

私立東海大學

資訊工程研究所

碩士論文

指導教授：楊朝棟 博士

多核心系統之 OpenMP和 CUDA平行程式效能比較

Performance Comparisons with OpenMP and CUDA Parallel Programming

on Multicore Systems

研究生：張子杰

中華民國一○○年七月

i

ii

摘要

當今多核心處理器已經佔據越來越多的市場份額，而且編譯人員也必須面對多核

心處理器所帶來的衝擊。由於半導體運作溫度和功耗的問題限制了單核心微處理

器效能增長。這個原因導致許多微處理器供應商轉向多核心晶片。不僅處理器走

向隨之而來的多核心處理器趨勢，圖形處理單元(GPU)也是。同時，並行處理不

僅只是一個機會，也是一個挑戰。程式設計師或編譯器將軟體平行化是在多核心

晶片上提高效能的關鍵。在本論文中，我們介紹一些基於 OpenMP 的自動平行

化工具，以減少我們重寫運行在多核心系統上之程式碼的時間，我們針對 ROSE

編譯器深入探討並實作一個介面以簡化使用之複雜度。其中有一些工具可以自動

平行化成 CUDA 程式碼。另一部分，我們提出了一個混合 OpenMP、CUDA 及

MPI編譯技術的平行編譯方法，在含有一個C1060和一個S1070的GPU叢集裡，

根據 C1060 裝置數量分割迴圈。然後透過 OpenMP 或 MPI的程序平行指派任務

給 GPU 運算。最後，本論文中實驗有兩個部分，首先我們證明了這些自動平行

化的工具可行性與正確性，並分別於一般的處理器、圖形處理單元和嵌入式系統

上運行並討論其效能比較。另一部分的實驗中，也驗證了混合 OpenMP、CUDA

及MPI編譯技術的平行編譯方法確實提高效能。

關鍵字：自動平行、平行編譯、多核心、OpenMP、CUDA、MPI

iii

Abstract

Nowadays, the multicore processor has occupied more and more market shares, and

the programming personnel also must face the collision brought by the revolution of

multicore processor. Because of the semiconductor operating temperature and power

consumption limits performance growth for single-core microprocessors. This reason

leads many microprocessor vendors to turn to multicore chip organizations. Not only

CPU goes along the trend of multicore processors, but also GPU. At the same time,

parallel processing is not only the opportunity but also a challenge. The programmer

or compiler explicitly parallelize the software is the key for enhance the performance

on multicore chip. In this thesis, we introduce some of the automatic parallel tools

based OpenMP, which could to reduce our time on rewrite codes for parallel

processing on multicore system. Then we focus on ROSE to explore in depth. And

we implement an interface to simplify the complexity of use. And some of these tools

can automatic parallelization for CUDA. In other hand, we propose a parallel

programming approach using hybrid CUDA OpenMP, and MPI programming, which

partition loop iterations according to the number of C1060 GPU nodes in a GPU

cluster which consists of one C1060 and one S1070. Loop iterations assigned to MPI

process and processed in parallel by CUDA run by the processor cores in the same

computational node. Finally, there are two parts in our experiment in this thesis. First,

we verified the available and correctness of the auto-parallel tools, and discussed the

performance on CPU, GPU, and embedded system. And in the other part of

experiment, we also verify that the hybrid programming could improve performance.

Keywords: Auto-Parallel, Parallel Programming, Multicore, OpenMP, CUDA, MPI

iv

Acknowledgements

I would like to express my gratitude to all the people who have helped me through the

completion of this thesis. In particular, I would like to thank my advisor, Professor

Chao-Tung Yang, who introduced me to this topic and support in my work. Professor

Yang gave me a deep influence and inspiration. I would also like to thank Professor

Fang-Yie Leu, Professor Wuu Yang, Professor Yue-Shan Chang and Professor

Wen-Chung Shih for their valuable comments and advice given while serving on my

reading committee.

I am also grateful to many other classmates and members of my lab in THU.

They gave me opportunities to gain more knowledge and shared their knowledge with

me. Finally, I’m grateful to my family whose unconditional support and spur me to

make this thesis.

v

Table of Contents

摘要.. ii

Abstract ... iii

Acknowledgements ... iv

Table of Contents ... v

List of Tables ... vii

List of Figures ... viii

Chapter 1 Introduction .. 1

1.1 Motivations .. 1

1.2 The Goal and Contributions ... 2

1.3 Thesis Organization ... 3

Chapter 2 Background Review ... 4

2.1 Parallel Programming .. 4

2.1.1 CTM .. 4

2.1.2 OpenCL ... 5

2.1.3 CUDA ... 5

2.1.4 MPI ... 7

2.1.5 OpenMP .. 7

2.1.6 Pthread .. 8

2.1.7 TBB ... 8

2.2 Auto-Parallel Tools .. 9

2.2.1 ROSE .. 9

2.2.2 Open64 Compiler .. 9

2.2.3 Intel® Composer XE 2011 ... 9

2.2.4 The Portland Group ... 10

2.2.5 PAR4ALL ... 10

Chapter 3 System Hardware ... 11

3.1 Tesla C1060 GPU computing processor .. 11

3.2 Tesla S1070 GPU computing system ... 12

3.3 ARM11 MPCore Processor .. 12

Chapter 4 System Design and Implementation ... 15

4.1 Automatic Parallelization ... 15

vi

4.1.1 Algorithm .. 16

4.1.2 Liveness Analysis ... 17

4.1.3 Dependence Analysis .. 18

4.1.4 Variable Classification .. 18

4.1.5 Interface .. 19

4.2 Hybrid Parallel Programming .. 24

4.2.1 Combining MPI and CUDA ... 24

4.2.2 Combining OpenMP and CUDA .. 26

4.2.3 System model and approach ... 27

Chapter 5 Experimental Results ... 29

5.1 Part of Auto-parallelism ... 29

5.1.1 CPU (OpenMP version) .. 31

5.1.2 GPU (CUDA version) ... 41

5.1.3 Embedded System (OpenMP version) .. 43

5.2 Part of Hybrid Parallel Programming .. 47

Chapter 6 Conclusions and Future Work .. 51

6.1 Concluding Remark ... 51

6.2 Future Work ... 52

Bibliography ... 53

Appendix ... 59

A. Setup of auto-parallel tool .. 59

1 ROSE ... 59

2 Par4All ... 59

3 Intel® Composer XE 2011 for Linux .. 60

4 PGI Accelerator C/C++ Workstation 10.9 ... 60

5 Open64 compiler 4.2.3 ... 61

B. Interface ... 61

1 VMC-PPO .. 61

2 Plug-in of Eclipse ... 61

vii

List of Tables

Table 5-1. The classification of auto-parallel tools ... 31

Table 6-1. The best tool in each environment ... 51

viii

List of Figures

Figure 2-1. Processing flow on CUDA from Wiki .. 6

Figure 3-1. Arm11MPcore chip .. 14

Figure 4-1. System Architecture ... 15

Figure 4-2. Algorithm of auto-parallel .. 16

Figure 4-3. An example of dependence .. 18

Figure 4-4. The button of automatic parallelization in Eclipse 19

Figure 4-5. Example for auto-parallel ... 20

Figure 4-6. Show the lines where be inserted OpenMP pragma 20

Figure 4-7. Output codes for auto-parallel .. 21

Figure 4-8. Interface of auto-parallel tool ... 22

Figure 4-9. Optimization of Loop ... 23

Figure 4-10. Auto-Parallelization of Loop .. 23

Figure 4-11. System model: The hybrid CUDA GPU cluster. 28

Figure 5-1. Processing flow .. 30

Figure 5-2. Matrix Multiplication runs on CPU ... 32

Figure 5-3. Nbody runs on CPU ... 33

Figure 5-4. Solve problem by Jacobi method on CPU ... 33

Figure 5-5. Matrix Multiplication runs on the CPU with 8 cores 35

Figure 5-6. Matrix Multiplication runs on the CPU with 8 cores 36

Figure 5-7. Matrix Multiplication runs with 2cores to 8 cores 37

Figure 5-8. Solve problem by Jacobi method on the CPU with 8 cores 38

Figure 5-9. Solve problem by Jacobi method on the CPU with 8 cores 39

Figure 5-10. Jacobi program runs with 2 cores to 8 cores .. 40

Figure 5-11. Matrix Multiplication runs on GPU ... 41

Figure 5-12. Nbody runs on GPU ... 42

Figure 5-13. Solve problem by Jacobi method on GPU ... 42

Figure 5-14. Matrix Multiplication runs on embedded system 44

Figure 5-15. Nbody runs on embedded system ... 44

Figure 5-16. Solve problem by Jacobi method on embedded system 45

Figure 5-17. Matrix Multiplication executes on three kinds of environment 46

Figure 5-18. Jacobi program executes on three kinds of environment 46

Figure 5-19. Matrix multiplication with problem sizes from 256 to 2048 48

Figure 5-20. MD5 hashing on 10 to 2,098,651 words .. 49

Figure 5-21. Sorting numbers 640 times from 65,536 to 524288 floating point

numbers .. 50

1

Chapter 1

Introduction

1.1 Motivations

Today multicore has become the trend of enhance the processor’s performance, and

most industries have considered multicore is the future of development. Not only PC's

