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Abstract

Field-induced birefringence, also known as cross-polarization wave generation, has played an
important role in ultrafast nonlinear optics. In this paper we analyze birefringence induced by
relativistic collective motion of electrons driven by high-intensity laser field. An analytical expres-
sion for the phase difference between the parallel and perpendicular polarizations of a weak probe
pulse with respect to the polarization of a strong pump pulse as a function of intensity, density,
and wavelengths is derived. It is shown that under typical experimental conditions of high-field
physics, the effect is well above detection threshold. The analysis is compared with particle-in-cell

simulation, and the agreement provides good support for the theory.

PACS numbers: 42.25.1c, 42.65.-k, 52.38.-r



I. INTRODUCTION

Relativistic nonlinear optics is a research field recently emerged from the rapid develop-
ment of high-intensity lasers [1]. In relativistic nonlinear optics the field in the laser pulse is
much stronger than the field that binds the outer electrons of atoms and molecules, to the
extent that the v x B term in the Lorentz force cannot be ignored. As a result the nonlinear-
ity comes from the relativistic motion of free electrons instead of the anharmonicity of the
bound electron oscillation in atoms and molecules. Terawatt class lasers have been utilized
to induce relativistic nonlinear optical phenomena in underdense plasmas, including har-
monic generation [2-4], self-focusing [5-7], self-phase modulation [8], pulse compression [9],
and optical rectification [10, 11]. These phenomena have also been studied by theoretical
analysis [12-21] and computer simulation [22-28].

Field-induced birefringence, also known as cross-polarization wave generation, has played
an important role in ultrafast nonlinear optics. It is utilized in fiber mode-locking lasers to
generate femtosecond laser pulses [29, 30]. Tt is the key element of frequency-resolved-
optical-gating—the first method capable of reconstructing the femtosecond laser waveform
(both amplitude and phase profiles) [31]. It is the mechanism underlying the most effective
method for enhancing the contrast of femtosecond high-intensity lasers [32]. It has also been
used to imaging the propagation dynamics of intense light in a medium [33]. In the extreme
case, experimental observation of vacuum birefringence induced by virtual electron-position
pair creation has been considered [34].

In this paper we study relativistic birefringence induced by a strong propagating laser
field in underdense plasmas. For relativistic nonlinear optics it is natural to consider a fully
ionized plasma as the nonlinear medium. This is because plasma will not be damaged by
high-intensity laser, and plasma is not limited by absorption in the deep UV spectral range
and beyond. In addition, transient plasma structures can be fabricated by synchronized
laser pulses to enhance the nonlinear interaction [4]. We analyze the relativistic motion of
plasma electrons driven by a strong linearly-polarized pump beam and a weak probe beam
polarized at 45° with respect to the polarization axis of the pump beam. Because of the
nonlinear relativistic motion of the electrons, the probe beam experiences different indexes
of refraction in its two polarization axes, and this results in a phase difference between the

two polarizations as a function of the intensity of the pump beam, the plasma density, and



the wavelengths of the pump and probe beams. This makes the medium birefringent for the
probe beam.

In relativistic nonlinear optics, a relevant parameter is the amplitude a of the normalized
vector potential. Relativistic effects become significant when a is not much smaller than
1. Although relativistic nonlinear effects can be analyzed by using a as the perturbation
parameter, such an approach is valid only when a < 1. This is too restrictive considering
that currently a tabletop multi-terawatt laser can easily produce a field of @ > 1. In this
paper we use a’/a and 1 — n? as the perturbation parameters to derive the first-order ana-
lytical solution that describes the relativistic birefringence induced by a laser beam, where
a, a’ are the amplitudes of the pump beam and probe beam respectively, and 7 is the index
of refraction. The starting point (unperturbed solution) is the fully relativistic solution for
the case with ' = 0 and n = 1, which is exact for arbitrary a [15]. For most experiments
1 —n? is on the order of 1072 and a’/a can be chosen < 1, hence the first-order terms
in the expansion already provide a useful approximate solution without being limited to
a < 1. For field-induced birefringence it is not necessary to carry out a three-dimensional
analysis. This is because in general third-order relativistic nonlinear effects do not rely on
the transverse gradient of the driving field or the transverse gradient of the electron density,
in contrast to second harmonic generation and optical rectification [20, 21].

In Section II the nonlinear equations of motion for the electrons driven by a high-intensity
pump beam and a low-intensity probe beam is derived. In Section III first-order analytical
solutions for the electron motion are derived. In Section IV the difference of indexes of
refraction for the two polarization axes is derived as a function of the amplitude a, the plasma
density ng, and the wave numbers k, k&’ of the pump beam and probe beam. Comparison
with particle-in-cell simulation is carried out in Section V. The close agreement between

analytical calculation and simulation provides a good support for the theoretical analysis.

