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Abstract

Field-induced birefringence, also known as cross-polarization wave generation, has played an

important role in ultrafast nonlinear optics. In this paper we analyze birefringence induced by

relativistic collective motion of electrons driven by high-intensity laser field. An analytical expres-

sion for the phase difference between the parallel and perpendicular polarizations of a weak probe

pulse with respect to the polarization of a strong pump pulse as a function of intensity, density,

and wavelengths is derived. It is shown that under typical experimental conditions of high-field

physics, the effect is well above detection threshold. The analysis is compared with particle-in-cell

simulation, and the agreement provides good support for the theory.

PACS numbers: 42.25.Lc, 42.65.-k, 52.38.-r
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I. INTRODUCTION

Relativistic nonlinear optics is a research field recently emerged from the rapid develop-

ment of high-intensity lasers [1]. In relativistic nonlinear optics the field in the laser pulse is

much stronger than the field that binds the outer electrons of atoms and molecules, to the

extent that the v×B term in the Lorentz force cannot be ignored. As a result the nonlinear-

ity comes from the relativistic motion of free electrons instead of the anharmonicity of the

bound electron oscillation in atoms and molecules. Terawatt class lasers have been utilized

to induce relativistic nonlinear optical phenomena in underdense plasmas, including har-

monic generation [2–4], self-focusing [5–7], self-phase modulation [8], pulse compression [9],

and optical rectification [10, 11]. These phenomena have also been studied by theoretical

analysis [12–21] and computer simulation [22–28].

Field-induced birefringence, also known as cross-polarization wave generation, has played

an important role in ultrafast nonlinear optics. It is utilized in fiber mode-locking lasers to

generate femtosecond laser pulses [29, 30]. It is the key element of frequency-resolved-

optical-gating—the first method capable of reconstructing the femtosecond laser waveform

(both amplitude and phase profiles) [31]. It is the mechanism underlying the most effective

method for enhancing the contrast of femtosecond high-intensity lasers [32]. It has also been

used to imaging the propagation dynamics of intense light in a medium [33]. In the extreme

case, experimental observation of vacuum birefringence induced by virtual electron-position

pair creation has been considered [34].

In this paper we study relativistic birefringence induced by a strong propagating laser

field in underdense plasmas. For relativistic nonlinear optics it is natural to consider a fully

ionized plasma as the nonlinear medium. This is because plasma will not be damaged by

high-intensity laser, and plasma is not limited by absorption in the deep UV spectral range

and beyond. In addition, transient plasma structures can be fabricated by synchronized

laser pulses to enhance the nonlinear interaction [4]. We analyze the relativistic motion of

plasma electrons driven by a strong linearly-polarized pump beam and a weak probe beam

polarized at 45◦ with respect to the polarization axis of the pump beam. Because of the

nonlinear relativistic motion of the electrons, the probe beam experiences different indexes

of refraction in its two polarization axes, and this results in a phase difference between the

two polarizations as a function of the intensity of the pump beam, the plasma density, and
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the wavelengths of the pump and probe beams. This makes the medium birefringent for the

probe beam.

In relativistic nonlinear optics, a relevant parameter is the amplitude a of the normalized

vector potential. Relativistic effects become significant when a is not much smaller than

1. Although relativistic nonlinear effects can be analyzed by using a as the perturbation

parameter, such an approach is valid only when a ≪ 1. This is too restrictive considering

that currently a tabletop multi-terawatt laser can easily produce a field of a > 1. In this

paper we use a′/a and 1 − η2 as the perturbation parameters to derive the first-order ana-

lytical solution that describes the relativistic birefringence induced by a laser beam, where

a, a′ are the amplitudes of the pump beam and probe beam respectively, and η is the index

of refraction. The starting point (unperturbed solution) is the fully relativistic solution for

the case with a′ = 0 and η = 1, which is exact for arbitrary a [15]. For most experiments

1 − η2 is on the order of 10−2 and a′/a can be chosen ≪ 1, hence the first-order terms

in the expansion already provide a useful approximate solution without being limited to

a ≪ 1. For field-induced birefringence it is not necessary to carry out a three-dimensional

analysis. This is because in general third-order relativistic nonlinear effects do not rely on

the transverse gradient of the driving field or the transverse gradient of the electron density,

in contrast to second harmonic generation and optical rectification [20, 21].

In Section II the nonlinear equations of motion for the electrons driven by a high-intensity

pump beam and a low-intensity probe beam is derived. In Section III first-order analytical

solutions for the electron motion are derived. In Section IV the difference of indexes of

refraction for the two polarization axes is derived as a function of the amplitude a, the plasma

density n0, and the wave numbers k, k′ of the pump beam and probe beam. Comparison

with particle-in-cell simulation is carried out in Section V. The close agreement between

analytical calculation and simulation provides a good support for the theoretical analysis.

II. EQUATIONS OF MOTION FOR THE ELECTRONS

In the following analysis we assume the laser is focused onto a preionized gas target.

Preionization is done by the front edge of the laser pulse or by a prepulse that has a broader

spatial profile and passes through the gas before the pump pulse [4]. The ions are too heavy

to move significantly within the time scale of the laser pulse, hence they are considered as a
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static distribution of background positive charge. Since in the relativistic regime the energy

of electrons’ thermal motion is much smaller than that of their collectively driven motion,

it is possible to ignore the thermal motion and assume that within the ultrashort time scale

of the laser pulse the collectively driven motion can be described by a cold fluid model.

