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Abstract

Nowadays, the multicore processor has occupied more and more market shares, and
the programming personnel also must face the collision brought by the revolution of
multicore processor. Because of the semiconductor operating temperature and power
consumption limits performance growth for single-core microprocessors. This reason
leads many microprocessor vendors to turn to multicore chip organizations. Not only
CPU goes along the trend of multicore processors, but also GPU. At the same time,
parallel processing is not only the opportunity but also a challenge. The programmer
or compiler explicitly parallelize the software is the key for enhance the performance
on multicore chip. In this thesis, we introduce some of the automatic parallel tools
based OpenMP, which could to reduce our time on rewrite codes for parallel
processing on multicore system. Then we focus on ROSE to explore in depth. And
we implement an interface to simplify the complexity of use. And some of these tools
can automatic parallelization for CUDA. In other hand, we propose a parallel
programming approach using hybrid CUDA OpenMP, and MPI programming, which
partition loop iterations according to the number of C1060 GPU nodes in a GPU
cluster which consists of one C1060 and one S1070. Loop iterations assigned to MPI
process and processed in parallel by. CUDA run by the processor cores in the same
computational node. Finally, there are two parts in our experiment in this thesis. First,
we verified the available and correctness of the auto-parallel tools, and discussed the
performance on CPU, GPU, and embedded system. And in the other part of

experiment, we also verify that the hybrid programming could improve performance.
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Chapter 1

Introduction

1.1 Motivations

Today multicore has become the trend of enhance the processor’s performance, and
most industries have considered multicore is the future of development. Not only PC's
CPU and GPU have been grown to multicore, but also embedded system. We all think
that multicore can give us higher performance than only one core, but it should be in
the situation of parallel processing. If a task can be parallel processing by each core,
then the efficiency should proportional with number of core. So in this condition,
more and more cores must be better. In fact, even the trivial in our life or complex as
science computing, parallel processing not only gives us more efficiency on
computing but also changes the way we live.

Parallel processing has become more popular. Briefly speaking, parallel
processing is the simultaneous use of multiple processor core or CPU to execute a
program or more computing threads. Ideally, parallel processing lets the application
run faster, because the application runs by more engines such as CPU or core.

GPUs are really “manycore” processors, with hundreds of processing elements.
A graphics processing unit (GPU) is a specialized microprocessor that offloads and
accelerates graphics rendering from the central (micro-) processor. Modern GPUs are
very efficient at manipulating computer graphics, and their highly parallel structure
makes them more effective than general-purpose CPUs for a range of complex

algorithms. We know that a CPU has only 8 cores at single chip currently, but a GPU



has grown to 448 cores. From the number of cores, we know that GPU is
appropriately to compute the programs which are suited massive parallel processing.
Although the frequency of the core on the GPU is lower than CPU’s, we believe that
massively parallel can conquer the problem of lower frequency. By the way, GPU has
been used on supercomputers. In top 500 sites for November 2010 [23], there are

three supercomputers of the first 5 are built with NVIDIA GPU.

1.2 The Goal and Contributions

In this thesis, we introduce some of the automatic parallel tools for parallel processing
on multicore system. These tools can automatically transform sequential C/C++ codes
to parallel C/C++ codes or to generate parallel programs by using OpenMP directives
or CUDA. Then we focus on ROSE to explore in depth. And we implement an
interface to simplify the complexity of use. And we must to have an experiment on
these tools, to let us know the available of these tools. And when we use them to
enhance the performance, how much benefit we can get actually. Then, we used these
tools to do parallel programming on some benchmarks, and compared the
performance.

And we propose a solution to not only simplify the use of hardware acceleration
in conventional general purpose applications, but also to keep the application code
portable. We propose a parallel programming approach using hybrid CUDA, OpenMP
and MPI [1] [2] [3] programming, which partition loop iterations according to the
performance weighting of multicore [4] nodes in a cluster. Because iterations assigned
to one MPI process are processed in parallel by OpenMP threads run by the processor

cores in the same computational node, the number of loop iterations allocated to one
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computational node at each scheduling step depends on the number of processor cores

in that node.

