Abstract

This paper presents a new design method for p-synthesis, from the lower bound of g-norm. The
spectral Nevanlinna-Pick interpolation theory is our main tool to design the robust controller.
First the lower bound design problem is transformed into a spectral Nevanlinna-Pick problem
— spectral model matching problem. The solution technique is then construct to use spectral
interpolstion theory for controller design. Due to the fact that the present result of spectral
interpolation problem is only the 2 by 2 matrix case, some simple design examples of several

typical models are presented for illustrative purpose.

Keywords : structured singular value, robust stability, robust performance, u-synthesis,

model matching problem, spectral Nevanlinna-Pick interpolation problem.
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Notations

Meaning

a norm of a vector space.

A
the induced norm of a matrix A which is defined as [|A||, = sup HH :T|Hp
z£0 |IT|p

the vector p-norm of 2 € C*

the spectral norm of matrix function F' which is defined as ||F||s = sup p(F (jw))
weR

the set of complex numbers

all complex numbers with positive real part

all complex numbers with nonnegative real part
all complex numbers with negative real part
space of n X m complex matrices

the open unit disk

the closed unit disk

the complex conjugate and transpose of f

1= ([ 1reear) 1/2

1 lloc = sup o[f (jw)]

weR
the Laplace transform of f, i.e., f(s) = [25 f(t)e stdt
lower Linear Fraction Transformation

upper Linear Fraction Transformation

Hardy 2-space, Ho = {f : f is analytic in Re s > 0 and || f]|2 < o0.}
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Hoo Hardy oo-space, Hoo = {f : f is analytic in Re s > 0 and || f||co < o0}

1 the identity matrix
Int Ty {(s,p) : X2 = sA+p=0, [N <1}
L1(0, 00) class of Lebesque measurable complex-valued functions with fooo I|f()]|dt < oo
Loo(JR) {£(s) : Ifllo = sup o[f(jw)] < oo}
weR
LFT linear fractional transformation
N the natural number
R the set of real numbers
Rxm space of n X m real matrices
Re s real part of s
RHP the open right half plant
RHoo subspace of H, which consists of all proper and real rational stable

transfer functions in the open right half plane
RH subspace of H_, which consists of all proper and real rational stable

transfer functions in the open left half plane

SNP spectral Nevanlinna-Pick

T the unit circle

\% vector space

a(A) the largest singular value of A

p(A) spectral radius of A, that is, max |Ai(A)]

(u); the jth component of the vector u

Iy the symmetrized bidisc, {(s,p) : A> —sA+p =0, |\ < 1}.
A(A) eigenvalues of A

1 the structured singular value (SSV)
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Chapter 1

Introduction

1.1 Motivation

For uncertain systems p-synthesis procedure provides an effective method for controller design
and it guarantees the robustness of both stability and performance. Due to the difficulty in
computing the system’s p-norm [12], the solution now provided by u-synthesis is only an ap-
proximation. There is a computational access of p-synthesis, D-K iteration [5], which design the
controller from the upper bound of system’s py-norm. There are numerous design examples using
D-K iteration for robust controller design. In [6, 8, 19, 23], some design examples are presented.

Although p-synthesis has been widely accepted as standard design method, there is no
definite mathematical theory, in fact, py-norm is not actually a norm. To achieve an analytical
breakthrough for u-synthesis problem is the main reason for us to study the lower bound design
method.

First of all, the p-synthesis problems for robust stability and robust performance are trans-
formed into spectral model matching problem (first proposed by this paper). The solution of this
type of problem relies on finding analytic functions which satisfy certain interpolation condition
with its spectral norm to be less than one. This problem is called the spectral Nevanlinna-
Pick (SNP) interpolation problem in literature [2, 3, 9, 18]. In fact, to find the general solution
of SNP problem is still an open problem [10]. The so called SNP interpolation theory is de-



veloped to solve SNP problem. Till now only the problem with 2 x 2 matrix has been solved
[3, 18]. Once the interpolation problem is solved, the corresponding analytical function is used
to construct our robust controller. Detail algorithms for controller synthesis see Chapter 4.

In this paper, we try to design the controller from the lower bound of p. This involves much
of the spectral radius p and the spectral Nevanlinna-Pick interpolation theory. Recently, some
works about the spectral interpolation theory are proposed [18]. We utilize the theory to carry

out our design for simple uncertain systems.

1.2 Scope and Organization

This paper is organized as follows: Chapter 2 provides the mathematical background of robust
control . Definitions of norms and spaces are given and the concept of structured singular value
are discussed. p-synthesis and D-K iteration are also introduced. Chapter 3 review the classical
NP theory and the spectral NP theory. Necessary and sufficient conditions and solutions for
these problems are presented. Chapter 4 contains the application of the spectral NP theory
and the lower bound design method. Some algorithms and design examples are given here to

illustrate our design method.



Chapter 2

Preliminaries

This chapter provides the mathematical background and basic concepts of robust control. Struc-

tured singular value p is also introduced in section 2.2.

2.1 Mathematical Preliminary

In this section, we survey the definitions of norms and spaces and some useful tools of linear
system. To describe the performance specifications of a control system, to measure the size of
signals of interest, norm is indispensable. Which norm is the most appropriate depends on the
situation we meet and for this purpose some basic knowledge of Hardy space, the Ho and Hoo

spaces are needed.

Definition 2.1 A real-valued function || - || defined on a vector space V is said to be a norm on
V if it satisfies the following properties:

(1) llz] > 0

(2) |zl = 0 if and only if x =0

(2) |lazx|| = |a| ||z||, for any scalar a

(3) llz -+l < ol + Iyl

foranyx €V and y € V.



Define the vector p-norm of z € C" as

n 1/p
lell, == (Z |xz-|p> Cfor1<p< oo
i=1
When p = oo we have

oo = o [

Definition 2.2 Let A be a m xn matriz and © € C", the matriz induced p-norm of A is defined

as

| Az
“AHP ‘= sup ||IL‘“ £ = Sup “A]:HP
w20 zllp o=t

This matriz norm is induced by vector p-norm.

The induced 2-norm of A is usually denoted simply as || A|| and from the definition we have
A = ||All2 = the largest singular value of A
= o(A)
The norm of matrices has the following properties:

[Allpllzllp < 1 Allpll21lp;
A+ Bllp < | Allp + [1Bllp;

IAB|lp < [|Allpll Bllp-

Now we consider norms of the signal in time domain which maps (—oo, c0) to R™.

Definition 2.3  The 1-norm, 2-norm, oco-norm of a signal f(t) in time domain are defined as

£l == /OO 17 (2)]|dt.

1]l = (/: ||f(t)||2dt> "

[ flloo := Slszf(t)“oo-



The following Theorem for matrix is important.

Theorem 2.1 Let A be any n X n matriz and ¢ > 0 be given. Then there exists an induced

matriz norm such that
p(A) <Al < p(A +¢)

Proof see [15].

For the frequency domain signal
~ oo .
fliw) = [ i)t

Definition 2.4 The 2-norm, co-norm of f(jw) are defined as

1fll2 = (% /Z f*(jw)f(jw)>l/2

| £lloo == sup | £ (jw)|
weR

Definition 2.5 L9(—00,00) is a Hilbert space which consists of all functions (matriz-valued

or scalar-valued) defined on the interval (—oo,00) with

1£ll2 = ( / Z ||f(t)||2dt> "

and the inner product of this Hilbert space is defined as
o
< frg>i= / brace[f* ()g(1)]dt
—o0
Definition 2.6 L9(jR) space is a Hilbert space of matriz-valued ( or scalar-valued) functions
on jR which consists of all complex matriz functions f such that
oo A ~
/ trace[f*(jw) f (jw)]dt < o0
— 00
The inner product for this Hilbert space is defined as

<f g>= / trace[f* (u)§ (joo)Jdeo

—o0



Definition 2.7  The Hardy 2-space My is a subspace of La(jR) with matriz functions f(s)

analytic in Re s > 0 and the norm

) 00 ) ) 1/2
1l = {sup | tracel* (o + g flo + jw)]dw}

0>0.J—-00
is finite. That 1is,

Hy = {f : f is analytic in Re s > 0 and || f||2 < c0.}

Definition 2.8 RHs is a subspace of Ho which consists of all strictly proper and real rational

stable transfer functions.