II. EQUATIONS OF MOTION FOR THE ELECTRONS

In the following analysis we assume the laser is focused onto a preionized gas target.
Preionization is done by the front edge of the laser pulse or by a prepulse that has a broader
spatial profile and passes through the gas before the pump pulse [4]. The ions are too heavy

to move significantly within the time scale of the laser pulse, hence they are considered as a



static distribution of background positive charge. Since in the relativistic regime the energy
of electrons’ thermal motion is much smaller than that of their collectively driven motion,
it is possible to ignore the thermal motion and assume that within the ultrashort time scale
of the laser pulse the collectively driven motion can be described by a cold fluid model.
To simplify the notation, in most places we use the normalized vector potential a and the

normalized scalar potential ¢ to represent the electromagnetic fields. They are defined by

le]A e[ ®
= 5 Q= 55 (2.1)
MeC MeC
where e = —|e| is the electron charge, m, is the electron rest mass, ¢ is the speed of light,

A is the vector potential, and & is the scalar potential.
The pump beam and probe beam are both linearly polarized and propagating in the 2

direction. In a one-dimensional model the normalized vector potential of the pump beam is

asin(k¢) # and that of the probe beam is (a’/v/2)sin(k'¢’)(& + ), where
C=nz—ct, (=n2z2—c, (2.2)

and 7, n" are the refractive index of the pump and probe beams respectively. In combination,

the normalized vector potential a = a12 + axy + azZz is

!/

a; = asin(k() + 7 sin(k'¢"), (2.3)
ag = 7 sin(k'¢"), (2.4)
as = 0. (2.5)

We assume that the amplitudes a((), a’((’) satisfy @’ < a and the slowly varying condition
da da’
€< O(kea), a O(K'ed), (2.6)
where ¢ < 1. We also assume that n,n’ satisfy the condition of rarefied plasma

1—n*=0(), 1—n7=0(e). (2.7)

In the following analysis terms much smaller than O(e) are ignored.
The analysis starts from the Lorentz equation dp/dt = e(E + v/c x B) and the energy

equation d(m.c*y)/dt = ev - E. They are equivalent to
dp 5, [10a
- = mec -
dt c ot

d

%(meC'Y) = meCQIB ' (

+V¢—ﬂx(an)}, (2.8)

1 0a

ot + qu) , (2.9)
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where 3 = v/c. The normalized scalar potential satisfies the Poisson equation

Vi =k (——1), (2.10)

o

where k, = w,/c and w, = (4mwe’ng/m.)"/? is the plasma frequency for the ambient plasma
density ng, and n. is the electron density. The quantities n. and 3 are related by the

continuity equation

on,
ot

+cV - (n8) = 0. (2.11)

Using the notations zy = x, xy = y, 23 = 2, x4 = ct, By = dxy/(cdt) = 1, and ag = —¢,
Egs. (2.8) and (2.9) can be written as

dp, 9 1 da,, B da,
=l oa (G- o), (212
%(mecv) = m.c ,,El B, (8:1:4 — 8951,) ) (2.13)

Using the same notations, (d/dt)a, = (0/0t + ¢ - V)a, can be written as

dau B Oa,,
Zﬂy T (2.14)

hence the first term in the right hand side of Eq. (2.12) is m.c(da,/dt) and the second term
in the right hand side of Eq. (2.13) is —me.c(day/dt) = mec(dp/dt). Therefore Eqgs. (2.12)

and (2.13) are equivalent to

4
d da,
7 (py — meca,) = —mec® ; 8, 5. (2.15)
d oay,
-, Mle - = e v 2.1
il c(y—¢) = mec Zﬂ T (2.16)
For © =1 or 2, one may write Eq. (2.15) as
d oay,
E (pJ_ mecal = —MeC Z 61/ 8ZEL . (217)
For pu = 3, since ag = 0, one may write Eq. (2.15) as
dPH da,
— ) 2.18
<2 g (2.18)

v=1,24
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Subtracting 1 times Eq. (2.16) from Eq. (2.18), one obtains

d 0 0
It [p) — meen(y — ¢)] = —mec? Z B, (a_x” + g§> ay. (2.19)

v=1,24

The subscript L represents the x and y components, and the subscript || represents the z
component. Because a, do not depend on z,, the right hand side of Eq. (2.17) is zero.