To simplify the notation, in most places we use the normalized vector potential a and the

normalized scalar potential ϕ to represent the electromagnetic fields. They are defined by

a ≡ |e|A
mec2

, ϕ ≡ |e|Φ
mec2

, (2.1)

where e = −|e| is the electron charge, me is the electron rest mass, c is the speed of light,

A is the vector potential, and Φ is the scalar potential.

The pump beam and probe beam are both linearly polarized and propagating in the ẑ

direction. In a one-dimensional model the normalized vector potential of the pump beam is

a sin(kζ) x̂ and that of the probe beam is (a′/
√
2) sin(k′ζ ′)(x̂+ ŷ), where

ζ = ηz − ct, ζ ′ = η′z − ct, (2.2)

and η, η′ are the refractive index of the pump and probe beams respectively. In combination,

the normalized vector potential a = a1x̂+ a2ŷ + a3ẑ is

a1 = a sin(kζ) +
a′√
2
sin(k′ζ ′), (2.3)

a2 =
a′√
2
sin(k′ζ ′), (2.4)

a3 = 0. (2.5)

We assume that the amplitudes a(ζ), a′(ζ ′) satisfy a′ ≪ a and the slowly varying condition

da

dζ
= O(kϵa),

da′

dζ ′
= O(k′ϵa′), (2.6)

where ϵ ≪ 1. We also assume that η, η′ satisfy the condition of rarefied plasma

1− η2 = O(ϵ), 1− η′2 = O(ϵ). (2.7)

In the following analysis terms much smaller than O(ϵ) are ignored.

The analysis starts from the Lorentz equation dp/dt = e(E + v/c × B) and the energy

equation d(mec
2γ)/dt = ev · E. They are equivalent to

dp

dt
= mec

2

[
1

c

∂a

∂t
+∇ϕ− β × (∇× a)

]
, (2.8)

d

dt
(mecγ) = mec

2β ·
(
1

c

∂a

∂t
+∇ϕ

)
, (2.9)

4



where β = v/c. The normalized scalar potential satisfies the Poisson equation

∇2ϕ = k2
p

(
ne

n0

− 1

)
, (2.10)

where kp = ωp/c and ωp = (4πe2n0/me)
1/2 is the plasma frequency for the ambient plasma

density n0, and ne is the electron density. The quantities ne and β are related by the

continuity equation

∂ne

∂t
+ c∇ · (neβ) = 0. (2.11)

Using the notations x1 = x, x2 = y, x3 = z, x4 = ct, β4 = dx4/(cdt) = 1, and a4 = −ϕ,

Eqs. (2.8) and (2.9) can be written as

dpµ
dt

= mec
2

4∑
ν=1

βν

(
∂aµ
∂xν

− ∂aν
∂xµ

)
, (2.12)

d

dt
(mecγ) = mec

2

4∑
ν=1

βν

(
∂aν
∂x4

− ∂a4
∂xν

)
. (2.13)

Using the same notations, (d/dt)aµ = (∂/∂t+ cβ · ∇) aµ can be written as

daµ
dt

= c
4∑

ν=1

βν
∂aµ
∂xν

, (2.14)

hence the first term in the right hand side of Eq. (2.12) is mec(daµ/dt) and the second term

in the right hand side of Eq. (2.13) is −mec(da4/dt) = mec(dϕ/dt). Therefore Eqs. (2.12)

and (2.13) are equivalent to

d

dt
(pµ −mecaµ) = −mec

2

4∑
ν=1

βν
∂aν
∂xµ

, (2.15)

d

dt
mec (γ − ϕ) = mec

2

4∑
ν=1

βν
∂aν
∂x4

. (2.16)

For µ = 1 or 2, one may write Eq. (2.15) as

d

dt
(p⊥ −meca⊥) = −mec

2

4∑
ν=1

βν
∂aν
∂x⊥

. (2.17)

For µ = 3, since a3 = 0, one may write Eq. (2.15) as

dp∥
dt

= −mec
2
∑

ν=1,2,4

βν
∂aν
∂x∥

. (2.18)
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Subtracting η times Eq. (2.16) from Eq. (2.18), one obtains

d

dt

[
p∥ −mecη(γ − ϕ)

]
= −mec

2
∑

ν=1,2,4

βν

(
∂

∂x∥
+

η

c

∂

∂t

)
aν . (2.19)

The subscript ⊥ represents the x and y components, and the subscript ∥ represents the z

component. Because aν do not depend on x⊥, the right hand side of Eq. (2.17) is zero.