Definition 2.9 H is a space with functions that are analytic and bounded in the open right-

half plane (RHP). The Hoo norm is defined as

1flloo == _sup a[f(s)] = supa[f(jw)].

Re s>0 weR

Hence
Hoo :={f : f is analytic in Re s > 0 and || f]|oo < 00}

Definition 2.10 RH is a subspace of Heoo which consists of all proper and real rational

stable transfer functions.

2.2 Linear Fractional Transformation

Linear Fraction Transformations (LFT) are powerful tools to represent uncertainty in matrices
and systems.

Let M be a complex matrix of the form

M M
M = 1 12 c (C(Pl +p2)x(q1+4g2)

My Moo



Suppose that Dy C C22*P2 | the lower linear fractional transformation is defined by

Fo(M,-): D, —s CP*a

A — Fp(M,A) = My + MaA(I — My A) ™t My,

provided that (I —MasyA) ™! exists. This transformation could be used to system interconnection

as shown in Figure 2-1.

z w
-~ M l—————
Yy u
A

Figure 2-1: System interconnection using lower LEF'T

We can see that

z My Mo w
y My, My u
and
u=Ay
Thus
z = Fo(M,A)w.

Similarly, let D; C C%*Pr  we define the upper linear fraction transformation as



.7:u(M, ) :D2 — (CP2r®

A — fu(M,A) :M22+M21A(I—M11A)71M12

It is clear that upper LFT exists if (I — My A) ! exist. For the systems shown in Figure 2-2,

A

Figure 2-2: System interconnection using upper LFT

y | | Mu My u
z N My Moo w
and
u=Ay
then
z=Fy(M,Aw

Parametric uncertainty can also be represented by using LFT. For example, let ¢ be a
parameter lies between 2.0 and 2.8. Write this as ¢=2.440.40, where . € [—1,1]. Let M be a

matrix such that

c = Fo(M,0.)

= [Myy + My20.(I — Magd,) "My



Thus

A My, Mo _ 24 04
Similarly,
0 1
c=Ful ,0c)
04 24

So when the the real parameteric uncertainty ¢ appears in a block diagram, simply replace it

with block as shown in Figure 2-3.

z 24 04 w ¢
gyl 0k
0 1
y u
~— 04 24—
5, z w
(a) lower (b) upper

Figure 2-3: Lower LFT for parameteric uncertainty.

The cascade connections, parallel connections and feedback connections of LFTs preserve the
LFT structure. The interested reader can refer to chapter 4 in [5] for more detail information

about the interconnections between LFTs.

2.3  p-Analysis

In this paragraph, we give an introduction of p-theory and the relative given results. To see
more details, the reader is referred to [5, 13, 25]. Before the illustration of structured singular
value p, we should have clear knowing to uncertainties of system.

Uncertainty for systems could be classified into two types, real parameter and unmodeled

dynamics. Or in other word, the parameteric uncertainty and dynamical uncertainty. The



parameteric uncertainty is as the form of
c=24+045., o.€[-11].

We could use LFT to represent it as we did in previous section. The dynamical uncertainty is
applied when the uncertain system have a wide variety of plant variations and could not only
present by parameteric uncertainty. For instance, define the uncertainty

G-G
A =
GWwW,

where @ is the perturbed plant and G is the nominal plant. Similarly, it could be represented as
an LFT. Besides the type of perturbation, we also care the dimension of the perturbation and
the independent locations that particular uncertainty occurs.

Now we introduce the basic concept of the structure singular value u(-). Here we treat
the uncertainty as unmodeled dynamics for conservation. Consider a matrix M € C*"*" and

structured uncertainty A C C*"*" with

A= {dia‘g[(slIrla' S FPRVAN TR ,AF] 1 6; € C, Aj e C me}

s F

where Z ri + Z m; = n. Two nonnegative integers S and F' represent the number of repeated
i=1 j=1

scalar blocks and the number of full blocks. Let (M) and p(M) denote the maximum singular

value and the spectral radius of M respectively. Then
BA={AecA:5(A)<1}

Definition 2.11 For M € C"*" | the structure singular value ua(M) is defined as

1
min{g(A): A€ A, det(I - MA) =0}

fa =

with ua =0 if no A € A solves det(I — MA) =0

pa (M) is the measure of the smallest A that causes“instability” of the feedback loop shown

below:

10



Figure 2-4: General uncertain closed-loop system

An alternative expression follows from the definition

Since it is difficult to calculate pua (M), we consider its bounds from two extreme cases of A.
HA={l:0€C}(S=1LF=0,r1=n), ua(M) =p(M) , and if A =C"*" (§ =0,F =
1,mi; =n), pa(M) = &(M). Thus we have the following result

p(M) < pia(M) < 5(A).
But this is not good enough. To find the better bounds of ua (M), define
U={UecA: UU"=1,}

diag [Dl, ,Ds,dlfml,... aDF—lImp,laImp] :
D; e C"*"i Dy =D} >0, dj eR, d;j >0

D=

and the bounds can be restricted to[25]

M) < M) < inf 6(DMD™1). 2-1
max p(UM) < pa(M) < inf ) (2-1)

From [12], the lower bound is always an equality, that is,

M) = pa(M).
max p(UM) = pa(M)

Since the set of p(U M) is nonconvex, the quantity p(UM) can have multiple local maxima that

are not global, and the local search can only yield a lower bound. In [21], the lower bound

11



power method is studied. Thus there is an alternative choice, the upper bound in inequality
(2-1). From [20], for block structOures A satisfying 25 + F' < 3 , the upper bound is always
equal to pa (M), and for block structures with S 4+ 2F > 3, there exists matrices for which y
is less than the infimum. In this approach the problem will lead to the popular and effective

method, “D-K iteration”, which will be mentioned latter.

12



2.4 Robust Stability and Robust Performance with p-Synthesis

Given a set of uncertainty model CN}, suppose that G € G is the nominal design model and K
is the controller. K provides robust stability if it stabilize every plant G belongs to G. Robust
performance means the performance objectives are satisfied for every plant belongs to é, of
course, controller K must also satisfy the robust stability condition.

The following theorems provide the criteria of robust stability and robust performance with
structured uncertainty. Suppose M(s) is a stable, n, inputs, n,, outputs transfer function of a
linear system M. Let A be a block structure as we mentioned in section 2.3 and assume that
the dimensions are such that A C C"»*"™, Let S denote the set of real-rational, proper, stable
transfer matrices. Associated with any block structure A, let SA denote the set of all block

diagonal, stable rational transfer functions, with block structure like
Sa:={A€S:A(s,) €A forall s, € Cy}

Theorem 2.2 [5] Let 8 > 0. The loop shown in Figure 2-5 is well-posed and internally stable
for all A € SA with ||Allee < % if and only if

[ M|, := sup pa (M (jw)) < B
weR

Figure 2-5: Robust stability

Assume that M is a stable, real-rational, proper transfer function, with n, + ng inputs, and

n, + ne outputs. Partition M in the obvious manner so that My, has n,, inputs and n, outputs,

13



and so on. Let A C C"*"™= be a block structure and define an augmented block structure

A 0
Agrp = :AESaA, Ar € Cra xMe
0 Ap

By the setup of the extended uncertainty block Arp we can reformulate the performance criteria
as a robust stability problem like the previous theorem. The robust performance problem could

be addressed as the loop shown Figure 2-6.

e M . d

Figure 2-6: Robust performance

The perturbed transfer function from d to e is denoted by F, (M, A). Good performance means

the quantity of F, (M, A) is small.

Theorem 2.3 [5] Let f <0 . For all A(s) € Sa with ||Allc < %, the loop shown in Figure 2-6
is well-posed, internally stable, and | Fy(M,A)|so < B if and only if

| M|, == sup pag, (M (jw)) < B.
weR

This theorem says that the robust performance problem is equivalent to a robust stability

problem with an augmented uncertainty Arp, as shown in the following Figure 2-7.