Define fj such that the right hand side of Eq. (2.19) is equal to d(m.cnf)/dt, namely

d 9 0 n 0
7 =- ——+ -7 | a. 2.2
oy (mecnfy) = —mec uz1;4ﬁy (83:” + cc’)t) a, (2.20)
Then Eqgs. (2.17) and (2.19) become
% (pr —mecay) =0, (2.21)
o meen(y — )] = Lmeenfy) (2.22)
dtpH eCTI\Y =7 eCNJY)- )
The solutions are
P =mecay, (2.23)
p| = meen(y —1— ¢+ f)). (2.24)

The integration constant —1 is added after v in Eq. (2.24) such that the initial condition
p1 = pj = 0 is satisfied when a = o’ = 0. From 8 = p/(m.cy) one has

BL= % (2.25)
gy = - 2D, (2.20

Moreover, from 7*(1 — 1 — ) = 1 one obtains (1 —7°)y* + 2By — C' = 0, where B =
(14 ¢ — fy) and C =14 a3 +n*(1 + ¢ — f|)*. Therefore to the first order of 1 —n® one
has v = C/(2B) — (1 —n*)C?/(8B?), namely

B 1+ai+n2(1+¢—f“)2

B 27 (1+ ¢ — f))

_ - [1+at +n*(1+ ¢ — fi))*)
8n°(1+ ¢ — fy)?
where ¢ and n. are determined by Egs. (2.10), (2.11), and f; by Eq. (2.20). Because
[0/0x + (n/c)(9/0t)]¢ = 0, in Eq. (2.20) only the derivative of the probe beam with the
phase £'(" and the amplitude a’(¢’) is nonzero. That is, f| = 0 if a’ = 0. When f; = 0 and

n =1, Egs. (2.23)-(2.27) reduce to the solutions in Ref. [15]. In Section III ¢, n., and f

(2.27)

will be solved and in Section IV the solutions will be used to evaluate the difference of the

refractive indexes for the two polarization axes experienced by the probe beam.
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III. THE SOLUTIONS

In this section we complete the solutions in Egs. (2.23)—(2.27) by solving ¢ and n. from
Egs. (2.10), (2.11), and f; from Eq. (2.20). Set ¢ = ¢, + ¢, where ¢, is the slowly-varying
part of ¢ and ¢; is the fast-varying part. As we shall see in Subsection IIT A that ¢; < ¢,
and ¢s = O(a) when the amplitude @ is not much smaller than 1. Moreover, as we shall see

in Section IV, the refractive indexes satisfy

_ n2 — ki/kz . 7],2 — kf’/kQ (3 1)
1+ ¢, 1+ ¢, '
hence the assumption in Eq. (2.7) is equivalent to
k Ky
=i O(ea), 2= O(ea). (3.2)

In Sections III, IV, V we consider the case with |k — k’'| = O(k) and in Section VI the case
with |k — k'| < k is discussed.

A. Solution of ¢

In order to solve ¢ from Eq. (2.10), one needs to evaluate n./ng first. For the case with

a’ =0 and n = 1, the solution of n./ng is [15]

Ne v
— = 3.3
A B (3.3)
We can make an educated guess that the lowest-order approximation for n./ng is still of
the same form for the case with @’ < a and 1 —n? = O(€). This guess will be verified in

Subsection III C. Therefore to the lowest order, Eq. (2.10) is equivalent to

2, 2 T
V(b—kp(—1+¢ 1). (3.4)

Keeping only the lowest-order terms in Eq. (2.27), namely neglecting fy, ¢; and setting

n = 1, one obtains

1+ad? 1+ ¢

= + , 3.5
750+ ¢y) 2 (3.5)
and
y 7y 1+ad% 1
1~ B PR N 3.6
1+ ¢ 1+ ¢, 214 ¢5)? 2 (3.6)



From Egs. (2.3) and (2.4) one has, by neglecting the terms with a'?,

2
at =al+a; =~ % [1 — cos(2k()]
_a_\/c% (cos @, —cosf_), (3.7)

where 04 = k( £ k'(’. Therefore Eq. (3.4) can be separated into the slowly and fast varying

parts as follows,

L [1+ae2 1
v =g oy 2l )
2 _kzgv a’
\Y ¢f = m |:3 COS(Q]{?C)
+il/—a§/ (cos B, — cos 9_)] : (3.9)

Note that the term cosf_ = cos(k( — k'¢") belongs to the fast-varying part, because here
|k — K'| = O(k) is assumed. Eq. (3.8) leads to

1+4+a?/2
1+ 6s)° = —5s57—73 (3.10)
1+2V2¢,/k2
If V¢, < k:f) , Eq. (3.10) becomes approximately
2
(1+6)2 =1+, (3.11)

