

私立東海大學

資訊工程研究所

碩士論文

指導教授：楊朝棟 博士

於雲端環境上實作虛擬機器之綠能演算法

Implementation of a Green Power Management

Algorithm for Virtual Machines on Cloud

Computing Environments

研 究 生：王冠傑

中華民國一○○年七月

 ii

 iii

摘要

隨著政府和企業電子化的高度發展，電子化服務的需求正持續、快速地增加，故

需要建置更多的資據中心提供服務，這會耗費相當大的電能，特別是當服務運行

在低使用率的狀況，例如在 10％的處理器使用率下，其總功率消耗至少在峰值

的 60％以上，使得資源閒置、電能浪費，這是造成數據中心能源效率低落的主

要原因。本篇論文的目的是運用虛擬化技術與電源管理方法達到節能的目標。我

們專注在電源管理演算法的發展，並依此實作了一個綠能管理的虛擬雲端平台，

並於上建置了應用程式服務並加以測試效能與電能節省的比較實驗。結果証明綠

色電源管理(GPM)，在應用程式服務低利用率的狀況下，透過遷移虛擬機器的方

式將服務集中，有效地節省電能。

關鍵字：綠能雲端計算，虛擬化，綠色電源管理

 iv

Abstract

With the government and the high development of electronic business, electronic

services, the demand is sustained, rapid increase, they need to build more data centers

to provide services, which will consume considerable power, especially when the

service is running at low usage conditions, such as processor utilization of 10%, its

total power consumption of at least 60% of the peak, making the idle resources,

energy waste, which is caused by low energy efficiency of data centers. The purpose

of this paper is to use virtualization technology and power management approach to

achieve energy saving targets. We focus on the development of power management

algorithms, and implements a virtual cloud of green cloud management platform,and

build the web application in the above, and experimetns to test the performance and

power saving. We prove thate that Green Power Management (GPM), at low

utilization state of services, effectly save energy by consolidation service via a method

of Migrating VM.

Keywords: Green Cloud Computing, Virtualization, Green Power Management

(GPM)

 v

Acknowledgements

回想當初考進入東海資工時的種種情事，就像是才剛發生的一樣，入學後考

慮要跟隨那一位教授進行學習，在偶然的機會下，學長兆弘給了我一條明確的道

路，在他的推薦下加入高效能計算實驗室，參與一連串的研習。

學業完成在即，首先我要感謝指導教授－楊朝棟 博士，在學期間給予我最

多耐心且最大支持與最真誠的鼓勵，無論是參與國際研討會的論文發表或者是在

課堂之中及研究的過程或學習的過程中都充滿挑戰且富有成就感，何其有幸能成

為楊老師實驗室的一員，在東海高效能計算實驗室培養之下，造就出的韌性及知

識，以應付未來更多的挑戰。

同時，我要感謝研究所合作的學長、同學們、還有翔耀、威利、政達等及提

供支持，在數不清的假日裡，相約在 HPC 實驗室或同學們提供的場所，聚在一

起做研究。

最後，也要感謝老婆-燕雯，在我就學期間，尤其是寫論文的時候，分擔照

顧小孩的責任，沒有她的全力支持與體諒，我將無法順利完成論文，更遑論畢業

取得碩士學位，沒有你們無私的付出，我將不可能完成我的研究工作，謝謝你們

大家，並且再一次深深感謝楊老師的指導。

 vi

Table of Contents

摘要 ...iii

Abstract .. iv

Acknowledgements .. v

Table of Contents .. vi

List of Tables ...viii

List of Figures .. ix

Chapter 1 Introduction .. 1

1.1 Motivation ... 1

1.2 Thesis Contribution ... 3

1.3 Thesis Organization ... 4

Chapter 2 Background Review ... 5

2.1. Cloud Computing .. 5

2.2. Virtualization ... 6

2.3. OpenNebula ... 11

2.4. Dynamic Resource Allocation Algorithm ... 13

2.5. Green Power Management .. 14

2.6. Related Works.. 15

Chapter 3 System Implementation ... 17

3.1 System Architecture .. 17

3.2 Performance and Networking Capability .. 18

3.3 Green Power Manager Algorithm ... 19

 vii

3.4 Management Interface ... 23

Chapter 4 Experimental Results ... 27

4.1 Experimental Environments .. 27

4.2 Experimental Results ... 28

Chapter 5 Conclusions and Future Work .. 33

Bibliography ... 34

Appendix A OpenNebula Installation .. 39

Appendix B PHP Scrip to Control VMs and Hosts .. 43

 viii

List of Tables

Table 3-1. Response Time Statistic .. 19

Table 3-2. Throughput Rate ... 19

Table 4-1. Lab Server Hardware Specification .. 27

 ix

List of Figures

Figure 2-1. Full Virtualization ... 7

Figure 2-2. Para-virtualization ... 9

Figure 2-3. OpenNebula Architecture .. 12

Figure 3-1. System Architecture .. 18

Figure 3-2. The Green Power Manager process .. 22

Figure 3-3. Web-based Interface .. 24

Figure 3-4. Virtual Machines Manager .. 24

Figure 3-5. CPU Performance .. 25

Figure 3-6. Memory Performance .. 25

Figure 3-7. GPM Setting Page ... 26

Figure 4-1. Experiment Environment. ... 28

Figure 4-2. Shutdown Host and Ping VM.. 29

Figure 4-3. VM CPU Usage of Different Wattage Consumption 30

Figure 4-4. Power Monitor .. 31

Figure 4-5. VM CPU Usage ... 31

Figure 4-6. Power Consumption .. 32

 1

Chapter 1

Introduction

1.1 Motivation

Cloud is actually refers to network, the name came from engineers in the schematic

drawing, often represented by a cloud network. Therefore cloud services are the

network services. Ones can be presented as a layered architecture that can be viewed

as a collection of IT services referred to Software-as-a-Service (SaaS),

Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS). Among these

type SaaS allows users to run applications remotely from the cloud. PaaS includes

operating systems with a custom software stack for given application [1, 2]. IaaS

refers to computing resources as a service, includes a virtualized computer that is

dividing hard ware resources to unit. Each unit means one virtual machine lived on

virtualization layer. Virtualization is the key technique to enable elastic computing

delivering an infrastructure service.

Virtual machines are separated into two major categories, based on their use and

degree of correspondence to any real machine. A system virtual machine provides a

complete system platform which supports the execution of a complete operating

system (OS). In contrast, a process virtual machine is designed to run a single

program, which means that it supports a single process. An essential characteristic of a

virtual machine is that the software running inside is limited to the resources and

abstractions provided by the virtual machine—it cannot break out of its virtual world.