14



Figure 2-7: Robust performance reduced into robust stability

From Theorem 2.1 and Theorem 2.2, to achieve robust stability or robust performance is math-

ematically equivalent to this kind of problem
IM, = sup pia (M (jw)) < 1. (2-2)
weR

Note that || - ||, is not a norm since the triangle inequality is not satisfied.

p-synthesis procedure provides an effective method for controller design. Let M = F;(P, K),
P is the nominal plant and K is the controller. The problem is to find a stable controller K (s)
such that the closed-loop transfer function is internally stable and its infinity norm is less than
one. That is, finding K satisfies inequality(2-2). Recently, the most popular approach for solving
the problem of p-synthesis is minimizing [i)reltl') a(DMD™') for either K or D while holding the
other constant. This is the so called D-K iteration . As shown in Figure 2-8, solve

i inf DF,(P,K)D™! 2-3
mlgnD,Dgr}e%mll (P, K)D™ oo (2-3)

Figure 2-8: p-synthesis scaling: D-K iteration

15



D-K iteration proceed by performing the two-parameter minimization in sequential fashion:
first minimizing over K with D fixed, then minimizing pointwise over D with K fixed, then again
over K, and again over D, etc. When D is fixed, the controller synthesis is a H, optimization
problem and can be solved using the well-known state-space method. That is, finding K such
that |DM D™ is a minimum. With fixed K, (2-3) can be minimized at each frequency as a
convex optimization in In(D). That is, finding D which minimizes &(D(jw)M (jw)D~!(jw)) in
the frequency domain. For more details of D-K iteration, see [5, 20], [5] also provides a graphic

user interface to D-K iteration for p-synthesis.

16



Chapter 3

Nevanlinna-Pick Interpolation

Theory

As we know, the generalized control design problem could be modified to the following mathe-

matical problem
IM|lo <1, «a=o0, u,or s.

for certain complex matrix M. The case o = oo was widely studied in 1980’ and this could be
solved by Nevanlinna-Pick (NP) interpolation theory which is one of the main theory in H.,
control [14, 16]. To solve the case @ = p, we analyze this problem from the lower bound of
p-norm, i.e., |[M||s. Thus we survey the spectral norm and the spectral Nevanlinna-Pick inter-

polation problem.

3.1 Classical NP Problems

3.1.1 Scalar Case

The standard NP problem is stated as follows:

17



Problem 3.1 Let {a1,as, ... ,an} be a set of distinct points in the unit disk D and {b1,ba,... ,by}
in the closed unit disk D , i.e., |a;| < 1, |b;| < 1 for i =1,... ,n. The problem is to find an
analytic function ¢ € RHoo such that the following two conditions are satisfied:

(1) p(a;) =b;, i=1,2,... ,n.

(2) llello <1

We call {a1,,... ,an,b1,...,b,} the data set of NP problem in latter text. Given &, = {p €
RHoolp(a;) =b;, i =1,2,... ,n.}. Define a n x n matrix P, with its (7, ) element given by

1=,

P —
( n)l] l_azd]

P, is called the Pick matriz. Sufficient and necessary condition for the solvability of NP problem

is stated as follows:

Theorem 3.1 [4] &, # 0 if and only if the corresponding Pick matriz P, is semi-positive defi-

nite.

Proof see [4].

The following definition of functions will be used in the solution of NP problem.

az+b

otd with the restriction

Definition 3.1 A Mdbius transformation is any function of the form

that ad # be.

Note that the Mobius transformation maps the unit disk onto the unit disk. If let the Mobius
function Mg : D — D with |3 < 1, and

_*- b
_l—ﬁ_z

Mp(2)
then Mg(z) is a Mobius transformation and is analytic in ID. Moreover,

MyHz) = 2 = Mg(e)




is also a Mobius transformation.

Lemma 3.1 Given data set {ay,b} and a; €D, by € D. The set of all solutions of NP problem
18
&1 ={p:p(z) = My, [Ma, (2)g]}
where g is a stable, rational, proper function with ||g|ls < 1.
Proof Since M, (a1)=0 and M 4, (0)=b;
plar) = M_p [Mq,(a1)] = M_, (0) = b1,

For any stable, proper function g with [|g||c < 1,

My [Ma, (2)g]lloe <1

Hence complete the proof. il

For n data points, reduce this to n — 1 points as {as,... ,an,b),... ,b),} where
by = My, (b)) /M, (a;)  fori=2,... n.
We call this reduced n — 1 case the NP’ problem. Thus by reduction, the solution is as follows.
Lemma 3.2 Given data set {a1,... ,an,b1,... by} and a; €D, ,b; €D for 1 <i <n. The set
of all solutions of NP problem is

&n = {1 0(2) = My, [Ma, (2)9(2)]}

where 1(z) is the solution set of the corresponding NP' problem for data set {ag, ... ,an, by, ... bl }.

If the NP problem is given that a; are distinct points of right half plane(RHP) for i = 1,... ,n.
The corresponding Pick matrix will be

1 — b;b;

P = s

( n)z] a; + aj

We will need the following function to solve the problem.

19



Definition 3.2 An all-pass function is a function with its magnitude equals to 1 at all points

on the imaginary axis.

If let Ay(s) = i _T_C_l with Re @ > 0 (a is in the RHP), then A,(s) maps the points in RHP to
s+a

the unit disk D and A,(s) is an all-pass function. Now we consider the solution of NP problem.

First consider the case n = 1, the following lemma gives the solution.

Lemma 3.3 [11] Given data set {a1,b1}, ay €RHP, by € D. The set of all solutions of this

problem is
&1 ={p:p(s) = My, [Aq, (s)g(s)]}
where g is a stable, rational, proper function with ||g||e < 1.

If there are n data points (a;,b;) i = 1,... ,n and the problem is solvable, we reduce it to
the case of n — 1 data points. We call the reduced problem the NP’ problem with the data set

{ag,... ,an,bh,... b} where
b := My, (b;)/Ag, (@) i=2,...,n.

Lemma 3.4 [11] Given data set {a1,... ,an,b1,-.. by} and a; € RHP, b; € D for 1 <i < n.
The set of all solutions of NP problem is

€n = {p: 0(s) = M_p,[1h(2)g]}

where 1 is the set of all solutions of the NP problem for the data set {as,...  an, by, ... b}

and g is a stable,rational,proper function with ||g|lec < 1.

The NP theory could be used to solve the model matching problem : Given stable, proper
functions T7, Tb, T3, find the stable ) such that

|11 — ToQT3|| < 1.

20



We discuss the simpler case, |11 — T2Q|lco < 1. Let ¢ := T1 — T5Q , if the right half plane zeros
of T, are z;, we have (z;) = T1(z;). Thus the problem becomes a standard NP interpolation

problem . Given z; and T(z;), find the mapping @ such that ¢(z;) = T1(z;) and [|¢|| < 1.

Solve P by NP theory and hence (Q = TIT*“’. Note that @ is stable since it has no RHP pole. If

2

T5 has no RHP zero , we could simply let Q) = Tngg where ¢ is arbitrary stable, proper function

with [|g|| < 1. For more details of the model matching problem, see [24].

3.1.2 Matrix Case

Now consider the matrix NP problem:

Problem 3.2 Let A1, Ay, ... , Ay €D, Wy, Wy, ... , W, be mxm complex matrices with ||W;||co <

1, 1=1,2,...,n. We want to find a matriz valued function @ such that
(He(N) =W;

@)@ < 1

Similarly, the solvable condition of this problem is dependent on the Pick matriz.

Theorem 3.2 [4, 22| Define a partitioned matriz

Pl e P,
. Py oeeee Psy,
| Py oo Pun |
with
Pij:;(I—WiW;‘) i, =1,2,...  n.
L= XA

The matriz NP problem is solvable if and only if P > 0.
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We give a brief description of the solution to Problem 3.2. Suppose that E € C"*" |E| < 1

and

A=(I—-EE*)": B=—(I—EE"):E

C=-(I-EE):E* D=(-EE):
Definition 3.3 Let z € C"*", define
Tg(z) = (Az + B)(Cz + D)™ !

There is an important properties associated with Tx[22]:

|Te(z)| < 1 if and only if |z|| <1 (3-1)

Tp(E) = 0 (3-2)

By definition, Tr can be rewritten as

Tp(z) = (I — EE*) Y%z — E)(I — E*z) *(I — E*E)*/*
thus we have

Tr(z) =W if and only if z = (A—WC)"Y(WD — B)
For the matrix NP problem, let

T; = Tw,(W;) = (AW; + B)(CW; + D)™ !, i=1,2,...,n

where
Al =T -WiW$)™ By =—(I-W\W) W,
1 1
C, = —(I— Wl*Wl)*in* D, = (I — VVI*I/Vl)fE
and let
|>\1| z — )\1 1 .
S R ) o P —2.3,...,n.
n(z) A 1—=Xz2 y(Ni) ' K
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If the function 1) is the solution of the matrix NP problem with data set {2, As,..., A}, i.e.,

i) = G, i=12,... n.