2

namely

¢s=\/1+%2—1, (3.12)

which implies ¢; = O(a) when a is not much smaller than 1. The condition V¢, < k> holds,
because Eqs. (2.6), (3.2) imply V¢, = O(k*¢*a) = O(kZe). Since in the one-dimensional
case ¢y does not depend on z, one has V3¢, = 82¢f/0xﬁ, hence Egs. (3.9), (3.11) imply

approximately
k2 a?
= —Fr | — 2k
o = 0t a2 {81# cos(2k¢)
aa’ [cosf,  cosf_
— — 1
5 ()] (813

where 0y = k( + k'’ =~ (k£ k')(z —ct) and ky = k + k' = O(k). Using Eq. (3.2) one
can see ¢y = O(ea) and consequently ¢y < ¢,. Eqgs. (3.12) and (3.13) are the lowest-order

8



solutions of ¢, and ¢;. Note that for ¢, the lowest order means O(ea) for the cos(2k(¢) term
and O(ea’) for the cosfy terms. Even though the cosf. terms are much smaller than the
cos(2k() term in Eq. (3.13), as we shall see in Section IV, only the cos 6. terms are relevant

to the birefringent effect.

B. Solution of f|

The term fj is defined in Eq. (2.20), which is equivalent to
% (nfi) = —CHZMBV (8:1:'” th) - (3.14)
Since [0/0x) + (n/c)(0/0t)|¢ = 0, the derivative of ay = —¢ equals the derivative of the
cosfy terms in Eq. (3.13) and the derivatives of a; and as equal the derivatives of the
(a//\/2) sin(k'¢’) terms in Egs. (2.3) and (2.4). As mentioned in the end of Subsection I1I A,
the terms with cos . in Eq. (3.13) are of order O(ea’), while the term (a’/+/2)sin(k'¢’) in
Egs. (2.3) and (2.4) is of order O(d’), therefore to the lowest order the term with v = 4 in

Eq. (3.14) can be neglected. Eq. (3.14) is approximately

df || no
— . 1
Z B (a$| cot v (3.15)
Since 3, = a, /v for v = 1,2, Eq. (3.15) can be written as
df” Cc 0 n 0 2
il p—— 1
at (8:15 T c ot aL (3.16)

where a7 is given in Eq. (3.7). From Eq. (3.7) and [0/0z) + (n/c)(9/0t)]¢ = 0, Eq. (3.16)

equals

dt 227
Since 0+ = kC + k'(’, one has

dfy —ad c( 0 nd
Al = (87 +-5 (cosfy —cosb_). (3.17)

0 n o
(87 + C@t) Qi = £k (7] - 77) (318)

Moreover, the term 1/+ in the right hand side of Eq. (3.17) can be changed to df./dt by
using the following procedure. From ¢ = nz — ¢t and Eq. (2.26) one obtains

dC 1+ ¢
o

(5” ) —C (3.19)



From 6, ~ k(¢ and Eq. (3.19), one gets
I
v cki(1+ ) dt
Set D = 0/0z + (n/c)(0/0t) and F = F(0;) with ¢ = + or —. The right hand side of
Eq. (3.17) contains terms of the form (1/vy)DF. Because DF = C(dF/df;), where C' =
D#; = +k'(1f —n) as shown in Eq. (3.18), and 1/y ~ C(d6;/dt), where C' = —1/[ck.(1+ ¢,)]

(3.20)

as shown in Eq. (3.20), one has

~ dF db; ~dF
DF)~ — = — 21
(DF) CC’in dt ce dt’ (3:21)

=~

where CC = k' (n — 1')/[cky(1 4+ ¢5)] when 6; = 6, and CC = —K (n — 1)/ [ck_(1 + ¢s)]
when 60; = 6_. Therefore, the right hand side of Eq. (3.17) can be changed from (1/v)DF
to the form dF'/dt as

% _ aa'k'(n _n/)i <cosﬁ+ . COSQ_) 7 (3.22)
dt  2v2(1 + ¢,) dt \ ky k_

and the solution is approximately

"K' (n—n 0 6_
fH:aa (n n)(cos + , O ) (3.23)
2v2(1 + @) \ Ky k_
From Eq. (3.1) and ki = k £+ £’ one obtains
—k2 11 K2k k_
B e T e s A (3.24)
21+ d) \K2 &2) ~ 2(1 + ¢, k2K
and Eq. (3.23) becomes
f kyad (k_ cos Oy + ks cosf_) (3.25)
= _ Cos cosf_). :
7R+ a2)2)k2k T
Using Eq. (3.2) one can see f| = O(ea’). This is the lowest-order solution of fj.
C. Solution of n.
Finally we solve n. from Eq. (2.11). Eq. (2.11) is equivalent to
one.
5 +cB-Vne+n.cV -8 =0. (3.26)
Since (0/0t + ¢ - V)n, = dn./dt, Eq. (3.26) is equivalent to
dne
CZ +n.cV -8 =0. (3.27)