 2

Current Web applications demand highly flexible hosting and resource

provisioning solutions. The rising popularity of social network Web sites, and the

current Internet users to store and share increasing amounts of pictures, movies,

life-stories have required scalable infrastructure. Benefiting from economies of scale

in Web technologies, data centres have as a key model to provision resources to Web

applications and deal with their availability and performance requirements.

Cloud and Virtualization to accelerate not only accelerate the data center building,

but also brings the huge energy consuming. Recent reports [3] indicate that energy

costs are becoming dominant in the Total Cost of Ownership (TCO). In 2006, data

centres represented 1.5 percent of the total US electricity consumption. The

ever-increasing demand for cloud-based services does raise the alarming concern of

data centre energy consumption. By 2011, the current data centre energy consumption

could double [4] leading to more carbon emissions.

In the past, the only focus is the processing power of IT equipment and related

equipment spending, while infrastructure, including power, cooling and data center

space is always assumed available, ready, a given and affordable. Today, the

infrastructure is becoming a limiting factor in the driving force behind this change

comes from the growing business computing needs, the burden of rapidly rising

energy costs, global warming, national energy security awareness [5-12]. Green

computing, refer to support business computing needs as little as possible or

sustainable computing power, has recently continued to be attention and has been

growing [13-17].

Energy consumption of computation, storage and communications, cloud

computing has recently received considerable attention, as a promising approach for

 3

delivering ICT services by improving the utilization of data centre resources. When

the data centres application based on a generic virtual machine, allowing the

application workload combined in a smaller number of virtual machines, which can

help more efficient use of resources. If workload size could allocate in different

resource depend time and space, it could improve the energy efficiency and avoiding

waste resource [18]. At this thesis, we will introduce the Green Power Manager (GPM)

algorithm for the virtual machines on cloud computing environments. GPM is based

on work requirements, dynamically adjust the available resources, the purpose is to

save energy and maintain the appropriate computational efficiency. When the CPU

utilization increases, another physical machine will be waked up to join Resource

pools. If the CPU usage is at low utilization, then the physical machine will be closed.

Cloud computing data center for maximize profits of the key issues is reducing

power consumption. For reach the goal, there are two direction, follow the

infrastructure or the application point of view to reduce energy consumption. There

are several ongoing research on the development of an integrated management system

for the cloud to provide comprehensive on-line monitoring use of resources and

enforcement powers conscious policy to reduce energy consumption [19-25].

1.2 Thesis Contribution

We develop the GPM mechanism and implement about loading balance on the virtual

machine to concentrate process, it first determines the minimum of physical work load

on the server into the way as CPU Usage to meet application performance

requirements. Then shutting down unneeded servers in order to reduce server energy

consumption, once the application requires more physical resources can automatically

 4

turn on the server. The process is automatic and continuous. To use of GPM will have

the opportunity to save electricity costs and reduce carbon footprint to achieve energy

conservation purposes.

1.3 Thesis Organization

In this thesis, the Green Power Management (GPM) for loading balance approach was

proposed by our thesis and in this thesis it including three main phrases: (1) The

Virtualization management. (2) The Dynamic Resource Allocation mechanism. (3)

The Green Power Management approach. This thesis is organized as follows. First in

Section Ⅱ we introduce the background and related works, section Ⅲ describe the

system design and more detail of entire system, in section Ⅳ we show up the

experiment and results, and finally section Ⅴoutline the main conclusions and the

future work.

 5

Chapter 2

Background Review

2.1. Cloud Computing

Energy consumption in hosting Internet services is becoming a pressing issue as these

services scale up. Dynamic server provisioning techniques are effective in turning off

unnecessary servers to save energy. Such techniques, mostly studied for

request-response services, face challenges in the context of connection servers that

host a large number of long-lived TCP connections [26]. In this thesis, we show that

our algorithms can save a significant amount of energy without sacrificing user

experiences. Consolidation of applications in cloud computing environments presents

a significant opportunity for energy optimization. The goal of energy aware

consolidation is to keep servers well utilized such that the idle power costs are

efficiently amortized but without taking an energy penalty due to internal contentions.

There are several different issues; first of all, the merger must be carefully

considered combination of different workload on a common physical suitability of the

host. Therefore, understanding the nature of the work to determine which components

of critical workloads can be packaged together. Second, there is a performance and

energy optimization. This is because it can cause performance degradation, leading to

increased execution time, which would eat up the energy derived from the lower idle

energy savings [26]. In addition, there are many problems affecting the integration,

including the behavior of servers and workloads, the performance from the

implementation of change and the optimal combination of different applications that

 6

can accept the optimal solution does not interrupt the work load to keep track of

changes, which become important the integration of energy efficiency [27].

2.2. Virtualization

Virtualization is simply the logical separation of the request for some service

from the physical resources that actually provide that service. In practical terms,

virtualization provides the ability to run applications, operating systems, or system

services in a logically distinct system environment that is independent of a specific

physical computer system. Obviously, all of these have to be running on a certain

computer system at any given time, but virtualization provides a level of logical

abstraction that liberates applications, system services, and even the operating system

that supports them from being tied to a specific piece of hardware. Virtualization,

focusing on logical operating environments rather than physical ones, makes

applications, services, and instances of an operating system portable across different

physical computer systems. Virtualization can execute applications under many

operating systems, manage IT more efficiently, and allot resources of computing with

other computers [28].

It’s not a new technique, IBM had implemented on 360/67 and 370 on 60, 70

eras. Virtualization gets hardware to imitate much hardware via Virtual Machine

Monitor, and each one of virtual machines can be seemed as a complete individual

unit. For a virtual machine, there are memories, CPUs, unique complete hardware

equipment, etc... It can run any operating systems, called Guest Os, and do not affect

other virtual machines.

 7

In general, most virtualization strategies fall into one of four major categories:

Full virtualization (also called native virtualization) is similar to emulation. As in

emulation, unmodified operating systems and applications run inside a virtual

machine. Full virtualization differs from emulation in that operating systems and

applications are designed to run on the same architecture as the underlying physical

machine. This allows a full virtualization system to run many instructions directly on

the raw hardware. The hypervisor in this case monitors access to the underlying

hardware and gives each guest operating system the illusion of having its own copy. It

no longer must use software to simulate a different basic architecture as shown in

Figure 2-1.

User
Software

Guest OS

User
Software

Guest OS

User
Software

Guest OS

Hypervisor

Host Operating System

Hardware

Figure 2-1. Full Virtualization

Para-virtualization: In some instances this technique is also referred to as

enlightenment. In Para-virtualization, the hypervisor exports a modified version of the

underlying physical hardware. The exported virtual machine is of the same

architecture, which is not necessarily the case in emulation. Instead, targeted

 8

modifications are introduced to make it simpler and faster to support multiple guest

operating systems.

