivgt 2 > K3 R J suadt e R IR B R ena 4 > TS p it o AR
%éi%»P PO FHEREAA LA AT AET L o d MM EAREE R S 0 A
P75k eﬁ’% B S E A AL P AT R F RN R DR RER
% sii:érl R AN R TR R S EA N L B i&ﬁ';’;‘i—@ﬁ%ﬁ%ﬂx%‘;ﬁ
B R PR) i @ﬁiﬂ CFETRF PR RE o AR Y > APy TCP MR R HAlS RE N
FEATRG R M RRIERE R F R 2 0 - HRF TR RR
v _'rﬁ@ﬁi%]%»ié‘; oA 2 G o P - HEE PIREL A F a1 (FER B H TR
ﬂ’* FoBET R NMGFUE FoRR S L RIRER DRI FERRE - R LR RE

RBpgengoci > B0 REP BRELFRFHL JORTIET FORfRE -

Open Source PACS i % i B * F &) (79 % % PliR i) ,j‘ AB G AR A% 4
Journal of Supercomputing £2 CCPE % % -

BTREGS- 2> APRBREY F T RES - Kol LR
5 GKM 8 ¥ A i - if}“ e PACS i seg weid * [Fmi B
B9 % i EES PR <8

23]

}é];u
E ?5 % PACS % %%

Mot iy s TR eR S FRRe S FRBGME A mRRE
English Abstract

PACS (Picture Archiving and Communication System) is a system for archiving, retrieving,
communicating and displaying medical images. The purpose of PACS is to acquire medical
images from medical systems, store them in digital formats, and transmit them to remote users
through networks for diagnostic usages. Furthermore, PACS can be sharing platforms for
various images. As the development of software and computing technologies, PACS is
promising to assist doctors in medical diagnoses, instruction and researches. The success of
PACS depends on not only powerful hardware, but also advanced software utilities and
operating procedures. By means of the developed grid computing technologies, resources of
virtual organizations located in different places can be managed and dispatched. Moreover, the

salient features of fault-tolerance and high availability of data grid can satisfy various kinds
computing and storage requirements in medical applications. We propose a three-year project to
design and implement Smart Broker Centric and adaptive replica management components in
co-allocation data grid environments. By means of introducing Open Source PACS solutions
based on specially designed grid modules, we plan to verify the feasibility of using grid
technologies to support PACS. In addition, the contributions will include promoting the
advantages of PACS, improving the sharing performance of PACS image replica and a
cost-effective PACS solution.

In the first year, we design and implement the prototype, including all components of the
platforms. The architecture is composed of five layers: Application, Smart Broker, Cyber
Abstraction, Grid Middleware and Fabric. The higher layers are user-centric, and use Smart
Broker as the core of the architecture. The bottom layers focus on resource integration, and use
Cyber Abstraction to describe the interconnection of the top layers and the bottom layers. Also,
a grid knowledge management (GKM) model is designed to facilitate the parameter input of all
components. Some research results are published in APSCCO08, ICPADS08 and JNCA.

In the second year, we plan to integrate components of all layers by using Globus ToolKit,
Cloud Computing and Cross-CA technologies, in order to improve the computing performance
and resource utilization. The implemented Co-Allocator component can provide corresponding
resources by Resource Management System (RMS), and support grid context-awareness by
GKM. Data grid consists of scattered computing and storage resources located in different regions
yet accessible to users. Co-allocation architectures can be used to enable parallel transfers of data
file from multiple replicas in data grids which are stored at different grid sites. Schemes based on
co-allocation models have been proposed and used to exploit the different transfer rates among
various client-server network links and to adapt to dynamic rate fluctuations by dividing data into
fragments. In this report, the TCP Bandwidth Estimation Model (TCPBEM) is used to evaluate
dynamic link states by detecting TCP throughputs and packet lost rates between grid nodes. We
integrated the model into ARAM, calling the result the anticipative recursively adjusting mechanism
plus (ARAMH+); it can be more reliable and reasonable than its predecessor. We also designed a
Burst Mode (BM) that increases ARAM+ transfer rates. This approach not only adapts to the worst
network links, but also speeds up overall performance. Taking Open Source PACS for examples,
we plan to conduct experiments on functionality and compatibility of the prototype.

In the last year, we will plan to refine the components and the application according to the
experimental results. Also, the proposed system will be compared with a real-world PACS of
hospitals in terms of overall performance.

Keywords: Grid Computing, Data Grid, Medical Grid, PACS, Co-allocation

Ay RERp

R

Friadlividbird Raelams > 28 R0 ARk AR B R
EEET cHWEEPIRBEFEN { G 5% 287 4 R iF7 5 f2 PACS & # 4 h
FPRBiE BT I ARSEAIFEORFEA HYARE A MA L 2T LD

%]‘E-éo

W B AIPIFT LA AR EIRIR e FR TR 2 HLT T
BIRips €& i 9\'}“‘?'_' WA ¢ pHELF I - FEERFIRE - EE IO
R IECE SN S R S Rt L

5B A3 AT A RN HIRBRET ROHERG (5 o0 & IR
E dr k SiE R * ~ RRDTool #/& * ~ JRobin @) % % @ - Pap.éf,i SR E S
’; FZWERREH oo FTRAEEL G 2cf|* 4 B¢ ZFY hEgher 7 2R
”fﬁ SRS R EAT S KA R RRE P ~ B TR AR KA R B R R G il

el

BE Y EfE
;;&ﬁwzgﬂmibzkwmﬁﬁnﬁuaw¢&%ﬁ4’¢?%mﬁﬁ 8
FEEY IS S R v AR L i S o X L T E Y EREY

E o B A > R B PHEHS vﬁﬁ%oﬁwuéiﬁ@$%%ﬁam§$ﬁﬁ
FREGGEE® L feap) = 8 J%H%%%*fﬁ§%%%%%@~Jﬁ%%ﬁiéo
dRATE A FETARRERRS FRP GRS L B SR AP FF T2 AR
LAy R e L i 4 0 23 b B B & 0 - B2 e
BRETOEL > A HAITE, KA AERNTEE T F A a(i\”,“}'i PACS - ﬁg =
BgRic g LR KBRS T 4’4%&V*ﬁa«£~&wﬁﬁagw\@ﬁﬁﬁ ,
Yoy e AT 3T R R et B AR B PR AT T i JW”uﬁw—épmﬂﬁom%ﬁ
iH%iﬁf’%lﬁmﬂmmW%M4’ {7 BT AL 8 AT o

iur \\\Xr

=4

Tk £ R R
APFRERELNFE IR ERF R - B ER AT SR AT kA
PR R E 0 T o % 4~ Application ~ Smart Broker ~ Cyber Abstraction ~ Grid
Middleware 2 2 Fabric & 5 @B Fs A& - 2 @ B & i * —F{ Z ¢ 30 Smart Broker 1F A
AR AR BT IRE £ 32 Cyber Abstraction 4 it % 4= Fi B 2 B dcie i
4&,—@$ﬁwAFW@KwﬁWuA#*mH“ G o Blde gt~ TR
;9.5 ¥ % $i3](Hidden Markov Model, HMM)* /A % #H(Diction Tree) < Know-How ~ Grid 4+
SHCA(GKM) 2 7 A i System Log(de@] 438 e 2 fe B 477)) » R ¥ Jmm T e -
Y- EoEEE LA~ 2 Globus Tooklt £ Cloud Computing 2 & Cross-CA
Pt R L A 3 RER BB E S E T RTIY F - 17 Co-Allocator
~ iy 2w g & d Resource Management System(RMS)i!i li'—ﬁf(%g o 7% GKM e
SR A WP ML G e RBERRON S > LA M AT EREES > TR
PRI A AET S Lk s od WEREORBEELA RS > o sxF ez B
EMES S E YA F AR G B F RN % R IR £ 0
A A ot S R SR S e B RERR S R 1S E R R
@]: FETRB R AT Y o At TCP ﬁﬁﬁ’fé% Tl 3 PN S U G ERE ;g

prag it IERIB R AR PREZ E- AR AT FTHEEN TR muﬁﬁs?]*mb o
e E g o 50 - FEE RIREL L e § xtf&_;},&rg HFRA Fo 63t
B d ;};;},4*711{&_ PR AR S L RIRERF I R EER °%%'E* LR SkEN A l?%%]mrﬁ S
e TR RRAGRBEEIRFEL) FFIE FORRER - 50 RRPREF > ¥ 0
FE “:ﬁg)ﬁ’* A ERE R Workflow’i';F Bk TRARE S ?%%G oM A
PETEGRY,, hEFEZE TV RFIEVATBTREE 2GR H Crid g s T

I E AR > TP E A B ehp o ¥~ % Open Source PACS i i ¥ @ b -
@175‘4.5@5 PIIEARA LA R AP R o
- fu}f;j@% B G| d B %k 0 - ﬁz&:;‘;ﬁ ;’;]ﬂb% SRR R A A ﬁﬂ',;‘j‘};,;\‘.
ff”f”PACS fAg R fiRg EF IR PACS ki
BRSR JRd B F IR R R T LA '1?%_‘?' T T R .
“*’—“%'“ﬁP¢F%“ﬂm*QW@yz”ﬁé?ﬂﬁﬁ‘ﬁﬁ'i?ﬁ
Z A TR ECERF R Y T S IRAR IR G fo o Dldee s 4 K ¢ PACS koria #
LR X 2 ERT L FRPGOEEIOF R o kNI S BER S _’rn)f%’lf NG
oS SIS B - D81 S o a SR .kiﬁ"i SR RSN ER R BT @@,]
ﬁﬁ‘ﬁhé“*’%fﬁlw@%ﬁ%’mw§@3w<w'@%ﬁ,wf' o
T S R PR LR Z L (TR RGN G e L
PACS EE &> e i@ (F3F A ek Al fe ki sz 2 31~ 283 B aphl Hoira £ - H i mibn

e s
b7 e et AT R LG R kAR B ZRBEE2E RBAR L3258
Cross-CA it & TigerGrid 2 UniGrid 7 ik > 12 'J«*-’r SFEIECPU a4 24273

PR A % el A W?"H1&¥pvﬁ@Wﬂﬂ%CSHJ%dﬁ“ﬁP P RIGRE AR F Mk
iy ;fﬁ 13 #F Smart Broker 2o Grid KM % Workflow Engine szt ©

H R

ARV RERE - RV NEFARFTFRRATREY O RERET ,
L Y E - LR k- j‘i@:},%:%fgdéﬁ@ G T APE KT CFEEAR A
Frou R > o AP i * & 48 Grid Computing and Cloud Computing Ho e 3 2 s € 1 >
% i# @%] P B R AR kAo AR E Y BB R BATEEE R ER Y ‘[5‘
- BAAI R 2O FRBAREG AT oo REPEY - BRSSP RAG o &
RERFF- BEFRMBABI ML AER RF ARG LS PR LA
MR F AT RIS LRSI LRE B RERTV L ARHAAR ST Y
BEREDEH
gy b ﬁv%ﬁﬁpﬁgk AIEFT G A FT
Wirenfeled R - B LB - 24
F % Bl ke AJEAT Y TR A R B HE
GhE ks F - TS E W E o A3 T
ﬁgP%aofﬁ’g@meﬁgmtm,?y
o A KT UBFBE G WL 4 ko
SRR im K < S o 57:) ﬁP?‘ﬁL’iﬁ“" BB E 3 > 47582 8 ~ Data Grid £ Grid
B

a4 ﬁﬁ%ﬁ@%ﬁﬁ?ﬁﬂi#?fﬁgf ifﬁ-”
g’iﬁ’ ?»Iw Y "t’ E Rt
é"ﬂ‘f-ﬁi‘ ¥ B AR 0L 0B AT Pgr),%j;?‘,
CIERREREF LT ERES

BIP T 0 6 B § hBcpem g i

N

7

BL

r

®
?

~

du 0 N

—
<

|

7

=)

A 2
WL =
T e

>
.x

Service 3+ % ~ A F Ry m'p“;m#ﬂ AL 5 chg &.&%i*—rﬁ?ﬁﬂqj s T LTS RV b
T o R RA B % @ ? LF A E cfREEA T o2 TGRSR
B T i FoR R LGk Mﬁ::é; Demo % 44

B* ET‘HF':EP?‘}*J: ﬁ\ *+3 J TR AT kmg}%g:f REG PN GRE kAo gl R CRERL]
mmem;mﬁpim SRR F B F AR 0 BB EF IR IE S L g
SR ICRES IR 8 S R g “Aﬁﬁxﬂrfﬁé IHF > B2 B EH G o FF XML
ﬁPE”ﬁ?Z*‘*ﬁ, ?;}ix——ﬁi %ﬁrui L R - B G R B R FR GG L T

QU

!
-

e

APEFEATE (AR GEP R ERB AP S L E FRRITL PR
BRI Y B BT R TR ki F R RS LT 5 AR BRI 2
BB PACS AR H § M AR ARG (R 1 A v i EREAAREER
PRESER o HAHATE T S8R A A R EAPMBTE L R BARTR
AL AGEERES G e 4 o G ipE B o

T L AEETVRELAR

;}g_;ﬁ;ggﬂrgj—;i}:@“_:.gt-jg»scéfg_\jq&c:ﬁ.s“vu %’T‘J jﬁ%t;}l-}‘; /Jﬁi‘iﬁ

2008 £ W HH g FRG- K S FARE A B LA £HE 0 3+ 1029 &
k2R EAS BIRRA DR F O WET - ARy A Eé R
7% ,%‘L,_ Ltf-ﬁ’?pi J_m)ép «ffr_ kA fip 54 Lé_r-r" léﬁ."%l/i L %gﬁgmag&,g
FEER B FRBAFBAERENTE {%Q’E%Fé‘*ﬁ;mm%%w’?%#*?%mn
Tohi R R AR R LD EE R TR TR o e 78 E (Tele-homecare) |
R I ﬁmwamﬂﬁ,@ﬁ&%%%ﬁﬁﬁfEﬂ\ﬁﬁ%ﬁ%%kﬁ%ﬁ
WEEGEPRTE > T B G R BAR TR o I f A ehp 1R L R i

%“mﬂ@?&W%F’%mP%mF"‘ﬁinw A¥XAd o, T S PR g
]_—3«1*}%%—1 °

@ 2 EAE S A S ﬁ%ﬂﬁ#*éii“iﬁﬂrﬁﬁéiﬁ%%ﬁi
R 2 KR F"’?{%‘Lﬁ"?%%%l B IR BT RE S Y BEE RE D
ﬁ%up%&%.@? Bl £ &\Lﬁiiuﬁﬁ ;@?%ﬁ\éﬁ?m~é

\v

BV e Bix] TR FRGEIRITE & (home healthcare provider) z’v’ﬂ? BB REG o T 0F
@—ﬁﬁ?ﬁ% PELSAT o AoF A LG B ¥ o B RBEIRR K @G%*ﬁi
f}%ﬁ TiTiE- HBIs o Pg},%ﬁ e TR A Mﬁ;ﬁFRj&#&%'ﬁm Eﬂ ‘f—le’é/’}L«’ﬁ‘?

5
Al A FYPPRERITFEAFEERERIE 277 28R FHY 285 5
CEEPHAEE S 2P PR BT S AR RN T S RS B R B REY afp
%’j%i%ﬁwwﬁyﬁﬁﬁjmﬁ#T’*ﬁﬁ&ﬁm’ﬂwb_ikmﬁyT’%
BRSSP ALER TR ERY ALAEI FBn A BT R E AR o
rIPF 2 LiFLEZ EiITPpa WE AR A > L £& hE PACS £ Grid 4p M &=
TR TN HE T ECEEA NG BT A AFZS%Ko e ANl
Cluster Computing Systems ¥ Grid Computing Environments #p i ‘S8 A o o Hp 3 d pt=x
B AF 2 ’m@»g%ﬁ@me SR ITAT I o 15 R O g 2 B FIRTE
fAp B A %a}iﬁﬁr’i‘
FEREGEEF ERFFERET 0% o EITRF RS BFF AR FEATE o
FEAPINCPBERF AL EE LR F T RIS F 2 16%(7 # $248) -
%% FREIBP P OFERNCPERT A2 EFHIMPREZ AFEEIFLT

o

4o \?m m

=

PEEE

-l
iy

=)
@

LEMIE LS R
()
SR
CiepE Rl YEE S AR fe B % 0 ¢ 3k 5L 0 098105346 0 ¢ #p # % 2000/2/19

(R 3%
Y 3P : September 9, 2009 (i 3 5 BAEY Fp)

EE

55 1 12/556,413

£ 4] & #:ANTICIPATIVE RECURSIVELY-ADJUSTING CO-ALLOCATION MECHANISM

Journal Papers

(1]

(2]

3]

(4]

(5]

Chao-Tung Yang®*, I-Hsien Yang, and Chun-Hsiang Chen, "RACAM: Design and
Implementation of a Recursively-Adjusting Co-Allocation Method with Efficient Replica
Selection in Data Grids," Concurrency and Computation: Practice and Experience, 2010.
(ISSN: 1532-0626, SCI JCR IF=1.791, El)

Chao-Tung Yang*, Yao-Chun Chi, Ming-Feng Yang, and Ching-Hsieh Hsu, "An
Anticipative Recursively-Adjusting Mechanism for Parallel File Transfer in Data Grids,"
Concurrency and Computation: Practice and Experience, 2010. (ISSN: 1532-0626, SCI JCR
IF=1.791, El)

Chao-Tung Yang*, Shih-Yu Wang, and William C. Chu, “A Dynamic Adjustment Strategy
for Parallel File Transfer in Co-Allocation Data Grids,” Journal of Supercomputing,
Springer Netherlands, 2010. (ISSN: 1573-0484, SCI JCR IF=0.615, El)

Chao-Tung Yang®*, Chun-Pin Fu, and Ching-Hsien Hsu, “File Replication Maintenance
and Consistency Management Services in Data Grids,” Journal of Supercomputing,
Springer Netherlands, 2010. (ISSN: 1573-0484, SCI JCR IF=0.615, El)

Chao-Tung Yang*, Chih-Hao Lin, Ming-Feng Yang, and Wen-Chung Chiang, “A Heuristic
QoS Measurement with Domain-based Network Information Model for Grid Computing
Environments”, International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC),
Volume 5, Number, 4, pp. 235-241, 2010. (ISSN Online: 1743-8233 - ISSN Print:
1743-8225, SCI JCR IF=0.66, El)

KRR AT ERP LT AR LFH S e T TR R e

PR SRR W TR AR EE 1
1Y 3Fn & R B2 TR s ik

http://www3.interscience.wiley.com/journal/123340553/abstract?CRETRY=1&SRETRY=0
http://www3.interscience.wiley.com/journal/123340553/abstract?CRETRY=1&SRETRY=0
http://www3.interscience.wiley.com/journal/123340553/abstract?CRETRY=1&SRETRY=0
http://www3.interscience.wiley.com/journal/123323926/abstract
http://www3.interscience.wiley.com/journal/123323926/abstract
http://www.springerlink.de/content/f237n156qw688527/?p=13fe82b7514a4040993fd702599bee92&pi=1
http://www.springerlink.de/content/f237n156qw688527/?p=13fe82b7514a4040993fd702599bee92&pi=1
http://www.springerlink.de/content/ph333037r07k2767/?p=13fe82b7514a4040993fd702599bee92&pi=0
http://www.springerlink.de/content/ph333037r07k2767/?p=13fe82b7514a4040993fd702599bee92&pi=0

Int. J. Ad Hoc and Ubiquitous Computing, Vol. 5, No. 4, 2010 235

A heuristic QoS measurement with domain-based
network information model for grid computing
environments

Chao-Tung Yang*, Chih-Hao Lin
and Ming-Feng Yang

Department of Computer Science,

Tunghai University,

Taichung 40704, Taiwan, ROC

E-mail: ctyang@thu.edu.tw

E-mail: ljerome86@gmail.com E-mail: orsonyang@gmail.com
*Corresponding author

Wen-Chung Chiang

Department of Information and Networking Technology,
Hsiuping Institute of Technology,

Taichung 41280, Taiwan, ROC

E-mail: wechiang@mail.hit.edu.tw

Abstract: Recently, Grid computing is more and more widespread. Therefore, there exists
a common issue, i.e., how to manage and monitor numerous resources of grid computing
environments. Mostly, we use Ganglia and Network Weather Service (NWS) to monitor
machines’ status and network-related information, respectively. But, information provided
by Ganglia and NWS is not sufficient in some scenarios owing to varied user requirements.
Therefore, we propose a heuristic Quality of Service (QoS) measurement constructed with
domain-based information model that provides more effective information to meet user
requirements. Furthermore, we expect that users could manage and monitor numerous resources
of grid environments more effectively and efficiently.