CPU and GPU have been grown to multicore, but also embedded system. We all think

that multicore can give us higher performance than only one core, but it should be in

the situation of parallel processing. If a task can be parallel processing by each core,

then the efficiency should proportional with number of core. So in this condition,

more and more cores must be better. In fact, even the trivial in our life or complex as

science computing, parallel processing not only gives us more efficiency on

computing but also changes the way we live.

Parallel processing has become more popular. Briefly speaking, parallel

processing is the simultaneous use of multiple processor core or CPU to execute a

program or more computing threads. Ideally, parallel processing lets the application

run faster, because the application runs by more engines such as CPU or core.

GPUs are really “manycore” processors, with hundreds of processing elements.

A graphics processing unit (GPU) is a specialized microprocessor that offloads and

accelerates graphics rendering from the central (micro-) processor. Modern GPUs are

very efficient at manipulating computer graphics, and their highly parallel structure

makes them more effective than general-purpose CPUs for a range of complex

algorithms. We know that a CPU has only 8 cores at single chip currently, but a GPU

2

has grown to 448 cores. From the number of cores, we know that GPU is

appropriately to compute the programs which are suited massive parallel processing.

Although the frequency of the core on the GPU is lower than CPU’s, we believe that

massively parallel can conquer the problem of lower frequency. By the way, GPU has

been used on supercomputers. In top 500 sites for November 2010 [23], there are

three supercomputers of the first 5 are built with NVIDIA GPU.

1.2 The Goal and Contributions

In this thesis, we introduce some of the automatic parallel tools for parallel processing

on multicore system. These tools can automatically transform sequential C/C++ codes

to parallel C/C++ codes or to generate parallel programs by using OpenMP directives

or CUDA. Then we focus on ROSE to explore in depth. And we implement an

interface to simplify the complexity of use. And we must to have an experiment on

these tools, to let us know the available of these tools. And when we use them to

enhance the performance, how much benefit we can get actually. Then, we used these

tools to do parallel programming on some benchmarks, and compared the

performance.

 And we propose a solution to not only simplify the use of hardware acceleration

in conventional general purpose applications, but also to keep the application code

portable. We propose a parallel programming approach using hybrid CUDA, OpenMP

and MPI [1] [2] [3] programming, which partition loop iterations according to the

performance weighting of multicore [4] nodes in a cluster. Because iterations assigned

to one MPI process are processed in parallel by OpenMP threads run by the processor

cores in the same computational node, the number of loop iterations allocated to one

3

computational node at each scheduling step depends on the number of processor cores

in that node.

1.3 Thesis Organization

The rest parts of this work are organized as follows. Chapter 2 describes a background

review of parallel programming and auto-parallel tools. Chapter 3 introduces the

hardware system used in this work. Chapter 4 depicts the algorithm of automatic

parallelization and hybrid the parallel programming of OpenMP, MPI, and CUDA.

Chapter 5 presents experimental results of auto-parallel tools and show that the

proposed approach improved performance over all previous schemes in

heterogeneous and homogeneous clusters environments. Finally, conclusions are

discussed in Chapter 6.

4

Chapter 2

Background Review

2.1 Parallel Programming

Nowadays, we can see that the maximum of CPU’s core is only eight cores, but the

GPU has grown to 448 cores. Form the number of cores, we know that GPU is

appropriately to compute the program which is suited for massive parallel processing,

despite his relatively low frequency of core, but massively parallel can conquer the

problem. Now we know that GPU is suitable for parallel computing, how we can use

GPU to help us to compute. There are several well-known methods, like CTM,

OpenCL, and CUDA.

And in the aspect of CPU, there are several well-known APIs/technologies that

can help us to parallel our code like MPI, OpenMP, TBB, Pthread, and OpenCL etc.

We will introduce them one by one.

2.1.1 CTM

ATI (now AMD) developed a low-level programming interface called CTM [25], and

its goal is enabling GPGPU computing. Developers can access to the native

instruction set and memory of the parallel computational units which are in modern

AMD video cards by using CTM programming. But CTM is just the name of a beta

version, and the first production version of AMD's GPGPU technology is now called

Stream SDK.

5

2.1.2 OpenCL

OpenCL [26] is a framework of programming on heterogeneous platforms which may

consist of CPUs, GPUs, and other processors. OpenCL is developed by Apple Inc. and

Khronos Group. OpenCL is consisting of a language and APIs. The language based on

C99 is used to write kernels; and the APIs are used to define and control the platforms.

OpenCL uses task-based and data-based parallelism to parallel computing. AMD/ATI

and Nvidia have adopted OpenCL into graphics card drivers.

2.1.3 CUDA

CUDA (Compute Unified Device Architecture) [27][28] is architecture of parallel

computing developed by NVIDIA. The architecture is consisting of three parts, library,

runtime, and CUDA driver. Developers can access the virtual instruction set and

memory of the parallel computational units which are in CUDA GPUs by using

CUDA programming. Through the technology of CUDA, users can calculate by using

the GPUs from the GeForce 8 series onwards, including Quadro and the Tesla. CUDA

architecture is compatible with OpenCL. Neither in CUDA C-language or in OpenCL,

the instructions will be transform into the codes of PTX by the driver, and then

calculate by the graphics core. CUDA’s parallel programming model maintains a low

learning curve for programmers familiar with standard programming languages such

as C. And current release is CUDA Toolkit 4.0 that supports various operating systems,

including Microsoft Windows, Linux, and Mac OS X.

CUDA processing flow is described as Figure 2-1[27]. The first step: to copy the

data which are on the main memory of CPU to the memory of GPU, second: to

6

instruct the process to GPU by CPU, third: to parallel execute in each core on GPU,

finally: to copy the result from the memory of GPU to the main memory of CPU.

Memory for

GPU

GPU GPU GPU GPU GPU GPU GPU GPU

Step1. Copy processing

data
Step2. Instruct the

processing

Step3. Execute parallel

in each core

Step4. Copy the result

CPUMain Memory

GPU

(Geforce 8800)

Figure 2-1. Processing flow on CUDA from Wiki

7

2.1.4 MPI

Message Passing Interface (MPI) [29] is a specification for message passing

operations. It defines each worker as a process. MPI is currently the de-facto standard

for developing HPC applications on distributed memory architecture. It provides

language bindings for C, C++, and FORTRAN. The cluster computations exploit

message-passing, because computers in cluster have distributed memory. When one

process needs data from another one then you should manage data passing over the

network. It is time-consuming operation. The MPI library is often used for parallel

programming [5] in cluster systems because it is a message-passing programming

language. MPICH is Free Software and is available for most flavors of UNIX

(including Linux and Mac OS X) [30] and Microsoft Windows. Moreover, MPICH

[31] is a developed program library.

2.1.5 OpenMP

Open Multi-Processing (OpenMP) [32] is an application programming interface (API),

a kind of shared memory architecture API which provides a multithreaded capacity.

OpenMP supports multi-platform shared memory multiprocessing programming in C,

C++ and FORTRAN on much architecture which including UNIX and Microsoft

Windows platforms. It consists of a set of compiler directives, library routines, and

environment variables that influence run-time behavior. We can parallel a loop easily

by invoking subroutine calls from OpenMP thread libraries and inserting the OpenMP

compiler directives. In this way, the threads can obtain new tasks, the un-processed

loop iterations, directly from local shared memory.