[P1lle < 1
Then the solution for Problem 3.2 is given by

®(2) = (A1 — y1(2)¥1(2)C1) " (1(2)9h1(2) D1 — Bi)
When n = 1, we choose 1 to be any compatible matrix G such that |G|l < 1, then
®(2) = (A1 —11(2)GC1) " (11 (2)GDy — By)
with
18(2)]loc <1,  @(A) =—A]'B; = W

When n = 2, let

|>\1|Z—>\1 |>\2| Z—>\2 1
_Aalzz AL =222 Ty =Ty, (Wa), Go= :
y1(2) M L— )z y2(2) N L — gz 2 w, (W2) 2 JO) T

We want to find 11 such that 11 (o) = G and [[11]|e0 < 1.Thus let

Ay = (I-GaG5)72, By=—(I — G2G3) 2 G,
Cy = —(I—G3G2)73G5, Dy = (I — G3Ga)
Let G be any compatible matrix such that ||G|loc < 1. Then
$1(2) = (A2 = y2(2)GC2) ™ (y2(2)G D2 — Bo)
ie.
P1(A2) = Ga, [[P1]lec < 1.
Therefore
©(2) = (A1 = y1(2)9h1(2)C1) " (y1(2)41 (2) D1 — By)
is our solution.

What we discussed here are only the main types of NP problem. There are still rich contents

in classical NP interpolation problem and the interested reader could refer to [4, 22].
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3.2 Spectral Nevanlinna-Pick Problem

The spectral NP problem is likely to be an approach to compute p-norm. The following results
are working by Alger, Yeh and Young [3, 18]. We will use these results to design a controller
with p synthesis. This problem is similar with the classical NP problem but replaced with
the spectral norm || - ||s. That is, given points \; in open unit disk and W; be n X n matri-
ces for i = 1,... ,n. We want to find the analytic matrix function F' such that F()\;) = W;
fori=1,...,nand p(F(\)) <1 forall A € D . Note that the scalar case of SNP problem is

equivalent to classical NP problem since for a scalar a, p(a) = |a|. Now we consider the problem :

Problem3.3 Let A\, Xo,..., , A, be distinct points in open unit disk D, Wy, Wy, ... , W, €
C**™. Find an analytic n X n matriz function F on D such that

(1) p(F(A)) <1 forall X eD

(2) F(\) =W;, i=1,2,... ,n.

Note that p(-) denote the spectral radius of a matrix. This is a complicated problem since

the unit spectral ball
S 2 {W € C¥M 1 p(W) < 1}

is not convex, not smooth and unbounded. There is an important theorem to check the existence

of the solution of SNP problem.

Theorem 3.3 [9] Given Ai,..., )\, be distinct points in D and W1, ... , W, be m x m matrices.
The matriz function F satisfies that F(X\;) = W; and p(F(X)) < 1 for all A € D. Such a function

F exists if and only if there exists invertible m X m matrices M; for i =1,... ,n such that

- MiWM MG WM (3-3)
1-— >\i>\j el -

For the case m = 2, Alger and Young[3] provided a simpler method to check the solvability.
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Theorem 3.4 [3] Let A1,..., A, be distinct points in D and Wy,... , W, be 2 X 2 matrices for
some n € N | none of them are scalar matrices, that is, none of them are scalar multiplicity of

identity . The following are equivalent:

1. there exists an analytic 2 x 2—matriz function F' on D such that F(\;) = W;,5=1,... ,n
and p(F(N\)) <1 for all A € D.

2. there exist by,... ,by,c1,...,c, € C such that
- * qn
I_ 38 bi %51 b;
Ci  —3Si c;  —358j
— >0 3-4

1-— >\i>\j B ( )

- = Za]:1
where

Sj = trace(Wj), pj = det(Wj)

and

Note that Theorem 3.3 and Theorem 3.4 are different with the dimension of data set matrices
W;.

How to tackle this problem? Consider n = 2 and m = 2, that is, two interpolation conditions
and W € C?*2. When W is not a scalar matrix, by Schur Theorem there exists a non-singular

matrix T such that W is similar to the companion matrix F,

0 1 .
E= =TWT™".
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Too see the advantage of the companion matrix, look at the characteristic polynomial
det(\I — W) = det(A\I —TWT™)
= det(A] — E)
= AN —s\+p
in which s = trace(W), p = det(W). This is the motivation of the following definition.

Definition 3.4 The symmetrized bidisc Ty C C? is defined as:

Ty 2 {(s5,p) : X2 —sA+p=0, [A| < 1}.

W € ¥y if and only if (trace(W),det(W) € I's. Thus the SNP interpolation problem on ¥,

could be modified to I's by the following theorem.

Theorem 3.5 [3] Let A\i,..., A\, be distinct in D and Wy,... ,W, be 2 X 2 matrices. Suppose

that none of Wy, ... , Wy, are scalar matrices. The following are equivalent:

1. there exists an analytic 2x 2 matriz function F in D such that F(X\;) = W;, 7=1,2,... ,n
and p(F(N\)) <1 for all A € D.

2. there exists an analytic function f : 1D — T'y such that f(\;) = (trace(W;),det(W})),j =
1,2,... ,n.

Thus we will concentrate on the modified problem when n = 2:

Problem3.4 Given A\, A2 € D and (s1,p1), (s2,p2) € I's. Find the analytic function

©p D— F2
A= (s(A),p(N))

such that ©(\;) = (s;,p;),71 = 1,2.

The following lemma, is useful.
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Lemma 3.5 [18] For s,p € C, the following statements are equivalent:
1. (s,p) € Ts.
2. |s—sp| <1—1|p|?, and |s| < 2.
3. 2|s — sp| +|s2 —4p| <4 —|s|%, and |p| < 1.
Before discussing the problem, we introduce some definitions of distance.

Definition 3.5 For z,w € D, define the Poincaré distance d as

Definition 3.6 For Q C C? and 21,22 € Q, the Carathéodory distance Cq on € is defined as
Cal(z1,22) = Sup d(G(z1), G(22))
where G is the set of all analytic function from Q to D.

From [1], when Q =Int I'; and |w| = 1, that is, w € T, the function G, : Int I'y — D

2p —ws

is the one which achieves the sup in Definition 3.6.
Definition 3.7 If |wy| =1 and
Ct 15 ((81,P1), (82,2)) = d(Guy (51,P1), Guy (52, P2)),

Guy(8,p) is called the C-extremal function.

Definition 3.8 Let (s1,p1), (s2,p2) € Int T's and ¢ : D — Int T'y the analytic function such
that

p(A1) = (s1,p1)

p(A2) = (s2,p2)



The Kobayashi distance Ky 1, is defined as

Kt 1, ((51,01), (52,2)) = igfd(Ah A2)

Definition 3.9 If Cin 1y, = King 1, and ¢ : D — Int 'y achieves the inf in Definition 3.8, ¢

is called the K -extremal function.

Since the solution for Problem 3.4 is not available, we consider the simpler cases:

Problem3.5 Given A\, Ay € D and (s1,0), (s2,0) € T's. Find the analytic function
p : D—Ty
A= (s(A),p(A))

such that

Prblem3.6 Given Ay € D, Ay # 0 and (sg,p2) € I'9, find an analytic function
©p D— F2
A= (s(A),p(A))

such that

(:0(0) = (an)a 90(>\2) = (32ap2)

What we want to find is all the K-extremal function ¢, that is, all the analytic functions ¢
with the Carathéodory distance equal to the Kobayashi distance. For Problem 3.5, consider the

following theorem.

Theorem 3.6 [18] If Cr 1,((s1,0),(s2,0)) = K 1,((81,0), (s2,0)) and the C-extremal func-
tion, K-extremal function are G, : Int I's — I, ¢ : D — Int Ty respectively. Then

Guy 0@ : D — D is an analytic function and

28



1. ¢ is a isometry transformation of (D,d) — (¢(D), Cnt 1y)-
2. Gy, 0@ = Idp (up to Mobius transformation).