Keywords: grid computing; heuristic; QoS; quality of service; network information model.

Reference to this paper should be made as follows: Yang, C-T., Lin, C-H., Yang, M-F. and
Chiang, W-C. (2010) ‘A heuristic QoS measurement with domain-based network information
model for grid computing environments’, Int. J. Ad Hoc and Ubiquitous Computing, Vol. 5,
No. 4, pp.235-243.

Biographical notes: Chao-Tung Yang received his BS in Computer Science from Tunghai
University, Taichung, Taiwan, in 1990, and the MS in Computer Science from National Chiao
Tung University, Hsinchu, Taiwan, in 1992. He received the PhD in Computer Science from
National Chiao Tung University in July 1996. He is a Professor of Computer Science at Tunghai
University in Taichung, Taiwan. He got the excellent research award by Tunghai University in
2007. In 2007 and 2008, he got the Golden Penguin Award by Industrial Development Bureau,
Ministry of Economic Affairs, Taiwan. His present research interests are in grid and cluster
computing, parallel and multi-core computing, and web-based applications.

Chih-Hao Lin received his BS in Computer Science from Feng Chia University in 1999,
and his MS in Computer Science from the Tunghai University, Taiwan, in July 2009.
His research interests include grid computing, cloud computing, and parallel computing.

Ming-Feng Yang received his BS in Hsiuping Institute of Technology in 2004. He received his
MS in Department of Computer Science from Tunghai University in July 2009. He is a software
engineer at Hsiuping Institute of Technology. His research interests include grid computing,
cloud computing, and parallel computing.

Wen-Chung Chiang received his BS from the Department of Applied Mathematics in 1991, and
his PhD from the Department of Applied Mathematics of the National Chung-Hsing University
in 2002. He is an Assistant Professor of Department of Information and Networking Technology
of Hsiuping Institute of Technology. His current research interests include grid computing,
medical image processing and communication networks.

Copyright © 2010 Inderscience Enterprises Ltd.

236 C-T. Yang et al.

1 Introduction

As we known, Grid computing is increasingly used by
organisations to achieve high-performance computing and
heterogeneous resources sharing. All tasks executed in grid
environments will be influenced by network status owing
to complicated and numerous communications between
computing resources (Krauter et al., 2002; Krefting et al.,
2008). While we design algorithms for specific usages or
assign tasks into grid environments, we will evaluate the
influence of network-bandwidth-related information
and then adjust algorithms to match up real-time state
of network. The best-case scenario is that our grid
environments have some mechanism to provide network
state automatically. And then our applications or web
service agents could achieve higher performance owing to
dynamic parameters adjustment and algorithms
optimisation.

While grid computing becomes widespread gradually,
it brings about a common issue, i.e., how to manage
and monitor numerous resources of grid computing
environments. Mostly, we use Ganglia and NWS to monitor
machines’ status and network-related information,
respectively. But, information provided by Ganglia and
NWS is not sufficient in some scenarios owing to varied
user requirements.

According to the mechanism that we designed earlier,
we could retrieve both real-time and historical network
information in real-time manner; even advanced
customisation for special purpose is available. With the
customised shell scripts that we wrote for NWS service,
we could easily and quickly deploy NWS service to grid
nodes and fetch network-related information automatically
and regularly. And with the database we built, we could
obtain both historical information and some statistics from
our grid computing environments. Statistics is indeed
helpful in many fields, for example, job dispatching or
replicas selection.

Maybe the mechanism that we designed earlier is
helpful in most conditions, but it will not work efficiently
if grid environment changed frequently. We found some
inconveniences resulting from the technique that NWS
adopted make this mechanism inefficient. The service
provided by NWS will be affected if grid environment
changed and we have to re-deploy NWS service manually
and frequently. For network management, ‘manual’ is
equivalent to ‘inefficiency’.

A typical example is illustrated in Figure 1. If we have
registered an NWS clique into for grid nodes Al, A2,
A3 and A4 and the header is node Al, i.e., node Al
has stored network measurements between these nodes.
While hardware failure occurs to node Al, or node Al has
just forced to reboot owing to software updating operations,
the NWS clique fails, too. Network administrators have to
restart clique manually again and again. Besides, we would
not be notified if any nodes fail by default. Therefore,
we lead in a Network Management System (NMS) using
Simple Network Management Protocol (SNMP) technique
to co-work with NWS service to resolve this issue.

Figure 1 A typical NWS clique deployment in grid nodes
(see online version for colours)

Al(Header)

Ad

In this paper, we propose a heuristic QoS measurement
constructed with domain-based information model that
provides more effective information to meet user
requirements. Furthermore, we hope that users could
manage and monitor numerous resources of grid
environments more effectively and efficiently.

2 Backgrounds
2.1 Machine information provider

The Ganglia (http://ganglia.info/) is an open-source project
grew out of the University of California, Berkeley’s
Millennium initiative. This project was a scalable
distributed system for monitoring status of nodes (processor
collections) in wide-area systems based on Grid or clusters.
It adopts a hierarchical, tree-like communication structure
among its components to accommodate information from
large arbitrary collections of multiple Grid or clusters.
The information collected by the Ganglia monitor includes
hardware and system information, such as processor type,
CPU load, memory usage, disk usage, operating system
information, and other static/dynamic scheduler-specific
details. It also provides a web portal for users to observe all
machines via web interface. Our grid environments are
currently overseen by the Ganglia (as shown in Figures 2
and 3).

Figure 2 Multi-grid resource broker with Ganglia web portal
(see online version for colours)

‘& Grid Basource Brober Portal - Windows intermat Fxplorer 2K

OB wmmms soany :

S TS - Pt et Pkt e

Mulll-Glld Resource Broker

et

. Tiger Corill Roguait fuv Thin 18 Jaa 2009 LV.0401 0000 o

AARPFETET les b 5 e ey

habsi Gl » Tiger Gt

LT e ——

A heuristic QoS measurement with domain-based network information model 237

Figure 3 Multi-grid has integrated clusters and grids
environments into a single Ganglia web portal
(see online version for colours)

R T R T =%
G0 wmanw Y a

e .
el b L] 3 P

—— e ey By mar Doy B ey lens
- .= - 1 B Py
Hionjoee Bimam @i @ ooy bramin |] bote v m——y
Saaprheot of e Ml Ored | |l
LA B Toge Made ol Dlavinr

TR T ST T U S T T ST T YT
L] W e NORLT

As shown in Figure 3, we could oversee several clusters
or grids environments via web portal provided by Ganglia.

2.2 Network information provider

The NWS (http://nws.cs.ucsb.edu/ewiki/) (Wolski et al.,
1999) is a distributed system that detects computational
resource and network status by periodic monitors and
dynamic forecasts over a given time interval. The service
operates a distributed set of performance sensors (network
monitors, CPU monitors, etc.) from which it gathers system
condition information. It then uses numerical models to
generate forecasts of what the conditions will be for a given
time period. The NWS system includes sensors for
end-to-end TCP/IP performance (bandwidth and latency),
available CPU percentage and available non-paged memory.
The sensor interface, however, allows new internal sensors
to be configured into the system. Some functions provided
by NWS have overlapped with Ganglia; therefore, we
primarily use NWS for end-to-end TCP/IP measurements.
As Wolski et al. (1999) mentioned, NWS was designed
to maximise four possible conflicting functional
characteristics. It must meet these goals despite the highly
dynamic execution environment and evolving software
infrastructure provided by shared meta-computing systems.

e predictive accuracy
® non-intrusiveness

e execution longevity
e ubiquity.

So, we choose NWS as primary tool for end-to-end TCP/IP
measurements and we have excellent work in previous
project. Except Ganglia, we also successfully deployed
NWS service into our clusters and grids environments and
then monitor network status via integrated web portal
(as shown in Figures 4 and 5).

Figure 4 NWS service integrated with Ganglia web portal
(see online version for colours)

Gl Risource Broker Portsl - Windows Internet Explerer
o.-8 o418 1L 50 s S

il [8-

Hedwmith Fiew alphs last baur Walwmth Flow bata fast hewr

Wt pre r——
£

¥

rRRRRR
[

Tl 11

WEECER

Figure 5 Network statistics produced by NWS measurements
demonstrated in web portal (see online version for
colours)

last hour -

Network Flow: alpha

-g 1 k‘t P — I ; ¥ 1 - ? ! ! — t =

o [1 [i

o

L

n

Tl :

4 ;

=9 T - —

e —— —

12:30 12:40 12:50 13:00 13:10 13:20 13:30

Now Average Max

B alpha <--> alpha 511.23 Mb 700.14 Mb 920.99 Mb

B alpha <--> beta 491.74 Mb 317.57 b 696.00 Mb

0 alpha <--> gamma 585.92 b 365.00 b 692.91 Ib

0 alpha <--> delta 309.69 Mb 290.40 Mb 667.32 Mb

O alpha <--> m 352.39 b 283.80 Mb 631.39 b

B alpha <--> hit 50.12 b 41.81 b 69.00 Mb

2.3 Quality of Service

Quality of Service is the ability to provide different service
priority to different applications, users, or data flows, or to
guarantee a certain level of performance to a data flow.
It was widespread adopted in the field of computing
networking, and we use it as a quality measurement of grid
environments.

Quality of Service sometimes refers to the level
of QoS, i.e., the guaranteed service quality. High QoS
is an expectable crucial factor of highly reliable and
high-performance grid environments.

Some characteristics, like ‘Availability’, ‘Accessibility’
or ‘Maintainability’, will also influence user experiences
about the services provided by our system or services.
To meet user requirements in diverse scenarios with
sufficient quality, we are expected to have the ability to
evaluate our performance in advance or in real-time manner.
If not, how could we guarantee a certain level of QoS?
Some researchers have proposed network performance

238 C-T. Yang et al.

evaluation model (Que et al., 2008) to aided network
administrators to effectively analyse network performance
and then adjust network devices properly. For us,
we investigate how to propose a heuristic QoS measurement
that could provide wvarious, specific combinations of
information from our grid environments.

2.4 Network management system

In our previous project, we have constructed a web portal
composed of Ganglia and NWS service for overseeing grid
environments. As time goes on, we find that it is inefficient
to manage these resources passively. We had better made
use of NMS, which could help us to manage and monitor
numerous resources of grid environments actively. NMS is
a combination of hardware and software used to monitor
and administer a network. The primary communication
mechanism between NMS and network devices and
grid nodes is based on SNMP. Then, we chose NINO
(http://nino.sourceforge.net/nino/index.html) as shown in
Figure 6 for ourgrid computing environments before long.
NINO is not the most powerful NMS, but we choose it
owing to some proper features to for our need.

For device and network discovery:
e Network discovery: NINO is able to discover network.

e [P address or default gateway and an optional alternate
community string, and NINO will scan all devices and
store it in the database. NINO uses the routing table
of each router to scan the network.

e Scan IP range: NINO is able to scan network for
SNMP capable devices. Just enter a range, start [P
address, end IP address and an optional alternate
community string, and NINO will scan all devices
and store it in the database.

e Network info: NINO is also able to look inside
a router, find routing tables and scan all attached
networks. All network info per device will be stored
into the database. In the device view, also the current
routing table can be displayed, showing routing
protocol, age, next hop, metric, etc.

For monitoring:

e Monitoring: NINO can monitor servers, routers,
switches and applications.

e Events: NINO can send and receive SNMP traps.
Traps are stored in the event log. Event actions can be
defined to send e-mail alerts, escalation traps or
command line scripts. NINO also has a trap-forwarding
functionality to integrate NINO into larger networks.
Traps can be forwarded per event or using source filters
(i.e., forward all traps coming from: 10.1.1.%).

e Monitoring presets and preset groups: NINO uses
monitoring presets to monitor devices. Presets can be
stored in a preset group, i.e., all Windows presets
(CPU, Disk, memory, network statistics) are grouped

in a Windows preset group. Monitoring presets can use
SNMP, WMI or Service Response to monitor a device.
It is possible to create customised monitoring presets.
Default presets are available for Cisco routers or
switches, Windows, Linux and hosts using the standard
Host Resources MIB.

For administration and diagnostics:

e Database: Browse SQL table content and edit rows.
The import/export utility can be used to import/export
SQL tables from/to a tab-delimited file.

After evaluation, we believe that we could integrate
NINO with our previous work and help us to manage grid
environments more actively. Meanwhile, we are working
on integration of Ganglia, NWS and NINO.

Figure 6 NINO’s screenshot — the device browser, with severity
status, monitoring drill down and plug-ins (see online
version for colours)

W = O
101112160 SN 53 B ams 312 - Router

> 101110 s 10
S0) SE
ems3n12
5

fpm 5313
fpmsan14

3 Heuristic QoS measurement

In our previous project, we have built an integrated grid
environment including a web portal composed of Ganglia
and NWS service. Afterwards, we start another project
about Picture Archive and Communication System (PACS)
(Yang et al.,, 2008a) and most experiments were done
in the same platform. The primary mission in this project
is to exchange medical images efficiently with specific
application developed by our team. The application, named
‘Cyber’ (Yang et al., 2008b), has successfully integrated
eight algorithms. For exchanging medical images efficiently
with these algorithms integrated in Cyber, we have to
configure a lot of parameters before tasks submitted.
Unfortunately, we have no idea what is best combination
of parameters we should take in advance. Therefore,
we adopt “try and error method” unavoidably. But, it is
definitely not practical for most conditions. For this
reason, we expect to establish an automation of parameters

A heuristic QoS measurement with domain-based network information model 239

self-optimisation. To guarantee a degree of QoS, we regard
user requirements as constraints of tasks. With these
constraints and heuristic QoS measurements we proposed
in this paper, we could provide more QoS to meet user
requirements.

3.1 Domain-based network information model

In this paper, we adopt Domain-based Network Information
Model (Yang et al., 2005, 2007a, 2007b) for NWS services
deployment. The Domain-based Network Information
Model is designed for solving a complete point-to-point
bandwidth measurement problem. After investigating
by experiments in physical environments, we can be sure
that Domain-based Network Information Model is helpful
for reducing network measurements. The measurement
model and design of Domain-based Network Information
Model are shown as Figures 7 and 8.

Figure 7 The domain-based network measurement model
L 0D Domain

4
Left Domain [

¥

{

| \
i s .
t

Figure 8 The design of domain-based network information
model (see online version for colours)

(7 Domm-buod Network rnformﬂon M

For example, assume a Grid with » nodes. Each node
measures the links between itself and all other nodes every
T seconds (e.g., 7= 1~3 s) for a total of NMN (n) network
measurements.

NMN(n)=nx (n-1). (1

In large-scale Grid environments, the number of network
measurements grows quickly. UniGrid and TigerGrid with,
respectively, 96 and 46 nodes generate NMN(96) = 9120
and NMN(46) = 2070 measurements. Thus, network traffic
will be very heavy, particularly when underlying Grid
intra-traffic is originally busy.

Our previous work (Yang et al.,, 2007c) used the
domain-based network information model shown in
Figure 9. Figure 10 shows four sites, each containing
four nodes. The sites each have a head node, e.g., Al, BI,
C1 and DI, are, respectively, the head nodes of sites
A, B, C and D. Each head node in this model periodically
measures the links between itself and the other three
head nodes. Each head node also periodically measures
the links between itself and all other nodes in its site.
Hence, using the domain-based network information
model, the measurement number will be dramatically
reduced to

NMS(n, [1,]) = NMN(n) + > NMN(#,))

where n; is the total number of nodes in site i. In UniGrid
and TigerGrid, the numbers of network measurements will
be decreased to NMS(31, [4, 8, 8,5,8,5,7,2,1,1,3, 1, 4,
1,3,1,1,4,8,1,1,1,1,2,2,1,4,1, 2,4, 1]) = 1316 and

NMS(12, [4, 4, 4, 4, 8, 2, 3, 4, 4, 4, 4, 1])=292,
respectively. The reduction rate R is defined as:
_ NMN(n) — NMS(n, [1;]) 3)

NMN(n)

Compared with NMN(96) and NMN(46), the Rs are 86.01%
and 85.94%, respectively, which shows the obvious
efficiency of the model.

Figure 9 Previous design of domain-based network information
model (see online version for colours)

e e e e e e e s S S

Site B

______:_____h__,,

[

Even though this model can eliminate huge amounts
of measurement effort and bandwidth use, it lacks network
information between pairs of nodes belonging to different
sites (unless both are borders). For example, the link (target)
between nodes A2 and Bl shown in Figure 7 is not
measured.

In this model, it reduces a large number of connections,
but it lacks network information of nodes except head nodes
in two different sites. This model carries out an estimation

240 C-T. Yang et al.

model that provides network information of nodes in two
different sites, but one of the two nodes should be a head
node of site. For example, the link between Node A2
and B1 is not performed in this model, which is shown in
Figure 3.

The Domain-based Network Information Model reduced
the number of bandwidth measurement between all Grid
Nodes, but it lacks network information between two Nodes
other than the head Node located in two different sites other
than the head Node. For example, the bandwidth
measurement between Nodes A2 and B3 is not performed in
this model.

We further enhanced the static model by improving
the switching mechanism in the dynamic domain-based
network information model. Figure 10 shows an example.
The principal improvement is switching the site head node
to the next free node. For example, when node Al is busy,
the next free node, node A2, becomes the head node of site
A, and measures the bandwidth between itself and nodes
B3, C2 and D4, if they are the respective free nodes in sites
B, C and D. The purpose is to avoid having a busy node still
act as a border, which would decrease system performance.
There are three obvious advantages in using this model.

e first, the number of bandwidth measurements is the
same as that for a static model; the measurement
time complexity is not worsened

e second, bandwidth measurements between pairs
of arbitrary nodes belonging to different sites are
easily obtained

e finally, network bandwidth measurements obtain
real values instead of estimated values, thus enabling
the Resource Broker to effectively schedule jobs
allocated to multiple sites.

If we could dynamically change each header of all Grid
Nodes, we could obtain the advantages described earlier.
There is an issue derived from this requirement
consequently, i.e., how to choose headers dynamically
instead of manual operation. Hence, we regard Heuristic
QoS Measurement as a solution for this issue. After
integration with NINO, we expect to attain this goal as soon
as possible.

Figure 10 The design of domain-based network information
model (see online version for colours)

B R e =
" Dynamic Domain-Base Network Model

N

3.2 NWS deployment and flowchart

While deploying NWS services, we paid attention to
try to get rid of intruding existed services on each
grid nodes. In most cases, we deploy only one nameserver
and multiple sensors on each computing resources.
Besides, arbitrary ‘Persistence State’ may be set up in
different locations. In this paper, we simply designate one
nameserver, one memory server and one clique for a group
of grid nodes.

We regard several grid nodes as a group, and each group
has a header to deploy nameserver and memoryserver.
A simple NWS services deployment procedure that we used
is divided into three steps:

e clean all NWS process
e load NWS services
e register NWS clique.

And the standard procedure we wrote in shell scripts is
shown as Figure 11. Owing to the non-intrusiveness
characteristic of NWS, these shell scripts we wrote could be
executed without root privilege.

Figure 12 has shown a simple flowchart we used.
In this paper, we have edited crontab to schedule some
routines for loading NWS information into database
automatically and backing up raw data as plain text files
locally.

Figure 11 Procedure of NWS services deployment

Clean all NWS Load NWS ' register NWS
processes services clique

Figure 12 The flowchart of gathering network information
(see online version for colours)
Edit routines in crontab
1. to load NWS info into database
2. to backup raw data

l

Load NWS info into database
(Routine 1st.)

Applications Qver Gridl

l consult database for
Get Host group from specific information
database
1) RDBMS
Extract bandwidth and
(MySQL)

latency from NWS clique

!