OpenMP is an open specification for shared memory parallelism. The basic idea

behind OpenMP is data-shared parallel execution. OpenMP is portable across the

shared memory architecture. Thread means that the unit of workers in OpenMP. Every

thread can access a variable in shared cache or RAM. It works well, when accessing

8

shared data costs you nothing. But OpenMP is not suitable for the needs of complex

inter-thread synchronization and mutual exclusion. And OpenMP cannot be used on

the non-shared memory systems (such as computer clusters). In such systems, MPI

use more.

2.1.6 Pthread

POSIX Threads [33] is the POSIX standard of threads, and it defines an API for

creating and controlling threads and defines a set of C programming language types,

functions and constants in the implementation with a pthread.h header and a thread

library. The implementation of POSIX Threads library is usually called Pthreads, and

it usually used on Unix-like POSIX systems (FreeBSD, NetBSD, GNU/Linux, Mac

OS X and Solaris), but also on Microsoft Windows (the pthreads-w32 is used on

supporting a subset of the Pthread API for the Windows 32-bit platform).

2.1.7 TBB

Intel TBB (Intel Threading Building Blocks) [34] is a library developed by Intel

Corporation, and it provides a rich and complete approach to represent parallelism in

a C++ program. While writing software programs, it helps us take the advantage of

multicore processor performance. But Intel TBB is not just a threads-replacement

library. It represents a higher-level, task-based parallelism that abstracts platform

details and threading mechanisms for scalability and performance. And current release

is Intel TBB 3.0, it supports various operating systems such as Microsoft Windows,

Mac OS X (version 10.4.4 or higher) and Linux.

9

2.2 Auto-Parallel Tools

About the issue of auto-parallel, there are some tools which could accord to our

source code to generate the binary file or parallel code automatically.

2.2.1 ROSE

ROSE is a source-to-source compiler infrastructure of open source which builds

source-to-source program transformation and analysis tools for large-scale

FORTRAN, C/C++, and OpenMP applications. There are many functions in ROSE

such as static analysis, program optimization, arbitrary program transformation,

domain-specific optimizations, complex loop optimizations, performance analysis,

and cyber-security.

2.2.2 Open64 Compiler

The Open64 [35] compiler is a complier of open source and derived from SGI

Pro64(TM) compiler which was released under the GNU GPL in 2000. It supports

C/C++, FORTRAN, and OpenMP, and generate code for various architectures (CISC,

RISC, VLIW, GPU), including MIPS, IA-32, IA-64, CUDA, and others.

2.2.3 Intel® Composer XE 2011

Intel® Composer XE 2011 [36] is a compiler which combined with high performance

libraries for C/C++ and FORTRAN on the operating system of Window or Linux. It

10

can improve the performance with Intel TBB and OpenMP programming on multicore

operating systems.

2.2.4 The Portland Group

PGI Workstation™ [37] has many kind of compilers and tools product. PGI

Workstation supports C/C++, FORTRAN, OpenMP, and CUDA. It can improve the

performance with CUDA and OpenMP programming on multicore operating systems.

PGI products run under the operating systems, including various Linux, Mac OS X,

and most versions of Microsoft Windows.

2.2.5 PAR4ALL

PAR4ALL [38] is an open-source compiler which could to do source-to-source

transformations on C and FORTRAN programs. It can generate OpenMP code from C

code and CUDA code from C/FORTRAN code by using the script p4a. And

PAR4ALL runs under Linux of operating systems.

11

Chapter 3

System Hardware

3.1 Tesla C1060 GPU computing processor

The NVIDIAR Tesla™ C1060 [41] transforms a workstation into a high-performance

computer that outperforms a small cluster. This gives technical professionals a

dedicated computing resource at their desk-side that is much faster and more

energy-efficient than a shared cluster in the data center. The NVIDIAR Tesla™ C1060

computing processor board which consists of 240 cores is a PCI Express 2.0 form

factor computing add-in card based on the NVIDIA Tesla T10 graphics processing

unit (GPU). This board is targeted as high-performance computing (HPC) solution for

PCI Express systems. The Tesla C1060 is capable of 933 GFLOPs/s [24] of

processing performance and comes standard with 4 GB of GDDR3 memory at 102

GB/s bandwidth.

A computer system with an available PCI Express ×16 slot is required for the

Tesla C1060. For the best system bandwidth between the host processor and the Tesla

C1060, it is recommended (but not required) that the Tesla C1060 be installed in a

PCI Express ×16 Gen2 slot. The Tesla C1060 is based on the massively parallel,

many-core Tesla processor, which is coupled with the standard CUDA C

programming [42] environment to simplify many-core programming.

12

3.2 Tesla S1070 GPU computing system

The NVIDIAR Tesla™ S1070 [40] computing system speeds the transition to

energy-efficient parallel computing [6]. With 960 processor cores and a standard C

compiler that simplifies application development, Tesla S1070 scales to solve the

world’s most important computing challenges – more quickly and accurately. The

NVIDIAR Tesla™ S1070 Computing System is a 1U rack-mount system with four

Tesla T10 computing processors. This system connects to one or two host systems via

one or two PCI Express cables. A Host Interface Card (HIC) [39] is used to connect

each PCI Express cable to a host. The host interface cards are compatible with both

PCI Express 1x and PCI Express 2x systems.

The Tesla S1070 GPU computing system is based on the T10 GPU from NVIDIA.

It can be connected to a single host system via two PCI Express connections to that

host, or connected to two separate host systems via one PCI Express connection to

each host. Each NVIDIA switch and corresponding PCI Express cable connects to

two of the four GPUs in the Tesla S1070. If only one PCI Express cable is connected

to the Tesla S1070, only two of the GPUs will be used. To connect all four GPUs in a

Tesla S1070 to a single host system, the host must have two available PCI Express

slots and be configured with two cables.

3.3 ARM11 MPCore Processor

The ARM11™ MPCore™ [43] multicore processor implements the ARM11

microarchitecture and brings multicore scalability with 1 to 4 cores from a single RTL

base, enabling simple system design with a single macro to integrate with up to 4x the

13

performance of a single core. The ARM11 MPCore processor brings efficient

coherency using built-in SCU, and is supported by a wide range of OS with ARM

SMP capability. The processor extends the ARMv6 architecture with PIPT caches,

supporting 16KB-64KB L1 caches efficiently.

The ARM11 MPCore processor provides enhanced memory throughput of

1.3Gbytes/sec from a single CPU, and a solution that delivers greater performance at

lower frequencies than comparable single processor designs, offering significant cost

savings to system designers, while maintaining full compatibility with existing EDA

tools and flows. The ARM11 MPCore processor also simplifies otherwise complex

multiprocessor design, reducing time-to-market and total design cost. Also, the

ARM11 MPCore processor supports a fully coherent data cache, providing the

designer with a unique level of flexibility across various symmetric multiprocessing

(SMP) and asymmetric multiprocessing (AMP), or any combination of either style of

multiprocessor design.

14

Interrupt Distributor

CPU

interface

Timer

Wdog

CPU

interface

Timer

Wdog

CPU

interface

Timer

Wdog

CPU

interface

Timer

Wdog

CPU/VFP

L1 memory

CPU/VFP

L1 memory

CPU/VFP

L1 memory

CPU/VFP

L1 memory

 I and D Coherence

64bit bus control bus
Snoop Control Unit (SCU)

IRQ IRQ IRQ IRQ

………

Figure 3-1. Arm11MPcore chip

15

Chapter 4

System Design and Implementation

4.1 Automatic Parallelization

The implementation of automatic parallelization based on OpemMP is support both C

and C++ code. The auto-parallel program will insert OpenMP pragmas into the

sequential C/C++ source code automatically, if possible. The system architecture of

the auto-parallel tool shows as Figure 4-1.

Figure 4-1. System Architecture

16

4.1.1 Algorithm

Automatic parallelization tool is designed to handle the conventional loops. The loops

may include variables of primitive data types or STL container types. To search parts

of dependence in a target and eliminate them later on as much as possible based on

various rules is the critical idea of the algorithm. If there are no other dependencies,

parallelization is safe. The algorithm of the auto-parallel tool shows as Figure 4-2.