Proof see [18].

—WoSs;

Let f; = Guy(si,0) and consider

2 — wps;

h(w, ") éCv’w(JOL,c):lI))—>I{))
h(w,A;) = Bi, i =1,2. And h is analytic since G, and ¢ are both analytic. Since
p(A) €Ty, VA[ <1 <= |h(w,N)| <1, V|w| <1, [A[ <, (3-5)

with Theorem 3.6 we know that Cryt r,((s1,0), (s2,0)) = Kt r,((51,0), (s2,0)) is the sufficient
condition for our solution ¢. For the C-extremal function G, wy satisfies the following equation
which obtained directly from the definition
‘IITin |2 — WSs] — w§2| = |2 — Wps1 — w0§2| (3—6)
w|=1
Now we try to construct ¢. For simplicity, let \; = f;, i = 1,2, that is, h(wp, ) =
Guo © (A) = A. Thus

~ 2p(A) —wos(N)

Guo(s(A),p(N) = =A

2 —(I)()S(A)
and
p(A) — A
AN)=2—"——
S( ) wo — WoA

Since s(\) need to be analytic, p(\) have to satisfy

p(wg) = wp

Moreover, p()) satisfies
p(A1) =p(A2) =0

29



Iplloc <1

Note that wy must satisfies equation (3-6).

The solution is given as follows:

Theorem 3.7 [18] If Chyr,((s1,0),(s2,0)) = Kmr,((s1,0),(s2,0)), there ezists wy € T,
(t,q) € IntT'y such that wot — w?q > |q|. And

LaX? + b\ +c

PO = e e -
s(\) = 2% (3-8)

where t = s1 + 82, ¢ = 8182 and a = (4 — 2@t + B3q), b= 2wy(t — @oq), ¢ = wiq. Then for all

AeD,
@(A) = (5(A),p(A)) € Intl'

is an analytic function from D to IntT'y and satisfies

p(A1) = (s1,0)

p(A2) = (s2,0)

Proof see[18].

We should realize that this solution satisfies only ¢(8;) = (s;,0) since we have supposed that
h(wg, A) = A, i.e., A; = B;. But the original interpolation condition is ¢()\;) = (s;,0). Practically
A; = f; has a little chance to happen. Thus we have to do some work to match the interpolation
condition by utilizing Mébius transformation. In next chapter (3-6) and (3-7) are used to carry
out our design.

Similarly, for Problem 3.6 the result is in the following contents.

Lemma 3.6 [17] Let wy € T, the unit circle, and wy satisfies

2p2 — wsa
=sup |[——

‘2172 — WpS2
|w|=1

2 — wsy

2 — wsy
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z'.e., Clnt Iy = Klnt INY) then

2py — wosa | _ |4p2 — 53| + 2|52 — Sapy]
2 — wpsy 4—|82|2 '
A 2py — wps2
Let 81 =0, 82 = Gw0(327p2) = 27,
— wWpS2

Theorem 3.8 [17] Let Ao € D, Ay #0, (82, p2) € Int T'y. If there exists wy € T which satisfies

2py — wos2| _ |4p2 — 53| + 2|s2 — Sapy]
2 — wpso 4—|82|2
and if
2po — wp$s
>\2 = ,62 = %
— Wps2

Then there exists an analytic function ¢ : D — T's such that

(10(0) = (070)7 90(>‘2) = (32,]72),

2a
A) = _ 3-9
s(A) 7 (3-9)
YA —B)
A) = 227 3-10
p(A) T (3-10)
where a, B, v € C, and
— _ -2 B
a_wTk’IB:_b’,y:@,k:wgb_aeR’ |k|:|a'|_|b|
a a a
with
a=1 —w%pgég, b= wgpg — g, Py = P2
o9

Proof see [17].
Note that a +bw2 € R, k = w2b—a € R, and |k| = |a| — |b|.

31



Chapter 4

Lower Bound Design for p-synthesis

Unlike D-K iteration solves the p-synthesis problem from the upper bound, the lower bound
design method is presented in this chapter. The robust stability and performance problems are
formulated as various types of Spectral Nevalinna-Pick problem. Till now, only two-dimensional
problem can be solved. The SNP theory is applied to construct the robust controller. Some

numerical examples are used to illustrate the solution process.

4.1 Problem Formulation

Consider a general uncertain system given in Figure 4-1 where A denotes the perturbations
modelled as norm-bounded dynamical uncertainty or parametric uncertainty. The dynamical

uncertainty is assumed as in Chapter 2,
A(S) = {diag[élI,«l, s ,(5317«5, Al, s ,AF] : (51(8) € RHOO ,A]’(S) € RHOO}

and [5illo0 < 1, 1]l < 1.

Suppose P is the generalized plant, i.e.,

z w
e | =P | d
y u

32



€Ce—— P <7d
Yy K u

Figure 4-1: Generalized plant

with the partition as
P P
Py Py
The robust stability problem is to design a controller K such that the system is stable
under the influence of the uncertainty A, when there are no signals d and e presented. Let the

corresponding plant be

z w Ps11 Psio
y U Pso1  Psoo
Find K such that

| Fe(Ps, K)||p = SUp f1a, (Fe(Ps, K))(jw)
we

= suppa, (P11 + Py1oK (I — Pypa K) ™' Pyoy) (jw)
wEe

< 1. (4-1)

Let Q = K(I — Py K)™!, Pyyy := Ts1, Ps12 := Tsa, Ps1 := Ty3, the robust stability problem
could be reduced to the form: find @ such that

Sugﬂ’AP (Tsl + TSQQTS?))(jw) <1l (4_2)
we
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and hence K = (I + QPs22) Q.

Robust performance problem is to design a controller K such that

|Fe(P, K)||, == Sugua(ﬂ(RK)))(jw)
we
= P+ PpK(I — PupK)™'Py
< 1. (4-3)

Note that the uncertainty set here is A = {diag(Ap, Ar)} where Ap is the fictitious block and

: Hy Hi o : :
it H:=Fy(P,K)= , Fe(Ps, K) = Hyp. Similarly the inequality (4-3) can also be

Hy Hy
written as the form of (4-2), hence the robust stability and performance problem can be reduced

to: find @ such that

sup pa (11 + T2 QTs) (jw) < 1.
weR

and hence
K= (I+QPx)'Q.
Recall that

p(M) < max p(UM) < pua(M) < inf o(DMD™") < (M), (4-4)

We want to use this inequality to solve this problem from the lower bound approach. Thus we
utilize spectral interpolation theory to solve the spectral model matching problem

p(T1 + ToQT3) = p(F) < 1 (4-5)

and hence design our controller. The interpolation condition may be constructed from the
following statements. If p; are poles of T, or T3 in RHP, F(p;) = T1(p;) and Q(p;) = 0. If z; are
zeros of Ty or T3 in RHP, F(z;) = T1(z;).

We summarize the problem in Table 4-1:
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Classification Robust stability Robust performance
p test: || M|, <1 M = Hy; M=H

Q parameterization: Ty = Py Ty = Py
p(F(jw)) = p(Th + ToQT3) (jw) Ty = P2 Ty = Pio

< sup pa(Ty + ToQTs) (jw) Ts = Psn T3 = Pn

<L Q=K —PpK)™' | Q=K —PpK)™!
SNP interpolation condition:

p; RHP poles of Ty, T3 F(p;) =Ti(p;) and Q(p;) =0

z; RHP zeros of Ty, T; F(z) =Ti(%)

Table 4-1: Problem formulation

4.2 Algorithms for Controller Synthesis via SNP Theory

Before the design procedure, we state the algorithm for the two by two spectral Nevanlinna-Pick
interpolation problem, Problem 3.5. For given points A;, A9 in the open unit disk and 2 by 2
matrices Wy, We with p(W;) < 1, we will find the mapping F' such that F(\;) = W;, i = 1,2
and p(F(N)) <1, YA € D. We solve this problem as follows:

Algorithm SNP

1. Reduce the problem to the symmetrized bidisc T's . And the problem turns to find a
mapping ¢ such that ¢(\;) = (trace(W;), det(W;)) = (si,p:), @ = 1,2.