1.3 Thesis Organization

The rest parts of this work are organized as follows. Chapter 2 describes a background
review of parallel programming and auto-parallel tools. Chapter 3 introduces the
hardware system used in this work. Chapter 4 ‘depicts the algorithm of automatic
parallelization and hybrid the parallel programming of OpenMP, MPI, and CUDA.
Chapter 5 presents experimental results of auto-parallel tools and show that the
proposed approach improved —performance over all previous schemes in
heterogeneous and homogeneous clusters environments. Finally, conclusions are

discussed in Chapter 6.



Chapter 2

Background Review

2.1 Parallel Programming

Nowadays, we can see that the maximum of CPU’s core is only eight cores, but the
GPU has grown to 448 cores. Form the number. of cores, we know that GPU is
appropriately to compute the program which is suited for massive parallel processing,
despite his relatively: low frequency of core, but massively parallel can conquer the
problem. Now we know that GPU is suitable for parallel computing, how we can use
GPU to help us to compute. There are several well-known methods, like CTM,
OpenCL, and CUDA.

And in the aspect of CPU, there are several well-known APIls/technologies that
can help us to parallel our code like MPI, OpenMP, TBB, Pthread, and OpenCL etc.

We will introduce them one by one.

211 CTM

ATI1 (now AMD) developed a low-level programming interface called CTM [25], and
its goal is enabling GPGPU computing. Developers can access to the native
instruction set and memory of the parallel computational units which are in modern
AMD video cards by using CTM programming. But CTM is just the name of a beta
version, and the first production version of AMD's GPGPU technology is now called

Stream SDK.



2.1.2 OpenCL

OpenCL [26] is a framework of programming on heterogeneous platforms which may
consist of CPUs, GPUs, and other processors. OpenCL is developed by Apple Inc. and
Khronos Group. OpenCL is consisting of a language and APIs. The language based on
C99 is used to write kernels; and the APIs are used to define and control the platforms.
OpenCL uses task-based and data-based parallelism to parallel computing. AMD/ATI

and Nvidia have adopted OpenCL into graphics card drivers.

2.1.3 CUDA

CUDA (Compute Unified Device Architecture) [27][28] is architecture of parallel
computing developed by NVIDIA. The architecture is consisting of three parts, library,
runtime, and CUDA driver. Developers can access the virtual instruction set and
memory of the parallel computational units which are in CUDA GPUs by using
CUDA programming. Through the technology of CUDA, users can calculate by using
the GPUs from the GeForce 8 series onwards, including Quadro and the Tesla. CUDA
architecture is compatible with-OpenCL. Neither in CUDA C-language or in OpenCL,
the instructions will be transform into the codes of PTX by the driver, and then
calculate by the graphics core. CUDA’s parallel programming model maintains a low
learning curve for programmers familiar with standard programming languages such
as C. And current release is CUDA Toolkit 4.0 that supports various operating systems,
including Microsoft Windows, Linux, and Mac OS X.

CUDA processing flow is described as Figure 2-1[27]. The first step: to copy the

data which are on the main memory of CPU to the memory of GPU, second: to



instruct the process to GPU by CPU, third: to parallel execute in each core on GPU,

finally: to copy the result from the memory of GPU to the main memory of CPU.
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Figure 2-1. Processing flow on CUDA from Wiki



2.1.4 MPI

Message Passing Interface (MPI) [29] is a specification for message passing
operations. It defines each worker as a process. MPI is currently the de-facto standard
for developing HPC applications on distributed memory architecture. It provides
language bindings for C, C++, and FORTRAN. The cluster computations exploit
message-passing, because computers in cluster have distributed memory. When one
process needs data from another one then you should manage data passing over the
network. It is time-consuming operation. The MPI library is often used for parallel
programming [5] in cluster systems because it is a message-passing programming
language. MPICH is Free Software and is available for most flavors of UNIX
(including Linux and Mac OS X) [30] and Microsoft Windows. Moreover, MPICH
[31] is a developed program library.