Load bandwidth and latency
information into database

While routines that we scheduled in crontab are invoked,
customised shell scripts that we wrote are executed.
The first step of the shell script is to get host groups from
database for NWS information gathering. Each host group is
pre-defined in database and will be assigned a clique for
measuring network status. After the clique is created,

A heuristic QoS measurement with domain-based network information model 241

it will measure network information in an equal time
interval, for example, 30 s. Then, the script will extract
bandwidth and latency from NWS clique, respectively.
If successes, it will load bandwidth and latency information
into database.

The second routine that we defined to keep raw data as
plain text files locally is designed for future use. Currently,
it just provides a different storage than database to keep raw
information of NWS services.

3.3 Heuristic approach

Statistics is helpful in many fields, especially for prediction.
In this paper, we gathered historical network information of
grid environments and stored it into database. Applications
could simply query database for network statistics with
aggregative functions provided by RDBMS, like Max (),
Min (), AVG () and so on. After analysing these statistics,
applications can dynamically adjust their parameters about
network for better performance without sending request
to estimate network status between all grid nodes in
real-time manner.

Besides, we have planned an innovative method
to obtain real-time network state that worked with
Dynamic Domain-based Network Information Model,
i.e., dynamically deploying clique into dedicated node,
measuring network state, and then reporting results to
database, users, or applications. The enhanced version of
shell scripts that support Dynamic Domain-based Network
Information Model is currently under development.

We have designed a simple model for integration
of Ganglia, NWS and NINO (as shown in Figure 13).
Ganglia and NINO provide UI for users to manage and
monitor grid environments. NWS and Ganglia collect
related information from hosts and network regularly.
And ‘Smart Broker’ provides parameters to applications
like Cyber.

Figure 13 Integration of Ganglia, NWS and NINO
(see online version for colours)

-Gang]ia l-j—

s

‘ NINO l-hl-- Presentation Layer
N —
————

Smart
Evaluation Layer [*— Broker
N ——

-

Information Collection

NWS j:: Layer

Smart Broker is the key component for QoS measurement.
Original version of Cyber provides users an interface for
tuning up parameters, which is shown as Figure 14. Smart
Broker will help us to achieve automation of parameters
self-optimisation in diverse scenarios. Smart Broker works
as evaluation layer between applications and information
collection layer. We have pre-defined four task types that
perform QoS measurement in various ways.

e download
upload

e computational

e hybrid.

For example, Cyber is a typical application for ‘Download’
tasks. The QoS measurement we designed is to calculate the
formula as follows:

E(QoS)= arx RM +(1—) x HM. (4)

E(QoS) is expected value of QoS and RM is real-time
bandwidth measurement between nodes. HM is historical
statistics. ¢ is the constant between real-time measurement
and historical statistics. In the initial stage, we may set & to
0.5. With more and more tasks submitted, Smart Broker will
adjust a dynamically. ¢ is not always the same in different
grid environments. We just try to use « to predict QoS in
diverse grid environments more effectively.

Figure 14 Strategy selection — Ul provided by Cyber
for parameters input (see online version for colours)

Strategy Selection

. 9] allocaton by host?
Pautition sze (KB) 1024

Fux Block Size (KB) 1024

CrJ 10
MEM 10
FPartibion sze (KE) 1024 NET 20
100
First transfer size (KE) 1024
Partition percentage (%) 10 Alpha 09
First transfer size (KB) 1024 Alpha 09

Partition percentage (%) 10 Multi-Part Set 64 =

Replica Server

Address grid 186 hatedu tw/RLS Adduress grid 186 hat ed . tw
Ueer hpclab
Password CITITTTITITY]

Save & Close

4 Experimental environment and results

To verify the architect we proposed in the initial stage,
we do not deploy NWS services and RDBMS onto physical
environments. And we have built our test bed on virtualised
environments instead. We have created four virtual
machines and then installed Fedora 9 as default operation
system. After deploying NWS services with customised
scripts we wrote, we also built an open-source database
for experiment. In this paper, we chose MySql as default
RDBMS. Figure 15 shown here lists our experimental grid
nodes in the initial stage.

242 C-T. Yang et al.

Figure 15 Experimental grid nodes’ information (see online
version for colours)

phpial tsclendn £ Server: locathost » 1 Database: mwsem » [Tabie: th_hosts
@@@E Mbowse o8 Simucture BSOL Search Rilnsert [[ieepon [fimpon SOperations REmpty 3 Ovap
s W Ghowieg rows 0 - 8 (3 1otal, Quary 100k 0.0018 sec
Datatuse

[Prafiing [£cit] [Explain SQL] [Create PHP Code | | Refresh |

B th geoup [CShow: |30 | rewis) starting feom recond @ 0

Bt e
" in sonzoral] mode and repeat haaders after 100 | cels
g :v:e‘;: Sert by k| Noaa >
W gid o ipw it s Bescription Sepes wnabled e
o/ x] 0 163177541 gridhal HIT Compaiter Canter N
o, x 1 0 163177542 grdhitl HIT Computer Center N
o #fx 2 0 163177543 gridhit2 HIT Computer Center N
o#sx 3 0 163177544 gridhitd HIT Computer Center N
o s, x 4 1 140128102187 gemeal HPCLAD Gangla Host N
o &= 5 2 19216875129 ModeA NodeAhpccomitw, (hitpd mag Y
o £ x & 2 19216875130 MNodel Nodefhpccomtw ¥
O x 7 2 19216875131 NodeC NodeChpccomtw ¥
O #x L 2 19216875132 MNodeD NodeD hpccomtw ¥

1 CheckAN/Uncheck Al Wishsaiectet # X [
[(Shew:)30 |rowis) starting trom record # 0
in honzontal] erocte anct repast hascders attee 100 | coly

Figures 16 and 17 shown here demonstrate raw data and
bandwidth information that we gathered with NWS services
and loaded into database with our customised scripts.
In this paper, we schedule a routine to extract and load
network information into database every 5 min. Owing to
Domain-based Network Information Model, overheads
of measurement have been highly reduced and it would not
take lots of time to load data into databases.

Figure 16 Raw data gathered from NWS services (see online
version for colours)

gl el £ Seever:localhost » (1 Database: ruwsen . [Viewe viow_fiw,_data
@ Ml Browse gsnnﬂulf SsoL Search _$ilnsert [Beport JE0rep
o \"shswfc'cnso * fpaery tock 00285 sec)
------ 5 -
s (6} [Proling [Esit] [Explain SQL) | Create FHF Code | [Redresh)|
B 1 e
e [(Show. |30 o) starting from record # 0
=t ltany 0 henzot] mode and repeat headers after 100 cells
D) v o Jnt
D + Opic
timestamp hostl host? bandwidth Latency
[0 # ¥ 1224308983 nodeb nodea 228001 0502
O / ¥ 1234309014 noded nedes 211684 0601
O # X 1224309045 nodet nodes 116651 0656
[0 # ¥ 1224309076 noded nodea 136587 0666
O /4 X 12309107 ncded nodes 237557 0369
O & X 1224309138 nodet nodes 225622 0384
O 4 ¥ 1224309169 nodedb nodea 225986 0466
O/ ¥ 1224309200 noded nodes 14953 03
O # X 1224309231 noded nodes 162394 0415
0O /4 ¥ 1224300262 nodeb nodes 83602 052
O /4 X 124309293 ncded nodes 154078 0426
[0 # ¥ 1234309324 noded nodes 146408 0473
[4 % 1224309355 nodeb nodes 272499 0386

Figure 17 Bandwidth information between grid nodes
(see online version for colours)

Pl el 0 Server: locaitost » § Databases swsm » (5 Tables th_bandwidth
TS MSeowse pSowuctwe SISO J Sewch Rilwet [EBport [impon $0Opestions Yempty JEOvop
2 EEDD] o Showing row 0 - 29 (768 totsl Query took 0.0057 sae)
Detsheny . [
e— o] [mmone g
s (6] - L
B B et P e
Hy Show. | 30 | rowis] scarting feom record # 30] (o] Fagerumber
ey E—] mode and repeat headers after 100 L
B v, o
B v e Sort by by None -
Options
tmestamp hostl host? bandwidth
O # ¥ 12417529 rodea noded 245343
O /4 ¥ 122407560 nodes nodet w79
O # X 1224437531 modes noded 213047
Oz x O modes moded o
[& X 1224427651 rodes noded 931488
0 7 X 1224427684 rodes noded 265496
[0 7 X 1124427715 rodes nodeb mo2
0 7 X 1228427746 rodes noded 219738
0O 7/ X 12427777 rodes nodeb 219528
[0 / X 1224477808 rodes noded a2
0O 7/ X 122447859 rodes nodeb 5599
O /4 X 13770 rodes nodeb 674412

Figures 18 and 19 shown here demonstrate a simple web
portal prototype for users to query bandwidth between host
pairs and rank of grid nodes. Certainly, we could also

provide more functions for variety of purposes.
For example, a formula given by the MSRA Algorithm
(Yang and Chen, 2008) to compute total performance power
of the site or site pair is shown as follows:

TP = fxY.CP+(1- f)x NP)

where CP is the computing performance power of site of
site pair, NP is the network performance power of a set
of links that among sites in a site pair, and /3 is the effect
ratio used to regulate the percentage of CP and NP. If NP is
estimated imprecisely, 7P will be computed imprecisely,
too. To provide more accurate network information, we pay
close attention to both historical and dynamic network
information.

Figure 18 Web portal prototype for users to query bandwidth
between grid nodes (see online version for colours)

| @ THU CSIE HPCLab, NWS Monitor - Mazilla Firefox ISE) % |
MEE SNE wE) e RO IAD BN
e ' Bl ocalhost . Bl T T

0 EENEAR i RN < Engadget O Crave home | 1111 | ACM 1 Gmail @ CodeGear 8 iGoogle @ PChomed® EIRt »

Source Node8 »| Destination ModeD|x] [Query 2

nodeb noded 315.159669 0.39610000

ot
A

Figure 19 Grid nodes bandwidth rank (see online version
for colours)

[@ THUCSIE HPCLab, NWS Monitor - Morilla Firefox =0 |
RED EME WAV E2E EEE IR0 REH
- G &~ localhast -] G P

O ESEN & RRRNEL - Engadget O Crave home | 1111 | ACM M Gmadl 3 CodeGear § iGoogle @ PChomed i »

[Host1 [osta]
nodeb nodec 31930961382 116327271
b nodeancdec 30062483128 185422860
, nodecnodeb 25152583362 (0.34389285
nodea nodeb 569675073 112235236
nodeb noded 315159669 039610000
nadec noded 186714249 065676471
nodea noded 147507655 194455838
nodeb nodea 140TTTIS 152

nodec nodea 1366653 71268642
noded nodeb 135155843 137699999
noded nodea 133411938 193535961
noded nodec 127686475 27.10165006

Historical network information is available with
current work and dynamical network information
measurement via web portal is under development. We are
dedicated to rewrite a couple of shell scripts to
measure network information dynamically without
root privilege of grid nodes.

A heuristic QoS measurement with domain-based network information model 243

5 Conclusions and future work

In this paper, we use Domain-based Network Information
Model for experiments, but it is not a proper model for
dynamic grid environments. If any grid nodes that cause
hardware failure or just have been reassigned to another IP,
we have to manually reconstruct NWS cliques. This has
already mentioned as drawback of NWS (Legrand and
Quinson, 2004). In large-scale grid environments, it is a
complicated task to manage these cliques and hosts’
relations. Our future work will be adopting Dynamic
Domain-based Network Information Model for next
deployment so as to reduce overheads come from
complicated management tasks.

Besides, we defined a standard operation procedure for
managing grid nodes semi-automatically. And, we could
simply manage grid nodes via web portal instead of writing
shell scripts. To guarantee a certain degree of QoS, we
also proposed a heuristic method to predict QoS from
diverse grid environments for Download-oriented tasks.
Furthermore, we expect that users could manage and
monitor numerous resources of grid environments more
effectively and efficiently.

Acknowledgement

This work is supported in part by the National Science
Council, Taiwan ROC, under grants no. NSC 96-2221-E-
029-019-MY3, NSC 97-2622-E-029-003-CC2 and NSC
98-2622-E-029-001-CC2.

References

Krauter, K., Buyya, R. and Maheswaran, M. (2002) ‘A taxonomy
and survey of grid resource management systems for
distributed computing’, Softw. Pract. Exper., Vol. 32, No. 2,
pp-135-164.

Krefting, D., Vossberg, M. and Tolxdorff, T. (2008) ‘Simplified
grid implementation of medical image processing
algorithms using a Workflow management system’, in
Olabarriaga, S.D., Lingrand, D. and Montagnat, J. (Eds.):
Medical Imaging on Grids: Achievements and Perspectives,
MICCAI-Grid Workshop, 6 September, New York,
NY, http://www.i3s.unice.fr/~johan/MICCAI-Grid08/pdf/
kreftingMICCAIG.pdf

Legrand, A. and Quinson, M. (2004) ‘Automatic deployment of
the network weather service using the effective network
view’, Paper presented at the Parallel and Distributed
Processing Symposium, Proceedings, 18th International,
Santa Fe, New Mexico.

Que, W-K., Zhang, G-Q. and Wei, Z-H. (2008) ‘Model for
IP network synthetical performance evaluation’, Computer
Engineering, Vol. 34, No. 8, pp.99-101, ISSN:1000-3428
(2008)08-0099-03.

Wolski, R., Spring, N.T. and Hayes, J. (1999) ‘The network
weather service: a distributed resource performance
forecasting service for metacomputing’, Future Generation
Computer Systems, Vol. 15, Nos. 5, 6, pp.757-768.

Yang, C-T. and Chen, S-Y. (2008) ‘A multi-site resource
allocation strategy in computational grids’, Advances in Grid
and Pervasive Computing, 25-28 May, Kunming, China,
pp-199-210.

Yang, C-T., Chen, C-H., Yang, M-F. and Chiang, W-C. (2008a)
‘MIFAS: medical image file accessing system in co-allocation

data grids’, [EEE Asia-Pacific Services Computing
Conference, December, Ilan, Taiwan, pp.769-774.
Yang, C-T., Yang, M-F. and Chiang, W-C. (2008b)

‘Implementation of a cyber transformer for parallel download
in co-allocation data grid environments’, in Shenzhen, G.D.
(Ed.): Proceedings of the 7th International Conference
on Grid and Cooperative Computing (GCC2008) and
Second EchoGRID Conference, 24-26 October, China,
pp-242-253.

Yang, C-T., Shih, P-C., Lin, C-F. and Chen, S-Y. (2007a)
‘A resource broker with an efficient network information
model on grid environments’, The Journal of
Supercomputing, Vol. 40, No. 3, pp.249-267.

Yang, C-T., Chen, S-Y. and Chen, T-T. (2007b) ‘A grid resource
broker with network bandwidth-aware job scheduling for
computational grids’, Advances in Grid and Pervasive
Computing, Paris, France, pp.1-12.

Yang, C-T., Chen, T-T. and Tung, H-Y. (2007c) ‘A dynamic
domain-based network information model for computational
grids’, Paper Presented at the Future Generation
Communication and Networking (FGCN), Jeju-Island, Korea,
Vol. 1, pp.575-578.

Yang, C-T., Shih, P-C., Chen, S-Y. and Shih, W-C. (2005)
‘An efficient network information model using NWS for
grid computing environments’, Grid and Cooperative
Computing — GCC 2005, Vol. 3795, pp.287-299.

Websites

Ganglia: http://ganglia.info/
Network ~ Weather
ewiki/

Service (NWS): http://nws.cs.ucsb.edu/

NINO: http://nino.sourceforge.net/nino/index.html

J Supercomput
DOI 10.1007/s11227-009-0302-9

File replication, maintenance, and consistency
management services in data grids

Chao-Tung Yang - Chun-Pin Fu - Ching-Hsien Hsu

© Springer Science+Business Media, LLC 2009

Abstract Data replication and consistency refer to the same data being stored in dis-
tributed sites, and kept consistent when one or more copies are modified. A good file
maintenance and consistency strategy can reduce file access times and access laten-
cies, and increase download speeds, thus reducing overall computing times. In this
paper, we propose dynamic services for replicating and maintaining data in grid envi-
ronments, and directing replicas to appropriate locations for use. To address a prob-
lem with the Bandwidth Hierarchy-based Replication (BHR) algorithm, a strategy
for maintaining replicas dynamically, we propose the Dynamic Maintenance Service
(DMS). We also propose a One-way Replica Consistency Service (ORCS) for data
grid environments, a positive approach to resolving consistency maintenance issues
we hope will strike a balance between improving data access performance and replica
consistency. Experimental results show that our services are more efficient than other
strategies.

Keywords File replication - Dynamic maintenance - Consistency management -
Data grids
1 Introduction

In recent years, many fields such as bioinformatics, climate transition, earthquake
simulation, space shuttle flight simulation, weather prediction, and high-energy

C.-T. Yang (X)) - C.-P. Fu
Department of Computer Science, Tunghai University, Taichung, 40704 Taiwan, ROC
e-mail: ctyang @thu.edu.tw

C.-P. Fu
e-mail: socollkimo@pchome.tw

C.-H. Hsu

Department of Computer Science and Information Engineering, Chung Hua University, Hsinchu,
30013 Taiwan, ROC

e-mail: chh@chu.edu.tw

Published online: 04 July 2009 &\ Springer

mailto:ctyang@thu.edu.tw
mailto:socollkimo@pchome.tw
mailto:chh@chu.edu.tw

C.-T. Yang et al.

physics in Europe [3] have come to require more and more computing power to
generate results. Those simulation results in turn produce terabytes, even petabytes
of data. Only computer centers with many supercomputers and storage devices are
sufficient to handle these data. However, data grid technologies, developed to solve
these kinds of problems, offer an effective alternative means of utilizing large-
scale computing power and storage capacities to compute and store data. Grids
[11, 12,20, 21, 27, 29-34] enable sharing of computing power and storage capacities
geographically distributed around the world such that they work together as tremen-
dous virtual computers [1, 2] on experiments and simulations. The Globus Toolkit
[13, 27] is open-source software for building data grid environments. It provides mid-
dleware for creating information infrastructures including resource management, data
management, communication, fault detection, security, and portability.

Data replication and consistency [5, 26] refer to the same data being stored in
distributed sites, and kept consistent when one or more copies are modified. A good
file maintenance and consistency strategy can reduce file access times and access
latencies, and increase download speeds, thus reducing overall computing times. And
if one storage site breaks, users can fetch desired data from another storage site, which
improves overall fault tolerance and contributes to making the entire grid environment
more stable and reliable. Another advantage of data grids is the ability grid users
have to download data in parallel from the better sites they choose or an application
chooses automatically after evaluating with a grid environment evaluation model. The
bandwidth utilization of those parallel links is the most important factor affecting
overall download speeds. Network environments vary, which means that replica sites
also vary in their ability to download data efficiently. Replica files should be kept
consistent and downloaded from storage sites nearest users to reduce download times
and ensure high performance.

This paper presents two services, the Dynamic Maintenance Service (DMS) for
maintaining files in data grid systems, and the One-way Replica Consistency Service
(ORCS) for keeping all copies of files consistent when one is modified. The DMS
automatically maintains data statuses such as access frequency, space available on
storage elements to which data will be replicated or migrated, and the network sta-
tuses of file source sites to other sites. The ORCS provides asynchronous data repli-
cation and replica consistency mechanisms that can reduce replica maintenance costs
and free up storage space for new data or temporary data produced by experiments
or simulations to avoid creating too many identical replicas. Users can easily find the
best replica sites for downloading desired data, thus increasing replica usage rates,
and improving storage device usage efficiency ratios over other strategies.

The contribution of this paper is to help make data grid environments more effi-
cient by using the DMS and ORCS algorithms. Using DMS adjusts data to locations
appropriate to the sites that request the data more often, thus reducing the times re-
quired by those sites to get needed data and improving performance. Using ORCS
improves accessing performance by keeping replica content consistent and improving
data grid storage device usage ratios. The DMS and ORCS algorithms also consider
storage element free space when storing new and temporary data produced while
computing. This decreases the probability of applications crashing or having to re-
submit jobs to other computing resources for processing. Our experimental results

@ Springer

File replication, maintenance, and consistency management services

show that DMS and ORCS are more efficient than other strategies, increase comput-
ing performance, and make storage element usage ratios more efficient.