Define f∥ such that the right hand side of Eq. (2.19) is equal to d(mecηf∥)/dt, namely

d

dt
(mecηf∥) ≡ −mec

2
∑

ν=1,2,4

βν

(
∂

∂x∥
+

η

c

∂

∂t

)
aν . (2.20)

Then Eqs. (2.17) and (2.19) become

d

dt
(p⊥ −meca⊥) = 0, (2.21)

d

dt

[
p∥ −mecη(γ − ϕ)

]
=

d

dt
(mecηf∥). (2.22)

The solutions are

p⊥ = meca⊥, (2.23)

p∥ = mecη(γ − 1− ϕ+ f∥). (2.24)

The integration constant −1 is added after γ in Eq. (2.24) such that the initial condition

p⊥ = p∥ = 0 is satisfied when a = a′ = 0. From β = p/(mecγ) one has

β⊥ =
a⊥
γ
, (2.25)

β∥ = η −
η(1 + ϕ− f∥)

γ
. (2.26)

Moreover, from γ2(1 − β2
⊥ − β2

∥) = 1 one obtains (1 − η2)γ2 + 2Bγ − C = 0, where B =

η2(1 + ϕ− f∥) and C = 1 + a2⊥ + η2(1 + ϕ− f∥)
2. Therefore to the first order of 1− η2 one

has γ = C/(2B)− (1− η2)C2/(8B3), namely

γ =
1 + a2⊥ + η2(1 + ϕ− f∥)

2

2η2(1 + ϕ− f∥)

− (1− η2)
[1 + a2⊥ + η2(1 + ϕ− f∥)

2]2

8η6(1 + ϕ− f∥)3
, (2.27)

where ϕ and ne are determined by Eqs. (2.10), (2.11), and f∥ by Eq. (2.20). Because

[∂/∂x∥ + (η/c)(∂/∂t)]ζ = 0, in Eq. (2.20) only the derivative of the probe beam with the

phase k′ζ ′ and the amplitude a′(ζ ′) is nonzero. That is, f∥ = 0 if a′ = 0. When f∥ = 0 and

η = 1, Eqs. (2.23)–(2.27) reduce to the solutions in Ref. [15]. In Section III ϕ, ne, and f∥

will be solved and in Section IV the solutions will be used to evaluate the difference of the

refractive indexes for the two polarization axes experienced by the probe beam.
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III. THE SOLUTIONS

In this section we complete the solutions in Eqs. (2.23)–(2.27) by solving ϕ and ne from

Eqs. (2.10), (2.11), and f∥ from Eq. (2.20). Set ϕ = ϕs + ϕf , where ϕs is the slowly-varying

part of ϕ and ϕf is the fast-varying part. As we shall see in Subsection IIIA that ϕf ≪ ϕs,

and ϕs = O(a) when the amplitude a is not much smaller than 1. Moreover, as we shall see

in Section IV, the refractive indexes satisfy

1− η2 =
k2
p/k

2

1 + ϕs

, 1− η′2 =
k2
p/k

′2

1 + ϕs

, (3.1)

hence the assumption in Eq. (2.7) is equivalent to

k2
p

k2
= O(ϵa),

k2
p

k′2 = O(ϵa). (3.2)

In Sections III, IV, V we consider the case with |k − k′| = O(k) and in Section VI the case

with |k − k′| ≪ k is discussed.

A. Solution of ϕ

In order to solve ϕ from Eq. (2.10), one needs to evaluate ne/n0 first. For the case with

a′ = 0 and η = 1, the solution of ne/n0 is [15]

ne

n0

=
γ

1 + ϕ
. (3.3)

We can make an educated guess that the lowest-order approximation for ne/n0 is still of

the same form for the case with a′ ≪ a and 1 − η2 = O(ϵ). This guess will be verified in

Subsection III C. Therefore to the lowest order, Eq. (2.10) is equivalent to

∇2ϕ = k2
p

(
γ

1 + ϕ
− 1

)
. (3.4)

Keeping only the lowest-order terms in Eq. (2.27), namely neglecting f∥, ϕf and setting

η = 1, one obtains

γ ≈ 1 + a2⊥
2(1 + ϕs)

+
1 + ϕs

2
, (3.5)

and

γ

1 + ϕ
− 1 ≈ γ

1 + ϕs

− 1 ≈ 1 + a2⊥
2(1 + ϕs)2

− 1

2
. (3.6)
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From Eqs. (2.3) and (2.4) one has, by neglecting the terms with a′2,

a2⊥ = a21 + a22 ≈ a2

2
[1− cos(2kζ)]

−aa′√
2
(cos θ+ − cos θ−) , (3.7)

where θ± ≡ kζ ± k′ζ ′. Therefore Eq. (3.4) can be separated into the slowly and fast varying

parts as follows,

∇2ϕs = k2
p

[
1 + a2/2

2(1 + ϕs)2
− 1

2

]
, (3.8)

∇2ϕf =
−k2

p

2(1 + ϕs)2

[
a2

2
cos(2kζ)

+
aa′√
2
(cos θ+ − cos θ−)

]
. (3.9)

Note that the term cos θ− = cos(kζ − k′ζ ′) belongs to the fast-varying part, because here

|k − k′| = O(k) is assumed. Eq. (3.8) leads to

(1 + ϕs)
2 =

1 + a2/2

1 + 2∇2ϕs/k2
p

. (3.10)

If ∇2ϕs ≪ k2
p, Eq. (3.10) becomes approximately

(1 + ϕs)
2 = 1 +

a2

2
, (3.11)

namely

ϕs =

√
1 +

a2

2
− 1, (3.12)

which implies ϕs = O(a) when a is not much smaller than 1. The condition∇2ϕs ≪ k2
p holds,

because Eqs. (2.6), (3.2) imply ∇2ϕs = O(k2ϵ2a) = O(k2
pϵ). Since in the one-dimensional

case ϕf does not depend on x⊥, one has ∇2ϕf = ∂2ϕf/∂x
2
∥, hence Eqs. (3.9), (3.11) imply

approximately

ϕf =
k2
p

2(1 + a2/2)