WS — 9,

2. Find |wy| = 1 such that min |2—ws; —wss| = |2—wps1 —wpsz| and let §; = el

/=1

3. By Theorem 3.7, find the mapping p(\) = (s’ (), p'())), such that o(5;) = (s4,p:), 7 = 1,2.

4. From Theorem 3.7, we could only find ¢()), but we want to find the mapping that maps \;
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to (si,p;). Thus find the M6bius function M which maps ; to A; via classical NP theory,
and then ¢ o M_g(Ai) = (s;,pi). Hence ¢(A) = (s'(M_g(X)), p'(M—5(A))) = (s(A),p(N))
and ¢(\;) = (s;,pi), i = 1,2. See Figure 4-2.

5. At last find the matrix function R which satisfies

0 1 .
Wi = R(\;) R™(\i)
—Pi Sq
And hence
0 1 1
F(A) = R()\) RN
—p(A) s(A)
will be the matrix function we want.
¢
]D). M_g D 14 STy
Ai Bi (54,0)
Gy
h
D
Bi

Figure 4-2: SNP problem solution procession

Note that there are infinitely many choice of F' due to functions Mg and R for a fixed ¢. Hence

we have much freedom to adjust the function F' in design procedure .
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Now consider the system matrix H := F;(P, K), if it could be rewritten to the model matching
form T} + Ty QT3 where @ := K (I — Py K)™!, we will design the controller K with the following
algorithm:

Algorithm K

1. First find @ such that ||T7 + T2QT5]||s < 7 for a chosen v > 1. We solve this with Spectral
NP problem. Let F' := T} +T5QT5. Suppose that a;, 1 =1,... ;mand b;, 1 =1,... ,f are
the RHP zeros and poles of T, or T3, since the algorithm for the interpolation problem is
to find the mapping from unit disk to I's, we have to transform the points in RHP to be
in the unit disk. Let A(a;) = }f—‘;: = z; and A(bj) = % = ¢, this maps the RHP points
a;, bj to the unit disk point z;, ¢;. Transform all the functions T’ (s), T3(s) into unit disk

. That is, substitute s as 2

142
T—X 1=A"

by s =

2. We solve ||% + %Q%Hs < 1 instead. Let F' = %F = % + %Q% Substitute z1, 2 into

the equation and thus
, 1
Fl(zi)) = =Ti()
g
1
Fllg:) = ;TI(Qi)a Q(gi) =0
are the interpolation conditions. Let

X = 2, 1<i<m,  Amyj=by, l<j<t
Wi=Ti(z), 1<i<m

and let n = m + ¢, then the interpolation problem id to find F’ such that

1

F'(\) = =W, i=1,...,n
v

[F]ls < 1
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3. Check if this interpolation problem is solvable by Theorem 3.3, Theorem 3.4 or Lemma

3.5. If the solution doesn’t exist, pick another ~.

4. Solve the SNP problem by algorithm SNP with data set A\; and %Wl . We have the map-

ping F’ satisfies the conditions and hence F(z) = vF'(z). Transform the points back to

s—1
s+1°

s-domain by A =
5. Since p(H) < %1ab)l<p(UH) < pa(H), test if ||F||, < 1. If [|F||,, < 1, solve @ and hence K
€

is designed.

6. If ||F||, > 1, pick a smaller v and repeat the process.

Remark 1. Since spectral NP theory is still unfull-fledged, the Spectral interpolation prob-
lem we could handle now is two by two case. Thus the plant we want to design via this access
is restricted in single-input, single-output (H is a 2 x 2 matrix) case. But in some case the plant
could be 2-input, 2-output, we will discuss this in the following section. Note that there are some
constraints, first the interpolation condition is not easy to meet. Second, when the smaller ~y

is picked, the interpolation condition will be the reciprocal of v and hence tends to be unsolvable.

Remark 2. If Ty, T3 are square and invertible, Q:TZ*I(F—Tl)T;l. If T, T3 are not square
and Ts is left inverse, T3 is right inverse, we can always appropriately chose the controllability
gain and the observability gain such that T5Ty = T3T5 = I, see [24]. Hence there exists Ty

and T3, such that
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and then

Q 0 T3 ]
T2QT3 = [TQ T2L:|
0 O T3
T5 Ty QR 0 T;
(F—Tl)[T?j‘ Tgl} = [Tg Tu] [Té‘ T:?l}
TZ*L _TQ*L 0 0_ Ts,
QR 0
0 O

Hence we could find Q. It is similar if T5 is right inverse and T3 is left inverse.

4.3 Design Examples for pu-Synthesis via SNP Theory

4.3.1 System with Parametric Uncertainty

Example 4.1 If the uncertainty plant is G = sf{gl where 01 € [—0.325,0.425]. We could

represent d; = —0.05 4+ 0.3750 , |§] < 1, and

& _ 1—0.05+0.3756

s —(1—0.05+ 0.3750)
P516P2
= Fu.(P,0)

= P+

where
Py Pio 1 0.375 s
P — = -
Py P22 s =095 | 0375 0.95
The plant is shown as Figure 4-3.

This is a example of real parameter uncertainty. The uncertainty set A = {0 :J € [—1,1]}

We design a controller K to achieve robust stability. Let

H=F)(P,K) = P+ PyK(1—PyuK)'Py
_ 037 . K(1 - 0.95 K)-! 0.375
s—0.95  s—0.95 s —0.95 s —0.95
0375 1+ sK )
T s—0.95 s —0.95 — 0.95K
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y<_’7 P <—’7u

L - - _

Figure 4-3: System with real parameter uncertainty

As in chapter 2 ,U = {U € A : UU* = I,,} and we utilize the the relation max p(UH) < pu(H).
€

Since
max p(UH) = max |UH| = |H|
veud veu

we chose a vy and solve K which satisfies |H| < y for all s. Then test if u(H) < 1, if not, pick
a smaller v and do this again. Thus we could design a robust stability controller.

Note that if we parameterize the controller, that is, let Q = K(1 — Py K) !, |[H| < 1 could be

0.375
5—0.95

( J(L+sQ)| <1

This is as the form of ||T} + T2Q||oc < 1.

4.3.2 System with Complex Structured Uncertainty

Now consider the following system

Given G(s) = &5, Wy(s) = Oéf’§$866 , Wu(s) = ‘sljjgg This is a SISO system, from the

diagram we have

z w
e | =P | d
y u
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Ap
+ +
K Y G Y WP e
U + + Y
Figure 4-4: Closed-loop block diagram for a typical uncertain system Type I
where
0 0o i W,
r=1 wa W, | WG
€ I G
Let H := Fy(P, K), then
H = Py+ PuK(I—PpK) 'Py
WuKG WK
— I-GK I-GK (4-6)
WG Wy
T-GK T-GK
Robust stability problem is to design K such that
|11l = sup pa, (Hi (jw)) < 1. (4-7)
weR
Robust performance robust problem is to design K such that
[1H ||, = sup pa(H (jw)) < 1. (4-8)
weR

The uncertainty set here is A = {diag(Ap, Ar), Ap € C, Ap € C} where A is the fictitious
block. To get the interpolation condition, we substitute zeros and poles of G into H, and we

could find the interpolation condition.
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First we transform the points with function A(z) = 12, z is in the unit disk for s in RHP.
Thus
1+z 17+ 7z 3+ 2z
G(z) = Wp(z) = —25——— = W,(z) = 4o
() == Wl®) 5031 aore ) T

Then try to find the interpolation condition. Substitute pole of G(z) into H and we have

—W,(0) 0
H(0) =
Wp(0)
k(0)
The robust stability problem is to find
KWwW,G
= <
o) = 1o Nl <1
which satisfies
©(0) = =W, (0)

and this is just a classical NP problem. K is solved by

B o(2)
K& = o6t + @)

The robust performance problem is to find ¢(z) = (s(z),p(z)) = (trace(H),det(H)). But
from (4-6) we have

_ KW,G + W,

s(z) = trace(H) = TR p(z) =0 (4-9)

If we have s(z) such that ||s|lcc < 1, then ¢(z) = (s(z),p(z)) € I's by Lemma 3.5. We only need
to satisfy the condition s(0) = —W,(0) and this interpolation problem is just a classical NP

problem. Once s(z) is obtained, we could solve K directly from (4-9), that is,

-w
K(o) = ) = We(2)
G(2)(s(z) + Wu(z)
Substitute z = % to transform the unit disk point back. But this is the central spectral

controller, i.e., this controller was generated from p(H) < 1. Thus it may not satisfy the robust

specification since

< < < inf & H<a
p(H) < maxp(UH) < pa(H) < iof o(DHD™) < o(H)
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To guarantee the robustness, we have to use iteration as we mentioned in previous algorithm.
We will solve this problem in next section. In fact, this system has an important property which
lead this problem to a H, problem. See next section.