For example, the guest operating system might be modified to use a special

hyper call application binary interface (ABI) instead of using certain architectural

features that would normally be used. This means that only small changes are

typically required in the guest operating systems, but any such changes make it

difficult to support closed-source operating systems that are distributed in binary form

only, such as Microsoft Windows. As in full virtualization, applications are typically

still run without modifications.

Para-virtualization, like full virtualization, Para-virtualization also uses a

hypervisor, and also uses the term virtual machine to refer to its virtualized operating

systems. However, unlike full virtualization, Para-virtualization requires changes to

the virtualized operating system. This allows the VM to coordinate with the

hypervisor, and reduce the use of the privileged instructions that are typically

responsible for the major performance penalties in full virtualization.

The advantage is that Para-virtualized virtual machines typically outperform

fully virtualized virtual machines. The disadvantage, however, is the need to modify

the Para-virtualized virtual machine or operating system to be hypervisor-aware. The

framework of Para-virtualization is shown in Figure 2-2.

 9

User
Software

Guest OS

User
Software

Guest OS

User
Software

Guest OS

Hypervisor

Hardware

Figure 2-2. Para-virtualization

In order to evaluate the viability of the difference between virtualization and

non-virtualization, the virtualization software we used in this thesis is Xen. Xen is a

virtual machine monitor (hypervisor) that allows you to use one physical computer to

run many virtual computers — for example, running a production Web server and a

test server on the same physical machine or running Linux and Windows

simultaneously. Although not the only virtualization system available, Xen has a

combination of features that make it uniquely well suited for many important

applications. Xen runs on commodity hardware platforms and is open source. Xen is

fast, scalable, and provides server-class features such as live migration.

Xen is chosen to be our system’s virtual machine monitor because it provides

better efficiency, supports different operating system work simultaneously, and gives

each operating system an independent system environment.

This free software is mainly divided into two kinds of simulate types,

Para-virtualization and Full virtualization, as mentioned before. Para-virtualization

implements virtualization technology, mostly via the modified kernel of Linux.

 10

The characteristic of Para-virtualization is as follows:

 Virtual machine quite like real machine on operating efficacy

 At most supporting more than 32 cores of computer structures

 Supporting x86/32, with PAE technique and x86/64 hardware platform

 Good hardware driver support, almost for any Linux device driver

There are restricts with full virtualization, and it can be only executed when the

hardware satisfy these conditions in the following:

 Intel VT technique (Virtualization Technology, Intel-VT)

 AMD SVM technique (Secure Virtual Machine, AMD-SVM or,

AMD-V)

Besides, PAE is the Intel Physical Addressing Extensions technique, and this

method enables 4 gigabytes physical memory of 32 bits hardware platform to support

the platform that is only supported by 64 gigabytes memory. Then Xen could almost

execute on all P-II or more high level hardware platform.

As a result of the widespread of virtual machine software in recently years, two

best x86 CPU manufacturers Intel/AMD, with efficiency of x86 computers and

increasing of compute core of CPU, both have published the new integrated

virtualization on CPU, one for Intel Vander pool and another for AMD Pacifica. These

technologies also support Xen, and make efficiency step up more than initial stages

[29].

VMs can run on a single hardware unit (server consolidation). Therefore, less

hardware is needed overall, thus reducing energy wasted for cooling, while the

deployed hardware utilization increases. Consolidating hardware and reducing

redundancy can achieve energy efficiency. Unused server can be turned off (or

hibernated) to save energy. Some hardware gets higher load, which reduces the

number of physical servers needed.

 11

2.3. OpenNebula

The OpenNebula is a virtual infrastructure engine that enables the dynamic

deployment and re-allocation of virtual machines in a pool of physical resources. The

OpenNebula system extends the benefits of virtualization platforms from a single

physical resource to a pool of resources, decoupling the server, not only from the

physical infrastructure but also from the physical location [30]. The OpenNebula

contains one frontend and multiple backend. The front-end provides users with access

interfaces and management functions. The back-ends are installed on Xen servers,

where Xen hypervisors are started and virtual machines could be backed.

Communications between frontend and backend employ SSH. The OpenNebula gives

users a single access point to deploy virtual machines on a locally distributed

infrastructure.

OpenNebula orchestrates storage, network, virtualization, monitoring, and

security technologies to enable the dynamic placement of multi-tier services (groups

of interconnected virtual machines) on distributed infrastructures, combining both

data center resources and remote cloud resources, according to allocation policies [30].

The architecture of OpenNebula can be described as Figure 2-3.

Live migration is the movement of a virtual machine from one physical host to

another while continuously powered-up. When properly carried out, this process takes

place without any noticeable effect from the point of view of the end user. Live

migration allows an administrator to take a virtual machine offline for maintenance or

upgrading without subjecting the system's users to downtime. When resources are

virtualized, additional management of VMs is needed to create, terminate, clone or

move VMs from host to host. Migration of VMs can be done off-line (the guest in the

VM is powered off) or on-line (live migration of a running VM to another host).

 12

One of the most significant advantages of live migration is the fact that it

facilitates proactive maintenance. If an imminent failure is suspected, the potential

problem can be resolved before disruption of service occurs. Live migration can also

be used for load balancing, in which work is shared among computers in order to

optimize the utilization of available CPU resources.

 Local User and
Administrator Interface

Scheduler Cloud Service

Virtual Infrastructure Manager

Virtualization Storage Network Cloud

Local Infrastructure

Cloud User
Interface

Public Cloud

Figure 2-3. OpenNebula Architecture

However the OpenNebula lack a GUI management tool. In pervious works we

build virtual machines on OpenNebula and implemented Web-based management tool.

Thus, the system administrator can be easy to monitor and manage the entire

OpenNebula System on our project. OpenNebula is composed of three main

components: (1)the OpenNebula Core is a centralized component that manages the

life cycle of a VM by performing basic VM operations, and also provides a

basic management and monitoring interface for the physical hosts (2) the

 13

Capacity Manager governs the functionality provided by the OpenNebula core. The

capacity manager adjusts the placement of VMs based on a set of pre-defined policies

(3) Virtualizer Access Drivers. In order to provide an abstraction of the underlying

virtualization layer, OpenNebula uses pluggable drivers that expose the basic

functionality of the hypervisor [31].

2.4. Dynamic Resource Allocation Algorithm

In our previous thesis “A Dynamic Resource Allocation Model for Virtual Machine

Management on Cloud” published Dynamic Resource Allocation (DRA) algorithm

which has a detail description of DRA [41], and it is one of key components of the

this thesis basis. It is an efficient approach to increasing availability of host machine.