The rest of this paper is organized as follows. In Sect. 2 we give background in-
formation on data grids, grid computing, some grid middleware, and previously pro-
posed related works on data replication strategies. In Sect. 3, we describe DMS and
ORCS system components, component details and data grid framework design and
algorithms. We also introduce the parameters and evaluation model that determine
when replica adjustment data should be sent to appropriate locations to keep them
consistent. In Sect. 4, we give experimental results and comparisons of the DMS and
ORCS algorithms with other strategies. Section 5 concludes the paper and indicates
areas for future work.

2 Related work
2.1 Replica management

Replica management involves creating and removing replicas at data grid sites
[28, 29]. Most often, these replicas are exact copies of original files, created only to
harness certain performance benefits. A replica manager typically maintains a replica
catalog containing replica site addresses and file instances. The replica management
service is responsible for managing replication of complete and partial copies of
datasets, defined as collections of files.

The replica management service is just one data grid environment component pro-
viding support for high-performance, data-intensive applications. A replica or loca-
tion is a subset of a collection stored on a particular physical storage system. There
may be multiple, possibly overlapping, subsets of collections stored on multiple stor-
age systems in a data grid. These grid storage systems may use a variety of underlying
storage technologies and data movement protocols independent of replica manage-
ment.

Many studies on data maintenance in data grids have been published. In [24, 29],
Ranganathan and Foster introduced six dynamic replication strategies, and compared
them using a simulator called PARSEC to measure average response times and total
bandwidth consumed by each strategy. The authors concluded that if grid users are
concerned about lower response times, the cascading strategy is the better choice. On
the other hand, if grid users consider bandwidth consumption to be the most important
issue, fast spread is the best choice among all six strategies. These strategies do not
consider whether there is enough free space to store temporary data and job results.
Data no longer popular will occupy space that could be used to store temporary data
and job results, which affects overall performance.

In [9, 16, 22, 23], the authors all mentioned an issue called the p-median problem:
“given a set of n client points, find a set of p server points for those client points
that minimizes the distance between each client point and its nearest server point”.
In grid environments, minimizing total distance minimizes total response time. In
[9, 16], and many other works, the authors indicate that the complexity class of the
p-median problem is NP-hard in two or more dimensions, which means that find-
ing p nodes to serve all nodes in a grid environment is also an NP-hard problem. In

@ Springer

C.-T. Yang et al.

[22, 23], Rashedur M. Rahman et al., proposed a static replica placement algorithm
for placing replicas in the best p candidate nodes to minimize the total response time
of each node using Lagrangian relaxation, which is a heuristic approach [10] to mea-
suring the response time of each client node to its nearest server node. The algorithm
is most likely the p-median problem. They also use user requests and network la-
tency as parameters in deciding when to maintain replicas dynamically. They use a
simulator called OptorSim [19], developed by the EU Data Grid project, to compare
their method, and called dynamic p-median, with static p-median and Best_client.
Static p-median replicates no files to other nodes in the data grid environment when
user requests or network latency change. Best_client replicates the desired data to
client nodes when request ratios for certain files in a node are very high. Simula-
tion results show average response times for the authors’ method are the lowest over
various network loadings and user requests. Although dynamic p-median is a good
method for dynamic replica maintenance, it can’t be used in real grid environments
since p-median is an NP-hard problem that consumes too much computing power
determining new replica locations.

In [20], Sang-Min Park et al. proposed a dynamic replica maintenance algorithm
called Bandwidth Hierarchy based Replication (BHR) that divides sites into many
regions putting sites close to one another in the same regions in the bandwidth hier-
archy. The BHR optimizer terminates replication if a replica duplicate already exists
in another site in the same region. In [4], Ruay-Shiung Chang and Jih-Sheng Chang
indicated that the BHR algorithm performs better than other strategies only when the
storage element capacity is small. We found the following problem in BHR: If a file
must be replicated in a region, BHR replicates it to one other site in the region. If an
attempt is made to replicate the same file to a third site in the same region, BHR will
see that there is already a duplicate file in the region and terminate. Thus, files will
have at most two copies in each region, which means only two links will be available
for parallel data downloading [1, 2, 30-34] in any one region. This limitation leads to
high time costs, thus reducing the effectiveness of an important grid computing fea-
ture and adversely affecting overall performance. Furthermore, the two-copy practice
will cause load imbalances on the sites where the copies are stored.

2.2 Replica consistency

Grid environment files modified by grid users raise the critical problem of maintain-
ing data consistency among the replicas distributed across various machines. Over the
past decade, considerable effort has been devoted to developing several consistency
models. These studies concentrated on trading off consistency for performance and
availability. The various consistency models developed include Strong, Weak, Con-
tinuous, Data-centric, Strict, Sequential, Eventual, Causal, FIFO, and Release. For
instance, the strong consistency approach keeps data consistent across all replicas
simultaneously, which requires many more resources and expensive protocols than
other consistency models. The converse of strong consistency is weak consistency,
which can tolerate inconsistencies for certain periods of time.

Many studies on replica consistency in data grid environments have been pub-
lished [2, 4,7, 8, 14, 15]. Data grid environments need consistency services to syn-
chronize them when replicas are modified by grid users. The European Data Grid

@ Springer

File replication, maintenance, and consistency management services

Project laid out a Replica Consistency Service in [7] that provides an interface for
grid users to update or add new files. It uses a “single master approach” in which
replicas modified by grid users are updated by the Replica Consistency Service. In [8]
Dirk Diillmann et al. proposed the high-level Grid Consistency Service (GCS), that
performs updating, file synchronization, consistency maintenance, and allows grid
users to choose dynamically adjusting the degree of replica consistency from entirely
synchronized to loosely synchronized.

In [15], Jiafu Hu et al. proposed an asynchronous model for avoiding replica in-
consistency in grid environments despite system failures and network traffic conges-
tion. They suggest that consistency concerns can be divided into data consistency and
metadata replica consistency. Their model is based on the work of the HEP commu-
nity, which established the Particle Physics Data Grid (PPDG) and the Grid Physics
Network (GriPhyN) projects. These projects used the Primary-copy (master—slave)
approach in which only one copy (the master) can be updated, and secondary copies
are updated by changes propagated from the master. There is one site that always has
all updates; consequently, the load on the primary copy can be large. A pilot project
called the Grid Data Management Pilot (GDMP) in the EDG adopted the Subscrip-
tion and Relatively Independent Sites method, which regards data consistency more
flexibly and local sites as independent.

Several replication and data consistency solutions are discussed in [7], includ-
ing Eager (Synchronous) replication and Lazy (Asynchronous) replication, Single-
Master and Multi-Master Models, and pull-based and push-based. In [14], Changqin
Huang et al. proposed differentiated replication in order to improve accessing perfor-
mance and replica availability. It is effective on performance, availability, and con-
sistency, but the maintenance consistency algorithm does not take storage capacity
into account. Replicas accessed only infrequently will consume free space on storage
devices.

In this paper, we propose the Dynamic Maintenance Service (DMS) which is in-
tended to address the issues discussed above and to correct the problem we pointed
out in [20]. We use request frequency and storage element free space as parameters
in determining when files should be adjusted. We also propose the One-way Replica
Consistency Service (ORCS), which puts emphasis on increasing storage device us-
age ratios. Our algorithm allows more than two replicas of the same data at one site,
thus increasing parallel download speeds and more fully utilizing data grid environ-
ment storage resources. Files with low access frequencies are automatically deleted,
freeing space on storage elements to store temporary data and job results, and in-
creasing storage element usage ratios.

3 System design and implementation

3.1 Software stack diagram

Software stack diagrams for each node and all sites in our data grid system are shown
in Figs. 1 and 2. The functions of the three layers, bottom, middle, and top, are de-

scribed below.

@ Springer

C.-T. Yang et al.

Fig. 1 The software stack

diagram of each node Bottom Layer - Node
Information Prowder Grid Middleware
(Ganglia) (NWS (Globus Toolkit)
(Linux OS (Fedora)
(Hardware)
Fig. 2 The software stack g ™
diagram of all sites, services, z Top Layer - Applications N
and portals (Applications D)
Services
(ARAM) (ORCS D
RSS DMS)

Records Monitoring Service
(Java CoG Kit) (MysSaL (Ganglia) (RRD Tool)
/
/ Middle Layer - Site

gdgdyd|gugg

Node Node Node Node Node Node Node Nodej

e Bottom Layer: shows the software installed on each node in the grid environment.
The major components of the Bottom Layer are the Information Provider and Grid
Middleware. The Information Provider consists of the Ganglia [35] and Network
Weather Service (NWS) [18]. Ganglia gathers machine information such as num-
bers of processors and how many cores each has, the loading on each processor,
total memory size and free space, and disk usage. The NWS gathers inter-node
network bandwidths and each link’s latency. The Grid Middleware consists of the
Globus Toolkit [27], which is used to join nodes to the grid environment.

e Middle Layer: This layer is the Site, consisting of several nodes usually located
in the same place or connected to the same switch or hub. Nodes in the Site are
connected to one another via the Internet. Sites are usually built up as clusters, but
each node has a real IP; the Site’s first node is called the head node.

e Top Layer: This layer holds Applications, Services, the Monitoring Service, and
Records [17]. Services consist of the Anticipative-Recursively-Adjusting Mecha-
nism, Replica Selection Service, One-way Replica Consistency Service, and Dy-
namic Maintenance Service. Services operate on information gathered from the
Monitoring Service and Records. Records can provide machine and file informa-
tion prior to downloading files or adjusting file locations. The Monitoring Service
provides a web front-end page for users to observe variations during job process-
ing.

Relations among the components described above are shown in Fig. 3. The four
services mentioned above are classified as User-side and System-side. The User-

@ Springer

File replication, maintenance, and consistency management services

JUSWUOIIAUD PLIS ©JEp JO 2IMOANIYdIe WAISAS ¢ *S1

JUsWUONAUT pUD Bl

L T

ang s|s eus as

L Ry e P e e e e e -.u.un.u-u--u-.u-un.u-.--un.u-.-.un.u-un-u%.u-u--.
Jajsuel]
‘cju} soly i 5«&50
) "ou| says
oS “oju] salld Adey 199D NS
maN AanD 159114 wEIIEW Adey 199 1 smeig sens Aeno d14pu9
"oju| eddey Aenp
Adey 199/ F
"oju| edndey Aent oju| ays Aend fidow BB 7 uoneso|e
P P "oju| eolday qor
o) eojday Asenp, oju| US| w:.u/? i
a0 o) oug ke __ rl/ 50 ol as00yD |

v\ 2ol VL=l o o apiadld
ano=-{ SOHO B ¢ ais YDA as SSY |« P WYY

D.nﬁ_mﬁ' ST eerm SN uonewou| |

A/\Oea Ewﬁo %O\.‘ Emﬁc EHO
S~ y v

Jsbeuepy JOJUOW 20195
eonday uonewou| Iajsuel] ejeq
ey 5Dy, %ﬂﬂ% yodsuell! seoany A

suoneolddy

J8s0 pUD

pringer

A's

C.-T. Yang et al.

side, which allows users to monitor application operations as the applications serve
their needs, includes the Anticipative-Recursively-Adjusting Mechanism (ARAM)
and Replica Selection Service (RSS). The System-side includes the Dynamic Main-
tenance Service (DMS) and One-way Replica Consistency Service (ORCS), which
automatically direct files to appropriate locations and keep them consistent. Func-
tional details of these services are described below.

e Replica Selection Service: gathers relevant information from the RLS and Infor-
mation Service to determine which sites are better for the ARAM to use for down-
loading files.

e Anticipative-Recursively-Adjusting Mechanism: enables users to download de-
sired data in parallel, dynamically adjusting download speeds according to net-
work bandwidths between server nodes and client nodes, and balancing file site
loadings.

e One-way Replica Consistency Service: keeps files consistent with duplicates stored
in distributed nodes. When one file in a node is updated, it will notify the other
nodes that have the same file to update to the newest version.

e Dynamic Maintenance Service: dynamically replicates, migrates, and deletes grid
environment files according to parameter variations. It reduces execution times,
promotes system stability, and improves storage device usage ratio efficiency.

3.2 ORCS and DMS operation

The DMS maintains replicas; the ORCS keeps file copies consistent. Figure 4 shows
general DMS and ORCS operation. Prior to file maintenance, the Information Service
and Replica Location Service store relevant information in the database for DMS
measurement using the cost model described below. The Information Service and
Replica Location Service functions are described below:

e Information Service [6]: periodically gathers statuses such as CPU idle ratio, mem-
ory usage, storage device free space, and network bandwidth, and records them in
real time in the Information Database (Info. DB) for the DMS to use.

e Replica Location Service (RLS): stores file information such as logical file name,
file size, file physical location, time of file creation or updating, and file access fre-
quency in the File Information Database (File Info. DB). Users can use the Replica
Location Service to search for desired files and the closest sites in the grid envi-
ronment where the files are stored.

Before the Replica Manager triggers the ORCS and DMS, it first queries the In-
formation Service and Replica Location Service, which then separately query the
Information Database and File Information Database to get all file and system status
information. If a Replica Manager determines some files need to be adjusted or kept
consistent, it directs the ORCS and DMS to make the necessary adjustments. After
all adjustments have been made, the ORCS and DMS query the Replica Location
Service to check the new statuses of all files in the grid environment. After checking,
the Replica Location Service records the new information in the File Information
Database.

@ Springer

File replication, maintenance, and consistency management services

pringer

A's

suonerado $OYO pue SNA ¥ S

WSWUONAUT pUS Bleq

uopewIo|

enp 9 uawishipy olweuid v Aanpy pJoday

80 ol 214 a0 o
™ SOdO oIS
Aienp g pue SINA uolewlou)
7
fenp ¢
Asnp e anp e |
$9ld Jo sauyoey Jo
uojeunop| 189 2 ._mmmcm_\,_ uonewlcu| 189 7

eolday

C.-T. Yang et al.

3.3 Parameters and evaluation model

In this subsection we introduce our affect parameters, define measurable parameters,
and present the evaluation models we use to measure the performance of the two
services described above.

3.3.1 Affect parameters

Because grid environments have many factors that affect performance, we calculated
how the following static and dynamic factors affect overall performance.

o Static Parameters: These factors do not change when the grid environment changes.
As Xuanhua Shi et al. indicated in [25], they include system site attributes such
as CPU type and frequency, each storage element’s hard disk capacity, memory
capacity, and network card transfer rate. In general, faster frequency CPUs, larger
memory and hard disk capacities, and network cards with faster transfer rates are
better choices for executing jobs. Since these cannot be major factors in measuring
grid environment performance due to the changeable nature of grid environments,
we focus on the dynamic factors.

e Dynamic Parameters: These factors change when the grid environment changes.
Job execution consumes computing power and uses memory space downloading
or uploading data, and storing computational results. Thus, CPU usage rate, mem-
ory space, bandwidth, and node free space may all change. Among these, network
bandwidth has the most important influence on performance. The NWS [18] mon-
itors and periodically forecasts the performance of various network and computa-
tional elements. Real-time requirements must be met to achieve high performance.
We use the NWS to measure network bandwidth, and the Linux commands “‘sar”
and “df” to measure CPU, memory, and hard disk free space.

3.3.2 Cost model

Before files are replicated, migrated, or deleted, their affect factors must be measured
to determine what operations are necessary. Below, we define our strategic parame-
ters.

o BWpan(i —j): LAN connection bandwidth between node i and node j in Mbit
BWwan (i — j): WAN connection bandwidth between site i and j in Mbit
F_size: File size for transfer in MB

T_trans(i — j): Time to transfer data from node i to node j

T_auth(i — j): Time for authenticating transfer of data file from node i to node j
T_replica_local(i — j): Time for local file replication from node i to node j
T_replica_remote(i — j): Time for remote file replication from node i to node j
F_space(i): Node i storage device free space

FA_Min: Minimum file access rate

FA_Max: Maximum file access rate

o: Adjustable parameter for checking whether the storage element free space is
sufficient for replication

@ Springer

File replication, maintenance, and consistency management services

P_choice(i): Permission to transfer data to site i

D_Replica(j): Check to determine whether the replica at node j needs deleting
N_AF: Replica access frequency

NA: Replica access time threshold

T: Access frequency threshold.

Files in local and remote sites with access frequencies less than FA_Min will be
deleted. The evaluation models are as follows: we assume that if file access frequency
is more than FA_Max or between FA_Max and FA_Min, the file should be replicated
or migrated. It is very important to check for sufficient free space at the destination
site before replicating or migrating. The measurement model for determining whether
there is enough free space to store generated temporary data and job execution results
is:

0, F_space(i) x o < F_size,
1, F_space(i) x a > F_size,

P_choice(i) = { (1)
where « is an adjustable parameter. Files are then replicated or migrated to appro-
priate locations. We measure the time required for local and remote site transfers as
follows.

e Local: For files replicated or migrated from node i to node j within the same site,
the time required for the server node to transfer files to the client node is

T_replica_local(i — j) = T_auth(i — j) + (F_size X 8)/BWian(i—j). (2)
e Remote: For files replicated or migrated from site i to site j, the time cost is
T_replica_remote(i — j) = T_auth(i — j) + (F_size X 8)/BWyan(i —j). (3)

File size and network bandwidth are the most important factors in replicating or
migrating files locally and remotely, and if i = j, we can assume that BWpan(i —j)
between site i and site j is co and that T_auth(i — j) is zero.

In measuring storage capacity, D_Replica(i) determines whether the replica of
node i should be deleted or not. When F_space(j) < F_size or N_AF < T is satis-
fied and the result of the D_Replica(j) is True, then the replica file will be deleted.
A D_Replica(j) result of False is opposite. The formula is as follows:

True — F_space(j) < F_size(i)
D_Replica(j) = NAF<T)
~repacaly) = Fulse — | F-space(i) > F_size(i) ~
WSC=IN_AF>T

When a destination node’s storage resource is not adequate for replication, then the
next nearest node with sufficient free space and appropriate performance is chosen.

3.4 The DMS and ORCS algorithms
3.4.1 DMS algorithm

The DMS algorithm shown in Fig. 5 consists of three parts, replication, migration,
and deletion.

@ Springer

C.-T. Yang et al.

Fig. 5 DMS replication

algorithm Check all file access rates

If (File i’s access rate is greater than FA_Max in site j) Then
{
Check site j storage device free space
If (Not enough free space) Then
Find an alternative site closest to site j
If (The same file exists intra-region) Then
Replicate file i to site j from intra-region file site
Else
Replicate file i to site j from best inter-region file site
Else
If (The same file exists intra-region) Then
Replicate file i to site j from intra-region file site
Else
Replicate file i to site j from best inter-region file site

}

If (File i’s access rate is greater than FA_Min in site j) and
(File i’s access rate is less than FA_Max in site j) Then
{
Find the nearest file site j that no longer needs file i
Check site j storage device free space
If (Not enough free space) Then
Find an alternative site closest to site j
Migrate file i to alternative site from file site
Else
Migrate file i to site j from file site

}

If (File i’s access rate is less than FA_Min in site j) Then

{
Check the File Info. DB for another site with the same file
If (A site with the file is found) Then
Delete file i in site j
Else
Keep file i
}

e Replication: If the access frequency for file i at site j exceeds the maximum access
rate FA_Max, the DMS first checks to see if the storage device at site j has enough
free space to store the replicated file. If it does, the DMS duplicates the data to site
J using the intra-region copy of file i if such a copy exists, or it creates a duplicate
of file i at site j in the intra-region. If site j does not have enough free space, the
DMS first checks to see if it can duplicate file i in the inter-region. If not, it stores
the duplicated data in the site closest to site j.

e Migration: When an original file site no longer needs a file, or has insufficient free
space to store duplicated data, temporary data, or computing results, but other sites
still need the file, migration is used to move the file to an appropriate location. This
avoids generation of excessive file copies in the data grid system and saves free
space for storing temporary data and job execution results. If the request frequency
of file i in site j is between FA_Min and FA_Max, the DMS first checks to see if

@ Springer

File replication, maintenance, and consistency management services

other sites need the file. If it is needed, the DMS finds a suitable site to transmit the
file data to the destination site. If there is insufficient free space in the destination
site’s storage device, it migrates the file to the site nearest the destination site.

e Deletion: If file i’s access rate is less than FA_Min and another site has a copy of
the file, the DMS deletes it; otherwise the DMS keeps it to ensure there is at least
one copy in the grid environment.