10



The solution is

Ne = Ng €XP <—/ cV - ,Bdt) : (3.28)

To obtain the value n./ng, we must evaluate the integral in Eq. (3.28). Because V - (v3) is

much simpler than V - 3, we separate the integrand into two terms,

1 1
From V(1/v) = —(1/4*)V7, the first term in Eq. (3.29) is
L 1oy Lt &
B V7 =3 (B V)= > (dt (,%) : (3.30)
From Egs. (2.25) and (2.26), the second term in Eq. (3.29) is
c ¢ (Oa, 0 }
-V =-S5+ —1—-9¢+
5 (v8) S {&m P, [n(y ¢+ fi)]
cn 0
~ — o+ fi), 3.31
S am”(v ¢+ /i) (3.31)

where da, /0x; = 0, because a, does not depend on z, , and 7 can be taken as a constant,
because its derivative dn/dx; = O(ke*) (obtained from Eq. (3.1), k7/k* = O(ea), and
0¢s/0x; = O(kea)) can be neglected. Substituting Eq. (3.30) and (3.31) into (3.29), it

becomes

_ ldy 1-n20y en( 0O n o en oo — f)
VB = + N Oz * cot v Ox

o i , (3.32)
where we subtracted (n?/v)(0v/0t) in the second term and added it back in the third
term. To obtain n./ny in Eq. (3.28), we must evaluate the integral [ ¢V - @dt. The first
term in Eq. (3.32), which is equivalent to —d(In~)/dt, can obviously be integrated. The
other terms in Eq. (3.32) are all of the form (1/v)(DF'), where D represents the differential
operator d/0t, 0/0x| + (n/c)(0/dt), or 0/0x). As mentioned in Subsection IIIB, when
D = 9/0x) + (n/c)(9/0t) the term can be changed to the form dF/dt. We shall show
in what follows that terms with D = 0/0t and D = 0/0x| can also be changed to the
form dF'/dt. Hence they all can be integrated. For this purpose we set ¢; = k(, 6, = 0,
05 =0_, and ky =k, ko = k,, ks = k_. First we show that the second term in Eq. (3.32) is
approximately equivalent to [(1 —7?)/(1 + ¢,)](dv/dt). Let F = F(6;) with ¢ = 1,2, or 3,
since 00;/0t = —ck;, one has

OF dF 99, dF
ot do, ot e,

(3.33)

11



Similar to the derivation of Eq. (3.20), from Eq. (3.19) and 6; ~ k;( one has

1 —1 db;

- . 3.34

v cki(1+ ¢s) dit (8:34)
Combining Egs. (3.33) and (3.34), one gets

19F 1 dF

v ot T 1+¢, dt

(3.35)
As can be seen from Egs. (3.5) and (3.7), v consists of functions F'(6;) with ¢ = 1,2, or 3,
therefore by Eq. (3.35) the second term in Eq. (3.32) is

1—n0y _1-n*dy
voOt T 14 ¢, dt

(3.36)

Next we show that the last term in Eq. (3.32) is approximately [1/(1+ ¢,)|d(¢ — f)/dt. Let
F = F(6;) with i = 1,2, or 3, since 00;/0x)| = k;, one has
OF dF 06, _ dF

5o = a7~ g (3.37)
Combining Egs. (3.34) and (3.37), one gets
1 0F -1 dF
~ = (3.38)

;ax” - C(l + ¢s) dt .

As can be seen from Eqgs. (3.13) and (3.25), ¢ — fj consists of functions F'(6;) with i = 1,2,
or 3, therefore by Eq. (3.38) the last term in Eq. (3.32) is

_ndb—f) 1 dé—fi)
y al’” 1+ ¢ dt
1 do 1 df
T 1t+odt 1+, dt’

(3.39)

where for the first term in Eq. (3.39) the denominator 1 + ¢4 is replaced by 1+ ¢. This can
be done, because d¢/dt is small (¢, is slowly varying and ¢ is small) and terms of order
smaller than d¢/dt can be neglected. Finally we show that the third term in Eq. (3.32) is
approximately —[1/(1 + ¢,)](df;/dt). The differential operator for the third term is D =
d/0x) + (n/c)(0/0t), the same as that in the right hand side of Eq. (3.16). The proof can
be done by simply comparing the third term with Eq. (3.16). Since ¢, is a function of a((),
one has [0/0x) + (n/c)(0/0t)]¢s = 0, hence from Eq.(3.5) the third term in Eq. (3.32) is

en( 0 mo\_ _cf 0 nd\_ a
gl (9$+05t)7N7(3$u+05t 2(1+¢s) (840

12



Comparing Eq. (3.40) with (3.16), one gets

cn 0 n 0 1 de
— =+ = N ————. 41
vy (8:C|| * c@t) 7 1+ ¢, dt (3:41)