However, at present open source virtual machine management software merely

provide a web interface for user managing virtual machine. Such as Eucalyptus [32]

cannot accomplish load balance. When a part of virtual machines load increasing, it

will affect all virtual machine on the same host machine. DRA can overcome this

obstacle, and improve host machine performance. DRA works by continuously

monitoring all virtual machines resource usage to determine which virtual machine

have to migrate to another host machine. The goal is to make all host machine CPU

and memory loading identically.

In this thesis we focus on enhance virtualization saving energy, therefore DRA is

not described in detail in this thesis; if you are interested in DRA please refer to “A

Dynamic Resource Allocation Model for Virtual Machine Management on Clusters”

article. However, the purpose of DRA is to reach the best balance between each

physical machine. To avoid computing resources centralized on some specify physical

 14

machines, how to balance the resources is most important issue. To achieve the

maximum efficiency the resource must be evenly distributed.

2.5. Green Power Management

DRA manages the allocation of resources to a set of virtual machines running on a

cluster hosts with the goal of fair and effective use of resources. Ones makes virtual

machine placement and migration recommendations that serve to enforce

resource-based service level agreements, user-specified constraints, and maintain load

balance across the cluster even as workloads change.

GPM saves power by dynamically right-sizing cluster capacity according to

workload demands. Ones recommend the evacuation and powering of hosts when

CPU is lightly utilized. GPM recommends powering hosts back on when either CPU

utilization increases appropriately or additional host resources are needed to meet

user-specified constraints. GPM executes DRA in a what-if mode to ensure its host

power recommendations are consistent with the cluster constraints and objectives

being managed by DRA.

Hosts powered of by GPM are marked in standby mode, indicating that they are

available to be powered on whenever needed. GPM can be awakened from a

powered-of (ACPI S5) state via either wake-on-LAN (WOL) packets. WOL packets

are sent the by front-end host in the cluster, so GPM keeps at least one such host

powered on at all times.

 15

2.6. Related Works

Pervious works for data centres power saving, use turning servers on and off based on

demand [6]. X.Wang and M.Chen use dynamic voltage and frequency scaling (DVFS)

based on well-established control theory [33]. K.Rajamani and C.Lefurgy propose

spare servers to manage power [34].

Internet-based services have recently expanded to include network-based storage

and network-based computing. These new services are being offered both to corporate

and individual end users. J. Baliga analysis considered both public and private clouds

and included energy consumption in switching and transmission as well as data

processing and data storage. And after his analysis, he found the number of users per

server is the most significant determinant of the energy efficiency of a cloud software

service [35].

In power management area, Z. Wu and J. Wang presented a control framework of

tree distribution for power management in cloud computing so that power budget can

be better managed based on workload or service types [36].

Additionally, R. S. Montero [37] proposes a performance model to characterize

these variable capacity (elastic) cluster environments. The model can be used to

dynamically dimension the cluster using cloud resources, according to a fixed budget,

or to estimate the cost of completing a given workload in a target time.

R.S Chang and C.M Wu present a routing algorithm with energy awareness. It

estimate the energy consumed by the network component to decide

the packet forwarding route. On the other hand, it designs a energy aware provision

algorithm to decrease the energy consumed by the virtual network [38].

H. Abdelsalam and K. Maly take prior service level agreement request when

determining time slots in which changes should take place [39]. S. Srikantaiah and A.

 16

Kansal take consolidation issue as a modified multi-dimensional bin-packing problem

of allocating and migrating workloads to achieve energy optimal operation [18].

This thesis focuses power management allocation on physical machines with

virtual machines. And we presented a green power management mechanism for this.

For more detail please see section Ⅲ.

 17

Chapter 3

System Implementation

3.1 System Architecture

Besides managing individual VMs’ life cycle, we also designed the core to support

services deployment; such services typically include a set of interrelated components

(for example, a Web server and database back end) requiring several VMs. Thus, we

can treat a group of related VMs as a first-class entity in OpenNebula. Besides

managing the VMs as a unit, the core also handles the delivery of context information

(such as the Web server’s IP address, digital certificates, and software licenses) to the

VMs. [40]

In Figure 3-1, it shows the system perspective. According to the previous works

we build a cluster system with OpenNebula and also provide a web interface to

manage virtual machines and physical machine. Our cluster system was built up with

four homogeneous computers. The physical infrastructure consists of five hosts

(Host0 to Host4), which are interconnected by a Gigabit Ethernet LAN. Each physical

host node has a four core 2.8 GHz i7 processor, 4GB of RAM,500 gigabytes disk,

Debian operating system, and the network connected to a gigabit switch.

The Host0 acts as the front-end of the physical pool and is also connected to the

Internet. This host runs the Open-Nebula engine, which has the ability to deploy,

manage and monitor local VMs on any physical pools (using the XEN hypervisor).

The deployment of VMs by OpenNebula can be controlled manually or can be

done automatically by GPM mode. In this case, GPM monitor continuously every

CPU core usage per physical host to a given threshold. When this limit is reached and

 18

the VM on the physical host needs migrate to another. The virtual computing cluster

consists of a front-end node and a variable set of worker nodes, This cluster front-end

acts also as NFS for every worker node in the cluster.

 Resource Pool

OpenNebula

Back-End 1 Back-End 2

Hypervisor

Host 3

Hypervisor

Host 2

Hypervisor

Host 1

Front-End

Back-End 4

B

 Web-Based Management Tools

Virtual

 Machines

Hypervisor

Host 4

Back-End 3

Figure 3-1. System Architecture

3.2 Performance and Networking Capability

JMeter can load and performance test Web server. Here we use to test web application

by simulation of concurrent users accessing static HTTP pages, test throughput and

response time, as shown in Table 1. According to the measure result, the response

time is significant raise after threads increase. JMeter can be simulated

multi-threading, and set the number of times the loop to obtained average. We could

get a basic numbers of performance and network capabilities as shown in Table 2 for

its throughput, which can be interpreted as the server load and performance.

 19

Table 3-1. Response Time Statistic

Request Loop Count HTML Access Threads

(About 20 Bytes)

10 50 200 500

WAN 200 624ms 667ms 838ms 1711ms

LAN 200 44 ms 139 ms 490ms 987 ms

Table 3-2. Throughput Rate

Request Loop Count Throughput Rate

10 50 200 500

WAN 200 21.4/sec 113.3/sec 244.5/sec 254.7/sec

LAN 200 369.9/sec 368.1/sec 360.9/sec 355.3 /sec

3.3 Green Power Manager Algorithm

GPM algorithm archives energy saving based on the load balance environments of

building on DRA. GPM is based on work demands, do not emphasize the maximum

efficiency to the allocation of resources. DRA is based the maximum performance to

allocate of resources. Now we descript GPM algorithm as follow.