[
a2

8k2
cos(2kζ)

+
aa′√
2

(
cos θ+
k2
+

− cos θ−
k2
−

)]
, (3.13)

where θ± ≡ kζ ± k′ζ ′ ≈ (k ± k′)(z − ct) and k± ≡ k ± k′ = O(k). Using Eq. (3.2) one

can see ϕf = O(ϵa) and consequently ϕf ≪ ϕs. Eqs. (3.12) and (3.13) are the lowest-order

8



solutions of ϕs and ϕf . Note that for ϕf the lowest order means O(ϵa) for the cos(2kζ) term

and O(ϵa′) for the cos θ± terms. Even though the cos θ± terms are much smaller than the

cos(2kζ) term in Eq. (3.13), as we shall see in Section IV, only the cos θ± terms are relevant

to the birefringent effect.

B. Solution of f∥

The term f∥ is defined in Eq. (2.20), which is equivalent to

d

dt

(
ηf∥
)
= −c

∑
ν=1,2,4

βν

(
∂

∂x∥
+

η

c

∂

∂t

)
aν . (3.14)

Since [∂/∂x∥ + (η/c)(∂/∂t)]ζ = 0, the derivative of a4 = −ϕ equals the derivative of the

cos θ± terms in Eq. (3.13) and the derivatives of a1 and a2 equal the derivatives of the

(a′/
√
2) sin(k′ζ ′) terms in Eqs. (2.3) and (2.4). As mentioned in the end of Subsection IIIA,

the terms with cos θ± in Eq. (3.13) are of order O(ϵa′), while the term (a′/
√
2) sin(k′ζ ′) in

Eqs. (2.3) and (2.4) is of order O(a′), therefore to the lowest order the term with ν = 4 in

Eq. (3.14) can be neglected. Eq. (3.14) is approximately

df∥
dt

= −c
∑
ν=1,2

βν

(
∂

∂x∥
+

η

c

∂

∂t

)
aν . (3.15)

Since βν = aν/γ for ν = 1, 2, Eq. (3.15) can be written as

df∥
dt

= − c

2γ

(
∂

∂x∥
+

η

c

∂

∂t

)
a2⊥, (3.16)

where a2⊥ is given in Eq. (3.7). From Eq. (3.7) and [∂/∂x∥ + (η/c)(∂/∂t)]ζ = 0, Eq. (3.16)

equals

df∥
dt

=
aa′

2
√
2

c

γ

(
∂

∂x∥
+

η

c

∂

∂t

)
(cos θ+ − cos θ−). (3.17)

Since θ± ≡ kζ ± k′ζ ′, one has(
∂

∂x∥
+

η

c

∂

∂t

)
θ± = ±k′(η′ − η). (3.18)

Moreover, the term 1/γ in the right hand side of Eq. (3.17) can be changed to dθ±/dt by

using the following procedure. From ζ = ηz − ct and Eq. (2.26) one obtains

dζ

dt
≈ c(β∥ − 1) ≈ −c

1 + ϕs

γ
. (3.19)
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From θ± ≈ k±ζ and Eq. (3.19), one gets

1

γ
≈ −1

ck±(1 + ϕs)

dθ±
dt

. (3.20)

Set D = ∂/∂x∥ + (η/c)(∂/∂t) and F = F (θi) with i = + or −. The right hand side of

Eq. (3.17) contains terms of the form (1/γ)DF . Because DF = C(dF/dθi), where C =

Dθi = ±k′(η′−η) as shown in Eq. (3.18), and 1/γ ≈ C̃(dθi/dt), where C̃ = −1/[ck±(1+ϕs)]

as shown in Eq. (3.20), one has

1

γ
(DF ) ≈ CC̃

dF

dθi

dθi
dt

= CC̃
dF

dt
, (3.21)

where CC̃ = k′(η − η′)/[ck+(1 + ϕs)] when θi = θ+ and CC̃ = −k′(η − η′)/[ck−(1 + ϕs)]

when θi = θ−. Therefore, the right hand side of Eq. (3.17) can be changed from (1/γ)DF

to the form dF/dt as

df∥
dt

=
aa′k′(η − η′)

2
√
2(1 + ϕs)

d

dt

(
cos θ+
k+

+
cos θ−
k−

)
, (3.22)

and the solution is approximately

f∥ =
aa′k′(η − η′)

2
√
2(1 + ϕs)

(
cos θ+
k+

+
cos θ−
k−

)
. (3.23)

From Eq. (3.1) and k± = k ± k′ one obtains

η − η′ ≈
−k2

p

2(1 + ϕs)

(
1

k2
− 1

k′2

)
=

k2
pk+k−

2(1 + ϕs)k2k′2 , (3.24)

and Eq. (3.23) becomes

f∥ =
k2
paa

′

4
√
2(1 + a2/2)k2k′

(k− cos θ+ + k+ cos θ−) . (3.25)

Using Eq. (3.2) one can see f∥ = O(ϵa′). This is the lowest-order solution of f∥.