The DMS algorithm increases storage device and file usage ratios. It dynamically
maintains data in the grid environment and fixes the BHR algorithm problem de-
scribed in [20]. More than two replicas in one region are allowed, thus users have
more choices of sites for parallel file downloads. It also improves grid system perfor-
mance by considering free space when storing computed results and temporary job
data.

3.4.2 ORCS algorithm

The ORCS algorithm maintains replica consistency with synchronous and asynchro-
nous approaches. We assume only source files can be modified by grid users, and
these files are then replicated to other nodes in the grid environment. All replicas in
distributed nodes are read-only. Where a replica is stored in the data grid system and
when it is replicated depend on grid user parameter settings and storage capacities.

Our replica distribution topology has three type nodes: super node (SN), master
node (MN), and child node (CN). The data source saved in SN can only be added or
modified by grid users, called original data. The original data were replicated from
SN to MN automatically when added or modified by grid users, called master replica.
The child replica replicated to CN depends on two factors: the access frequency of
files and the storage capacity. The master replica and child replica are read only files.
These files are one way replicated from SN to MN, from MN to CN.

The first function of the ORCS algorithm is shown in Fig. 6. When original data
is updated, the super node (SN) immediately replicates the file to all master nodes
(MNs5). Original data may be modified by file owners and others with updating rights.
The MN then checks the parameter N_A F for each grid site to determine whether to
replicate the files from the MN to the CN.

The second section of the ORCS maintenance algorithm is shown in Fig. 7. When
a user submits a request from a CN, the algorithm checks the file N_AF parameter. If
the replica exists in the grid site node, its last update time is compared with that of the
MN. If the replica needs updating, the algorithm checks storage capacity. If there is
not enough free space in the storage device, the old replicated file in the CN is deleted
and a new replica is copied from the MN to the CN nearest the previous CN with the
best resource status. Finally, replica-update records are added to the database for later
tracing.

Figure 8 shows original data automatically replicated from an SN to an MN after
an addition or modification by a grid user. When the replication is complete, each grid
site MN will check whether the replica’s access frequency is greater than its threshold
value and the site’s storage capacity is sufficient, as shown in Fig. 9. The red line in
Fig. 10 indicates the CN does not have adequate storage capacity, which means the

@ Springer

C.-T. Yang et al.

// Once Original Data has been updated
If original data is updated from a super node then
Copy the original data to all master nodes
Add update records to the replication database for tracing
End
// For each Grid Site
If a replica’s access frequency by CN to MN is greater than its threshold then
If the CN has sufficient storage capacity then
Copy a replica from MN to CN
Add a replica update record to the database
Else
Find all replicas with access frequencies smaller than the CN threshold
Sort these CN replica access frequencies in ascending order
Delete replicas one by one from small to large until CN has sufficient storage capacity
If the storage capacity of CN is sufficient then
Copy a replica from MN to CN
Add a replica update record to the database
Else
Copy a replica from MN to a CN with the best resource status
Add a replica update record to the database
End
End
End

Fig. 6 First section of the ORCS algorithm

algorithm must find the nearest CN with the best resource status that has sufficient
storage capacity, as shown in Fig. 11.

In Fig. 12, Node j replica’s access frequency is lower than its threshold value,
thus Node j accesses the MN replica. In contrast, in Fig. 13, grid users access Node j
directly if the last update time of the CN replica is the same as that of the MN replica.
If the latest update times are not equal, the replica will be copied automatically from
the MN to the CN, as shown in Fig. 14. Figures 15 and 16 show the algorithm finding
the nearest CN with the best resource status and sufficient storage capacity because
node j has insufficient storage capacity.

4 Experimental environment and results

We compared and evaluated the performance of the DMS and ORCS algorithms
against other strategies. The Least Frequently Used (LFU), Least Recently Used
(LRU) strategies, and the Bandwidth Hierarchy-based Replication algorithm (BHR)
were tested against the DMS algorithm. The LFU and LRU always replicate when
requests occur, but choose files for deletion differently when storage element free
space is insufficient for replication. LRU chooses the oldest files for deletion, while
LFU chooses the least frequently requested files. The synchronous and asynchronous
consistency strategies were tested against the ORCS. We used a simulator called Op-
torSim, developed by the EU Data Grid [3], to compare the strategies mentioned
above. Our experimental grid environment is shown in Fig. 17. It consisted of four

@ Springer

File replication, maintenance, and consistency management services

// For each access to the MN by a Grid Site CN
If a replica’s access frequency by a CN to the MN is smaller than its threshold then
Change the access directory to MN.Replica
Else
If the CN.Replica.LastUpdateTime = the MN.Replica.LastUpdateTime then
Change the access directory to CN.Replica
Else
If the CN has sufficient storage capacity then
Copy a replica from the MN to the CN
Add a replica update record to the database
Else
Find all replicas in the CN with access frequencies smaller than the threshold
Sort these replica access frequencies in ascending order
Delete replicas one by one from small to large until the CN storage capacity is sufficient
If the CN storage capacity is sufficient then
Copy a replica from the MN to the CN
Add a replica update record to the database
Else
Find the node with the best resource status and sufficient storage capacity nearest the CN
If this node is the MN then
Direct-access the replica to the MN
Else
Copy a replica from the MN to the CN
Add a replica update record to the database
End
End
End
End
End

Fig. 7 Second section of the ORCS algorithm

Fig. 8 Operation 1 of the first
section Original Data

regions, each containing 8§ sites. Initially, all files were randomly stored, and sites in
the four regions then requested files from appropriate sources.

@ Springer

C.-T. Yang et al.

Fig. 9 Operation 2 of the first
section

Fig. 10 Operation 3 of the first
section

Fig. 11 Operation 4 of the first
section

@ Springer

File replication, maintenance, and consistency management services

Fig. 12 Operation 1 of the
second section

Fig. 13 Operation 2 of the
second section

©
O
©

4.1 Parameter setting
4.1.1 DMS parameter setting

As Table 1 shows, we assumed 500 total jobs, and each site in the four regions sent
requests to file sites at random. There were 30 job types, each job requiring accessing
15 files when executed. Files were 250, 500, 750, and 1000 MB in size; see Table 2
for the quantities of each file size. Each site’s hard disk had 50 GB of free space.
Intra-region bandwidth was 500 Mbps, and inter-region bandwidth was 250 Mbps.
The FA_Max in our simulation was set to 10, and the FA_Min was set to 5. The job
delay time was 2500 milliseconds. The DMS could perform migration and deletion
operations up to the total job size and the total hard disk free space in each region.
Also, we assumed temporary data and results would be produced during job execu-
tion. Before comparing the DMS with other replication strategies, values had to be
assigned to the important factors. We evaluated « for the grid environment shown in
Fig. 17 with the parameters in Table 1.

@ Springer

C.-T. Yang et al.

Fig. 14 Operation 3 of the
second section

Fig. 15 Operation 4 of the
second section

Node /

Node |

Fig. 16 Operation 5 of the
second section

g © 9 ¢

The evaluation results are shown in Figs. 18 and 19. Figure 18 shows the execution
time for 500 jobs was best when o was set to 0.9, and Fig. 19 shows the storage

@ Springer

File replication, maintenance, and consistency management services

Region A

Region C WY Region D

Fig. 17 The experimental grid environment

Fig. 18 Execution times for S 2400 —
various alpha values o —
s 2200 +
e
o 2000 +
=
'_
- 1800 +
K]
3 1600 + |—|
9}
ai 1400 1 1 1 D 1 1
0.6 0.7 0.8 0.9 1

Different Alpha Value

element usage rate was better when « was set to 1. But setting « to 1 led to greater
execution times than setting o to 0.9 because when there was not enough free space to
store temporary data and results produced during job execution, time was consumed
finding other computing elements to continue execution. Even though the storage
element usage ratio was better when « was set to 1 than when o was set to 0, overall
performance was better when « was set to 0.9 than when o was set to 1. Thus, we set
o to 0.9 for our experiments.

@ Springer

C.-T. Yang et al.

Table 1 Parameters used in the

simulation Parameters Values
Number of jobs 500
Number of job types 30
Number of files accessed per job 15
File sizes 250/500/750/1000 MB
Intra-region bandwidth 500 Mbps
Inter-region bandwidth 250 Mbps
Hard disk space at each site 50 GB
FA_Max 10
FA_Min 5
Job Delay 2500 ms
Table 2 Numbers of files in .
each size File size Number
250 MB 175
500 MB 90
750 MB 100
1000 MB 85
Fig. 19 Free space for various —~ 45 +
alpha values cf,
L
P 30+
o
®
3
o 15 +
n
©
o
L 0 1 ‘ 1 1
0.6 0.7 0.8 0.9 1
Different Alpha Value

4.1.2 ORCS parameter setting

In Table 3, we define several parameters used to derive the experimental results shown
below. We submitted 100 writing jobs from the SN and 1000 read jobs from each CN.
Files were 100 MB in size and the access threshold was 10. We used synchronous
replication, asynchronous replication, and the ORCS algorithms in our experimental
environment.

4.2 Results
4.2.1 File management results

Figures 20 and 21 show, respectively, DMS execution times and storage element free
space with and without the migration mechanism. Experimental results show exe-
cution times were better with the migration mechanism than without the migration

@ Springer

File replication, maintenance, and consistency management services

Table 3 Experimental

parameters Parameter Value

Number of write jobs 100

Number of read jobs 1000

Various file sizes (MB) 5, 50, 100, 1000, 2000
Access threshold 10, 20, 30, 40, 50
Replication frequency 200

Fig. 20 DMS performance S

comparison with/without Q 1585 +
migration s 1580 +
1575 +
1570 +
i= 1565 +
1560
1555 +
1550 1 !

With_migration Without_migration

DMS

e (10

Execution

Fig. 21 DMS free space
comparison with/without
migration

w
o
|
1

)

o a NN

[&)]
|
T

~

e (%

0+

Free Spac

o O O »
|
1

With_migration Without_migration
DMS

mechanism. But the storage element usage ratio results show the opposite because
when the migration mechanism is used, files are adjusted to appropriate locations for
jobuse, and numbers of copies will reflect job needs. Storage elements will need more
free space to store temporary data and job results. Not using the migration mecha-
nism results in more replicas being generated than when the migration mechanism is
used, causing unnecessary waste of storage element free space. Thus, the probability
is higher that storage elements will not have enough space to store temporary files
and job results than when the migration mechanism is used.

We used the assumptions explained above to compare and evaluate the perfor-
mance of the DMS algorithm against three other replication strategies. Figures 22
and 23 show, respectively, the results of comparing the DMS strategy execution time
and free space performance with migration mechanism to the LFU, LRU, and BHR
replication strategies. Figure 22 shows the DMS had better execution times than the
other strategies. LFU and LRU always replicate when file accesses occur, which con-
sumes a lot of free space. Although the LRU and LFU usage ratios for storing tem-

@ Springer

C.-T. Yang et al.

Fig. 22 Performance
comparison of four strategies

1750 +
1700 —+
1650 +
1600 +
1550 —+
1500 +
1450 1 1 1 !
DMS LFU LRU BHR

Different Strategies

Execution Time (10%) sec.

Fig. 23 Free space comparison 40 -+
of four strategies 35 L
30 +
25 +
20 +
15 +
10 +

SN aaE |

DMS LFU LRU BHR
Different Strategies

Free Space of SE (%)

Fig. 24 Execution time 50-G H.D.
comparison for various
bandwidth ratios with 50 G H.D.

BpMS ®LFU OLRU DOBHER

1800

1700
1600
1500
1400 ; : ; ;
1 1:2 1:3 1:4 1:5

l:
WAN Bandwidth v.s. LAN Bandwidth

Execution Time (103) sec.

porary data and job results were better than those of the DMS, choosing files for
deletion and downloading files for job execution took considerable time. The BHR
strategy caused jobs to spend excessive time getting needed files. Although the BHR
strategy saved a lot of free space, its execution times were greater than those of the
DMS strategy. Thus, the DMS performed more efficiently than other three replication
strategies.

Figures 24 to 28 show the use of various network bandwidths and storage ele-
ment capacities to demonstrate variations in the four strategies’ performance. For all
variations in hard disk size, LFU and LRU performed better when WAN bandwidth
equaled LAN bandwidth. When there was not enough space to store replicas, tempo-
rary files, and job results, computing elements spent less time getting relevant files

@ Springer

File replication, maintenance, and consistency management services

Fig. 25 Execution time Different Network Bandwidth in H.D. size 80 G
comparison for various
bandwidth ratios with 80 G H.D. ODMS BLFU OLRU OBHR

9}

& 1800

2 1700

o

£ 1600

'_

S 1500

3

8 1400

|

1:1 1:2 1:3 1:4 1:5

Bandwidth in WAN v.s. Bandwidth in LAN

Fig. 26 Execution time Different Network Bandwidth in H.D. size 120 G
comparison for various

bandwidth ratios with 120 G

ODMS ELFU OLRU OBHR

H.D.
«g 1800
® 1700
E .
= o
5 @ 1600
5 1500
O
Q
o 1400
1:1 1:2 1:3 1:4 1:5
Bandwidth in WAN v.s. Bandwidth in LAN
Fig. 27 Execution time Different Network Bandwidth in H.D. size 160 G
comparison for various
bandwidth ratios with 160 G ODMS ELFU OLRU OBHR
H.D.
M’é 1800
@ 1700
£
= o
5 @ 1600
5 1500
(5]
9]
g 1400

1:1 1:2 1:3 1:4 1:5

Bandwidth in WAN v.s. Bandwidth in LAN

from other storage elements or choosing other computing elements to continue job
execution, shortening total execution times. When WAN bandwidth was smaller than
LAN bandwidth, computing elements spent less time downloading and transferring
files to appropriate LAN computing elements, but if the files computing elements
needed were stored in inter-region storage elements, much time was wasted replicat-
ing and transferring files via the WAN, increasing total execution times. Total exe-

@ Springer

C.-T. Yang et al.

Fig. 28 Execution time Different Network Bandwidth in H.D. size 200 G
comparison for various
bandwidth ratios with 200 G ODMS ELFU OLRU OBHR
H.D.

N 1800

s 1700

£ .

= o

-5] 1600

‘g 1500

<

[1400

1:1 1:2 1:3 1:4 1:5

Bandwidth in WAN v.s. Bandwidth in LAN

cution times decreased gradually as the ratio of WAN bandwidth to LAN bandwidth
was increased.

The DMS replication strategy performed better than other replication strategies
when storage element capacity was small because it provided more storage ele-
ment free space for storing replicas, temporary files, and job results. But increas-
ing the storage element capacity sufficiently provided enough free space for the
LFU and LRU replication strategies to store replicas, temporary files, and job re-
sults, reducing the time computing elements needed to get required files from other
storage elements in the LAN and even in the WAN, thus shortening total execu-
tion times. And increasing storage element capacity also increased DMS replication
strategy execution times. This means that as capacity was increased, DMS repli-
cation strategy performance worsened due to inefficient storage element usage ra-
tios, and that the DMS was more effective when the storage element capacity was
small.

4.2.2 File consistency results

There were three replication algorithms in our experiment, Synchronous, Asynchro-
nous, and our ORCS algorithm. We assumed that each file was 100 MB and the
access frequency threshold was 10. When a replica in the CN was the same as the
one in the MN, no transfer was necessary. The experimental file replication times are
shown in Fig. 29. The ORCS replicated files according to grid users’ needs. It con-
sumed less network bandwidth than the Synchronous algorithm and accessed files
more efficiently than the Asynchronous algorithm.

In the next experiment, we compared the storage capacity usage of our ORCS
with that of the Massive Data Oriented Replication Algorithms (MDORA) proposed
by Changqin Huang et al. in [14]. We assumed CN storage capacities of 80 G, a
replication frequency of 200, and file sizes of 5 MB, 50 MB, 100 MB, 1000 MB,
and 2000 MB. The result is shown in Fig. 30. If the CN storage capacity is inade-
quate, MDORA cannot store replicas. ORCS deletes files in ascending order of ac-
cess frequency until there is adequate storage space for replicas. Thus, replicas can
be written, even though the storage space was initially inadequate.

@ Springer

File replication, maintenance, and consistency management services

30000

25000 -

20000 -

15000

File Replication Time (sec)

10000

5000

Synchronous ORCS Asynchronous

Different Consistency Strategies

Fig. 29 Comparison of three replication algorithms

——MDORA ORCS
90

80 - ——

70 - Vi

60 V=

50

40 -

30 - /
20 ,r/'
10

-

Storage Capacity (GBytes)

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197
Number of Replications

Fig. 30 Storage capacity usage

There were 1400 read jobs in our experiment, each file was 100 MB in size, and
threshold values of 10, 15, 20, 25, and 30 were used. In Figs. 31 and 32, we note that
the replication time costs increased as the threshold value was increased, resulting in
fewer and fewer replications. Therefore, the smaller the threshold value, the higher
the data access availability.

@ Springer

C.-T. Yang et al.

15 20 25 30

Threshold Value

18000

16000

14000

12000

10000

8000

Replication Time (sec)

6000

4000

2000

Fig. 31 Replication times for various threshold values

15 20 25

Threshold Value

90

80 -

70 -

60 -

50 -

40

30

Number of Replications

20 -

30

Fig. 32 Numbers of replications for various threshold values

5 Conclusions and future work

This paper presents the Dynamic Maintenance Service (DMS) and the One-way
Replica Consistency Service (ORCS) for improving grid environment performance.
DMS is also aimed at the “one-replica” problem the BHR incurs. It improves grid
system performance and increases storage element usage ratio efficiency by handling
temporary data and results that jobs produce during execution. Via ORCS, we ad-
dressed the principal problems with maintaining consistency among existing repli-
cas. Experimental results show that DMS and ORCS both perform more efficiently
than other strategies and make storage element usage ratios more efficient as well. We
conducted the design and implementation of a data grid system using the components
and services proposed in Sect. 3 to enable general users to use data grid systems and
monitor details of grid resource and file statuses.

@ Springer

File replication, maintenance, and consistency management services

Our future work will entail enhancing the accuracy of the DMS and ORCS evalu-
ation models for various applications and situations. The DMS and ORCS algorithms
need improved fault tolerance and adaptability to render them better able to handle
various challenges than other strategies. We are also considering development of a
simulator based on real-world grid topology to determine which applications these
two strategies are best suited to, after which we can combine the data grid system
with a good job scheduling strategy and develop applications that require grid tech-
nology.

Acknowledgements This work is supported in part by the National Science Council, Taiwan, ROC,
under Grant nos. NSC 96-2221-E-029-019-MY3, NSC 97-2622-E-029-003-CC2, and NSC 97-3114-E-
007-001-.