First it define a Avg of total host loading ratio (). Total hosts means total

available resources for allocation. The purpose of this parameter is to understand the

current work requirements have been properly met, or over satisfied, or insufficient to

meet. calculation is as follows:

 20

∑

 ∑

∑

 (1)

Here, The parameter i is host number, the number of physical machines available for

allocation, p is the number of core on the . The molecular of is total

usage summary of all host, the denominator represents total CPU capacity of all Host.

The CPU capacity on is calculated below:

 ∑

 (2)

Suppose a host has eight cores, it's computing power total is 800. We only monitor the

physical CPU, not only reducing the additional cost of computing but also simplify

the implementation and design. In such an environment, each entity machine

computing performance should be same as much as possible, because we expressed as

a ratio for CPU loading. In additional, each of VM on OpenNebra is single-core.

Parameter provides GPM consistent basis of comparison, refers to be

compared under the different size of resource. let's define two critical value of loading:

λ is maximum tolerance loading ratio, β is minimum critical loading ratio. Take two

critical values to compared with to determine the system is currently in the

three states: The first is supply not enought, means computing resources can not meet

the work for demand, which will cause the calculation bottleneck, and work can't

complete on the appropriate time, the efficiency is poor. Second is supply appropriate,

computing resources match the size for demand, which is the optimal state, energy

efficient. Third is oversupply, demand for computing resources far greater than the

work, this state resulting in waste of resources and energy efficiency is also poor.

When the touch to a maximum threshold, the system will open a new

 21

physical host, increasing computing pool, then automatically loading balance by the

DRA, VMs averagely allocate to all hosts, to avoid resource concentrated in a few of

the physical machine. When the touch to a minimum threshol, GPM would

shut down the , as minimun CPU usage host among of available host for

allocation. calculation is as follow

∑

∑

 (3)

Shutdown before, the system move the VM on the to other hosts.

Move order is by workload size of VM. Move to host is the second-lowest ones, the

moving mechanism by DRA.

There is a example to show flow: Suppose there are n virtual machines and the

 is greater than the λ, it shows the loading on physical machine is too much, and

then GPM will awake a new a host and apply the DRA to do load balancing. If the

 is small then β. It expressed resource utilization in most of the time is idle state.

So it needs to be turn off the one of the booted hosts. GPM mechanism will decide

which one should be shut down. Once target host have determined. The virtual

machines on target ones would migrate averagely to the others host, then shut down

the target host to attain the purpose of energy saving.

 22

Resource
Monitor

Continuous load
balancing

 If loading θ reach
critical value

Awake a new host
Available Host = n+1

Loading θ > λ
and n < N

Migration
Migrate VM from

lowest loading host
to another.

Available Host = n-1

Loading θ < β
and n>1

Joint to load
balance

VM m load balance
on n+1 hosts

Shut down Host
Turn off the lowest

loading host.
VM m load balance

on n-1 hosts

Enable Monitor
m VMs on n hosts
N: maximum of n

β < Loading θ < λ
or n =N

or n=1

Figure 3-2. The Green Power Manager process

In Figure 3-2, it demonstrates GPM process. At the beginning, there are m virtual

machines on n hosts (n as booted hosts, N as maximum of n) and resource

monitor detects the loading change continuously. There are three circumstances. The

first is loading between β (minimum critical ratio of loading) and λ (maximum

tolerance ratio of loading), in this state, m VMs do load balance continuously on

n hosts. The Second is loading greater then λ and n less than N (if booted hosts equal

N, do nothing), then GPM awake a new host to join resource pool, in this state, there

are m VMs on n+1 host. The third is loading less than β and n greater than 1 (if

booted host is only one, do nothing), then the VM on the lowest loading host will be

migrated to others, and then turn off the lowest loading host, in this state, there are m

virtual machines on n-1 host.

 23

The algorithm is very simple and performs some alculations for monitoring info. Our

pseudo code is as follows:

[Initialization]

Define new section per min

 = Avg of total host loading ratio (avg per 5 min)

 If > λ then

 [Open another physical machine]

 Send magic packet to awake host on shutdown status.

 Determine the target VM by DRA mechanism.

 Move the target VM machine to just awaked-host.

 DRA(Host1, Host2,..Hostn+1)

 Else if < β

 [Shutdown physical machine]

 Determine the minimum load of the host

 DRA(Host1, Host2,..Hostn-1)

 End if

 [Confirm how many resources available at next loop]

 N = maximum physical host.

 End new section.

3.4 Management Interface

We design a useful web interface for end users fastest and friendly to Implementation

virtualization environment. In Figure 3-3, it shows the authorization mechanism,

through the core of the web-based management tool, it can control and manage

physical machine and VM life-cycle.

 24

Figure 3-3. Web-based Interface

The entire web-based management tool including physical machine management,

virtual machine management and performance monitor. In Figure 3-4 it can set the

VM attributes such as memory size, IP address, root password and VM name etc…, it

also including the life migrating function. Life migration means VM can move to any

working physic machine without suspend in-service programs. Life Migration is one

of the advantages of OpenNebula. Therefore we could migrate any VM what we want

under any situation, thus, we have a DRA mechanism to make the migration function

more meaningful.

Figure 3-4. Virtual Machines Manager

 25

RRDtool is the Open Source industry standard, high performance data logging

and graphing system for time series data. Use it to write your custom monitoring shell

scripts or create whole applications using its Perl, Python, Ruby, TCL or PHP

bindings. In this thesis we use RRDtool to monitor entire system. Figure 3-5 and

Figure 3-6 show current physical machines CPU and memory usage.

Figure 3-5. CPU Performance

Figure 3-6. Memory Performance

Figure 3-7 is a GMP setting page. it show which hosts controled by

OPENNEBULA currently, which ones have enabled the GPM mechanism, hosts state

of GPM. Moreover once the host enables the GPM, the system will control the VM

on the HOST automatically and start loading balance

 26

Figure 3-7. GPM Setting Page

 27

Chapter 4

Experimental Results

In this section, we show the results of our efforts. First, we introduce the experimental

environment, next is the service was not interrupted. Finally, the results show the

mechanism of GPM.

4.1 Experimental Environments

In our experimental environment each server has same specification. We give a table

list as shown 錯誤! 找不到參照來源。, it descripted our servers CPU, Memory and

storages capabilities.

Table 4-1. Lab Server Hardware Specification

Hardware Lists

No Model Cores CPU MHz
Disk

(Giga)

Memory

 (Giga)
Comments

1
Intel(R) Core(TM) i7 CPU

860@2.80GHz
4 2,800 500 4 Front-End

2
Intel(R) Core(TM) i7 CPU

860@2.80GHz
4 2,800 500 4 Back-End

3
Intel(R) Core(TM) i7 CPU

860@2.80GHz
4 2,800 500 4 Back-End

4
Intel(R) Core(TM) i7 CPU

860@2.80GHz
4 2,800 500 4 Back-End

 28

4.2 Experimental Results

Node_01 and Node_02 are the hosts. They act as backend and sharing storage.