C. Solution of ne

Finally we solve ne from Eq. (2.11). Eq. (2.11) is equivalent to

∂ne

∂t
+ cβ · ∇ne + nec∇ · β = 0. (3.26)

Since (∂/∂t+ cβ · ∇)ne = dne/dt, Eq. (3.26) is equivalent to

dne

dt
+ nec∇ · β = 0. (3.27)
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The solution is

ne = n0 exp

(
−
∫

c∇ · β dt

)
. (3.28)

To obtain the value ne/n0, we must evaluate the integral in Eq. (3.28). Because ∇ · (γβ) is

much simpler than ∇ · β, we separate the integrand into two terms,

c∇ · β = c

[
γβ · ∇1

γ
+

1

γ
∇ · (γβ)

]
. (3.29)

From ∇(1/γ) = −(1/γ2)∇γ, the first term in Eq. (3.29) is

cγβ · ∇1

γ
= −1

γ
(cβ · ∇γ) = −1

γ

(
dγ

dt
− ∂γ

∂t

)
. (3.30)

From Eqs. (2.25) and (2.26), the second term in Eq. (3.29) is

c

γ
∇ · (γβ) =

c

γ

{
∂a⊥
∂x⊥

+
∂

∂x∥

[
η(γ − 1− ϕ+ f∥)

]}
≈ cη

γ

∂

∂x∥
(γ − ϕ+ f∥), (3.31)

where ∂a⊥/∂x⊥ = 0, because a⊥ does not depend on x⊥, and η can be taken as a constant,

because its derivative ∂η/∂x∥ = O(kϵ2) (obtained from Eq. (3.1), k2
p/k

2 = O(ϵa), and

∂ϕs/∂x∥ = O(kϵa)) can be neglected. Substituting Eq. (3.30) and (3.31) into (3.29), it

becomes

c∇ · β = −1

γ

dγ

dt
+

1− η2

γ

∂γ

∂t
+

cη

γ

(
∂

∂x∥
+

η

c

∂

∂t

)
γ − cη

γ

∂(ϕ− f∥)

∂x∥
, (3.32)

where we subtracted (η2/γ)(∂γ/∂t) in the second term and added it back in the third

term. To obtain ne/n0 in Eq. (3.28), we must evaluate the integral
∫
c∇ · β dt. The first

term in Eq. (3.32), which is equivalent to −d(ln γ)/dt, can obviously be integrated. The

other terms in Eq. (3.32) are all of the form (1/γ)(DF ), where D represents the differential

operator ∂/∂t, ∂/∂x∥ + (η/c)(∂/∂t), or ∂/∂x∥. As mentioned in Subsection III B, when

D = ∂/∂x∥ + (η/c)(∂/∂t) the term can be changed to the form dF/dt. We shall show

in what follows that terms with D = ∂/∂t and D = ∂/∂x∥ can also be changed to the

form dF/dt. Hence they all can be integrated. For this purpose we set θ1 = kζ, θ2 = θ+,

θ3 = θ−, and k1 = k, k2 = k+, k3 = k−. First we show that the second term in Eq. (3.32) is

approximately equivalent to [(1 − η2)/(1 + ϕs)](dγ/dt). Let F = F (θi) with i = 1, 2, or 3,

since ∂θi/∂t = −cki, one has

∂F

∂t
=

dF

dθi

∂θi
∂t

= −cki
dF

dθi
. (3.33)
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Similar to the derivation of Eq. (3.20), from Eq. (3.19) and θi ≈ kiζ one has

1

γ
≈ −1

cki(1 + ϕs)

dθi
dt

. (3.34)

Combining Eqs. (3.33) and (3.34), one gets

1

γ

∂F

∂t
≈ 1

1 + ϕs

dF

dt
. (3.35)

As can be seen from Eqs. (3.5) and (3.7), γ consists of functions F (θi) with i = 1, 2, or 3,

therefore by Eq. (3.35) the second term in Eq. (3.32) is

1− η2

γ

∂γ

∂t
≈ 1− η2

1 + ϕs

dγ

dt
. (3.36)

Next we show that the last term in Eq. (3.32) is approximately [1/(1+ϕs)]d(ϕ−f∥)/dt. Let

F = F (θi) with i = 1, 2, or 3, since ∂θi/∂x∥ ≈ ki, one has

∂F

∂x∥
=

dF

dθi

∂θi
∂x∥

≈ ki
dF

dθi
. (3.37)

Combining Eqs. (3.34) and (3.37), one gets

1

γ

∂F

∂x∥
≈ −1

c(1 + ϕs)

dF

dt
. (3.38)

As can be seen from Eqs. (3.13) and (3.25), ϕ− f∥ consists of functions F (θi) with i = 1, 2,

or 3, therefore by Eq. (3.38) the last term in Eq. (3.32) is

−cη

γ

∂(ϕ− f∥)

∂x∥
≈ 1

1 + ϕs

d(ϕ− f∥)

dt

≈ 1

1 + ϕ

dϕ

dt
− 1

1 + ϕs

df∥
dt

, (3.39)

where for the first term in Eq. (3.39) the denominator 1 + ϕs is replaced by 1+ ϕ. This can

be done, because dϕ/dt is small (ϕs is slowly varying and ϕf is small) and terms of order

smaller than dϕ/dt can be neglected. Finally we show that the third term in Eq. (3.32) is

approximately −[1/(1 + ϕs)](df∥/dt). The differential operator for the third term is D =