References

1. Allcock B, Bester J, Bresnahan J, Chervenak A, Foster I, Kesselman C, Meder S, Nefedova V, Quesnel
D, Tuecke S (2002) Data management and transfer in high-performance computational grid environ-
ments. Parallel Comput 28(5):749-771

2. Allcock B, Bester J, Bresnahan J, Chervenak A, Foster I, Kesselman C, Meder S, Nefedova V, Ques-

nel D, Tuecke S (2001) Secure, efficient data transport and replica management for high-performance
data-intensive computing. In: Proceedings of the eighteenth IEEE symposium on mass storage sys-
tems and technologies, pp 13-28
. CERN. http://public.web.cern.ch/Public/Welcome.html
4. Chang RS, Chang JS (2006) Adaptable replica consistency service for data grids. In: Proceeding of
the third international conference of information technology (ITNG’06), pp 646651
5. Chervenak A, Foster I, Kesselman C, Salisbury C, Tuecke S (2001) The data grid: towards an archi-
tecture for the distributed management and analysis of large scientific datasets. J] Netw Comput Appl
23:187-200
6. Czajkowski K, Fitzgerald S, Foster I, Kesselman C (2001) Grid information services for distributed
resource sharing, In: Proceedings of the tenth IEEE international symposium on high-performance
distributed computing (HPDC-10’01), August 2001, pp 181-194
7. Domenici A, Donno F, Pucciani G, Stockinger H, Stockinger K (2004) Replica consistency in a data
grid. Nucl Instr Methods Phys Res A 534(1-2):24-28
8. Diillmann D, Hoschek W, Martinez JJ, Segal B (2001) Models for replica synchronisation and consis-
tency in a data grid. In: Proceedings of the 10th IEEE international symposium on high performance
distributed computing (HPDC-10’01), October 2001, pp 67
9. Fathali J (2006, to appear) A genetic algorithm for the p-median problem with pos/neg weights. Appl
Math Comput 8 (August)
10. Fisher ML (1981) The Lagrangian relaxation method for solving integer programming problems.
Manag Sci 27:1-18
11. Foster I (2002) The grid: a new infrastructure for 21st century science. Phys Today 55(2):42-47
12. Foster I, Kesselman C (1999) The grid 2: blueprint for a new computing infrastructure, 2nd edn.
Morgan Kaufmann, San Mateo (Elsevier series in grid computing)
13. Foster I, Kesselman C (1997) Globus: a metacomputing infrastructure toolkit. Int J Supercomput Appl
High Perform Comput 11(2):115-128
14. Huang CQ, Xu FY, Hu XY (2006) Massive data oriented replication algorithms for consistency main-
tenance in data grids. ICCS 2006, Part I, LNCS 3991, pp 838-841
15. Hu JF, Xiao N, Zhao YJ, Fu W (2005) An asynchronous replica consistency model in data grid. In:
Parallel and distributed processing and applications (ISPA 2005 workshops), pp 475-484
16. Jackson LE, Rouskas GN, Stallmann MFM (2007) The directional p-median problem: defini-
tion, complexity, and algorithms. Eur J Oper Res 179:1097-1108. http://people.engr.ncsu.edu/mfms/
Publications/2007-EJOR-Jackson.pdf
17. Java CoG. http://www-unix.globus.org/cog/
18. NWS. http://nws.cs.ucsb.edu/

(98]

@ Springer

http://public.web.cern.ch/Public/Welcome.html
http://people.engr.ncsu.edu/mfms/Publications/2007-EJOR-Jackson.pdf
http://people.engr.ncsu.edu/mfms/Publications/2007-EJOR-Jackson.pdf
http://www-unix.globus.org/cog/
http://nws.cs.ucsb.edu/

C.-T. Yang et al.

19.
20.

21.

22.

23.

24.

25.

26.

217.
28.

29.

30.

31.

32.

33.

34.

35.

OptorSim. http://edg-wp2.web.cern.ch/edg-wp2/optimization/optorsim.html

Park SM, Kim JH, Ko YB, Yoon W-S (2003) Dynamic data grid replication strategy based on Internet
hierarchy. In: The second international workshop on grid and cooperative computing (GCC2003), pp
838-846

Park SM, Kim JH (2003) Chameleon: a resource scheduler in a data grid environment. In:
Proceedings of third international symposium on cluster computing and the grid, p. 258.
http://portal.acm.org/citation.cfm?id=792481

Rahman RM, Barker K, Alhajj R (2006) Replica placement design with static optimality and dynamic
maintainability. In: Proceedings of the sixth IEEE international symposium on cluster computing and
the grid (CCGRID’06), pp 434437

Rahman RM, Barker K, Alhajj R (2006) Effective dynamic replica maintenance algorithm for the
grid environment. In: Proceedings of advances in grid and pervasive computing, vol 3947: Grid and
pervasive computing 2006 (GPC2006), pp 336-345

Ranganathan K, Foster I Design and evaluation of dynamic replication strategies for a high perfor-
mance data grid. In: Proceedings of international conference on computing in high energy and nuclear
physics

Shi XH, Jin H, Qiang WZ, Zou DQ (2003) An adaptive meta-scheduler for data-intensive applications.
In: Proceedings of grid and cooperative computing (GCC’03), pp 830-837

Stockinger H, Samar A, Allcock B, Foster I, Holtman K, Tierney B (2002) File and object replication
in data grids. J Cluster Comput 5(3):305-314

The Globus Alliance. http://www.globus.org/

Vazhkudai S, Tuecke S, Foster I (2001) Replica selection in the globus data grid. In: Proceedings of
the 1st international symposium on cluster computing and the grid (CCGRID 2001), pp 106-113
Venugopal S, Buyya R, Ramamohanarao K (2006) A taxonomy of data grids for distributed data
sharing, management, and processing. ACM computing surveys, vol 38, Article 3, March 2006
Yang CT, Yang IH, Li KC, Wang SY (2007) Improvements on dynamic adjustment mechanism in
co-allocation data grid environments. J Supercomput 40(3):269-280

Yang CT, Wang SY, Fu CP (2007) A dynamic adjustment mechanism for data transfer in data grids. In:
Network and parallel computing: IFIP international conference, NPC 2007. Lecture notes in computer
science, vol 4672. Springer, Berlin, pp 61-70. ISSN 1611-3349

Yang CT, Yang MF, Chiang WC (2008) Implementation of a cyber transformer for parallel download
in co-allocation data grid environments. In: Proceedings of the 7th international conference on grid
and cooperative computing (GCC2008) and second EchoGRID conference, October 24-26, 2008 in
Shenzhen, Guangdong, China, pp 242-253

Yang CT, Yang IH, Chen CH, Wang SY (2006) Implementation of a dynamic adjustment mechanism
with efficient replica selection in co-allocation data grid environments. In: Proceedings of the 21st
annual ACM symposium on applied computing (SAC 2006) — distributed systems and grid computing
(DSGCQ) track, vol 1, pp 797-804, Dijon, France, April 23-27, 2006

Yang CT, Yang IH, Wang SY, Li KC, Hsu CH (2009) A recursively-adjusting co-allocation scheme
with cyber-transformer in data grids. Future Gener Comput Syst 25(7):695-703

Ganglia. http://ganglia.info/

Chao-Tung Yang is Professor of Computer Science at Tunghai Uni-
versity in Taiwan. He was born on November 9, 1968 in Ilan, Taiwan,
R.O.C. and received his B.Sc. degree in Computer Science from Tung-
hai University, Taichung, Taiwan, in 1990, and the M.Sc. degree in
Computer Science from National Chiao Tung University, Hsinchu, Tai-
wan, in 1992. He received the Ph.D. degree in Computer Science from
National Chiao Tung University in July 1996. He won the 1996 Acer
Dragon Award for an outstanding Ph.D. dissertation. He has worked
as Associate Researcher for ground operations in the ROCSAT Ground
System Section (RGS) of the National Space Program Office (NSPO)
in Hsinchu Science-based Industrial Park since 1996. In August 2001,
he joined the faculty of the Department of Computer Science at Tunghai
University. He got the excellent research award by Tunghai University
in 2007. In 2007 and 2008, he got the Golden Penguin Award by Indus-
trial Development Bureau, Ministry of Economic Affairs, Taiwan. His

@ Springer

http://edg-wp2.web.cern.ch/edg-wp2/optimization/optorsim.html
http://portal.acm.org/citation.cfm?id=792481
http://www.globus.org/
http://ganglia.info/

File replication, maintenance, and consistency management services

researches have been sponsored by Taiwan agencies National Science Council (NSC), National Center for
High Performance Computing (NCHC), and Ministry of Education. His present research interests are in
grid and cluster computing, parallel and multicore computing, and web-based applications. He is a member
of both the IEEE Computer Society and ACM.

Chun-Pin Fu was born on August 3, 1982, in Tainan City, Taiwan,
R.O.C. He received the B.Sc. degree in Department of Computer Sci-
ence and Information Engineering from Leader University in 2005, and
he also received M.Sc. degree in Department of Computer Science from
Tunghai University in 2007, respectively. He is working at Household
Registration Office, North District in Tainan City now. His present re-
search interests are in grid and cluster computing and web-based appli-
cations.

Ching-Hsien Hsu received his B.Sc. degree in Computer Science from
Tunghai University in 1995, and the Ph.D. degree in Information En-
gineering and Computer Science from Feng Chia University in 1999,
respectively. From 2001 to 2002, Dr. Hsu had been Assistant Profes-
sor in the Department of Electrical Engineering at Nan Kai College.
He joined the department of Computer Science and Information En-
gineering, Chung Hua University, in 2002, and has become Associate
Professor since August 2005. He was awarded as annual outstanding
researcher by Chung Hua University in 2005, 2006 and 2007 and got
the excellent research award in 2008. Doctor Hsu has published more
than 100 academic papers in journals, books and conference proceed-
ings. Doctor Hsu is serving in a number of journal editorial boards, in-
cluding International Journal of Communication Systems, International
Journal of Computer Science, International Journal of Grid and High
Performance Computing, International Journal of Smart Home, and In-
ternational Journal of Multimedia and Ubiquitous Engineering. He has edited more than 10 international
journal special issues as a guest editor, such as IEEE Transactions on Services Computing, Future Gen-
eration Computer Systems, Journal of Supercomputing, etc. Doctor Hsu’s research interest is primarily
in parallel and distributed computing, grid computing, P2P computing, RFID and services computing.
Doctor Hsu is currently an IEEE senior member and serves as an executive committee of IEEE Technical
Committee on Scalable Computing (TCSC).

@ Springer

J Supercomput
DOI 10.1007/s11227-009-0307-4

Implementation of a dynamic adjustment strategy
for parallel file transfer in co-allocation data grids

Chao-Tung Yang - Shih-Yu Wang -
William Cheng-Chung Chu

© Springer Science+Business Media, LLC 2009

Abstract Co-allocation architecture was developed to enable parallel transferring
of files from multiple replicas stored in the different servers. Several co-allocation
strategies have been coupled and used to exploit the different transfer rates among
various client-server links and to address dynamic rate fluctuations by dividing files
into multiple blocks of equal sizes. The paper presents a dynamic file transfer scheme,
called dynamic adjustment strategy (DAS), for co-allocation architecture in concur-
rently transferring a file from multiple replicas stored in multiple servers within a data
grid. The scheme overcomes the obstacle of transfer performance due to idle waiting
time of faster servers in co-allocation based file transfers and, therefore, provides re-
duced file transfer time. A tool with user friendly interface that can be used to manage
replicas and downloading in a data grid environment is also described. Experimental
results show that our DAS can obtain high-performance file transfer speed and reduce
the time cost of reassembling data blocks.

Keywords Data grid - File replica - Parallel file transfer - Co-allocation - Dynamic
adjustment

C.-T. Yang (XJ) - S.-Y. Wang - W.C.-C. Chu
Department of Computer Science, Tunghai University, Taichung, 40704, Taiwan
e-mail: ctyang @thu.edu.tw

W.C.-C. Chu
e-mail: cchu@thu.edu.tw

S.-Y. Wang

Communication System Division Service-Oriented Network System Department, Information and
Communications Research Laboratories, Industrial Technology Research Institute, Hsinchu, 31040,
Taiwan

e-mail: Laurence @itri.org.tw

Published online: 17 June 2009 &\ Springer

mailto:ctyang@thu.edu.tw
mailto:cchu@thu.edu.tw
mailto:Laurence@itri.org.tw

C.-T. Yang et al.

1 Introduction

Data grid traditionally represents the network of distributed storage resources from
archival systems to caches and databases, which are linked using a logical name
space to create global, persistent identifiers and provide uniform access mecha-
nisms. Data grid aggregates distributed resources to resolve large-size dataset man-
agement problems [1-6, 8, 10, 11, 14, 17, 21, 22]. Increasingly, large collections
of measured and computed data are emerging as important resources in many data-
intensive applications. Certain data-intensive scientific applications, such as high-
energy physics, bioinformatics applications, and virtual astrophysical observations,
entail huge amounts of data that require data file management systems to replicate
files and manage data transfers and distributed data access. In physics experiments,
for example, data file sizes can range from 2 to 10 gigabytes. These high-performance
and data-intensive computing applications require efficient management and trans-
fer of terabytes or petabytes of information in wide-area, distributed-resource envi-
ronments. Data grid infrastructure integrates data storage devices and data manage-
ment services in grid environments consisting of scattered computing and storage
resources, perhaps located in different countries/regions yet accessible to users [11,
14, 17-19].

Replicating popular content in distributed servers is widely used in practice [14,
17, 21, 22]. Recently, large-scale, data-sharing scientific communities such as those
described in [3, 4] used this technology to replicate their large datasets over several
sites. Downloading large datasets from several replica locations may result in varied
performance rates, because the replica sites may have different architectures, system
loadings, and network connectivity. Bandwidth quality is the most important factor
affecting transfers between clients and servers since download speeds are limited by
the bandwidth traffic in the links connecting the servers to the clients.

One way to improve download speed is to use replica selection techniques to de-
termine the best replica locations [21]. The replica selection algorithms may aim at
maximizing network throughput, reducing load on “expensive” links or reducing the
response time perceived by the user. Most replica selection algorithms aim at selec-
tion of “nearby” replicas to either reduce response time or the load on network links.
This method selects the servers most likely to provide optimum transfer rates because
bandwidth quality can vary unpredictably due to the sharing nature of the Internet.
Another way is to use co-allocation technology [17, 21, 22, 27, 28] to download data.
Co-allocation of data transfers enables the clients to download data from multiple
locations by establishing multiple connections in parallel. This can improve the per-
formance over single-server downloads and alleviate the Internet congestion problem
[17].

Several co-allocation strategies were presented in our previous work [25-27]. An
idle-time drawback remains since faster servers must wait for the slowest server to
deliver its final block. Thus, reducing the differences in finish times among replica
servers is important. In this paper, we propose a dynamic file-transfer scheme with
co-allocation architecture, called the dynamic adjustment strategy (DAS), which re-
duces file-transfer times and also improves data transfer performance in data grid en-
vironments. Our approach can reduce file server idle times and decrease file-transfer

@ Springer

Implementation of a dynamic adjustment strategy

completion times. We also present a new toolkit, called cyber-transformer, with a
friendly client-side GUI interface integrated with the information service, replica lo-
cation service, and data transfer service [25] that makes it easy for inexperienced
users to manage replicas and download files in data grid environments. And we pro-
vide an effective scheme for reducing the cost of reassembling data blocks. Experi-
mental results show that our approach is superior to previous methods and achieves
the best overall performance. We also discuss combination cost and provide an effec-
tive improvement.

The remainder of this paper is organized as follows. Related background review
and studies are presented in Sect. 2 and the co-allocation architecture and our research
approaches are outlined in Sect. 3. In Sect. 4, a powerful toolkit, cyber-transformer, is
proposed by us, and experimental results and a performance evaluation of our scheme
are presented in Sect. 5. Section 6 concludes this research paper.

2 Background review
2.1 Data grid and replications

In data grid environments, access to distributed data is typically as important as ac-
cess to distributed computational resources [1-5, 7, 22]. Distributed scientific and
engineering applications require transfers of large amounts of data between storage
systems, and access to large amounts of data generated by many geographically dis-
tributed applications and users for analysis and visualization, among others.

We used the grid middleware Globus Toolkit [9, 10, 12, 13, 16] as our data grid
infrastructure. The Globus Toolkit provides solutions for such considerations as se-
curity, resource management, data management, and information services. One of its
primary components, MDS [7, 13, 16], is designed to provide a standard mechanism
for discovering and publishing resource status and configuration information. It pro-
vides a uniform and flexible interface for data collected by lower-level information
providers in two modes: static (e.g., OS, CPU types, and system architectures) and
dynamic data (e.g., disk availability, memory availability, and loading). And it uses
GridFTP [3, 13, 16] to provide efficient management and transfer data in a wide-area,
distributed-resource environment. We use GridFTP to enable parallel data transfers.
Among its many features, its partial file transfer ability allows files to be retrieved
from data servers by specifying the start and end offsets of file partitions. This pro-
tocol, which extends the standard FTP protocol, provides a superset of the features
offered by the various grid storage systems currently in use.

The data grid community tries to develop secure, efficient data transport mech-
anisms and replica management services. Another key technology from the Globus
project, called the Replica Catalog [16], is used to register and manage complete and
partial copies of data sets. The Replica Catalog contains mapping information from
a logical file or collection to one or more physical files.

Replica management involves creating or removing replicas at a data grid site
[21]. A replica manager typically maintains a replica catalog containing replica site
addresses and file instances. The replica management service is responsible for man-
aging the replication of complete and partial copies of datasets, defined as collections

@ Springer

C.-T. Yang et al.

of files. The replica management service in a data grid environment provides support
for high-performance, data-intensive applications. A replica or location is a subset of
a collection that is stored in a particular physical storage system, which means that
multiple possibly overlapping subsets of collections may be stored in multiple storage
systems in a data grid. These grid storage systems may use a variety of underlying
storage technologies and data movement protocols, which are independent of replica
management.

A data grid may contain multiple replica catalogs. It is possible to create hierar-
chies of replica catalogs to impose a directory-like structure on related logical col-
lections. The purpose of the replica catalog is to provide mappings between logical
names for files or collections and one or more copies of objects in physical storage
systems. The catalog registers three types of entries: logical collections, locations,
and logical files. A logical collection is a user-defined group of files. We expect that
users will find it convenient and intuitive to register and manipulate groups of files as
collections, rather than require that every file be registered and manipulated individ-
ually.

Despite the benefits of registering and manipulating collections of files using log-
ical collection and location objects, there may be a need for users and applications to
characterize individual files. For this purpose, the Replica Catalog includes optional
entries that describe individual logical files. Logical files are entities with globally
unique names and one or more physical instances. The catalog may optionally con-
tain one logical file entry in the Replica Catalog for each logical file in a collection.

Replica selection [16] is used to select replicas from among the sites in a data grid.
The selection criteria depend on application characteristics. This mechanism enables
users to efficiently manage replicas of data sets at their sites. Much previous effort
has been devoted to solving replica selection problems. The replica selection process
commonly consists of three steps: data preparation, preprocessing, and prediction.
Applications then select replicas according to their specific attributes.

Replica selection is important to data-intensive applications, and it can provide
location transparency. When a user requests access to a data set, the system will
determine an appropriate way to deliver the replica. Another issue concerning replica
selection is the predicting transfer time, a complex task involving the inspection of
many characteristics.

2.2 The co-allocation architecture and related work

Candidate replica locations are passed to the replica selection service, which was pre-
sented in a previous work [5, 6, 17, 18, 21, 28]. This replica selection service provides
estimates of candidate transfer performance based on a cost model and chooses ap-
propriate amounts to request from the better locations. The architecture proposed in
[17] consists of three main components: an information service, a broker/co-allocator,
and local storage systems. Figure 1 shows data transfer in a co-allocation architecture,
which is an extension of the basic template for resource management [6] provided by
the Globus Toolkit. Applications specify the characteristics of desired data and pass
the attribute description to a broker. The broker queries available resources and gets
replica locations from an information service [7, 15, 28] and a replica management

@ Springer

Implementation of a dynamic adjustment strategy

Fig. 1 The co-allocation
architecture in data grids Applications
x
ClassAd / RSL
Information
Forecasts»| .
Broker Service
Queries
Information

h 4

Co-allocator H

Data Access/Transport using GridFTP

| eass | [oeass | | ocass |

| DPss | | HPSS | | UNIXFX |

Local Storage System

service [21] creates a list of the desired files physical locations. The co-allocation
agent then downloads the data in parallel from the selected servers.

Data grids consist of scattered computing and storage resources located in differ-
ent countries/regions yet accessible to users [8]. As datasets are replicated within grid
environments for reliability and performance, clients require the abilities to discover
existing data replicas, and create and register new replicas. A replica location ser-
vice (RLS) [5] provides a mechanism for discovering and registering existing repli-
cas. Several prediction metrics have been developed to help replica selection. For
instance, Vazhkudai and Schopf [19-21] used past data transfer histories to estimate
current data transfer throughputs.