VM_01 is living on Node_01 and provides service to external user. The whole lab

environment is as shown illustration as Figure 4-1. We ping service IP on VM_01

continuously. First we migrate VM_01 from Node_01 to Node_02, then power off

Node_01. It doesn’t cause the service IP stop providing service. You can see the

connection status of service IP in Figure 4-2.

 Resource Pools

Share Storage

Front-End

Node_01 Node_02

VM_01

Figure 4-1. Experiment Environment.

 29

Figure 4-2. Shutdown Host and Ping VM

Next, we compare the VM CPU usage wattage consumed. Experimental design

have four HOST, each open two VM, the configuration of each VM as a single-core,

1G RAM, a total of eight VM, each VM running HPCC, problem size about ten, for

purpose is to get energy consuming data of full VM CPU usage. Figure 4-3 as VM

CPU usage of different wattage consumption chart. X-axis is the number of VM,

Y-axis is the wattage consuming. Our objective is to obtain the VM CPU power

consuming, so the number of wattage of Y-axis is deducted the number of wattage of

physical host idle (about 580 watt total aggregate consist of 4 hosts) which means the

host in the boot status and had deployed virtual environment. The triangle mark of

line is energy consuming when the VM turned on and not running any programs. We

find at time only deploy the VM and not running any program will increase the

number of wattage slightly more than ones not deployment. Rhombus symbol line

represents the wattage consumption when VM CPU use fully. Each VM at fully

running state will increase about 27(W) energy consumption more than the idle ones.

 30

Figure 4-3. VM CPU Usage of Different Wattage Consumption

Furthermore we built up application servers, including the computing service,

teaching website, multi-media services contain compression and decompression of

media files on virtual environment in HPC lab at Tunghai University. The system

architecture has showed in Figure 3-1. All the services are composed of four physical

machines. All of them are on power distribution unit (PDU). A PDU is a device fitted

with multiple appliance outlets designed to distribute electric power. It continuously

monitors instant wattage consumption for four physical machines (Figure 4-4). We

could observe that changes in wattage over at least 400. The four physical machines

as OpenNebula client opened in the above total of four VM. Each VM provide an

application service. In Figure 4-5, within one month, record the four VM CPU

averagely total usages per hour. X-axis is time interval (hours), Y-axis is the four VM

CPU total usage, here we use the SNMP protocol record the VM CPU usage per hour.

We can find between 2 AM to 7 AM, CPU was at lower utilization, 10 AM to 16 PM

is relatively high, so VM need more physical resources the interval between 10 AM to

16 PM.

0

50

100

150

200

250

1 2 3 4 5 6 7 8

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
W

at
t)

VM Number

VM CPU Full Usage

VM CPU Usage Zero

http://en.wikipedia.org/wiki/Appliance_outlet

 31

Figure 4-4. Power Monitor

Figure 4-5. VM CPU Usage

Figure 4-6 has same measuring period as Figure 4-5, it records averagely total

power consumption per hour. X-axis is time (hours), Y-axis as the power consumption

total of the four physical machines (watts). The illustration shows that in the case turn

off GPM, four machines are in power always, the power consumption has been over

the 400W (Diamond marker), but contrast 2 AM to 7 AM of Figure 4-6, VM CPU

demand volume is relatively small, so the decision-making based on GPM, front-end

would migrate VM to the same physical machine, and others physical machines shut

down to save energy. When the period in 10 AM to 16 PM, GPM was aware of VM

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

V
M

 C
P

U
 U

sa
ge

 in
 %

 (
M

ax
im

u
m

 4
0

0
)

Time (hour)

Usage

 32

CPU demand increasing to exceed a single physical machine can supply, front-end

wake up another machine by WOL technology and load balance automatically.

System can power or shut down the physical machine according to computing

demand, effectively achieve the purpose of saving energy.

Figure 4-6. Power Consumption

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
W

at
t)

Time (hour)

GPM Disable GPM Enable

 33

Chapter 5

Conclusions and Future Work

In this work we have presented an optimization with green power management model

for virtualization platform that allows a flexible management of these computing

platforms including: (1) supporting GPM mechanism; (2) implementation Resource

Monitor on OpenNebula web-based interface; and (3) based on DRA and OpenNebula

advantage, instead of booting physical machines with schedule traditionally .

Moreover, we expect to improve violent CPU highly loading solution. Because

in our thesis, we assume a prefect smooth virtual machines changes not a dramatic

changes. For instance, set sensitivity parameters for entire mechanism or etc.

However under our GPM approach, it already got a signification energy saving than

traditional approach.

 34

Bibliography

[1] L. Wang, J. T. Kunze, M. Castellanos, A. C. Kramer, and D. Karl, "Scientific

Cloud Computing: Early Definition and Experience " presented at the High

Performance Computing and Communications, 2008. HPCC '08. 10th IEEE

International Conference Dalian 2008.

[2] M. D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali, "Cloud

Computing: Distributed Internet Computing for IT and Scientific Research,"

Internet Computing, IEEE, vol. 13, pp. 10-13, 2009.

[3] M. K. Patterson, D. G. Costello, M. Loeffer, and P. F. Grimm, "Data center

TCO; a comparison of high-density and low-density spaces," 2007.

[4] S. V. L. Group, "Data Center Energy Forecast," July 29 2008.

[5] D. Wang, "Meeting Green Computing Challenges," in High Density packaging

and Microsystem Integration, 2007. HDP '07. International Symposium on,

2007, pp. 1-4.

[6] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle,

"Managing energy and server resources in hosting centers," presented at the

Proceedings of the eighteenth ACM symposium on Operating systems

principles, Banff, Alberta, Canada, 2001.

[7] George and Lawton. (2007) Powering Down the Computing Infrastructure.

16-19. Available: http://doi.ieeecomputersociety.org/10.1109/MC.2007.69

[8] D. Wang, "Cooling challenges and best practices for high density data and

telecommunication centers," in High Density Microsystem Design and

Packaging and Component Failure Analysis, 2006. HDP'06. Conference on,

2006, pp. 49-54.

[9] M. J. Pawlish and A. S. Varde, "A decision support system for green data

http://doi.ieeecomputersociety.org/10.1109/MC.2007.69

 35

centers," presented at the Proceedings of the 3rd workshop on Ph.D. students

in information and knowledge management, Toronto, ON, Canada, 2010.

[10] X. Zhang, X.-n. Zhao, Y. Li, and L.-j. Zeng, "Key Technologies for Green

Data Center," presented at the Proceedings of the 2010 Third International

Symposium on Information Processing, 2010.