Substituting Egs. (3.36), (3.39), and (3.41) into Eq. (3.32), it becomes approximately

_ _ldy 1 dé_d( 2] Cad(
cV-B = rydt+1+¢dt dt<1+¢s>+(1 n)dt<1+¢s). (3.42)

From Egs. (3.28) and (3.42), one obtains

% =exp[lny —1In(l+ ¢) +¢|, (3.43)
0
where

_2h 4 v

An integration constant —1 is added after v/(1 + ¢5) in Eq. (3.44) such that g = 0 is
satisfied when @ = o’ = 0. Eq. (3.44) is the lowest-order solution of g, whose first term
contains f| = O(ea’) and second term contains 1 — n?. If ¢’ = 0 and n = 1, then g is zero.
From f in Eq. (3.25), 1—7? in Eq. (3.1) , and /(14 ¢s) — 1 in Egs. (3.6), (3.7), one obtains

2 2
g=—"" a—cos(?kz()
2(1 4 a2/2)3/2 | 2k?

aa’

V2kE!
Comparing with ¢ in Eq. (3.13), one can see that g is of the same order as ¢¢/+/1 + a?/2,

_|_

(cos By + cos 9)] : (3.45)

namely O(e) for the cos(2k()term and O(ea’/a) for the cosfyi terms. Because g < 1,
Eq. (3.43) is approximately

ne 1y
n—o_—1+¢(1—|—g). (3.46)

As mentioned before it differs from Eq. (3.3) only by a first-order perturbation term g. At this
point we have completed the solutions of 81, f, ¢, and n./ng to the first-order correction.

These solutions will be used in Section IV for the analysis of relativistic birefringence.

IV. RELATIVISTIC BIREFRINGENCE

The time dependent electron density n., electron velocity 3, and the potential function

¢ derived in Sections II and III serve as the source terms of the Maxwell equation. These
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source terms result from the nonlinear oscillation of the electrons, from which the change of
the refractive indexes in the two perpendicular axes can be derived. In the Coulomb gauge

V -a =0, the normalized transverse Maxwell equation is

2 1O - gemen 0 (109
(V c2 Ot2 al_kpnobl—'—@xl cot )’ (4.1)

Because ¢ does not depend on x|, it is

1 02 n
V- S )ar =k —p5.. 4.2
( CW)M 226, (42)
Egs. (2.25) and (3.46) imply
Ne a|
€3, = 1
noﬂL 1+¢( +9)
ai i
~ 1 — 4.3
1+¢s<+g 1+¢s>’ (43)

where 1+¢ = (1+¢5)[1+¢/(1+¢5)]. As mentioned after Eq. (3.45), both g and ¢ /(1+¢5)
are O(e). In Eq. (4.3) the first term a, /(1 + ¢5) is the lowest-order term and the others are

the first-order perturbations. The Maxwell equation for the lowest-order driving field is

2 R
v — - —2r U =o0. 4.4
( c2otr 1+ ¢s) o “4)
The solutions are given in Egs. (2.3) a ) with the refractive indexes

nd (
k2 kQ k2 /L2
/ 1-— p/ , (4.5)
L+ ¢

as mentioned in the beginning of Section III. In this paper we focus on how the refractive
index is changed by the first-order perturbations. From Eq. (4.3) it can be seen that to the

first-order correction the Maxwell equation is

1 9? Ky kpay ¢
2 P P f
-2 _ ST (P 4
(7' e va) o (o 35) o
From ¢ in Eq. (3.13) and ¢ in Eq. (3.45), one obtains
k2 <g 9y ) _ kjaa {3@ cos(2k()
1+ o5 1+ ¢ 2v/2(1 4+ a2/2)2 | 4v/2a'k?