In [17], the author proposes a co-allocation architecture for co-allocating grid
data transfers across multiple connections by exploiting the partial-copy feature of
GridFTP. It also provides brute-force, history-based, and dynamic load balancing for
allocating data blocks.

e Brute-force co-allocation: brute-force co-allocation (see Fig. 2) works by dividing
files equally among “n’ available flows (locations). Thus, if the data to be fetched
is size “S” and there are “n” locations to fetch it from, then this technique assigns
to each flow a data block of size, “S/n”. For example, if there are three sources,
the target file will be divided into three blocks equally. And each source provides
one block for the client. With this technique, although all the available servers
are utilized, bandwidth differences among the various client-server links are not
exploited.

e History-based co-allocation: The history-based co-allocation (see Fig. 3) scheme
keeps block sizes per flow proportional to transfer rates predicted by the previous
results of file transfer results. In the history-based allocation scheme, the block

@ Springer

C.-T. Yang et al.

Fig. 2 The brute-force
co-allocation process

N

File Server 1

N | |

W=t

— File Server 2
Client

/]

File Server 3

Fig. 3 The history-based
co-allocation process

2D

Fi 1

53
w
o
<
1]

Client Fi

o ﬁ’°//>
3
@

&5

File Server 3

size per flow is commensurate to its predicted transfer rate, decided based on a
previous history of GridFTP transfers. Thus, the file-range distribution is based
on the predicted merit of the flow. If these predictions are not accurate enough,
re-negotiations of flow sizes might be necessary as slower links can get assigned
larger portions of data, which could be weight heavily on the eventual bandwidth
achieved. With the history-based approach, client divides the file into “n” disjoint
blocks, corresponding to “n” servers. Each server “i”, 1<i < n, has a predicted
transfer rate of “B;” to the client. In theory then, the aggregate bandwidth “A”
achievable by the client for the entire download is A =) .=} B;. For each server
“i”, 1<i < n, and for the data to be fetched is the size of “S”, the block size per
flow is §; =% x S.

e Conservative load balancing: One of the proposed dynamic co-allocation algo-
rithms [17] is conservative load balancing (Fig. 4). The conservative load balancing
dynamic co-allocation strategy divides requested datasets into “k” disjoint blocks
of equal size. Available servers are assigned single blocks to deliver in parallel.
When a server finishes delivering a block, another is requested, and so on, until
the entire file is downloaded. The loadings on the co-allocated flows are automati-
cally adjusted because the faster servers will deliver more quickly providing larger
portions of the file.

@ Springer

Implementation of a dynamic adjustment strategy

Fig. 4 The conservative load
balancing process

&0

Fi

@
o
[
@
<
[
=2
-

Client Fi

&0

File Server 3

Fig. 5 The aggressive load
balancing process

&

Fi

o
W
)
<
@
o
-

2

3

/

&

Fi

o
2
o
<
@
L
)

Client

File Server 3

e Aggressive load balancing: This method is shown in Fig. 5 and adds functions that
change block size in deliveries by: (1) gradually increasing the amounts of data
requested from faster servers, and (2) reducing the amounts of data requested from
slower servers or stopping requesting data from them altogether.

In our previous work [24, 26], we proposed a replica selection cost model and
a replica selection service to perform replica selection. These co-allocation strate-
gies do not address the shortcoming of faster servers having to wait for the slowest
server to deliver its final block. In most cases, this wastes much time and decreases
overall performance. Thus, we propose an efficient approach, called the dynamic ad-
Jjustment strategy, and based on the co-allocation architecture. It improves dynamic
co-allocation and reduces waiting time, thus improving overall transfer performance.

3 The dynamic adjustment strategy
Dynamic co-allocation, described above, is the most efficient approach to reducing

the influence of network variations between clients and servers. However, the idle
time of faster servers waiting for the slowest server to deliver its last block is still

@ Springer

C.-T. Yang et al.

a major factor affecting overall efficiency, which conservative load balancing and
aggressive load balancing [17] cannot effectively avoid. The approach proposed in the
present paper, a dynamic allocation mechanism, called dynamic adjustment strategy,
can overcome this, and thus, improve data transfer performance.

Co-allocation technology [17] enables the clients to download data from multiple
locations by establishing multiple connections in parallel. We proposed a replica se-
lection cost model and a replica selection service to perform replica selection. We
now propose a new data transfer strategy based on this model. It consists of three
phases: (1) initial phase, (2) steady phase, and (3) completion phase.

o Initial phase: We assign equal block sizes to all GridFTP servers. In this phase, our
system determines the next block size for each replica server.

e Steady phase: As job transfers are completed, servers are assigned their next jobs.
Jobs sizes are determined by multiplying the client bandwidth by the weighting.

e Completion phase: To avoid the generating excessively small job sizes, we set an
end condition such that if the remaining target file size is smaller than the initial
block size, it is transferred immediately.

The parameters used for our algorithm are listed in the following:

Job size: the next job size for a server sending to the client.

initialPT: the initial job size of the transferred file.

remnantFileSize: the remnant file size of the transferred file.

ClientBandwidth: the bandwidth of current client.

ClientMaxBandwidth: the current client max bandwidth.

Number of Replica Source: the number of replica sources for parallel transferring.
Score;: the replica selection cost model for server i such that 1 <i <n.

Pl.CPU: percentage of server i CPU idle states [15].

RCPU: CPU load ratio defined by the user.

PMem: percentage of server i memory free space [15].

memory free space ratio defined by the user.

Pl-BW: percentage of bandwidth available from server i to client (user node); current
bandwidth divided by highest theoretical bandwidth [23, 24, 26].

RBW: network bandwidth ratio defined by users.

e weighting;: the weight model for server i such that 1 <i <n.

e newPT;: the next job size for server i.

RMem.

To determine the initial block size, we set an upper bound that is dependent on the
relation between the client’s maximum bandwidth and the number of replica sources.
Though multiple replicas can be downloaded in parallel, the gathered portions of files
from different links must be transferred to the client in a single link. It is clear that the
client’s bandwidth could be a bottleneck in co-allocation architecture. The formula
for upper bound is:

initial PT < ClientMaxBandwidth/Number of Replica Source)

We proposed a replica selection cost model in which we defined a formula for
calculating the weighting. First, we get a score based on the states of the various

@ Springer

Implementation of a dynamic adjustment strategy

server devices:

SCOrej — PiCPU X RCPU + PiMCm X RMem + PiBW X RBW,

and RCPU + RMem + RBW :1 (2)

After getting the scores for all server nodes, the system calculates the weighting;:

n
weighting; = Score; / ZScorek 3)
k=1

The weighting is then used to determine the size of the next job:
newPT; = ClientBandwidth x weighting; @)

where newPT; denotes the next job size for server i, and ClientBandwidth denotes
the current client bandwidth.

When server i finishes transferring of a block, it gets a new job whose size is
calculated according to the real-time status of server i. Each time, our strategy dy-
namically adjusts a job size according to source device loading and bandwidth. The
lighter the loading a source device has, the larger job size is assigned. Figure 6 shows
a flowchart illustrating this new strategy.

Next, the average transfer rate of all replicas can be calculated by total transferred
file size divided the cost time ratio of combination of CPU, memory, and network
bandwidth. We used the dynamic adjustment strategy with various sets of replica
servers and measured overall performances, where overall performance is:

Total Performance = File Size/Total Completion Time ®)

4 An efficient toolkit: cyber-transformer

We gave experimental results for cyber-transformer, a powerful new toolkit for replica
management and data transfer in data grid environments. It not only can accelerate
data transfer rate, but can also manage replicas over all various sites. The friendly
interface enables users to easily monitor replica sources, and add files as replicas
for automatic cataloging by our replica location service. Moreover, we provide a
function for administrators to delete and modify replicas. Cyber-transformer can be
invoked with either the logical file name of a data file or a list of replica sources host
names. When users search for a file by its logical file name, cyber-transformer queries
the replica location services to find all the corresponding replicas, and contacts each
replica source to start parallel transfers. The file is then gathered from replica sources
and finally combined into a single file.

4.1 System components

Cyber-transformer is implemented in the Java Cog Kits [13] library. Figure 7 shows
the system stack of cyber-transformer, consisting of three integrated mechanisms:

@ Springer

C.-T. Yang et al.

Calculate initialPT

<
%

Y

mnantFileSi.
< initialPT

A 4 A

Calculate the Job size = remnantFileSize
weighting remnantFileSize =0
Job size =

ClientBandwidth x weighting

Job size > False

emnantFileSize

v
Job size = remnantFileSize remnantFileSize =
remnantFileSize =0 remnantFileSize - Job size

I

» Transfer job start

A

ile transfer False
complete?

Fig. 6 The flowchart of dynamic adjustment strategy

(1) information service, (2) replica management service, and (3) data transfer service.
It also includes a friendly GUI for inexperienced users who may not be familiar with
data grids.

The interface consists of three parts: (1) information monitor, (2) replica manager,
and (3) GridFTP browser, to simplify replica management and data transfers. With
the intuitive interface, users can easily invoke the services to transfer data without
delay. Figure 8 shows the Cyber-Transformer system components and the three main
services they provided.

@ Springer

Implementation of a dynamic adjustment strategy

Fig.7 The system stack of
cyber-transformer Cyber Transformer Toolkit on Windows XP/Linux

Information Replica Management | | Data Transfer
Service Service Service

Java CoG Kit

GridFTP Protocol ‘ J2SDK

Globus Toolkit
(MDS and GRAM)

Data Grid Nodes (Data Storage System)

Grid user

.]
o0 /
ot

Tran: Link » GU

Job

GridFTP Job Replica
Controller Query Replica—» Location Store/Query —
G Servi
Replica DB
Q,
0837

Information

Store/Query Inme_}

Connect Transfer 1}
Info DB

Storage System

g’;ﬂ;

Fig. 8 The components of cyber-transformer

e Information service: This service is invoked by the information monitor and pro-
vides replica sources statuses allowing users to monitor all replica source sites in
the data grid. Sites status, such as CPU loading, free memory, hard disk free space,
and bandwidth, are gathered by the information service and reported to the infor-
mation monitor.

@ Springer

C.-T. Yang et al.

e Replica management service: This serves as middleware between users and replica
databases. It enables convenient user replica searches by listing logical file names
and replica source host names. Users can also easily upload files as replicas, and
mark the importance of these files.

e Data transfer service: This is the most important cyber-transformer service, and
is easily summoned through the GridFTP Browser. Our dynamic adjustment strat-
egy is integrated into it, and an “option” function enables users to compensate for
various data grid environment conditions by adjusting transfer factors such as ma-
chine loading, bandwidth, partition size, and stripe numbers, thus accelerating data
transfer rates.

4.2 System transaction flow

Figure 9 shows the cyber-transformer transaction flow. Users must first pass the grid
proxy certification provided by Simple CA to get access to the grid. They may then
connect to any data grid site via the GridFTP browser. The system automatically
authenticates site certifications as connections are made. The security mechanism of
our grid environment is depicted below.

Steps 4 and 5 show how users query the replica location service for replica in-
formation, and the replica location service reports on requests. The system ranks all
replica servers according to our replica selection model and users can then choose the
better servers for parallel downloading.

The data transfer service is invoked in Step 6. Information about the replicas cho-
sen by the user is picked up by the GridFTP job controller. The controller then dy-
namically adjusts replica transfer job sizes according to the conditions presented in
the information. Job sizes are continually adjusted until all transfers have been com-
pleted. The portions from the various replica sources are then gathered into complete
file.

To enable users lacking deep knowledge of data grids to easily download and
manage files in data grid environments, we developed a user-friendly GUI for cyber-
transformer. It is implemented in the Java CoG library (see below), and it can be
executed on any operating system with JVM. Figure 10 and Fig. 11 show part of the
file download operating process.

4.3 Improvements in Java CoG for parallel downloading

In [17], the author proposes a co-allocation cost model. He defined that clients down-
loading datasets using GridFTP co-allocation technology incur three time costs: the
time required for client authentication to the GridFTP server, actual data transmis-
sion time, and data block reassembly time. Our approach can reduce the data block
reassembly time to zero. A function in cyber-transformer allows delivered file por-
tions to be written to one destination file in parallel without extra overhead.

The Java Commodity Grid Kit (Java CoG, http://www-unix.globus.org/cog/) com-
bines Java technology with grid computing to develop advanced grid services and
accessibility to basic Globus resources. It allows easier and more rapid application
development by encouraging collaborative code reuse and avoiding duplication of

@ Springer

http://www-unix.globus.org/cog/

Implementation of a dynamic adjustment strategy

GateKeeper
1. Create Proxy 1

ittty e 3. Authentication(\

N
, Proxy
| 2. Request connect | > l\
| |— 3 | 2.1. Connect
I [33'3

I . i ation /
1, 4 Searchreplca |
4|2. Rep:
5. Select replica | kpléuflm //6.1. Que tion service
S GateKeeper

A
6.2. Rgport back

6.4. Reques
transfer

\, Selected nodes
6.5. Start transfer

Fig. 9 The cyber-transformer transaction flow

effort among problem-solving environments, science portals, grid middleware, and
collaborative pilots.

The Java-based application uses the Java CoG kit to connect to the grid system.
The key characteristics include: GridProxylnit, a JDialog for submitting pass phrases
to grids to extend certificate expiration dates, GridConfigureDialog uses the UITool
in the CoG Kit to enable users to configure process numbers and host names of Grid
servers, and GridJob, which creates GramJob instances. This class represents a simple
gram job and allows for submitting jobs to a gatekeeper, canceling them, sending
signal commands, and registering and unregistering from callbacks. The GetRSL,
RSL provides a common interchange language to describe resources.

The Java CoG GridFTP API does not support downloading files in multiple
streams and simultaneously writing them to the same file, which causes some com-
bination overhead after all transmissions. Thus, we needed an effective method for
writing to a file in parallel. To resolve the situation, we analyzed and rewrote the Java

@ Springer

C.-T. Yang et al.

(& HPC@THT Data Grid Cyber- Transformer =OE3
File Tools Help
Search
w Transfer (A S O
- Y g [y] 1004
Replica manage)
ooy Logical File Name Host Physical File Name Size
100M alphal homedest/1 00b 100000000
Upload 100M deltal thame/test/] 00M 100000000
S 100M deltad Phomedtest/100M 100000000
1008 hpc09 honmedest/] 00 100000000
100M 01 o Phevnedtest/] 00M 100000000
¥ iTar = | ADD TO Source
00 _) o >
' | it |
Setup
Option
Monitor
SSH tool
Proxy (a) third-party transfer
' 3
Password
Host | Hast 1 | ©Copy
PFN PEN | OMove
-Log:
L | osaiLin.. prane wan M
[INF] Search... Complete Tl
[INF] Search... place wait E
[INF] Search... Complete [v)

Fig. 10 Searching for replicas to download

CoG GridFTP codes. We found that the GridFTP write file offers a class that can use
FileRandomlIO. The class code is listed below.

public synchronized void write(Buffer buffer) throws IOException {
long bufOffset = buffer.getOffset();

if (bufOffset == -1) {
if (file.getFilePointer() != this.offset) {
throw new IOException(“Invalid offset: ™ + bufOffset);
}

} else {

file.seek (bufOffset) ;

file.write(buffer.getBuffer(), 0, buffer.getLength());
this.offset += buffer.getLength() ;

@ Springer

Implementation of a dynamic adjustment strategy

e

& HPCATHD Dat:
File Tools Help
w Transfer 2) e TN e
Logkel Fle B[] [100M
Replica manage
Blediscs Logical File Name Host Physical File Name Size
100 [iphat fhomefesy100M (100000000 _
Upload 1000 ldeltsl Vhomeftestf1 001 100000000
[Ty FIRTeNY a FRYIT.TIY T nnonnnon. 1
Test
& (](=1%
Statos Progress Remote File ... SIZE Local File N. Start time finish time
' Tools transfer == LRS00M 1 500000000/C ADc .. 121:03:48 |
transfer 5= LN 100M 100000000 |C ADocuments ... [21:04:51 |
Proxy
= T]
Log
91] MBI AU, . T &l
time spend: 750 milliseconds i
[INF] Host deltal transfer r
v

Fig. 11 The file download process

The class, RandomAccessFile in file.seek(bufOffset) provides a function that
can change the write pointer. This allowed us to write another class to inherit
FileRandomIO from Java CoG, and overwrite the method, public synchronized void
write(Buffer buffer). We also added a method to change the write pointer. This gave
us more transmission time to write data to a file at the same time. All streams write

to assigned file positions, not to the beginning of the

file. That does not affect other

streams transferring data and writing files. The new code after our changes is listed

below.

protected long filePointer;

/**
* set write pointer

* @param filePointer write pointer
*/

public void setFileOffset(long filePointer)
this.filePointer
}

filePointer;

@ Springer

C.-T. Yang et al.

/**
* Overwrite FileRandomIO,enable to change write pointer
*/

public synchronized void write(Buffer buffer) throws IOException {
long bufOffset = buffer.getOffset();

if (bufOffset == -1) {
if (file.getFilePointer () != this.offset) {
throw new IOException(“Invalid offset: ™ + bufOffset);
}
} else {

file.seek(filePointer + bufOffset);

file.write(buffer.getBuffer(), 0, buffer.getLength());

this.offset += buffer.getLength();

Because the network environment is the key point affecting file transfers, we need
to measure the bandwidth between the client and a desired node. Using another tool
to measure the network environment between a client and a GridFTP server would
be very inefficient; so, the need is to measure the current transfer speed according to
the transmission volume during file transfers. The transfer part of Java CoG offers the
interface, DataSink, which allows applications to decide which methods to use when
writing files. We added some code to measure file transfer speed to this interface, and

the resulting code is listed below.

DataSink lo_DataSink = new DataSink () {

public synchronized void write(Buffer buffer) throws
IOException {
long size = buffer.getLength() ;

fileRandomIO.write (buffer) ;

long end = System.currentTimeMillis();
rate = size / (end - start);
start = end;

public void close() throws IOException {
fileRandomIO.close() ;
Y
Y

@ Springer

Implementation of a dynamic adjustment strategy

The boldface type shows that the key point in measuring the current transfer speed
is using time difference and file-writing duration. This gives the transfer speed during
file transfers, thus there is no separate reassembly time cost. We overcome one co-
allocation shortcoming, and the completion time is just the sum of the authentication
and data transmission times.

5 Experimental results and analysis

In this section, we discuss the performance of our recursive-adjustment co-allocation
strategy. We evaluate four co-allocation schemes: (1) brute-force (Brute), (2) history-
based (History), (3) conservative load balancing (Conservative), (4) aggressive load
balancing (Aggressive) and (5) dynamic adjustment strategy (DAS). We analyze the
performance of each scheme by comparing their transfer finish times, and the total
idle time faster servers spent waiting for the slowest servers to finish delivering the
last block. We also analyze overall performances in the various cases.

5.1 Input parameters

We used the following experiments to determine input parameters for the three factors
in our strategy: CPU idle state, memory free space, and network bandwidth, and
assign ratios to each of the factors.

At first, to determine the effect of network bandwidth on transfer rates, we mea-
sured average rates using various bandwidth ratios. As Fig. 12 shows, there was little
difference for small file sizes, however, as the file size was increased, a curve became
apparent. The transfer rate decreased at bandwidth ratios smaller than 0.6; the peak
transfer rate occurred at a ratio of 0.8. This means that we set R°FU, RMEM 354 RBW
in the ratio 0.1:0.1:0.8.

In the second experiment, we assessed the effect of CPU computing power on
transfer rates. We used three machines with different CPU types, memory sizes fixed

‘—0—1OOMB —0—500MB —a— 1000MB +2000MB‘

Average Transfer Rate(MB/s)
O =~ N W b 00 O N

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Ratio of Network Bandwidth

Fig. 12 The partition size evaluation result

@ Springer

C.-T. Yang et al.

10
9.5

8.5

 orseer——— © 18259
75

Average Transfer Rate (MB/s)

7
6.5
6
5.5
5
Celeron 1G Celeron 1.7G P4 3G
CPU Type

Fig. 13 Comparison of different CPU types

10
9.5

8.5

1456 7.803

~N
[2]
[{o]
»
N
[«2]
(0]
[¢)]
-~
Y

7.5

6.5

Average Transfer Rate (MB/s)

5.5

256 512 768 1024
Memory Size (MB)

Fig. 14 Comparison of different memory sizes

at 512 MB, and the same bandwidth: M1, an Intel Celeron 1G; M2, an Intel Celeron
1.7G; and M3, a P4 3G. We set the three machines up as GridFTP sites and measured
the average transfer rates for a 500 MB file download from each site to determine
performance. The results in Fig. 13 show that the more powerful CPUs performed
better, but the increase in efficiency was not proportional to the increase in CPU
computing power.