2.1.5 OpenMP

Open Multi-Processing (OpenMP) [32] is an application programming interface (API),
a kind of shared memory architecture APl which provides a multithreaded capacity.
OpenMP supports multi-platform shared memory multiprocessing programming in C,
C++ and FORTRAN on much architecture which including UNIX and Microsoft
Windows platforms. It consists of a set of compiler directives, library routines, and
environment variables that influence run-time behavior. We can parallel a loop easily
by invoking subroutine calls from OpenMP thread libraries and inserting the OpenMP
compiler directives. In this way, the threads can obtain new tasks, the un-processed
loop iterations, directly from local shared memory.

OpenMP is an open specification for shared memory parallelism. The basic idea
behind OpenMP is data-shared parallel execution. OpenMP is portable across the
shared memory architecture. Thread means that the unit of workers in OpenMP. Every

thread can access a variable in shared cache or RAM. It works well, when accessing
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shared data costs you nothing. But OpenMP is not suitable for the needs of complex
inter-thread synchronization and mutual exclusion. And OpenMP cannot be used on
the non-shared memory systems (such as computer clusters). In such systems, MPI

use more.

2.1.6 Pthread

POSIX Threads [33] is the POSIX standard of threads, and it defines an API for
creating and controlling threads and defines a set of C programming language types,
functions and constants in the implementation with a pthread.h header and a thread
library. The implementation of POSIX Threads library is usually called Pthreads, and
it usually used on Unix-like POSIX systems (FreeBSD, NetBSD, GNU/Linux, Mac
OS X and Solaris), but also on Microsoft Windows (the pthreads-w32 is used on

supporting a subset of the Pthread API for the Windows 32-bit platform).

2.1.7 TBB

Intel TBB (Intel Threading Building Blocks) [34] is a library developed by Intel
Corporation, and it provides a rich and complete approach to represent parallelism in
a C++ program. While writing software programs, it helps us take the advantage of
multicore processor performance. But Intel TBB is not just a threads-replacement
library. It represents a higher-level, task-based parallelism that abstracts platform
details and threading mechanisms for scalability and performance. And current release
is Intel TBB 3.0, it supports various operating systems such as Microsoft Windows,

Mac OS X (version 10.4.4 or higher) and Linux.
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2.2 Auto-Parallel Tools

About the issue of auto-parallel, there are some tools which could accord to our

source code to generate the binary file or parallel code automatically.

2.2.1 ROSE

ROSE is a source-to-source compiler infrastructure of open source which builds
source-to-source program- transformation and. analysis tools for large-scale
FORTRAN, C/C++, and OpenMP. applications. There are many functions in ROSE
such as static analysis, program optimization, arbitrary program transformation,
domain-specific optimizations, complex loop optimizations, performance analysis,

and cyber-security.

2.2.2 Open64 Compiler

The Open64 [35] compiler is a complier of open source and derived from SGI
Pro64(TM) compiler which was released under the GNU GPL in 2000. It supports
C/C++, FORTRAN, and OpenMP, and generate code for various architectures (CISC,

RISC, VLIW, GPU), including MIPS, 1A-32, IA-64, CUDA, and others.

2.2.3 Intel® Composer XE 2011

Intel® Composer XE 2011 [36] is a compiler which combined with high performance

libraries for C/C++ and FORTRAN on the operating system of Window or Linux. It



can improve the performance with Intel TBB and OpenMP programming on multicore

operating systems.

2.2.4 The Portland Group

PGI Workstation™ [37] has many kind of compilers and tools product. PGI
Workstation supports C/C++, FORTRAN, OpenMP, and CUDA. It can improve the
performance with CUDA and OpenMP programming on multicore operating systems.
PGI products run under the operating systems, including various Linux, Mac OS X,

and most versions of Microsoft Windows.