∂/∂x∥ + (η/c)(∂/∂t), the same as that in the right hand side of Eq. (3.16). The proof can

be done by simply comparing the third term with Eq. (3.16). Since ϕs is a function of a(ζ),

one has [∂/∂x∥ + (η/c)(∂/∂t)]ϕs = 0, hence from Eq.(3.5) the third term in Eq. (3.32) is

cη

γ

(
∂

∂x∥
+

η

c

∂

∂t

)
γ ≈ c

γ

(
∂

∂x∥
+

η

c

∂

∂t

)
a2⊥

2(1 + ϕs)
. (3.40)
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Comparing Eq. (3.40) with (3.16), one gets

cη

γ

(
∂

∂x∥
+

η

c

∂

∂t

)
γ ≈ − 1

1 + ϕs

df∥
dt

. (3.41)

Substituting Eqs. (3.36), (3.39), and (3.41) into Eq. (3.32), it becomes approximately

c∇ · β = −1

γ

dγ

dt
+

1

1 + ϕ

dϕ

dt
− d

dt

(
2f∥

1 + ϕs

)
+ (1− η2)

d

dt

(
γ

1 + ϕs

)
. (3.42)

From Eqs. (3.28) and (3.42), one obtains

ne

n0

= exp [ln γ − ln(1 + ϕ) + g] , (3.43)

where

g =
2f∥

1 + ϕs

− (1− η2)

(
γ

1 + ϕs

− 1

)
. (3.44)

An integration constant −1 is added after γ/(1 + ϕs) in Eq. (3.44) such that g = 0 is

satisfied when a = a′ = 0. Eq. (3.44) is the lowest-order solution of g, whose first term

contains f∥ = O(ϵa′) and second term contains 1 − η2. If a′ = 0 and η = 1, then g is zero.

From f∥ in Eq. (3.25), 1−η2 in Eq. (3.1) , and γ/(1+ϕs)−1 in Eqs. (3.6), (3.7), one obtains

g =
k2
p

2(1 + a2/2)3/2

[
a2

2k2
cos(2kζ)

+
aa′√
2kk′

(cos θ+ + cos θ−)

]
. (3.45)

Comparing with ϕf in Eq. (3.13), one can see that g is of the same order as ϕf/
√

1 + a2/2,

namely O(ϵ) for the cos(2kζ)term and O(ϵa′/a) for the cos θ± terms. Because g ≪ 1,

Eq. (3.43) is approximately

ne

n0

=
γ

1 + ϕ
(1 + g) . (3.46)

As mentioned before it differs from Eq. (3.3) only by a first-order perturbation term g. At this

point we have completed the solutions of β⊥, β∥, ϕ, and ne/n0 to the first-order correction.

These solutions will be used in Section IV for the analysis of relativistic birefringence.

IV. RELATIVISTIC BIREFRINGENCE

The time dependent electron density ne, electron velocity β, and the potential function

ϕ derived in Sections II and III serve as the source terms of the Maxwell equation. These
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source terms result from the nonlinear oscillation of the electrons, from which the change of

the refractive indexes in the two perpendicular axes can be derived. In the Coulomb gauge

∇ · a = 0, the normalized transverse Maxwell equation is(
∇2 − 1

c2
∂2

∂t2

)
a⊥ = k2

p

ne

n0

β⊥ +
∂

∂x⊥

(
1

c

∂ϕ

∂t

)
. (4.1)

Because ϕ does not depend on x⊥, it is(
∇2 − 1

c2
∂2

∂t2

)
a⊥ = k2

p

ne

n0

β⊥. (4.2)

Eqs. (2.25) and (3.46) imply

ne

n0

β⊥ =
a⊥

1 + ϕ
(1 + g)

≈ a⊥
1 + ϕs

(
1 + g − ϕf

1 + ϕs

)
, (4.3)

where 1+ϕ = (1+ϕs)[1+ϕf/(1+ϕs)]. As mentioned after Eq. (3.45), both g and ϕf/(1+ϕs)

are O(ϵ). In Eq. (4.3) the first term a⊥/(1 + ϕs) is the lowest-order term and the others are

the first-order perturbations. The Maxwell equation for the lowest-order driving field is(
∇2 − ∂2

c2∂t2
−

k2
p

1 + ϕs

)
a(l)

⊥ = 0. (4.4)

The solutions are given in Eqs. (2.3) and (2.4) with the refractive indexes

η =

√
1−

k2
p/k

2

1 + ϕs

, η′ =

√
1−

k2
p/k

′2

1 + ϕs

, (4.5)

as mentioned in the beginning of Section III. In this paper we focus on how the refractive

index is changed by the first-order perturbations. From Eq. (4.3) it can be seen that to the

first-order correction the Maxwell equation is(
∇2 − 1

c2
∂2

∂t2
−

k2
p

1 + ϕs

)
a⊥ =

k2
pa⊥

1 + ϕs

(
g − ϕf

1 + ϕs

)
. (4.6)

From ϕf in Eq. (3.13) and g in Eq. (3.45), one obtains

k2
p

1 + ϕs

(
g − ϕf

1 + ϕs

)
=

k4
paa

′

2
√
2(1 + a2/2)2

[
3a cos(2kζ)