In the third experiment on memory size, we used one machine with different mem-
ory sizes as a GridFTP server to measure the relation between memory size and trans-
fer rate performance. The results in Fig. 14 clearly show that increasing memory size
has no obvious effect on transfer performance.

The results show that more CPU computing power and larger memory size will
improve transfer rates, but not by much. We believe that bandwidth is the most im-

@ Springer

Implementation of a dynamic adjustment strategy

THU Intel Pentium 4 3GHz PU AMD Athlon(tm) XP 2400+
1GB RAM 60GB HD 1GB RAM 120GB HD

Intel Pentium 4 2.5GH
512ZMB RAM 80GB HD

Li-Zen High 4 celeron s00mHz HIT Intel Pentium 4 2.8GHz
School (LZ) 256MB RAM 60GB HD 512MB RAM 80GB HD

Fig. 15 Our data grid testbed

portant factor affecting transfer rate, and that the bandwidth ratio should be set larger
than the other two factors. CPU power and memory size can be used to make a dif-
ference when the bandwidths of several servers are very close.

5.2 Experimental environments

We performed wide-area data transfer experiments using our GridFTP GUI client
tool. We executed our co-allocation client tool on our testbed at Tunghai University
(THU), Taichung City, Taiwan, and fetched files from four selected replica servers:
one at Providence University (PU), one at Li-Zen High School (LZ), and the other
one at Hsiuping Institute of Technology School (HIT). All these institutions are in
Taichung, Taiwan, and each is at least 10 km from THU. Figure 15 shows our data
grid testbed, and Table 1 is the detailed listing. All servers had Globus 3.2.1 or above
installed.

In the following experiments, we set , and in the ratio
0.1:0.1:0.8. We experimented with file sizes of 10 MB, 50 MB, 100 MB, 500 MB,
1000 MB, 1500 MB, and 2000 MB. For comparison, we measured the performance
of conservative load balancing on each size using the same block numbers.

Table 2 shows average transmission rates between THU and each replica server.
These numbers were obtained by transferring files of 100 MB, 500 MB, 1000 MB,
and 2000 MB from a single replica server using our GridFTP client tool, and each
number is an average over several runs.

RCPU RMEM RBW

5.3 Results and analysis

We examined the effect of faster servers waiting for the slowest server to deliver the
last block for each scheme. Figure 16 shows total idle times for various file sizes. Note
that our Dynamic Adjustment Strategy performed significantly better than the other

@ Springer

C.-T. Yang et al.

Table 1 Detailed list of our Data Grid testbeds

Site Hostname CPU Type Clock RAM NIC Linux Globus
(MHz) kernel version
THU deltal Intel Pentium 4 3001 1GB 1G 2.6.12 4.0.1
THU delta2 Intel Pentium 4 3001 1GB 1G 2.6.12 4.0.1
THU delta3 Intel Pentium 4 3001 1GB 1G 2.6.12 4.0.1
THU deltad Intel Pentium 4 3001 1GB 1G 2.6.12 4.0.1
LZ 1z01 Intel Celeron 898 256 MB 10/100 2.4.20 321
LZ 1202 Intel Celeron 898 256 MB 10/100 2.4.20 3.2.1
LZ 1z03 Intel Celeron 898 384 MB 10/100 2.4.20 3.2.1
Lz 1z04 Intel Celeron 898 256 MB 10/100 2.4.20 3.2.1
HIT gridhit0 Intel Pentium 4 2800 512 MB 10/100 2.6.12 3.2.1
HIT gridhitl Intel Pentium 4 2800 512 MB 10/100 2.6.12 3.2.1
HIT gridhit2 Intel Pentium 4 2800 512 MB 10/100 2.6.12 3.2.1
HIT gridhit3 Intel Pentium 4 2800 512 MB 10/100 2.6.12 3.2.1
PU hpc09 AMD Athlon XP 1991 1 GB 1G 2.4.22 321
PU hpc10 AMD Athlon XP 1991 1GB 1G 2.4.22 321
PU hpel1 AMD Athlon XP 1991 1GB 1G 2.4.22 3.2.1
PU hpcl2 AMD Athlon XP 1991 1GB 1G 2.4.22 321

Table 2 GridFTP end-to-end

transmission rates from THU to ~ Replica server Average transmission rate
various servers

HIT 61.5 Mbits

LZ 49.5 Mbits

PU 26.7 Mbits

schemes on every file size. These results demonstrate that our approach efficiently
reduces the differences in servers finish times.

Figure 17 shows total completion times in a detailed cost-structure view. Servers
were at PU, LZ, and HIT, with the client at THU. The first three bars for each file size
denote the time to download the entire file from single server, while the other bars
show co-allocated downloads using all three servers. Our co-allocation strategy fin-
ished the jobs faster than the other strategies, and there was no combination time cost.
Thus, we may infer that the main gains our technology offers as a result of the mod-
ifications we presented in Sect. 4.3 are no combination time, and faster transmission
than other co-allocation strategies.

Table 3 lists all experiments we performed and the sets of replica servers used.
The results in Fig. 18 show that using co-allocation technologies yielded no improve-
ment for smaller file sizes such as 10 MB. They also show that in most cases, overall
performance increased as the number of co-allocated flows increased. We observed
that for our testbed and our co-allocation technology, overall performance reached
its highest value in the DAS2_2 case. However, in the DAS3 case, when we added
one flow to the set of replica servers, the performance did not increase. On the con-

@ Springer

Implementation of a dynamic adjustment strategy

@Brute @History MConservative = Aggressive ®BDAS

225
200

175
150
125
100
75
50
25

Idle Time (seconds)

100 500 1000 2000
File Size (MB)

Fig. 16 Idle times for various methods; servers at PU, LZ, and HIT

O Combinaticn Time @OTransmission Time @ Authentication Time

700

600

500
400 J_i

300

200]

Completion Time (seconds

iy
o
o

o
]

N
[

History
Conservat..

Aggressivs

DAS

PU

History

2

DAS

P

Brute

Brute

History
onservat..

Aggressive

DAS

@ Conservat.

ol

Agaressiv

@ Conservet..

e

ile Siz

@
w
w
=
o

Fig. 17 Completion times for various methods; servers are at PU, LZ, and HIT

trary, it decreased. We can infer that the co-allocation efficiency reached saturation
in the DAS2_2 case, and that additional flows caused additional overhead and re-
duced overall performance because the PU file site had worse network bandwidth,
and DAS2_1 choosing PU for file transfer led to the differences between DAS2_1 and
DAS2_2. This means that more download flows do not necessarily result in higher

@ Springer

C.-T. Yang et al.

Table 3 The sets of replica

servers for all cases Case Replica servers
PU1 PU
LZ1 LZ
DAS2_1 PU,LZ
DAS2_2 LZ, HIT
DAS3 PU, LZ, HIT

OPU1 @LZ1 @DASZ_1 ODAS2 2 ODAS3
70 —

50 H

40

30

20

10 H

Overall Performance (Mbps)

500 1000 1500 2000
File Size (MB)

Fig. 18 Overall performances for various sets of servers

performance. We must choose appropriate numbers of flows to achieve optimum per-
formance.

In the final experimentation, two data transfer scenarios are performed by using
our cyber-transformer for file download in parallel. Scenario one is used to conduct
the file transfer performance by downloading 1 GB data in LAN environment in THU.
And scenario two is used to conduct the file transfer performance by downloading
2 GB data in WAN environment (THU-HIT-LZ-PU) in a real grid. The performance
is shown in Fig. 19.

By comparing testing result of the two scenarios there was something difference,
as shown in Fig. 20. With less network transformation interference, the overall perfor-
mance will be decreased 41% and 39%, respectively, when the testing environment
was changed from LAN to WAN with brute-force and history schemes. In contrast to
the aggressive and our DAS schemes, due to the main design consideration of those
two schemes was to reduce link down and exactly dispatch future working load when
progressing, there was no obvious performance decrease when the testing environ-
ment changed from LAN to WAN.

@ Springer

Implementation of a dynamic adjustment strategy

m LAN m\WAN

S0
% 80
=1
£
s 70
¢ €0 -
m©
E 50
o
T 40 -
s
T 30 +
g 20

10

0 a

Brute History Conservative Aggressive

Fig. 19 Comparison of cyber-transformer transmission rate between LAN and WAN

Fig. 20 The rate of overall
performance downgrade
between LAN and WAN

0.00%
-0.05%
0.10%
-0.15%
-0.20%
-0.25% -
-0.30%

-0.35%

0.10%
o
-0.45%]'/\ —_—

Rate of performance Downgrade (%)

6 Conclusions

Using the parallel-access approach to downloading data from multiple servers re-
duces transfer times and increases server resilience. The co-allocation architecture
provides a co-ordinated agent for assigning data blocks. A previous work showed that
the dynamic co-allocation scheme leads to performance improvements. However, it
cannot handle the idle time of faster servers having to wait for the slowest server to
deliver its final block. This paper proposes the dynamic adjustment strategy (DAS) to
improve file transfer performances using the co-allocation architecture in data grids.
In our approach, the workloads on selected replica servers are continuously adjusted
during data transfers, and our approach can also reduce the idle times spent waiting
for the slowest servers, and thus decrease file transfer completion times.

We also developed a new toolkit, called cyber-transformer that enables even inex-
perienced users to easily monitor replica source site statuses, manage replicas, and
download files from multiple servers in parallel. Experimental results show the effec-

@ Springer

C.-T. Yang et al.

tiveness of our proposed technique in improving transfer times and reducing overall
idle time spent waiting for the slowest servers. We also discussed the cost of combina-
tion time and provided an effective improvement. In future work, we will investigate
providing more functions for our user-friendly interface, for example, auto parame-
ters input and auto scan to find better replica servers for downloading. We also plan
to improve replica management, especially on the problem of replica consistency.

Acknowledgements This work is supported in part by National Science Council, Taiwan R.O.C., under
grants no. NSC 96-2221-E-029-019-MY3 and NSC 97-2622-E-029-003-CC2.

References

1. Allcock B, Tuecke S, Foster I, Chervenak A, Kesselman C (2000) Protocols and services for distrib-
uted data-intensive science. In: ACAT2000 proceedings, pp 161-163
2. Allcock B, Bester J, Bresnahan J, Chervenak A, Foster I, Kesselman C, Meder S, Nefedova V, Ques-
nel D, Tuecke S (2001) Secure, efficient data transport and replica management for high-performance
data-intensive computing. In: Proceedings of the eighteenth IEEE symposium on mass storage sys-
tems and technologies, pp 13-28
3. Allcock B, Bester J, Bresnahan J, Chervenak A, Foster I, Kesselman C, Meder S, Nefedova V, Quesnel
D, Tuecke S (2002) Data management and transfer in high-performance computational grid environ-
ments. Parallel Comput 28(5):749-771
4. Chervenak A, Foster I, Kesselman C, Salisbury C, Tuecke S (2001) The data grid: towards an archi-
tecture for the distributed management and analysis of large scientific datasets. J Netw Comput Appl
23:187-200
5. Chervenak A, Deelman E, Foster I, Guy L, Hoschek W, Iamnitchi A, Kesselman C, Kunszt P, Ripeanu
M (2002) Giggle: a framework for constructing scalable replica location services. In: Proceedings of
supercomputing 2002, Baltimore, MD
6. Czajkowski K, Foster I, Kesselman C (1999) Resource co-allocation in computational grids. In: Pro-
ceedings of the eighth IEEE international symposium on high performance distributed computing
(HPDC-899), August 1999
7. Czajkowski K, Fitzgerald S, Foster I, Kesselman C (2001) Grid information services for distributed
resource sharing. In: Proceedings of the tenth IEEE international symposium on high-performance
distributed computing (HPDC-10’01), August 2001, pp 181-194
8. Donno F, Gaido L, Ghiselli A, Prelz F, Sgaravatto M (2002) DataGrid Prototype 1. In: Proceed-
ings of the TERENA networking conference, June 2002. http://www.terena.nl/conferences/tnc2002/
Papers/p5a2-ghiselli.pdf
9. Foster I, Kesselman C (1997) Globus: a metacomputing infrastructure toolkit. Int J Supercomput Appl
High Perform Comput 11(2):115-128
10. Foster I, Kesselman C, Tuecke S (2001) The anatomy of the grid: enabling scalable virtual organiza-
tions. Int J Supercomput Appl High Perform Comput 15(3):200-222
11. Hoschek W, Jaen-Martinez J, Samar A, Stockinger H, Stockinger K (2000) Data management in an
international data grid project. In: First IEEE/ACM international workshop on grid computing—Grid
2000, Bangalore, India, December 2000
12. IBM Red Books, Introduction to grid computing with Globus. IBM Press. http://www.redbooks.ibm.
com/redbooks/pdfs/sg246895.pdf
13. Open Grid Forum, http://www.ogf.org/
14. Stockinger H, Samar A, Allcock B, Foster I, Holtman K, Tierney B (2002) File and object replication
in data grids. J Clust Comput 5(3):305-314
15. SYSSTAT utilities home page, http://perso.wanadoo.fr/sebastien.godard/
16. The Globus Alliance, http://www.globus.org/
17. Vazhkudai S (2003) Enabling the co-allocation of grid data transfers. In: Proceedings of fourth inter-
national workshop on grid computing, November 2003, pp 41-51
18. Vazhkudai S, Schopf J (2002) Predicting sporadic grid data transfers. In: Proceedings of 11th IEEE
international symposium on high performance distributed computing (HPDC-11 ‘02), July 2002,
pp 188-196

@ Springer

http://www.terena.nl/conferences/tnc2002/Papers/p5a2-ghiselli.pdf
http://www.terena.nl/conferences/tnc2002/Papers/p5a2-ghiselli.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246895.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246895.pdf
http://www.ogf.org/
http://perso.wanadoo.fr/sebastien.godard/
http://www.globus.org/

Implementation of a dynamic adjustment strategy

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

Vazhkudai S, Schopf J (2003) Using regression techniques to predict large data transfers. Int J High
Perform Comput Appl (ITHPCA) 17:249-268

Vazhkudai S, Schopf J, Foster I (2002) Predicting the performance of wide area data transfers. In:
Proceedings of the 16th international parallel and distributed processing symposium (IPDPS 2002),
April 2002, pp 3443

Vazhkudai S, Tuecke S, Foster I (2002) Replica selection in the Globus data grid. In: Proceedings
of the 1st international symposium on cluster computing and the grid (CCGRID 2001), May 2001,
pp 106-113

Venugopal S, Buyya R, Ramamohanarao K (2006) A taxonomy of data grids for distributed data
sharing, management, and processing. ACM Comput Surv 38(1):1-53

Wolski R, Spring N, Hayes J (1999) The network weather service: a distributed resource performance
forecasting service for metacomputing. Future Gener Comput Syst 15(5-6):757-768

Yang CT, Shih PC, Chen SY (2006) A domain-based model for efficient network information on
grid computing environments. IEICE Trans Inf Syst E89-D(2):738-742. Special issue on paral-
lel/distributed computing and networking

Yang CT, Yang IH, Chen CH, Wang SY (2006) Implementation of a dynamic adjustment mechanism
with efficient replica selection in co-allocation data grid environments. In: Proceedings of the 21st
annual ACM symposium on applied computing (SAC 2006)—distributed systems and grid computing
track, April 23-27, 2006, pp 797-804

Yang CT, Wang SY, Fu CP (2007) A dynamic adjustment mechanism for data transfer in data grids.
In: Network and parallel computing: IFIP international conference, NPC 2007, September 17-20.
Lecture notes in computer science, vol 4672. Springer, Berlin, pp 61-70

Yang CT, Yang IH, Li KC, Wang SY (2007) Improvements on dynamic adjustment mechanism in
co-allocation data grid environments. J Supercomput 40(3):269-280

Zhang X, Freschl J, Schopf J (2003) A performance study of monitoring and information services
for distributed systems. In: Proceedings of 12th IEEE international symposium on high performance
distributed computing (HPDC-12 ‘03), August 2003, pp 270-282

Chao-Tung Yang is a professor of Computer Science at Tunghai Uni-
versity in Taiwan. He was born on November 9, 1968, in Ilan, Tai-
wan, R.O.C. and received the B.Sc. degree in Computer Science from
Tunghai University, Taichung, Taiwan, in 1990, and the M.Sc. degree in
Computer Science from National Chiao Tung University, Hsinchu, Tai-
wan, in 1992. He received the Ph.D. degree in Computer Science from
National Chiao Tung University in July 1996. He won the 1996 Acer
Dragon Award for an outstanding Ph.D. Dissertation. He has worked as
an Associate Researcher for ground operations in the ROCSAT Ground
System Section (RGS) of the National Space Program Office (NSPO)
in Hsinchu Science-based Industrial Park since 1996. In August 2001,
he joined the faculty of the Department of Computer Science at Tunghai
University. He got the excellent research award by Tunghai University
in 2007. In 2007 and 2008, he got the Golden Penguin Award by Indus-
trial Development Bureau, Ministry of Economic Affairs, Taiwan. His

researches have been sponsored by Taiwan agencies National Science Council (NSC), National Center
for High Performance Computing (NCHC), and Ministry of Education. His present research interests are
in grid and cluster computing, parallel and multi-core computing, and Web-based applications. He is a
member of both the IEEE Computer Society and ACM.

@ Springer

C.-T. Yang et al.

Shih-Yu Wang received the B.Sc. degree in Computer Science at Tung-
hai University, Taichung, Taiwan, in July 2004. He received the M.Sc.
degree in Computer Science at Tunghai University, Taichung, Taiwan,
in July 2006. He also works at Industrial Technology Research Institute
in Hsinchu City, Taiwan. His research interests include data grid, grid
computing, and cluster computing.

William Cheng-Chung Chu is the Dean of the Engineering College,
a Professor of the Department of Computer Science, and the Director
of Software Engineering and Technologies Center of Tunghai Univer-
sity. He had served as the Dean of Research and Development Office
at Tunghai University from 2004 to 2007, Taiwan. From 1994 to 1998,
he was an Associate Professor at the Department of Information En-
gineering and Computer Science at Feng Chia University. He was a
Research Scientist at the Software Technology Center of the Lockheed
Missiles and Space Company, Inc., where he received special contribu-
tion awards in 1992 and 1993 and a PIP award in 1993. In 1992, he was
also a visiting scholar at Stanford University. He is serving as the Asso-
ciate Editor for Journal of Software Maintenance and Evolution (JSME)
and Journal of Systems and Software (JSS). His current research inter-
ests include software engineering, embedded systems, and e-learning.
Doctor Chu received his M.Sc. and Ph.D. degrees from Northwestern

University in Evanston, Illinois, in 1987 and 1989, respectively, both in computer science. He has edited
several books and published over 100 referred papers and book chapters, as well as participated in many
international activities, including organizing international conferences.

@ Springer

	NSC 98-2622-E-029-001-CC2
	組合 1
	cpe.1565
	cpe.1571
	IJAHUC 5(4) Paper 6
	File replication, maintenance, and consistency management services in data grids
	File replication, maintenance, and consistency management services in data grids
	Abstract
	Introduction
	Related work
	Replica management
	Replica consistency

	System design and implementation
	Software stack diagram
	ORCS and DMS operation
	Parameters and evaluation model
	Affect parameters
	Cost model

	The DMS and ORCS algorithms
	DMS algorithm
	ORCS algorithm

	Experimental environment and results
	Parameter setting
	DMS parameter setting
	ORCS parameter setting

	Results
	File management results
	File consistency results

	Conclusions and future work
	Acknowledgements
	References

	Implementation of a dynamic adjustment strategy for parallel file transfer in co-allocation data grids
	Implementation of a dynamic adjustment strategy for parallel file transfer in co-allocation data grids
	Abstract
	Introduction
	Background review
	Data grid and replications
	The co-allocation architecture and related work

	The dynamic adjustment strategy
	An efficient toolkit: cyber-transformer
	System components
	System transaction flow
	Improvements in Java CoG for parallel downloading

	Experimental results and analysis
	Input parameters
	Experimental environments
	Results and analysis

	Conclusions
	Acknowledgements
	References