Input source code

Search loops with

canonical

Conduct loop

Normalization

Calling dependence

analysis

Calling liveness

analysis

Conduct variable

classification

Insert OpenMP

pragma

Judge the loop

for parallelizable

Y

N
Unparallelizable Loop

Output code
Loop exist?

Y

N

Figure 4-2. Algorithm of auto-parallel

17

A. To search the loops in source code and normalize the loops.

B. Liveness analysis

C. Dependence analysis

D. To classify variables of OpenMP, and identifying references to the current

element, and search order-independent write accesses.

E. To eliminate dependencies associated with variables. Transform the

dependent variables to the independent variables, if possible.

F. To insert the corresponding OpenMP directives.

4.1.2 Liveness Analysis

Liveness analysis is a typical data flow analysis, which to calculate the variables for

each program point by the compiler. The variables may be potential to read before

they write next one. If the variable holds a value which may be needed in the future, it

is live at a point in a program's execution path.

And we can access live-in and live-out variables from a translator based on the

virtual control flow graph node after calling liveness analysis. The code accesses the

control flow graph node of the for statement and retrieve live-in variables of the true

edge's target node as the live-in variables of the loop body. Similarly, when getting the

live-in variables of the node after the loop, the live-out variables of the loop are

obtained (target node of the false edge). Simply, live-in is the set of variables that are

live at the entry point of a loop and live-out is the set of variables that are live at the

exit point of a loop.

18

4.1.3 Dependence Analysis

Dependence analysis is used to find the constraints of execution-order between

statements/instructions. Broadly speaking, a statement P1 must be executed before a

statement P2 if P2 depends on P1. Two statements which access or modify the same

resource may incur data dependence. The types of the data dependence included flow

dependence (RAW), anti-dependence (WAR), output dependence (WAW), and input

dependence (RAR). Most of the data dependence could not be parallel.

Dependence analysis is the basis for the auto-parallel tool, and the analysis is

used to judge whether the statements of the loop could be executed independently.

Figure 4-3 shows an example for an input code, in which a statement is surrounded

by two loops. It is clear that the example code in Figure 4-3 cannot be parallelized

because of loop-carried dependences in the loop levels.

Figure 4-3. An example of dependence

4.1.4 Variable Classification

A private variable of a loop is neither live-in nor live-out of the loop. It means the

variable is immediately redefined inside the loop and then used inside the loop, but is

never used anywhere after the loop. To avoid possible race condition, so all loop

index variables are classified as OpenMP private variables. On the other hand, the

1 for(i=0;i<m;i++){

2 for(j=0;j<n;j++){

3 s[i][j]=s[i][j-1] * s[i-1][j];

4 }

5 }

19

variables of firstprivate and lastprivate are live respectively at either only the

beginning or only the end of the loop. The shared variables are live at both the

beginning and the end of the loop.

Reduction variables are used to increase the opportunities for parallelization. For

example, the statement of z=z+a[i] in a loop is a typical operation of reduction

variables. It would cause loop-carried anti-dependence and loop-carried output

dependence. We use an analysis to search such typical operations, and when deciding

if a loop is parallelizable, exclude the associated loop-carried dependences.

4.1.5 Interface

In order to simplify the use of ROSE for user, we integrated ROSE into Eclipse.

When we want to parallelize the source code, just only need to click a button.

Figure 4-4. The button of automatic parallelization in Eclipse

20

Figure 4-5. Example for auto-parallel

Figure 4-6. Show the lines where be inserted OpenMP pragma

21

Figure 4-7. Output codes for auto-parallel

And we also implement an interface which shows in Figure 4-8. Figure 4-9 shows

that optimization of loop. First, open the file which will be optimized. Second, choose

the parameter of optimization. Finally, click the “Optimize” button. Figure 4-10

shows that auto-parallelization of loop. First, open the file which will be parallelized.

And then click the “AutoParallel” button.

22

Figure 4-8. Interface of auto-parallel tool

儲存變更 開啟新檔

另存新檔 執行最佳化

最佳化選項

自動平行

23

Figure 4-9. Optimization of Loop

Figure 4-10. Auto-Parallelization of Loop

1.開啟檔案

3.執行最佳化

2.選擇最佳化參數

1.開啟檔案
2.執行 自動平行

24

4.2 Hybrid Parallel Programming

4.2.1 Combining MPI and CUDA

We could use the GPUs which are in different severs by MPI to help us doing parallel

computing. A sample source code files as follow:

1 #include "mpi.h"

2 #include <stdio.h>

3 #include "kernel.h"

4 int main(int argc,char **argv)

5 {

6 int myid, numprocs;

7 int namelen;

8 char processor_name[MPI_MAX_PROCESSOR_NAME];

9 MPI_Init(&argc,&argv);

10 MPI_Comm_rank(MPI_COMM_WORLD,&myid);

11 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

12 MPI_Get_processor_name(processor_name,&namelen);

13 go(myid,processor_name);

14 MPI_Finalize();

15 }

25

1 #include <string.h>

2 #include <stdio.h>

3 #include <math.h>

4 #include <ctime>

5 #include <iostream>

6 using namespace std;

7 #define BLOCK 16

8 __global__ void hello(char* s){

 9 char w[50]="hello CUDA";

10 int k;

11 for(k=0; w[k]!=0; k++) s[k]=w[k];

12 s[k]=0;

13 }

14 int go(int cpu_id,char* name){

15 char* d;

16 char h[100];

17 int gpu_id = -1;

18 if(cpu_id>=3){

19 cudaSetDevice(cpu_id % 4);

20 }

21 else

22 cudaSetDevice(cpu_id);

23 cudaGetDevice(&gpu_id);

24 cudaMalloc((void**) &d, 100);

25 hello<<<1,1>>>(d);

26 cudaMemcpy(h, d, 100,

cudaMemcpyDeviceToHost);

27 printf("\n%s from Device %d on %s\n",

h,gpu_id,name);

28 cudaFree(d);

29 return 0;

30 }

26

4.2.2 Combining OpenMP and CUDA

When there are two or more devices of GPU in a server, we can get more processes

through OpenMP to control the devices. A sample source code files as follow:

1 #include <string.h>

2 #include <math.h>

3 #include <ctime>

4 #include <iostream>

5 #include <omp.h>

6 using namespace std;

7 #define BLOCK 16

8 __global__ void hello(char* s){

9 char w[50]="hello CUDA";

10 int k;

11 for(k=0; w[k]!=0; k++) s[k]=w[k];

12 s[k]=0;

13 }

14 int go(int dn){

15 char* d;

16 char h[100];

17 cudaMalloc((void**) &d, 100);

18 hello<<<1,1>>>(d);

19 cudaMemcpy(h, d, 100, cudaMemcpyDeviceToHost);

20 printf("\n%s from Device %d\n", h,dn);

21 cudaFree(d);

22 return 0;

23 }

27

So maybe we could translate sequential codes into OpenMP codes by our

auto-parallel tool, and then manually converted to CUDA code.

4.2.3 System model and approach

The system model is presented in Figure 4-11, a hybrid CUDA GPU cluster is built

with two GPU Servers as shown as S1070 and C1060, which connected with a

24 int main(int argc,char *argv[]){

25 int numberOfGpuThread=0;

26 int deviceCount;

27 int device;

28 cudaGetDeviceCount(&deviceCount);

29 printf("\nThere are %d devices supporting

CUDA\n", deviceCount);

30 for(int i=0;i<argc;i++){

31 if(!strcmp(argv[i],"-openmp")){

32 numberOfGpuThread=atoi(argv[i+1]);

33 }

34 }

35 printf("\nYou select %d

device(s)\n",numberOfGpuThread);

36 #pragma omp parallel for

num_threads(numberOfGpuThread)

37 for(int i=0;i<numberOfGpuThread;i++){

38 int id=omp_get_thread_num();

39 cudaSetDevice(id %

numberOfGpuThread);

40 cudaGetDevice(&device);

41 //printf("From device

%d\n",device);

42 go(device);

43 }

44 }

28

Gigabit Swatch. The S1070 1U server attached to Intel i7 Server is connected with

double PCI express channel for enhancing the internal-communication. We take the

Intel Core i7 which contains four cores as the control group for comparing with the

performance for GPU and CPU. In order to execute MPI and OpenMP application by

CUDA, the simplest way forward for combining MPI and OpenMP upon CUDA GPU

is to use the CUDA compiler-NVCC [44] for everything. The NVCC compiler

wrapper is somewhat more complex than the typical mpicc compiler wrapper, so it’s

easier to translate MPI and OpenMP codes into.cu and compile with NVCC than the

other way around.