4
√
2a′k2

+

(
1

kk′ −
1

k2
+

)
cos θ+ +

(
1

kk′ +
1

k2
−

)
cos θ−

]
, (4.7)
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where θ± ≡ kζ±k′ζ ′ and k± = k±k′. Moreover, from the a⊥ in Eqs. (2.3) and (2.4), one has

a1 ≈ a sin(kζ) and a2 ≈ 0. Hence for ⊥= 1 the right hand side of Eq. (4.6) is approximately

k2
pa1

1 + ϕs

(
g − ϕf

1 + ϕs

)
= αa′ sin(k′ζ ′) +R, (4.8)

and for ⊥= 2 it is approximately

k2
pa2

1 + ϕs

(
g − ϕf

1 + ϕs

)
= 0, (4.9)

where in Eq. (4.8) the term αa′ sin(k′ζ ′) comes from a1 ≈ a sin(kζ) times the cos θ± terms

in Eq. (4.7) and

α =
k4
pa

2

4
√
2(1 + a2/2)2

(
1

k2
+

+
1

k2
−

)
, (4.10)

R = A sin(kζ) + B sin(3kζ) + C sin(2kζ + k′ζ ′) +D sin(2kζ − k′ζ ′). (4.11)

The 3-ω term sin(3kζ) is the source of third harmonic generation [20]. It was shown in our

previous works that for the three-dimensional case R also contains 2-ω terms sin(2kζ) and

cos(2kζ) which are the source of second harmonic generation [20], and the slowly varying

0-ω terms which is the source of terahertz radiation [21]. In this paper we are concerned

with only the 1-ω term αa′ sin(k′ζ ′), which changes the refractive index η′ for the probe

beam. From Eqs. (4.6), (4.8), and (4.9), in the x̂ direction (⊥= 1) the probe beam satisfies(
∇2 − 1

c2
∂2

∂t2
−

k2
p

1 + ϕs

)
a′√
2
sin(k′ζ ′) = αa′ sin(k′ζ ′), (4.12)

and in the ŷ direction (⊥= 2)(
∇2 − 1

c2
∂2

∂t2
−

k2
p

1 + ϕs

)
a′√
2
sin(k′ζ ′) = 0. (4.13)

Since

sin(k′ζ ′) = − 1

k′2c2
∂2

∂t2
sin(k′ζ ′), (4.14)

Eqs. (4.12) and (4.13) can be written respectively as(
∇2 − η′2x

c2
∂2

∂t2

)
a′ sin(k′ζ ′) = 0, (4.15)(

∇2 −
η′2y
c2

∂2

∂t2

)
a′ sin(k′ζ ′) = 0, (4.16)
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where

η′x =

√
1−

k2
p/k

′2

1 + ϕs

−
√
2α

k′2 , (4.17)

η′y =

√
1−

k2
p/k

′2

1 + ϕs

. (4.18)

The birefringence effect represented by η′y − η′x is

η′y − η′x ≈
√
2α

2k′2 =
k4
pa

2

8(1 + a2/2)2k′2

(
1

k2
+

+
1

k2
−

)
. (4.19)

The intensity scaling is η′y − η′x ∝ a2/(1 + a2/2)2, the density scaling is η′y − η′x ∝ k4
p ∝ n2

0,

and the wave number dependence is η′y − η′x ∝ (1/k′2)(1/k2
− + 1/k2

+), where k± = k ± k′.

Eq. (4.19) is verified by particle-in-cell simulation in Section V.

V. COMPARISON WITH PARTICLE-IN-CELL SIMULATIONS

In this section the theoretical result given in Eq. (4.19) is examined by one-dimensional

particle-in-cell simulation [35]. In the simulations, a linearly-polarized pump pulse with a

fixed wavelength λ = 810 nm and a linearly-polarized probe pulse with various wavelength

λ′ co-propagate in a plasma slab of length L. The probe pulse is 45◦ polarized with respect

to the polarization axis of the pump pulse. The wavelength of the probe pulse is chosen to

be far enough from that of the pump pulse, such that the birefringent effect is not interfered

by the self-phase modulation or Raman scattering of the pump pulse. The full-width-at-

half-maximum (FWHM) pulse durations of the pump pulse and the probe pulse are 162 fs

and 49 fs respectively. The duration of the pump pulse is chosen to be short enough such

that for the range of a in the simulations the pulse energy is within the reach of a tabletop

multi-terawatt laser. It is also chosen to be long enough comparing with the period of plasma

oscillation to reduce transient effects. The duration of the probe pulse is chosen to be smaller

than that of the pump pulse such that it samples the peak region of the pump pulse. It is

also chosen to be long enough such that the effect of group velocity dispersion is negligible.

The total length of the simulation domain is 230 µm and the grid size is ∆z = λ′/1024.

The simulation is carried out in the moving-window mode to save computation and memory

usage. A 22-µm long density ramp is placed at the plasma-vacuum interface to reduce the

transition effects induced by the laser pulses while entering the plasma slab. In order to
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determine the phase of the probe pulse precisely, the simulated waveform of the probe pulse

is curve fitted to a sine wave at the pulse peak. This enables accurate calculation of the

phase difference between the two orthogonal polarizations in the probe pule.