1 1 1 1
+(kk:’ k2>0050++ <kk:’ 2 )cosé’ } (4.7)
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where 0. = k(£k'(" and ki = k£k'. Moreover, from the a; in Egs. (2.3) and (2.4), one has
a; ~ asin(k() and as ~ 0. Hence for L= 1 the right hand side of Eq. (4.6) is approximately

kz%al ¢f _ 7 I
Y (g—1+¢5)—aa sin(k'¢") + R, (4.8)

and for L= 2 it is approximately

]{Zzag ¢f .
I+ 0, (g_1+¢s>_0’ (4.9)

where in Eq. (4.8) the term aa’sin(k’¢’) comes from a; = asin(k¢) times the cosfy terms

in Eq. (4.7) and

B kya® 1 1 110
TN+ a2y (E+E) (4.10)
R = Asin(kC) + Bsin(3k() + Csin(2k¢ + £'¢’) + Dsin(2k¢ — £'¢). (4.11)

The 3-w term sin(3k() is the source of third harmonic generation [20]. It was shown in our
previous works that for the three-dimensional case R also contains 2-w terms sin(2k¢) and
cos(2k() which are the source of second harmonic generation [20], and the slowly varying
0-w terms which is the source of terahertz radiation [21]. In this paper we are concerned
with only the 1-w term «a’sin(k’(’), which changes the refractive index 7’ for the probe

beam. From Egs. (4.6), (4.8), and (4.9), in the & direction (L= 1) the probe beam satisfies

2 1 82 k127 a’ : v ! !l
Vi Gz~ 1+ ¢ Esm(/@ (") = ad sin(K'¢), (4.12)
and in the y direction (L= 2)
1 02 k2 a
2 _ —— P )\ —_sin(K) =0. 4.1
<V 292 1% ¢s) \/ism(k ¢)=0 (4.13)
Since
: ! 1 ]' 82 : vl
Sll’l(k C ) = _k/QCQ ﬁ Sln(k C ), (414)

V2 — P (K¢)=0 (4.15)
2 a’ sin =0, .
12 92
2 ﬂ 9 I A
<V 2 _8152) a'sin(k'¢’) =0, (4.16)



where

Cl+e, K27

kQ/k/Q
! = ,/1— pL_ 4.1
Ty 1+ ¢s (4.18)

The birefringence effect represented by 7, — 7, is

V2a kya? ( 11 )

Il A _ o
Ty e ™ o T Ry 22k \ B2 K2

(4.19)

The intensity scaling is 7, — 7/, oc a®/(1 4+ a*/2)?, the density scaling is 7, — 7}, oc k; o< ng,
and the wave number dependence is 7, — 1, o< (1/k")(1/k* + 1/k%), where ky = k £ &'.
Eq. (4.19) is verified by particle-in-cell simulation in Section V.

V. COMPARISON WITH PARTICLE-IN-CELL SIMULATIONS

In this section the theoretical result given in Eq. (4.19) is examined by one-dimensional
particle-in-cell simulation [35]. In the simulations, a linearly-polarized pump pulse with a
fixed wavelength A = 810 nm and a linearly-polarized probe pulse with various wavelength
N co-propagate in a plasma slab of length L. The probe pulse is 45° polarized with respect
to the polarization axis of the pump pulse. The wavelength of the probe pulse is chosen to
be far enough from that of the pump pulse, such that the birefringent effect is not interfered
by the self-phase modulation or Raman scattering of the pump pulse. The full-width-at-
half-maximum (FWHM) pulse durations of the pump pulse and the probe pulse are 162 fs
and 49 fs respectively. The duration of the pump pulse is chosen to be short enough such
that for the range of a in the simulations the pulse energy is within the reach of a tabletop
multi-terawatt laser. It is also chosen to be long enough comparing with the period of plasma
oscillation to reduce transient effects. The duration of the probe pulse is chosen to be smaller
than that of the pump pulse such that it samples the peak region of the pump pulse. It is
also chosen to be long enough such that the effect of group velocity dispersion is negligible.
The total length of the simulation domain is 230 pm and the grid size is Az = \'/1024.
The simulation is carried out in the moving-window mode to save computation and memory
usage. A 22-um long density ramp is placed at the plasma-vacuum interface to reduce the

transition effects induced by the laser pulses while entering the plasma slab. In order to
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determine the phase of the probe pulse precisely, the simulated waveform of the probe pulse
is curve fitted to a sine wave at the pulse peak. This enables accurate calculation of the
phase difference between the two orthogonal polarizations in the probe pule.
From Eq. (4.19), it is seen that the optical path difference 6;, = (1, — 7,) L satisfies
2 -1 2

F(5;) = 8]’%—? (% + %) = (Hi‘lw (5.1)
In the simulation we measure the difference of the location 6, = 2,,,.. — 2y...., where 2z,
and z,,. are the points at which the 2- and y-direction fields have the maximum value.
We compare the data F(6,) = (8k™6.)/(ksL) (1/k% + l/kﬁ)f1 with the theoretical result
F(6r) = a*/(1 + a?/2)? in Fig. 1, where ' = 27 /k’ ranges between 472 nm and 574 nm,
ng = mec®k? /(4me?) ranges between 6.7 x 10" /cm?® and 2.8 10" /em?, and L ranges between
383 pm to 880 pm. All the simulation data fall close to the theoretical curve of Eq. (5.1)
and thus support the theory well.