Figure 4-11. System model: The hybrid CUDA GPU cluster.

29

Chapter 5

Experimental Results

5.1 Part of Auto-parallelism

First, we focused on the availability of these auto-parallel tools, and checked the

correctness of the execution results. How much effect of the performance we could

get. And try to know that could we get the same effect on embedded system.

Experimental procedure as shown in Figure 5-1, auto-parallel tools could be

separated into two types, one is source-to-binary and the other is source-to-source.

The first one means that the kind of auto-parallel tools generate the executable files

directly form original codes. The next one means that the kind of auto-parallel tools

can get the transformed codes from source codes. If we would have experiment on

embedded system, we needed the kind of source-to-source.

30

Sequential

code

Parallel type

OpenMP/CUDA

code

Optimize?Optimize?

Transformation

type?

CUDA

program

OpenMP

program

optimized

OpenMP

program

OprnMP

program

optimized

OpenMP

program

OprnMP

program

GPU CPU
Embedded

System

general

compiler

cross

compiler

Y Y NN

source

to

source

source

to

binary

NVIDIA

compiler

Figure 5-1. Processing flow

Then, we used these auto-parallel tools to generate the codes and the programs

which will be used in our experiment, and our experiment programs are matrix

multiplication, Nbody, and Jacobi. We exclude any factors which may affect the

performance in our experimental environments. And we executed every program 10

times, and took the average of execution time to compare. We also checked the

answer that is correct or not. We marked the wrong answer to show the situation.

That's all for ensuring the accuracy of the measured data. During the experiment, we

31

used the "time" command to get the execution time of every program. In the

experiment, "sequential" means that the program was non-parallel, and "-O2" mean

that we used the command to optimize. From Figure 5-2 to Figure 5-16, we measure

the execution time to the differences. Table 5-1 shows the classification of

auto-parallel tools.

Table 5-1. The classification of auto-parallel tools

source-to-source source-to-binary

A. ROSE A. Open64

B. Par4All B. Intel

 C. PGI

5.1.1 CPU (OpenMP version)

First, we measure the performance on PC, and the experimental environment as

follow:

 CPU: Genuine Intel(R) CPU U7300 @ 1.30GHz(2 cores)

 RAM:3GB

In this part, the auto-parallel tools of source-to-binary just do optimization on the

sequential code. Figure 5-2 shows that the performance on processing the massively

parallel execution as the application of Matrix Multiplication from matrix size 512 to

2048. All the tools both improve the performance in the matrix multiplication

program, and the tool of Intel has the best performance than others.

32

Figure 5-2. Matrix Multiplication runs on CPU

 Figure 5-3 shows that the performance measurements of n-body. In the

experiment, not any auto-parallel tool could improve the performance form the

sequential code. When we compile the code which is transformed by ROSE, we got

error. Although we could transform successfully by using PAR4ALL, from the

performance result in Figure 5-3, PAR4ALL cannot give us a better performance than

other compilers, even giving us a lower performance than the program with original

code. The Figure 5-4 shows the performance measurements of Jacobi. All the tools

both improve the performance form the sequential code, and the tool of Intel also has

the best performance than others.

0.04

0.2

1

5

25

125

625

512 1024 2048

sequential

ROSE

p4a

sequential -O2

ROSE -O2

p4a -O2

open64

intel

pgi

sec. / matrix size

33

Figure 5-3. Nbody runs on CPU

Figure 5-4. Solve problem by Jacobi method on CPU

And then, also measure the performance on our server with 8 cores. The

0.04

0.2

1

5

25

125

625

500000 5000000 50000000

sequential

open64

intel

pgi

p4a

sequential -O2

p4a -O2

sec/number of loops

0

10

20

30

40

50

60

70

80

90

100

sequential

ROSE

p4a

open64

intel

pgi

sequential -O2

ROSE -O2

p4a -O2

sec. / matrix size 200

34

experimental environment as follow:

 CPU: Intel(R) Xeon(R) CPU E5520 @ 2.27GHz (8 cores) [54]

 RAM: 8GB

In this part of the experiment, we tried to combine the source-to-source compiler and

the source-to-binary compiler. First, generate the OpenMP code through the

source-to-source compiler, and then compile the code by using the source-to-binary

compiler. In the experiment, we recorded the parameters what we used with each kind

of compiler, and also verified that whether the parallelism program execute with

multicore. In Figure 5-5 to Figure 5-9, “-apo” is the parameter of Open64 compiler

which could do auto-parallel to the sequential code. “-mp” is the parameter of Open64

compiler and PGI compiler which could support OpenMP code. “-fast” is the

parameter of PGI compiler which could optimize the sequential code. “-parallel” is

the parameter of Intel compiler which could do auto-parallel to the sequential code.

“-openmp” is the parameter of Intel compiler which could support OpenMP code.

“-Mconcur” is the parameter of PGI compiler which could do auto-parallel to the

sequential code.

35

Figure 5-5. Matrix Multiplication runs on the CPU with 8 cores

In Figure 5-5, Intel compiler gets the best performance on optimized version even

better than some parallel programs. In parallel version, Intel compiler with OpenMP

code of ROSE also gets the best performance.

1

10

100

1000

2048 4096

S
ec

.

2048 4096

sequential 213.143 1991.279

sequential -O2 143.093 1642.686

openCC -O2 143.913 1629.159

pgcc -fast 143.914 1642.224

icpc -O2 9.994 77.178

ROSE -O2 18.094 210.291

p4a -O2 18.246 209.932

opencc -apo -O2 144.044 1632.846

pgcc -Mconcur -fast 143.979 1639.771

icpc -parallel -O2 10.001 83.477

opencc+ROSE -mp -O2 19.24 211.019

opencc+p4a -mp -O2 18.822 206.724

pgcc+ROSE -mp -fast 18.129 208.764

pgcc+p4a -mp -fast 18.113 209.17

icpc+ROSE -openmp -O2 2.026 16.473

icpc+p4a -openmp -O2 2.225 16.471

matrix size

36

Figure 5-6. Matrix Multiplication runs on the CPU with 8 cores

In Figure 5-6 and Figure 5-9, it is clearly to show the difference of performance on

each kind of compiler. In Figure 5-6, the compilers of GNU, PGI, and Open64 have

similar performance, only the compiler of Intel improve the performance obviously

form the same code.

1

10

100

1000

2048 4096

S
ec

.

2048 4096

sequential 213.143 1991.279

sequential -O2 143.093 1642.686

ROSE -O2 18.094 210.291

p4a -O2 18.246 209.932

openCC -O2 143.913 1629.159

opencc -apo -O2 144.044 1632.846

opencc+ROSE -mp -O2 19.24 211.019

opencc+p4a -mp -O2 18.822 206.724

pgcc -fast 143.914 1642.224

pgcc -Mconcur -fast 143.979 1639.771

pgcc+ROSE -mp -fast 18.129 208.764

pgcc+p4a -mp -fast 18.113 209.17

icpc -O2 9.994 77.178

icpc -parallel -O2 10.001 83.477

icpc+ROSE -openmp -O2 2.026 16.473

icpc+p4a -openmp -O2 2.225 16.471

matrix size

37

Figure 5-7. Matrix Multiplication runs with 2cores to 8 cores

 From Figure 5-7, we think that the matrix multiplication program is suited be

compiled by Intel compiler. In the experiment of matrix multiplication, the program

which be compiled by using the Intel compiler, PGI compiler and Open64 compiler

with their auto-parallel parameter both execute with just only one core.