[11] J. B. Carter, "A look inside IBM's green data center research," presented at the

Proceedings of the 14th ACM/IEEE international symposium on Low power

electronics and design, San Fancisco, CA, USA, 2009.

[12] W.-c. Feng, X. Feng, and R. Ge, "Green Supercomputing Comes of Age," IT

Professional, vol. 10, pp. 17-23, 2008.

[13] R. R. Harmon and N. Auseklis, "Sustainable IT services: Assessing the impact

of green computing practices," in Management of Engineering & Technology,

2009. PICMET 2009. Portland International Conference on, 2009, pp.

1707-1717.

[14] L. Andr, Barroso, U. H, and lzle, "The Case for Energy-Proportional

Computing," Computer, vol. 40, pp. 33-37, 2007.

[15] C. E. Bash, "Sustainable IT ecosystems and data centers," presented at the

Proceedings of the 14th ACM/IEEE international symposium on Low power

electronics and design, San Fancisco, CA, USA, 2009.

[16] R. Harmon, H. Demirkan, N. Auseklis, and M. Reinoso, "From Green

Computing to Sustainable IT: Developing a Sustainable Service Orientation,"

presented at the Proceedings of the 2010 43rd Hawaii International

Conference on System Sciences, 2010.

[17] R. Harmon and H. Demirkan, "The Next Wave of Sustainable IT," IT

Professional, vol. 13, pp. 19-25, 2011.

[18] S. Srikantaiah, A. Kansal, and F. Zhao, "Energy aware consolidation for cloud

 36

computing," presented at the Proceedings of the 2008 conference on Power

aware computing and systems, San Diego, California, 2008.

[19] V. Hien Nguyen, F. D. Tran, and J. M. Menaud, "Performance and Power

Management for Cloud Infrastructures," in Cloud Computing (CLOUD), 2010

IEEE 3rd International Conference on, 2010, pp. 329-336.

[20] G. von Laszewski, W. Lizhe, A. J. Younge, and H. Xi, "Power-aware

scheduling of virtual machines in DVFS-enabled clusters," in Cluster

Computing and Workshops, 2009. CLUSTER '09. IEEE International

Conference on, 2009, pp. 1-10.

[21] N. Bobroff, A. Kochut, and K. Beaty, "Dynamic Placement of Virtual

Machines for Managing SLA Violations," in Integrated Network Management,

2007. IM '07. 10th IFIP/IEEE International Symposium on, 2007, pp. 119-128.

[22] G. Khanna, K. Beaty, G. Kar, and A. Kochut, "Application Performance

Management in Virtualized Server Environments," in Network Operations and

Management Symposium, 2006. NOMS 2006. 10th IEEE/IFIP, 2006, pp.

373-381.

[23] M. N. Bennani and D. A. Menasce, "Resource Allocation for Autonomic Data

Centers using Analytic Performance Models," in Autonomic Computing, 2005.

ICAC 2005. Proceedings. Second International Conference on, 2005, pp.

229-240.

[24] W. XiaoYing, L. DongJun, W. Gang, F. Xing, Y. Meng, C. Ying, and W.

QingBo, "Appliance-Based Autonomic Provisioning Framework for

Virtualized Outsourcing Data Center," in Autonomic Computing, 2007. ICAC

'07. Fourth International Conference on, 2007, pp. 29-29.

[25] L. Wang, G. v. Laszewski, J. Dayal, and F. Wang, "Towards Energy Aware

Scheduling for Precedence Constrained Parallel Tasks in a Cluster with

 37

DVFS," presented at the Proceedings of the 2010 10th IEEE/ACM

International Conference on Cluster, Cloud and Grid Computing, 2010.

[26] A. Berl, E. Gelenbe, M. d. Girolamo, and G. Giuliani, "Energy-Efficient Cloud

Computing," The Computer Journal, vol. Vol. 53, No. 7, pp. pp. 1045-1051, 1

September 2010.

[27] S. Heo, K. Barr, and K. Asanovi, "Reducing power density through activity

migration," presented at the Proceedings of the 2003 international symposium

on Low power electronics and design, Seoul, Korea, 2003.

[28] W. v. Hagen, Professional Xen Virtualization, 2008.

[29] C. T. Yang, C. H. Tseng, K. Y. Chou, and S. C. Tsaur, "Design and

Implementation of a Virtualized Cluster Computing Environment on Xen,"

presented at the The second International Conference on High Performance

Computing and Applications, HPCA, 2009.

[30] OpenNebula. Available: http://www.opennebula.org

[31] J. W. Jang, E. Seo, H. Jo, and J.-S. Kim, "A low-overhead networking

mechanism for virtualized high-performance computing systems," The Journal

of Supercomputing, 2010.

[32] Eucalyptus. Available: http://open.eucalyptus.com

[33] X. Wang, M. Chen, C. Lefurgy, and T. W. Keller, "SHIP: Scalable Hierarchical

Power Control for Large-Scale Data Centers," presented at the Proceedings of

the 2009 18th International Conference on Parallel Architectures and

Compilation Techniques, 2009.

[34] K. Rajamani and C. Lefurgy, "On evaluating request-distribution schemes for

saving energy in server clusters," presented at the Proceedings of the 2003

IEEE International Symposium on Performance Analysis of Systems and

Software, 2003.

http://www.opennebula.org/
http://open.eucalyptus.com/

 38

[35] J. Baliga, R. W. A. Ayre, K. Hinton, and R. S. Tucker, "Green Cloud

Computing: Balancing Energy in Processing, Storage, and Transport,"

Proceedings of the IEEE, vol. 99, pp. 149-167, 2011.

[36] Z. Wu and J. Wang, "Power Control by Distribution Tree with Classified

Power Capping in Cloud Computing," in Green Computing and

Communications (GreenCom), 2010 IEEE/ACM Int'l Conference on & Int'l

Conference on Cyber, Physical and Social Computing (CPSCom), 2010, pp.

319-324.

[37] R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente, "Elastic

management of web server clusters on distributed virtual infrastructures,"

Concurrency and Computation: Practice and Experience, pp. n/a-n/a, 2011.

[38] C. Ruay-Shiung and W. Chia-Ming, "Green virtual networks for cloud

computing," in Communications and Networking in China (CHINACOM),

2010 5th International ICST Conference on, 2010, pp. 1-7.

[39] H. Abdelsalam, K. Maly, R. Mukkamala, M. Zubair, and D. Kaminsky,

"Towards Energy Efficient Change Management in a Cloud Computing

Environment," presented at the Proceedings of the 3rd International

Conference on Autonomous Infrastructure, Management and Security:

Scalability of Networks and Services, Enschede, The Netherlands, 2009.