0.8 1
0.6
—_ @ 00O
N
SN ﬂ :
= ™
0.2
0.0 T T T T T T T T T T T 1
0.0 0.5 1.0 1.5 2.0 25 3.0
a

FIG. 1: Comparison between the simulation data (square) and the theoretical prediction (curve)
given in Eq. (5.1). For the data with ascending a, the wavelength of the probe pulse, the plasma
density, and the propagation distance are \'(nm) = 475, 472, 492, 512, 533, 554, 475, 574,
532, 475, 477, 482, 502, ng(10'®/cm3) = 20, 28, 18, 13, 10, 8, 10, 6.7, 7, 7, 8, 7.5, 7, and
L(um) = 582,383, 383, 383, 383,383, 482, 383, 582, 880, 781, 781, 781 respectively.
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VI. DISCUSSION AND SUMMARY

The phase difference between the two orthogonal polarizations of the probe pulse A¢ =
K'(n, — n,)L is on the order of 102 for the range of a, ng, k, k', L considered in this paper.
Although this is a small phase difference, it can be measured by using the technique of
balanced detection, which has a typical phase sensitivity of 107* [36]. To reach the condition
of L &~ 400 pm, the pump pulse must be focused to a spot size for which the confocal
parameter is larger than 200 pm. This means the FWHM focal spot size must be larger
than 8.5 ym. In the meantime, to reach the condition of a = 2, the intensity of the pump
laser at the focal spot must exceed 8.4 x 10'® W/cm? for A = 810 nm. These two conditions
imply that the pump laser must be able to deliver 1.2 J of energy if the pulse duration is
set to be =~ 160 fs and proportionally for other pulse durations. This condition can be met
by existing tabletop high-power lasers based on chirped-pulse amplification.

In Section V we limited our discussion to the case of |k —k'| = O(k). Such a consideration
is from the experimental point of view. If k' is close to k, the pump pulse may generate
frequency components at the frequency of the probe pulse by self-phase modulation and
Raman scattering. These frequency components will interfere with the birefringence mea-
surement. From a theoretical point of view the case of ¥’ — k can also be analyzed by the
same method. The only difference between these two cases is in the proper separation of
the fast components and the slow components in the nonlinear source terms. When k&' — k,
from Eq. (3.1) one has ' — n and k'¢’ — k(, hence the term cosf_ = cos(k( — k'(’) ap-
proaches one. For this case the term cosf_ should not be included in the fast oscillating
part of v/(1+4 ¢) — 1 (the right hand side of Eq. (3.9)) and hence should disappear in ¢y.
Similarly, since the derivative of cos@_ approaches zero, it should also disappear in dfy/dt
(the right hand side of Eq. (3.17)) and fj, hence in g which contains f| and v/(1 + ¢) — 1.
For this case Eq. (4.7) then becomes

k2 R khaal 3a cos(2k(Q) 11
L+ ¢ (g 1+¢s) T 2VA(L + a2/2)2 { Waake: (ﬁ E) COS&} - (61

Multiplying Eq. (6.1) by a; =~ asin(k(), one obtains that for the case k' — k

—k2a? 1 1
) 62)
4vV2(1 +a2/2)2 \ kK k%
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and Eq. (4.19) becomes

42
n;/_n;z\/ﬁsz kga 2712 (i/_%)7 (6.3)
2k 8(1+ a?/2)2k"2 \ kk' k%
where ky = k + k’. Namely, for the case k' — k, one has
—3kia?
Ny — My & : (6.4)

32(1 + a?/2)%k*

In summary, we analyzed the effect of relativistic birefringence induced by high-intensity
laser field in plasma. The phase difference for the parallel and perpendicular polarizations
caused by the relativistic motion of electrons are proportional to the square of plasma density,
and its dependence on intensity reaches maximum at a = V2. The saturation at a > /2
is due to relativistic mass increase of electrons. The analytical result was compared with
particle-in-cell simulation, and the agreement provides good support for the theory. For
typical intensities, densities, and interaction lengths in experiments of high-field physics,
the phase difference is well above the detection threshold. This nonlinear effect may thus
be utilized for the diagnosis of relativistic laser-plasma interaction or characterization of
laser pulses with relativistic intensity, for which conventional nonlinear optics is impeded by

optical breakdown and spectral limitation.
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