0

100

200

300

400

500

600

700

800

900

2048 4096

ROSE with 2 core

ROSE with 4 core

ROSE with 8 core

p4a with 2 core

p4a with 4 core

p4a with 8 core

opencc+ROSE with 2 core

opencc+ROSE with 4 core

opencc+ROSE with 8 core

opencc+p4a with 2 core

opencc+p4a with 4 core

opencc+p4a with 8 core

pgcc+ROSE with 2 core

pgcc+ROSE with 4 core

pgcc+ROSE with 8 core

pgcc+p4a with 2 core

pgcc+p4a with 4 core

pgcc+p4a with 8 core

icpc+ROSE with 2 core

icpc+ROSE with 4 core

icpc+ROSE with 8 core

icpc+p4awith 2 core

icpc+p4awith 4 core

Sec./size

38

Figure 5-8. Solve problem by Jacobi method on the CPU with 8 cores

In Figure 5-8, PGI compiler gets the best performance on optimized version even

better than some parallel programs. In parallel version, PGI compiler with OpenMP

code of ROSE gets the best performance.

1

10

100

1000

200 400

S
ec

.

200 400

sequential 77.2412 956.465

sequential -O2 29.3658 360.588

openCC -O2 28.7794 358.246

pgcc -fast 10.1406 121.941

icpc -O2 15.349 185.634

ROSE -O2 13.0842 101.296

p4a -O2 29.9184 349.533

opencc -apo -O2 30.1542 357.469

pgcc -Mconcur -fast 6.886 78.849

icpc -parallel -O2 74.663 471.931

opencc+ROSE -mp -O2 4.5398 50.053

opencc+p4a -mp -O2 30.1676 355.4

pgcc+ROSE -mp -fast 4.105 24.74

pgcc+p4a -mp -fast 11.506 128.314

icpc+ROSE -openmp -O2 13.287 70.423

icpc+p4a -openmp -O2 16.8078 190.255

matrix size

39

Figure 5-9. Solve problem by Jacobi method on the CPU with 8 cores

From this experiment, no matter source-to-source compilers or source-to-binary

compilers almost both improve the performance for us, but not every parallel program

all executes with multicore. And the utility rate of CPU would also affect the

performance.

In the experiment of solving problem by Jacobi method, the CPU utility rate of

the OpenMP program which be compiled by general compiler is lower than the

OpenMP program which be compiled by Intel/Open64/PGI compiler. Sometimes, the

1

10

100

1000

200 400

S
ec

.

200 400

sequential 77.2412 956.465

sequential -O2 29.3658 360.588

ROSE -O2 13.0842 101.296

p4a -O2 29.9184 349.533

openCC -O2 28.7794 358.246

opencc -apo -O2 30.1542 357.469

opencc+ROSE -mp -O2 4.5398 50.053

opencc+p4a -mp -O2 30.1676 355.4

pgcc -fast 10.1406 121.941

pgcc -Mconcur -fast 6.886 78.849

pgcc+ROSE -mp -fast 4.105 24.74

pgcc+p4a -mp -fast 11.506 128.314

icpc -O2 15.349 185.634

icpc -parallel -O2 74.663 471.931

icpc+ROSE -openmp -O2 13.287 70.423

icpc+p4a -openmp -O2 16.8078 190.255

matrix size

40

performance of the OpenMP code which be generated by PAR4ALL is lower than

ROSE because of the utility rate of CPU.

Figure 5-10. Jacobi program runs with 2 cores to 8 cores

In Figure 5-10, there are some abnormal performance the OpenMP code of Par4All

and the auto-parllel tool of Intel and Open64.

0

50

100

150

200

250

300

350

400

450

500

400

ROSE with 2 core ROSE with 4 core ROSE with 8 core

p4a with 2 core p4a with 4 core p4a with 8 core

opencc with 2 core opencc with 4 core opencc with 8 core

opencc+ROSE with 2 core opencc+ROSE with 4 core opencc+ROSE with 8 core

opencc+p4a with 2 core opencc+p4a with 4 core opencc+p4a with 8 core

pgcc with 2 core pgcc with 4 core pgcc with 8 core

pgcc+ROSE with 2 core pgcc+ROSE with 4 core pgcc+ROSE with 8 core

pgcc+p4a with 2 core pgcc+p4a with 4 core pgcc+p4a with 8 core

icpc with 2 core icpc with 4 core icpc with 8 core

icpc+ROSE with 2 core icpc+ROSE with 4 core icpc+ROSE with 8 core

icpc+p4a with 2 core icpc+p4a with 4 core icpc+p4a with 8 core

Sec. / matrix size

41

5.1.2 GPU (CUDA version)

Second, we measure the performance on the GPU, and the experimental environment

as follow:

 CPU: Intel(R) Xeon(R) CPU E5410 @ 2.33GHz(8 cores) [45]

 RAM: 4GB

 GPU: Tesla C1060

The compilers mentioned earlier, not everyone is support automatically translate to

CUDA. PAR4ALL and PGI are the tools that we used in the current environment, and

then using these tools to generate CUDA application runs on GPU and comparing

with C application runs on CPU. The benchmarks of this part are the same with the

benchmarks of 5.1.1, but the method of parallelize is different.

Figure 5-11. Matrix Multiplication runs on GPU

Figure 5-11 shows that the performance on processing the massively parallel

execution as the application of Matrix Multiplication from size 512 to 2048.

0.2

1

5

25

125

625

512 1024 2048

sequential

p4a_cuda

pgi_cuda

sec./matrix size

42

Figure 5-12. Nbody runs on GPU

 In Figure 5-12, the performance gap between CPU and GPU is small. The

accelerator (GPU) in this case has only speed up a little. The results of Par4all and

PGI in this example are almost the same.

Figure 5-13. Solve problem by Jacobi method on GPU

 In Figure 5-13, the results of these three applications are obvious. GPU is faster

0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

500000 5000000 50000000 500000000

sequential

p4a_cuda

pgi_cuda

sec/number of loops

0

10

20

30

40

50

60

70

80

90

sequential

p4a_cuda

pgi_cuda

sec. / matrix size 200

43

than CPU in this case, and the effective of PGI is better than PAR4ALL.

5.1.3 Embedded System (OpenMP version)

Finally, we measure the performance on Arm11MP Core, and the experimental

environment as follow:

 CPU: ARMv6-compatible processor rev 0 (v6l)

 bogoMIPS: 83.76, 83.55, 83.35, 83.35

 RAM: 128M

Only ROSE and PAR4ALL are the compilers of source-to-source, so we measured the

performance on the platform of Arm11MP core for these tools. In Figure 5-14 and

Figure 5-15, the performance results are similar as the performance results in 5.1.1.

In Figure 5-16, PAR4ALL didn’t give us a better performance, even worse than

sequential. From all of the experiment in 5.1, we think the tool of PAR4ALL is

unstable because it has more problems than others.

44

Figure 5-14. Matrix Multiplication runs on embedded system

Figure 5-15. Nbody runs on embedded system

0.1

1

10

100

1000

10000

128 256 512 1024

sequential

ROSE

p4a

sequential -O2

ROSE -O2

p4a -O2

sec. / matrix size

1

10

100

1000

10000

50000 500000 5000000

sequential

p4a

sec. / number of loops

45

Figure 5-16. Solve problem by Jacobi method on embedded system

Finally, we compared the performance in the three kinds of environment. From Figure

5-17 and Figure 5-18, the best performance is the OpenMP code of ROSE compiled

by Intel compiler. We think that perhaps automatic parallel technology of CUDA is

not mature, so we get the results. In theory, the performance of CUDA should better

than OpenMP.

0

5000

10000

15000

20000

25000

sequential

ROSE

p4a

sequential
-O2
ROSE -O2

p4a -O2

sec. / matrix size 200

46

Figure 5-17. Matrix Multiplication executes on three kinds of environment

Figure 5-18. Jacobi program executes on three kinds of environment

0.1

1

10

100

1000

1024 2048

Embedded_ROSE_4core

CPU_sequential

GPU_p4a_cuda

GPU_pgi_cuda

CPU_ROSE OpenMP_2core

CPU_icpc+ROSE
OpenMP_2core
CPU_ROSE OpenMP_4core

CPU_icpc+ROSE
OpenMP_4core
CPU_ROSE OpenMP_8core

CPU_icpc+ROSE
OpenMP_8core

Sec./matrix size

1

10

100

1000

10000

200

Embedded_ROSE_4core

CPU_sequential

GPU_p4a_cuda

GPU_pgi_cuda

CPU_ROSE OpenMP_8core

CPU_pgcc+ROSE
OpenMP_8core

Sec./matrix size

47

5.2 Part of Hybrid Parallel Programming

We built a hybrid CUDA GPU cluster consisting of one Tesla C1060 and a Tesla

S1070, each with Gigabit Ethernet NIC interconnected via a D-LINK DGS-3100-24

Gigabit switch. To verify our approach, illustrate our cluster environment, and

describe the terminology for our application, we implemented programs with

MPI/OpenMP for execution on our testbed. We then verify the performance of our

scheme upon the hybrid CUDA GPU cluster to solve problems in Matrix

Multiplication, MD5 and Merge Sorting. From Figure 5-19 to Figure 5-21we take

log of 10 at execution time to emphasize the differences.