From Eq. (4.19), it is seen that the optical path difference δL = (η′y − η′x)L satisfies

F (δL) ≡
8k′2δL
k4
pL

(
1

k2
+

+
1

k2
−

)−1

=
a2

(1 + a2/2)2
. (5.1)

In the simulation we measure the difference of the location δL = zxmax − zymax , where zxmax

and zymax are the points at which the x̂- and ŷ-direction fields have the maximum value.

We compare the data F (δL) = (8k′2δL)/(k
4
pL)

(
1/k2

+ + 1/k2
−
)−1

with the theoretical result

F (δL) = a2/(1 + a2/2)2 in Fig. 1, where λ′ = 2π/k′ ranges between 472 nm and 574 nm,

n0 = mec
2k2

p/(4πe
2) ranges between 6.7×1018/cm3 and 2.8×1019/cm3, and L ranges between

383 µm to 880 µm. All the simulation data fall close to the theoretical curve of Eq. (5.1)

and thus support the theory well.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

a

F(
L)

FIG. 1: Comparison between the simulation data (square) and the theoretical prediction (curve)

given in Eq. (5.1). For the data with ascending a, the wavelength of the probe pulse, the plasma

density, and the propagation distance are λ′(nm) = 475, 472, 492, 512, 533, 554, 475, 574,

532, 475, 477, 482, 502, n0(10
18/cm3) = 20, 28, 18, 13, 10, 8, 10, 6.7, 7, 7, 8, 7.5, 7, and

L(µm) = 582, 383, 383, 383, 383, 383, 482, 383, 582, 880, 781, 781, 781 respectively.
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VI. DISCUSSION AND SUMMARY

The phase difference between the two orthogonal polarizations of the probe pulse ∆ϕ =

k′(η′y − η′x)L is on the order of 10−2 for the range of a, n0, k, k
′, L considered in this paper.

Although this is a small phase difference, it can be measured by using the technique of

balanced detection, which has a typical phase sensitivity of 10−4 [36]. To reach the condition

of L ≈ 400 µm, the pump pulse must be focused to a spot size for which the confocal

parameter is larger than 200 µm. This means the FWHM focal spot size must be larger

than 8.5 µm. In the meantime, to reach the condition of a = 2, the intensity of the pump

laser at the focal spot must exceed 8.4× 1018 W/cm2 for λ = 810 nm. These two conditions

imply that the pump laser must be able to deliver 1.2 J of energy if the pulse duration is

set to be ≈ 160 fs and proportionally for other pulse durations. This condition can be met

by existing tabletop high-power lasers based on chirped-pulse amplification.

In Section V we limited our discussion to the case of |k−k′| = O(k). Such a consideration

is from the experimental point of view. If k′ is close to k, the pump pulse may generate

frequency components at the frequency of the probe pulse by self-phase modulation and

Raman scattering. These frequency components will interfere with the birefringence mea-

surement. From a theoretical point of view the case of k′ → k can also be analyzed by the

same method. The only difference between these two cases is in the proper separation of

the fast components and the slow components in the nonlinear source terms. When k′ → k,

from Eq. (3.1) one has η′ → η and k′ζ ′ → kζ, hence the term cos θ− = cos(kζ − k′ζ ′) ap-

proaches one. For this case the term cos θ− should not be included in the fast oscillating

part of γ/(1 + ϕ) − 1 (the right hand side of Eq. (3.9)) and hence should disappear in ϕf .

Similarly, since the derivative of cos θ− approaches zero, it should also disappear in df∥/dt

(the right hand side of Eq. (3.17)) and f∥, hence in g which contains f∥ and γ/(1 + ϕ)− 1.

For this case Eq. (4.7) then becomes

k2
p

1 + ϕs

(
g − ϕf

1 + ϕs

)
=

k4
paa

′

2
√
2(1 + a2/2)2

[
3a cos(2kζ)

4
√
2a′k2

+

(
1

kk′ −
1

k2
+

)
cos θ+

]
. (6.1)

Multiplying Eq. (6.1) by a1 ≈ a sin(kζ), one obtains that for the case k′ → k

α =
−k4

pa
2

4
√
2(1 + a2/2)2

(
1

kk′ −
1

k2
+

)
, (6.2)
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and Eq. (4.19) becomes

η′y − η′x ≈
√
2α

2k′2 =
−k4

pa
2

8(1 + a2/2)2k′2

(
1

kk′ −
1

k2
+

)
, (6.3)

where k+ = k + k′. Namely, for the case k′ → k, one has

η′y − η′x ≈
−3k4

pa
2

32(1 + a2/2)2k4
. (6.4)

In summary, we analyzed the effect of relativistic birefringence induced by high-intensity

laser field in plasma. The phase difference for the parallel and perpendicular polarizations

caused by the relativistic motion of electrons are proportional to the square of plasma density,

and its dependence on intensity reaches maximum at a =
√
2. The saturation at a >

√
2

is due to relativistic mass increase of electrons. The analytical result was compared with

particle-in-cell simulation, and the agreement provides good support for the theory. For

typical intensities, densities, and interaction lengths in experiments of high-field physics,

the phase difference is well above the detection threshold. This nonlinear effect may thus

be utilized for the diagnosis of relativistic laser-plasma interaction or characterization of

laser pulses with relativistic intensity, for which conventional nonlinear optics is impeded by

optical breakdown and spectral limitation.
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