4.4 Further Simplification for u-Synthesis via SNP Theory

First we introduce two Lemmas of specified matrix and we will need them in the following

contents.
XG X
Lemma 4.1 For a partitioned matriz A= where X, Y ,and G € C**" and X is
YG Y
1
nonsingular. A is similar to B =
0 GX+Y
Proof From simple computation we have
-1
0 I X1 o XG X X1t o
0 GX+Y G 1 YG Y G I

and this is proved. il

XG X
Lemma 4.2 For a 2n X 2n system transfer matriz A= where X, Y ;and G € C"*"

YG Y
and X is nonsingular.

p(A) =p(GX +Y).
I
Proof From previous lemma, A is similar to B = . Hence
0 GX+Y
0 I
p(A) =p =p(GX +Y).
0 GX+Y
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Now consider the system Type I in previous section,

XG X
YG Y

H =F)(P/K) =

where X = W, K(I — GK)™, Y =W,(I - GK)~%.
The structured uncertainty A = {diag(Ap, Ap)} ,and U ={U € A, U'U=1 }. We
want to use the equality pua(H) = r[?aglc(UH). Let
€

U 0
v=| "
0 Up
where UpUp =1, UpUp =1. Then
UpXG UpX
UH — P P
UrYG UrY

and det(UH) =0 .

4.4.1 SISO Case

Let S = , T = , we have the following result

Theorem 4.1  For the SISO system in Figure -4,

pa(H) = [WpS| + [W.T| (4-10)
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Up O
Proof By [12], ua(H) = maxp(UH) . From definition of U , we have U = r with
veud 0 Ur
_ UpX)™t 0
U;;Up = |Up|2 =1, U;UF = |UF|2 =1. Let R= , then
G I

p(UH) = p(RUHR')
0 I
0 GUpX +UpY
= p(GU,X +UrY)

= |GUpX + UrY|

IN

|GX]+ Y]

Since all elements are scalar, if choose Up = |Y|Y 1 | Up = G HGX|X !, then

|GUpX + UrY| IGX ||+ |Y]|

|GX[ + Y]

= |[WpS|+ W, T
Thus

na(H) = max p(UM) = [WpS| + [W,T|

Hence in SISO case ,
1 [l = sup pa (H (Gw)) = || [WpS] + [WoT| [loo

A different approach to this conclusion is given in [7].
To solve the controller K satisfies || |W,S| + [W,T| ||« < 1 is not easy but the so called
mized sensitivity problem || W,S + W, T ||s < 1 is valid. So we solve |[W,,S + W, T|« < 7 and

then use iteration. The algorithm is as follows:
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1. Let Q=K(I —GK) !, then K = (I +QG) 'Q, and(I — GK) ! = (I + GQ). Thus

WS+ W, T = [Wy(I+GQ)+GW,Q|
= |[W,+ (W,G +GW,)Q|.

First find v,p; and then solve the following model matching problem via N-P theory.
WS + WoTlloo = Wy + (WpG + GWo)Qlloo < -
with v > yopt.

2. For a chosen v > 7,,, we could find a set of controller K, then check if the controller

satisfies
[[WpS] + W Tfloe < 1
If it does, the work is done.

3. If |||W), S| + |[W,T|||sc > 1, pick a smaller v and repeat the process to find the controller.

Example 4.2 Suppose that G(s) = sTllv Wy(s) = ()524?37_3853 , Wul(s) = ‘slj_—gg.

First find the optimal 7y, yopt, S0 we could choose the v we will use in iteration. Since G(W,+W,,)
is unstable, let Ty := (W, + W,,),T1 = W, and Q := GQ. We solve the problem

Ty + TQl 0 < -

There is no RHP zeros of T , if chose Q = W%, Q = WVKPWQ is stable and thus

Wy + (Wp + W) GQlloo = Wy = Wplloo =0, 50 7o = 0. Now let

T-W,

@= W, + W)’
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we have
Wy + (WpG + GWy)Qlloo = 1T || -

Now we start the iteration. First chose ; = 2, thus we could choose T' = 2%. And hence

875s% 4+ 2570653 — 7229552 + 359225 + 9792
Ky = (I Q) 'Q=
1=(+QG)7Q 2(1500s3 + 1850952 — 138895 — 84)

From this we have [||W,,S| + |W,T'|||sc =~ 3.2234 > 1. Choose T' = %, that is 7o = 1. Then

K. _ D00s" 4 135565" — 768675 + 435155 + 19296
27 (9000s® + 5155452 — 7691s — 48)

and [||W,S| + |W,T'|||oc ~ 1.8258 > 1. Choose T = %ﬁ, i.e. y3 =1/2. Thus

K. _ 250s" +64035° — 50360s” + 244115 + 19296
5T 45005 + 2752752 — 78355 — 48

and [||W,S| + |W,T|||oc =~ 1.1443 > 1. Choose T' = %%, va =1/3.

. _ 1255 + 21035° — 5083557 + 287115 + 28896
e 650053 + 3353952 — 37995 — 24

and [||W,S|+|W,T|||oo = 0.9257 < 1. Reduced the order such that K4 = 2122333_3533??33;523;%Sﬁgi%

and we have the result
[[WpS| + W, T]|oo = 0.9255 < 1.

Hence K, satisfies the robust performance criteria. Figure 4-5 is the robust performance of
K, K3, K4 and Figure 4-6 is the comparison with the controller K in [5], K = #. Note
that Fig 4-6 is plotted with the Matlab command “mu”.

Now compare the following two systems in Figure 4-7, 4-8, X, Y are defined as previous.

GX GX
TypeIl: H = F)(P,K) =
Y Y
X X
Type IIl: H = Fy(P,K) =
Y Y

These systems are similar to Type I and we can use the same method to design K.
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Robust performance of Kz' K3, K4

u(H)

0.2 q

0 " " Lol " " Lol " " Lol " " L
10 10 10° 10" 10°
frequency

Figure 4-5: Robust performance of designed controllers.

Robust Performance of D-K controller K, lower bound controller K, (K solid, K, —*=)
2 T T T

18 q

161 b

14r q

12 q

u(H)

0 n n M| n n | n n M| n n M
10 10 10° 10" 10°
Frequency (rad/sec)

Figure 4-6: Comparison with the p—tool box controller.
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Figure 4-7: Closed-loop block diagram for a typical uncertain system Type 11

Figure 4-8: Closed-loop block diagram for a typical uncertain system Type III
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From Lemma 4.2, we find that the spectral Nevanlinna-Pick interpolation problem in Theo-
rem 3.7 could be used in closed loop systems with 2-input, 2-output. Suppose that closed loop
system Type I in Figure 4-4 is 2-input, 2-output, that is, G, W,, W), are 2 x 2 matrices and
the generalized transfer function H is a 4 X 4 matrix. By Lemma 4.2, p(H) = p(GX +Y) and
GX +Y is a2 x 2 matrix. Hence we could use spectral Nevanlinna-Pick problem to design a

controller. Now we want to design K such that
p(GX +Y) = p(GW,K(I - GK)™' + W,(I - GK)™") < 1.
With controller parameterized , our problem comes out to be
p(Wy, + (W,G +GW,)Q) <1

where Q = K (I —GK) !. Thus if the plant matches the requisite we have mentioned in Section

4.1, we could solve this problem with our algorithm.

Example 4.3 Given closed loop system Type I where

1 1 . s—1 0 1 0
G(S) _ (S - 3)(8 - 1) 4(28+11(38+1) 2(35;»1) ’ Wp _ 3s+1 o : W, = -
8(2s+1)° (35+1)(5513) U GTES)) 0 333D

The uncertainty set is Ap = {diag[dl5] : § € C}. Design a controller via spectral Nevanlinna-
Pick theory.

Figure 4-9, 4-10 are the Bode diagrams of Wp and W,,. The following steps are carried out
to design K from Algorithm K:

Stepl. First let A = g;%, thus s = % and X is in the unit disk for s in RHP.