48

Figure 5-19. Matrix multiplication with problem sizes from 256 to 2048

Figure 5-19 shows that the performance of GPU on processing the massively

parallel execution as the application of Matrix Multiplication form 256 to 2048. In

this case, the execution results on MPI and OpenMP upon GPU are close. Comparing

to the performance between GPU and CPU with this instance, the performance of

1

10

100

1000

10000

100000

256 512 1024 2048

Matrix Multiplication

MPI-1GPU MPI-2GPU MPI-3GPU
MPI-4GPU MPI-5GPU(Inter hosts) openMP-1GPU
openMP-2GPU openMP-3GPU openMP-4GPU
openMP-1thread openMP-2threads openMP-3threads
openMP-4threads

size

seconds

49

GPU obviously exceeds CPU. With the small problem size such as 256 by 256 Matrix

Multiplication; the speedup of performance is negligible. The degree of speedup

accumulates with the increasing of the problem size.

Figure 5-20. MD5 hashing on 10 to 2,098,651 words

Also, Figure 5-20 reveals that single GPU presents better performance than

single CPU with multiple threads on MD5 hashing computation. Again, the

performance of GPU could not be observed in the small problem size due to the

constraint on the internal overhead of starting execution.

0.01

0.1

1

10

100

1000

10wor
ds

100w
ords

1000
words

1500
words

2000
words

10000
00

words

20986
51wor

ds

GPU 0.0389 0.0394 0.0434 0.0466 0.0541 12.6773 26.4995

openMP-1thread 0.013 0.029 0.183 0.255 0.394 164.385 332.687

openMP-2threads 0.044 0.055 0.141 0.168 0.203 82.135 154.648

openMP-3threads 0.02 0.027 0.078 0.104 0.244 54.916 116.991

openMP-4threads 0.023 0.026 0.062 0.111 0.142 58.953 87.909

micro

seconds

50

Figure 5-21. Sorting numbers 640 times from 65,536 to 524288 floating point

numbers

Finally, Figure 5-21 shows that the comparison of performance on multiple GPU

with MPI and OpenMP. The results of MPI and OpenMP are approximate to each

other.

1

10

100

1000

65536 131072 262144 524288

MPI-1GPU

MPI-2GPU

MPI-3GPU

MPI-4GPU

MPI-5GPU(Inter hosts)

openMP-1GPU

openMP-2GPU

openMP-3GPU

openMP-4GPU

random numbers

S
ec

.

51

Chapter 6

Conclusions and Future Work

6.1 Concluding Remark

In conclusion, we discovered some of the automatic parallel tools which could

translate the sequential codes to the parallel code to reduce our time on rewrite codes

for parallel processing on multicore system. And we verified the available of these

tools, and then we implement an interface for ROSE to simplify the complexity of use.

From our experiment, we know that through these auto-parallel tools almost could

both help us easily transform our non-parallel codes to parallel codes and run on

multicore system. After comparing, we make a table to show what tool is best in each

environment in Table 6-1. The perfect auto-parallelizing compiler is yet to be

produced. However, there are some cases where auto-parallelization is perfectly

suited.

Table 6-1. The best tool in each environment

program

environment
matrix Nbody Jacobi

CPU Intel+ROSE X PGI+ROSE

GPU PGI PGI PGI

embedded system ROSE X ROSE

And we propose a parallel programming approach using hybrid CUDA and MPI

programming, which partition loop iterations according to the number of C1060 GPU

nodes in a GPU cluster which consists of one C1060 and one S1070. During the

52

experiment, loop iterations assigned to one MPI process and processed in parallel by

CUDA run by the processor cores in the same computational node. The experiment

reveals that the hybrid parallel multicore GPU currently processing with OpenMP and

MPI as a powerful approach of composing high performance clusters.

6.2 Future Work

In the future, we may add more experiments especially on GPU and embedded system

in the aspect of automatic parallelism. And we will compare the difference between

parallelism of automatic and manual. In the aspect of hybrid parallel programming,

we think that the algorithm of dispatch task can still be improved. We may accord the

computing power of machine to allocate.

53

Bibliography

[1] C.T. Yang, C.L. Huang and C.F. Lin, “Hybrid CUDA, OpenMP, and MPI Parallel

Programming on Multicore GPU Clusters”, Computer Physics Communications,

Vol. 182, Issue 1, pp. 266-269, June 25, 2010.

[2] C.T. Yang, C.L. Huang, C.F. Lin and T.C. Chang, “Hybrid Parallel Programming

on GPU Clusters”, International Symposium on Parallel and Distributed

Processing with Applications (ISPA) 2010, pp. 142-147, Sept. 2010.

[3] P. Alonso, R. Cortina, F.J. Martinez-Zaldivar and J. Ranilla, “Neville elimination

on multi- and many-core systems: OpenMP, MPI and CUDA”, J.

Supercomputing, in press, doi:10.1007/s11227-009-0360-z, SpringerLink Online

Date: Nov. 18, 2009.

[4] F. Bodin and S. Bihan, “Heterogeneous multicore parallel programming for

graphics processing units”, Scientific Programming, Vol. 17, pp. 325-336, 4 Nov.

2009.

[5] R. Dolbeau, S. Bihan and F. Bodin, “HMPP: A hybrid multicore parallel

programming environment”, The Proceedings of the Workshop on General

Purpose Processing on Graphics Processing Units (GPGPU 2007), Boston,

Massachussets, USA, October 4th, 2007

[6] D. Goddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, S. Buijssen, M.

Grajewski, S. Tureka, “Exploring weak scalability for FEM calculations on a

GPU-enhanced cluster”, Parallel Computing, Vol. 33, Issue 10-11, pp. 685–699,

33 Nov. 2007.

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, K. Skadron, “A

performance study of general-purpose applications on graphics processors using

CUDA”, Journal of Parallel and Distributed Computing, Volume 68, Issue 10,

54

pp. 1370-1380, October 2008

[8] C.H. Liao, D. Quinlan, T. Panas and Bronis de Supinski, “A ROSE-based

OpenMP 3.0 Research Compiler Supporting Multiple Runtime Libraries”,

International Workshop on OpenMP (IWOMP) 2010, pp.15-28, accepted in

March. 2010

[9] C.H. Liao, D. Quinlan, J. Willcock and T. Panas, “Semantic-Aware Automatic

Parallelization of Modern Applications Using High-Level Abstractions”,

International Journal of Parallel Programming, Vol. 38, No. 5-6, pp. 361-378,

Accepted in Jan. 2010

[10] C.H. Liao, D. Quinlan, T. Panas and Bronis de Supinski, “Towards an

Abstraction-Friendly Programming Model for High Productivity and High

Performance Computing”, Los Alamos Computer Science Symposium (LACSS)

2009,

[11] C.H. Liao, D. Quinlan, R. Vuduc and T. Panas, “Effective Source-to-Source

Outlining to Support Whole Program Empirical Optimization”, In Proceedings of

LCPC'2009, pp.308-322, 2009

[12] A. Saebjornsen, J. Willcock, T. Panas, D. Quinlan and Z. Su, “Detecting code

clones in binary executables”, ISSTA '09 Proceedings of the eighteenth

international symposium on Software testing and analysis, pp. 117-127, 2009

[13] T. Panas and D. Quinlan, “Techniques for software quality analysis of binaries:

applied to Windows and Linux”, DEFECTS '09 Proceedings of the 2nd

International Workshop on Defects in Large Software Systems: Held in

conjunction with the ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA 2009), pp.6-10, 2009

[14] C.H. Liao, D. Quinlan, J. Willcock and T. Panas, “Extending Automatic

55

Parallelization to Optimize High-Level Abstractions for Multicore”, IWOMP '09

Proceedings of the 5th International Workshop on OpenMP: Evolving OpenMP

in an Age of Extreme Parallelism, pp.28-41, 2009

[15] P. Carribault, M. P érache and H. Jourdren, “Enabling Low-Overhead Hybrid

MPI/OpenMP Parallelism with MPC”, International Workshop on OpenMP

(IWOMP) 2010, pp.1-14, 2010

[16] M.M. Baskaran, J. Ramanujam and P. Sadayappan, “Automatic C-to-CUDA

Code Generation for Affine Programs”, In Compiler Construction, Vol. 6011, pp.