[40] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, "Virtual

Infrastructure Management in Private and Hybrid Clouds," IEEE Internet

Computing, vol. 13, 2009.

[41] C.T. Yang, et al., " A Dynamic Resource Allocation Model for Virtual

Machine Managemant on Cloud," in Symposium on Cloud and Service

Computing 2011

 39

Appendix A

OpenNebula Installation

A. Installation

We are using the OpenNebula 2.0 (beta1) release, which comes as a single .deb

package.

Head-node

Install pre-requisite packages, using the command:

$sudo apt-get install libcurl3 libmysqlclient16 libruby1.8 libsqlite3-ruby

libsqlite3-ruby1.8 libxmlrpc-c3 libxmlrpc-core-c3 mysql-common ruby ruby1.8

Next, install OpenNebula with:

$ sudo dpkg -i opennebula_2.0-beta1-1_amd64.deb

OpenNebula is now installed into /srv/cloud/one/. Set the environment variables

that OpenNebula uses, using for example ~/.bashrc:

export ONE_LOCATION=/srv/cloud/one

export ONE_XMLRPC=http://localhost:2633/RPC2

export ONE_AUTH=$ONE_LOCATION/.one_auth

export PATH=$ONE_LOCATION/bin:$PATH

then create the file $ONE_AUTH:

$echo "username:password" > $ONE_AUTH

$chown oneadmin:oneadmin $ONE_AUTH

 40

Now the OpenNebula daemon can be started with:

$ sudo -u oneadmin one start

Cluster nodes: In addition to OpenSSH, ruby needs to be installed on the nodes:

$ sudo apt-get install ruby

B. OpenNebula Configuration

Head-node

The configuration file for OpenNebula is found in

$ONE_LOCATION/etc/oned.conf. By default, OpenNebula is configured for

KVM and shared filesystem for VM images using NFS. Next, we configure NFS

sharing on the OpenNebula folder

sudo apt-get install nfs-kernel-server

and configure the shared folder by adding to /etc/exports:

/srv/cloud 192.168.2.0/255.255.255.0(rw,sync,no_subtree_check)

and then restart the NFS server:

$ sudo service nfs-kernel-server restart

Lastly, create a folder for shared images:

$ sudo -u oneadmin mkdir /srv/cloud/images

Cluster nodes On the cluster nodes we mount the OpenNebula shared folder from

the head-node, by adding to /etc/fstab:

 41

192.168.2.1:/srv/cloud /srv/cloud nfs rw,hard,intr 0 0

and then:

$ sudo apt-get install nfs-client

$ sudo -u oneadmin mkdir /srv/cloud

$ sudo mount /srv/cloud

EDIT: On the cluster nodes, configure the bridge network interface by modifying

/etc/network/interfaces to look similar to:

The primary network interface

auto eth0

iface eth0 inet manual

auto br0

iface br0 inet static

 address 192.168.2.2

 netmask 255.255.255.0

 network 192.168.2.0

 broadcast 192.168.2.255

 gateway 192.168.2.1

 # dns-* options are implemented by the resolvconf package, if installed

 dns-nameservers x.x.x.x

 bridge_ports eth0

 bridge_fd 9

 bridge_hello 2

 42

 bridge_maxage 12

 bridge_stp off

 43

Appendix B

PHP Scrip to Control VMs and Hosts

A. host.php

(1) list host

 list_host.sh  List all of hosts.

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

 sudo -s

 source /root/.bashrc

 onehost list

 show_host.sh  List detail host info【Parameter：

host_name(debian1~debian4)】

(2) add host

 add_host.sh  Add a host【Parameter: host_name(debian1~debian4)】

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

 #

 sudo -s

 44

 source /root/.bashrc

 #

 onehost add $1 im_xen vmm_xen tm_nfs

 /var/www/script/rrd_graph/src/make_cpu_mem.sh $1

(3) delete host

 delete_host.sh  Delete a host【Parameter: host_name(debian1~debian4)】

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

 #

 sudo -s

 source /root/.bashrc

 #

 hostid=`onehost list | grep $1 | awk '{print $1}'`

 onehost delete $hostid

 /var/www/script/rrd_graph/src/delete_cpu_mem.sh $1

(4) start opennebula

 one_start.sh  Start OpenNebula

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

 #

 45

 sudo -s

 source /root/.bashrc

 #

 one star

(5) stop opennebula

 one_stop.sh  Stop OpenNebula

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

 #

 sudo -s

 source /root/.bashrc

 #

 one stop

B. vms.php

(1) create vm

 create_vm.sh  Build VM【Parameter: host_name(ct) ip(140.128.102.187)

size(1g) rootpw(abc123)】

 convert.sh

 create_default_vm.sh

 46

 create_default_vm.sh.ok

 install_default_vm.sh

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

 #

 sudo -s

 source /root/.bashrc

 #

 sudo /var/www/script/create_default_vm.sh $1 $2 $3 $4

 sudo xm create /data/domains/$1.cfg

 sudo /var/www/script/install_default_vm.sh $1 $2 $3 $4

 sudo xm destroy $1

 sudo /var/www/script/convert.sh $1

(2) list vm

 list_all_vm.sh  List all of VMs.

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

 #

 sudo -s

 source /root/.bashrc

 47

 #

 vm_name=`ls /data/domains/ | grep .one | cut -d . -f 1`

for input_vm in $vm_name

do

vcpu=`cat /data/domains/$input_vm.one | grep VCPU | cut -d = -f 2`

vmem=`cat /data/domains/$input_vm.one | grep MEMORY | cut -d = -f 2`

vm_ip=`cat /data/domains/$input_vm.one | grep IP | cut -d \" -f 2`

 echo "NAME = $input_vm"

 echo "CPU = $vcpu"

 echo "MEM = $vmem"

 echo "IP = $vm_ip"

done

 list_boot_vm.sh->列出目前開機 VM

 #!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

 #load env

 sudo -s

 source /root/.bashrc

 #main code

 onevm list

 48

(3) boot vm

 boot_vm.sh  Start VM

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

 #

 sudo -s

 source /root/.bashrc

 #

 cd /data/domains

 onevm create $1.one

 onevm deploy $1 $2

(4) delete vm

 delete_vm.sh  Delete VM

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

 #

 sudo -s

 source /root/.bashrc

 #

 rm /data/domains/$1.cfg

 rm /data/domains/$1.one

 rm -rf /data/xen/domains/$1

 49

(5) shutdown vm

 shutdown_one_vm.sh  Shutdown VM

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

 #

 sudo -s

 source /root/.bashrc

 #

 onevm shutdown $1

(6) migrate vm

 migrate_one_vm.sh

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

 #

 sudo -s

 source /root/.bashrc

 #

 onevm livemigrate $1 $2