+
G()\) _ )\(}\ o 1) ()\+2)1(/\+3) (/\+2)1()\+2) 7% ()\) o )\i2 0 17% ()\) 1 0
= 5 ) 1 ) P - /\7% ) u - 0 ﬁ
O+H3)(A+3) (+2)(A+4) A2 A+2

Ty =Wy, Th = (W,G + GW,,) and zeros of To()) are z; = 0,2y = L. We will compute F()\)
directly and then transform A back to s by A = Z% .
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Figure 4-9: Bode diagram of W,
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Figure 4-10: Bode diagram of W,
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Step2. First pick v = 1. F; =T + T»Q, the interpolation conditions are

0 0 0 1 .
Fi(0) = W= . | = R(0) R(0)
0 -1 —p(0) s(0)
1 Lo 1 0 1 1
FI(E) = We=|" = R(g) . ) R_l(g)
| 00 -p(3) s(3)
and s; = —%, p1 =0, so = %, po = 0. From Theorem 3.7 we need to find wy such that

|2 — Wps1 — w0§2| = ‘IITiIl |2 — WS — w§2|
wl=1

and
G = 2;;%' - wofz‘_
— WoS;
Thus wy = —1, and then 8 = —%, Bo = 1—11 Hence
A+ TAN+1
I R —_—
s X2 —4x— 77
TIN? +4X -1
/ — F
P = oo

and s(A) = s'(M_g(})), p(A) = p'(M_g(X)) where M_g(X) is the Mébius function which maps

M_g(\) = —(182X2g — 103\g + 97X — 42)2 + 69 — 26)
0 T 182 4 103X — 970 + 429 + 26029 — 6X

g is any stable, rational, proper function with ||g||c < 1.
Hence if we pick g = 1,
— - (1300A* + 38023 — 10219A% + 380 + 1300)

) =
() 6X3 — 119A2 — 46X + 520
) = A(52003 — 4622 — 119X + 6)
PRV = TN 211902 — 46X + 520
If pick ¢ =0,
3622 — 612\ + 169
s(A) =
4(18) — 169)
—18A(2X — 1)
p() 181 — 169
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Chose

A3
RN =| (4-11)
A1
A+2
For g =1,
0 1 _ Fi(MN)1i Fi(M)i2
Fi(A) = R(}) R7'()) =
—p(A) s(A) Fi(M21 Fi(M)22
where
(), = —2A(6500X° + 23380A% ++ 7091A* — 26463A% + 2970\ + 240)
B = (A + 2)(6A% — 11922 — 46X + 520)
V) = LA(13000A° 4 45460A1 + 11142)3 — 42247A% + 25863\ — 7010)
N (A +2)(6A3 — 11922 — 46X + 520)
BV = —A(6500A° + 23380\ + 7121\% — 270582 + 2740\ + 2840)
Az = (X + 2) (623 — 11922 — 46X + 520)
AN L (13000A° + 4546015 + 11202)% — 43467X% + 2599817 — 1580\ — 2600)
1 22 =

s—1

Replace A as {77.

(A +2)(6X3 — 11922 — 46 + 520)

—2(5 — 1)(68595 + 7942253 — 63042s* + 22664s> — 323615 — 9702)

F =
1) (35 + 1)(s + 1)2(361s3 + 161552 + 17435 + 441)
Fi(s) $(s —1)(+23104s> — 106115s* + 132378s% — 27064s? — 1075625 — 26901)
S)12 =
! (3s+1)(s + 1)2(361s3 + 161552 + 1743s + 441)
Fy(s)y = —$(s — 1)(+15523s% — 114399s* + 1855145® + 7303852 — 515975 — 17199)
Hez = (3s + 1)(s + 1)2(361s3 + 161552 + 1743s + 441)
Fi(s) (48013 — 25216855 + 47187 — 3711845% + 468601s* — 2310015% + 124152s)
1\8)22 =
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and K has order 19 in each element.

For g =0,
Fi(s), — 1/2(=1 + 5)(521 + 161s + 135152 + 2715s3)
(1 +3s)(187 + 151s)(s + 1)?
Fi(s)y — 1/4(=3 + 5)(—1 + 5)(449 + 106s + 377s2)
(14 3s)(187 + 151s)(s + 1)2
Fy () —1/2(=1 + 5)(—147 + 889s — 373s? + 31s3)
(1 + 3s)(187 + 151s)(s + 1)2
1/4(=3 + 8) (=75 + 1393s + 707s% + 679s>)
Fi(s)2 =

(14 3s)(187 + 151s)(s + 1)?
Test ||F||,. Figure 4-11 compare the p value with g =1 and g = 0. We see that with g = 0 the
performance is much better than ¢ = 1. Here we find that the selection of ¢ did has influence

in the p value, how to choose g is a question.

H(F,) with g=1 W(F,) with g=0
T

Figure 4-11: p(F;) withg=1and g =0

Note that s(A), p(A) in Theorem 3.7 is not the whole solution set and R()) is not unique, thus

all of them could be adjusted. F; here is only one of the solution.
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Step3. Pick v» =

1
29

1

and repeat previous steps, hence s; = —5, so = %, p1 = pa = 0 and

wo = —1, B1 = —%, B2 = ¢. Then we can see the y value of F, =T} 4+ T>Q with |3, < § in

Figure 4-12.

U(F,) with =1 y=1/2 U(F,) with =0 y=1/2
i i . — 20 T T T =z
18F 1 18F 1
16 1 16 1
14F 4 140 4
12 1 2F 1
<ol 1 ol 1
= =
8 1 8 1
oF 1 6 1
4t ~ . e 4t e
2F 1 2F — J
,,,,,,,,,,,,, ~ T
107 1C‘l * ‘u“ 1‘0’ 10° 107 m‘" A‘)“ u‘)‘ 10°
Frequency (radisec) Frequency (rad/sec)
(a) g=1 (b) g =0
Figure 4-12: p(F3) withg=1and g =0
. 1 .
Step5. Pick y3 = 5, we have s; = —%, So = %, p1 = p2 = 0. See Figure 4-13.
U, with g=1y=1/3 U(E,) with g=0 y=1/3
T T T —= 20 ! T . =
of R 18} R
8- \ 1 16F 1
\
7+ \ 1 14 1
oF 1 12 1
& sk \ 1 Lok 1
4 \\ d 8l / ]
ap ) 1 6 1
2t \\ R ab R
e N s - 2F T T~ - R
_— o oD — i mmmmmm—m
107 107 10° 10" 10° fo'z 107" 10° 10t 10°
Frequency (radisec) Frequency (rad/sec)

(a) g=1 (b) g =0

Figure 4-13: p(F3) withg=1and g=0
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Note that if we pick v = i, the solution of this interpolation problem will not exist by Lemma

3.5, and hence the iteration hold on.
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Chapter 5

Conclusions

5.1 Concluding Remarks and Discussion

With the development of spectral Nevanlinna-Pick interpolation theory, we have shown in this
thesis the lower bound design for several typical closed loop systems in SISO case and MIMO
case. The algorithms presented here give a different approach to p- synthesis and this is a new
attempt to solve this problem.

The model we could handle is restricted since the spectral NP problem can be solved now
is still few. To my best knowledge, by far the dimension of spectral NP problem which was
solved is not greater than 2. In addition, the interpolation condition of the system is a tricky
part of design procedure. In 2 by 2 matrix functions , the general case p(T} + ToQT3) < 1 is
still working and this is more practical to our problem. The higher dimension SNP problems’

solutions will be great helpful to the lower bound design.

5.2 Future Directions

The controller we designed usually has very high order and is often not proper. This makes the
analysis of i value more difficult. If we could find the character to reduce the order of controllers

during computing will be great helpful . How + effects the x4 value is also a good question for
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this design method. Example 4.3 show that v can’t be chosen arbitrarily small, it is restricted
by the solvability of SNP problem.

Uncertainty set of the system is a key point to g-norm computing. For D-K iteration, the
scaling D matrix will be easy to produce when uncertainty set are full blocks. For our case,
the lower bound design, uncertainty sets of the repeated scalar blocks or real parameters are
preferred than full blocks, but the fictitious uncertainty block is always of full block type. This

is a problem we have to overcome.
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