244-263, 2010

[17] S. Gupta and M.R. Babu, “Generating Performance Analysis of GPU compared

to Singlecore and Multi-core CPU for Natural Language Applications”,

International Journal of Advanced Computer Sciences and Applications, Vol. 2,

Issue 5, pp. 50-53, 2011

[18] S. Rivoire and R. Park, “A breadth-first course in multicore and manycore

programming”, SIGCSE '10 Proceedings of the 41st ACM technical symposium

on Computer science education, pp.214-218, 2010

[19] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk and W.M. W.

Hwu, “Optimization principles and application performance evaluation of a

multithreaded GPU using CUDA”, PPoPP '08 Proceedings of the 13th ACM

SIGPLAN Symposium on Principles and practice of parallel programming, pp.

73-82, 2008

[20] M.M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev

and P. Sadayappan, “A compiler framework for optimization of affine loop nests

for gpgpus”, ICS '08 Proceedings of the 22nd annual international conference on

Supercomputing, pp. 225-234, 2008

56

[21] S. Kamil, C.Y. Chan, L. Oliker, J. Shalf and S. Williams, “An auto-tuning

framework for parallel multicore stencil computations”, Parallel & Distributed

Processing (IPDPS) 2010, pp. 1-12, April 2010

[22] T.P. Chen and Y.K. Chen, “Challenges and opportunities of obtaining

performance from multi-core CPUs and many-core GPUs”, ICASSP '09

Proceedings of the 2009 IEEE International Conference on Acoustics, Speech

and Signal Processing, pp. 613-616, April 2009

[23] Top 500 Sites for November 2010, http://www.top500.org/lists/2010/11

[24] Top 500 Super Computer Sites, What is Gflop/s,

http://www.top500.org/faq/what_gflop_s.

[25] Close To Metal wiki, http://en.wikipedia.org/wiki/Close_to_Metal.

[26] OpenCL, http://www.khronos.org/opencl/.

[27] CUDA, http://en.wikipedia.org/wiki/CUDA.

[28] Download CUDA, http://developer.nvidia.com/cuda-downloads.

[29] MPI, http://www.mcs.anl.gov/research/projects/mpi/.

[30] Intel 64 Tesla Linux Cluster Lincoln webpage,

http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/Intel64TeslaCluster/

[31] MPICH, A Portable Implementation of MPI,

http://www.mcs.anl.gov/research/projects/mpi/mpich1/index.htm.

[32] Open MP Specification, http://openmp.org/wp/about-openmp/.

[33] POSIX Threads Programming, https://computing.llnl.gov/tutorials/pthreads/.

[34] Intel® Threading Building Blocks, http://www.threadingbuildingblocks.org/.

[35] Open64, http://www.open64.net/.

[36] Intel, http://software.intel.com/en-us/articles/intel-parallel-studio-xe/.

[37] The Potland Group, http://www.pgroup.com/index.htm.

57

[38] PAR4ALL, http://www.par4all.org/.

[39] Specification Tesla S1070 GPU Computing System,

http://www.nvidia.com/docs/IO/43395/SP-04154-001_v02.pdf.

[40] The NVIDIA® Tesla™ S1070 Computing System,

http://www.nvidia.com/object/product_tesla_s1070_us.html.

[41] NVIDIA Tesla C1060 Computing Processor,

http://www.nvidia.com/object/product_tesla_c1060_us.html.

[42] NVIDIA CUDA Programming Guide,

http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_

CUDA_Programming_Guide_2.3.pdf.

[43] Arm11MP Core

http://www.arm.com/products/processors/classic/arm11/arm11-mpcore.php.

[44] The CUDA Compiler Driver NVCC,

http://moss.csc.ncsu.edu/~mueller/cluster/nvidia/2.0/nvcc_2.0.pdf.

[45] Intel® Xeon® Processor E5410, http://ark.intel.com/Product.aspx?id=33080

[46] Benchmarcks,

http://shootout.alioth.debian.org/u32q/benchmark.php?test=nbody&lang=gcc.

[47] Cross compiler, http://en.wikipedia.org/wiki/Cross_compiler.

[48] CodeSourcery, http://www.codesourcery.com/.

[49] crosstool-NG,

http://linux.softpedia.com/get/System/Shells/crosstool-NG-28833.shtml.

[50] crosstool-ng WIKI, http://ymorin.is-a-geek.org/dokuwiki/projects/crosstool.

[51] How to build cross toolchains for ARM crosstool-NG,

http://forum.samdroid.net/wiki/showwiki/How+to+build+cross+toolchains+for+

ARM+crosstool-NG.

58

[52] To build crosscompiler by crosstool-ng

http://hi.baidu.com/caicry/blog/item/f306db639c4281680c33fa1b.html.

[53] To build crosscompiler by crosstool-ng,

http://blog.chinaunix.net/u3/95743/showart_2067287.html.

[54] Intel® Xeon® Processor E5520, http://ark.intel.com/Product.aspx?id=40200

59

Appendix

A. Setup of auto-parallel tool

1 ROSE

Environment: Ubuntu 9.10

Before install ROSE, following as command

I. $ sudo aptget install libboost1.4-*

II. $ sudo aptget install sun-jdk-6-sun

The steps of installation as following:

I. Download package from https://outreach.scidac.gov/projects/rose/

II. Untar package

$ tar –zxfv rose-0.9.5a-without-EDG-15163.tar.gz

III. Run the configure script

$./configure –with-java={path of JAVA}

IV. Run make

$ make

V. To install ROSE, type make install

$ make install

VI. Set PATH

2 Par4All

The steps of installation as following:

I. Download package from http://www.par4all.org/download/

II. Untar package

$ tar –zxfv <package>.tar.gz

https://outreach.scidac.gov/projects/rose/
http://www.par4all.org/download/

60

III. It will create a directory named par4all. Move this directory to its final location:

$ sudo mv par4all /usr/local

IV. In any case, you will then need to source one of the following shell scripts which

set up the environment variables for proper Par4All execution:

If you use bash, sh, dash, etc…

$ source /usr/local/par4all/etc/par4all-rc.sh

If you use csh, tcsh, etc…

$ source /usr/local/par4all/etc/par4all-rc.csh

3 Intel® Composer XE 2011 for Linux

The steps of installation as following:

I. Download package from

http://software.intel.com/en-us/articles/intel-software-evaluation-center/

II. Untar package

$ tar –zxfv <package>.tgz

III. Run the install script

$ sh install.sh

IV. Set PATH

4 PGI Accelerator C/C++ Workstation 10.9

The steps of installation as following:

I. Download package from http://www.pgroup.com/support/downloads.php

II. Untar package

$ tar –zxfv <package>.tar.gz

III. Run the install script

$ sh install.sh

IV. Set PATH

http://software.intel.com/en-us/articles/intel-software-evaluation-center/
http://www.pgroup.com/support/downloads.php

61

5 Open64 compiler 4.2.3

The steps of installation as following:

I. Download package from

http://www.open64.net/download/open64-4x-releases.html

II. Untar package

$ tar jxfv <package>.tar.bz2

III. Set PATH

B. Interface

1 VMC-PPO

I. Get the package of VMC_PPO_GUI.zip

II. Unzip the package

$ unzip VMC_PPO_GUI.zip

III. Execute the program

$./VMC_PPO_GUI.sln

2 Plug-in of Eclipse

I. Get the package of vmcppo.zip

II. Copy the package to the directory of Eclipse

$ cd /usr/lib/eclipse

III. Unzip the package and restart Eclipse

$ unzip VMC_PPO_GUI.zip

http://www.open64.net/download/open64-4x-releases.html