2.2.5 PAR4ALL

PAR4ALL [38] is an open-source compiler which could to do source-to-source
transformations on C and FORTRAN programs. It can generate OpenMP code from C
code and CUDA code from C/FORTRAN code by using the script pd4a. And

PAR4ALL runs under Linux of operating systems.
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Chapter 3

System Hardware

3.1 Tesla C1060 GPU computing processor

The NVIDIAR Tesla™ C1060 [41] transforms a workstation into a high-performance
computer that outperforms a small cluster. This gives technical professionals a
dedicated computing resource at their desk-side that is much faster and more
energy-efficient than a shared cluster in the data center. The NVIDIAR Tesla™ C1060
computing processor board which consists of 240 cores is a PCl Express 2.0 form
factor computing add-in card based on the NVIDIA Tesla T10 graphics processing
unit (GPU). This board is targeted as high-performance computing (HPC) solution for
PCI Express systems. The Tesla C1060 is capable of 933 GFLOPs/s [24] of
processing performance and comes standard with 4 GB of GDDR3 memory at 102
GB/s bandwidth.

A computer system with an available PCI Express x16 slot is required for the
Tesla C1060. For the best system bandwidth between the host processor and the Tesla
C1060, it is recommended (but not required) that the Tesla C1060 be installed in a
PCI Express x16 Gen2 slot. The Tesla C1060 is based on the massively parallel,
many-core Tesla processor, which is coupled with the standard CUDA C

programming [42] environment to simplify many-core programming.
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3.2 Tesla S1070 GPU computing system

The NVIDIAR Tesla™ S1070 [40] computing system speeds the transition to
energy-efficient parallel computing [6]. With 960 processor cores and a standard C
compiler that simplifies application development, Tesla S1070 scales to solve the
world’s most important computing challenges — more quickly and accurately. The
NVIDIAR Tesla™ S1070 Computing System is a 1U rack-mount system with four
Tesla T10 computing processors. This system connects to one or two host systems via
one or two PCI Express cables. A Host Interface Card (HIC) [39] is used to connect
each PCI Express cable to a host. The host interface cards are compatible with both
PCI Express 1x and PCI Express 2x systems.

The Tesla S1070 GPU computing system is based on the T10 GPU from NVIDIA.
It can be connected to a single host system via two PCIl Express connections to that
host, or connected to two separate host systems via one PCI Express connection to
each host. Each NVIDIA switch and corresponding PCIl Express cable connects to
two of the four GPUs in the Tesla S1070. If only one PCI Express cable is connected
to the Tesla S1070, only two of the GPUs will be used. To connect all four GPUs in a
Tesla S1070 to a single host system, the host must have two available PCI Express

slots and be configured with two cables.

3.3 ARM11 MPCore Processor

The ARMI11™ MPCore™ [43] multicore processor implements the ARM11
microarchitecture and brings multicore scalability with 1 to 4 cores from a single RTL

base, enabling simple system design with a single macro to integrate with up to 4x the
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performance of a single core. The ARM11 MPCore processor brings efficient
coherency using built-in SCU, and is supported by a wide range of OS with ARM
SMP capability. The processor extends the ARMv6 architecture with PIPT caches,
supporting 16KB-64KB L1 caches efficiently.

The ARM11 MPCore processor provides enhanced memory throughput of
1.3Gbytes/sec from a single CPU, and a solution that delivers greater performance at
lower frequencies than comparable single processor designs, offering significant cost
savings to system designers, while maintaining full compatibility with existing EDA
tools and flows. The ARM11 MPCore processor also simplifies otherwise complex
multiprocessor design, reducing time-to-market and total design cost. Also, the
ARM11 MPCore processor supports a fully coherent data cache, providing the
designer with a unique level of flexibility across various symmetric multiprocessing
(SMP) and asymmetric multiprocessing (AMP), or any combination of either style of

multiprocessor design.
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Chapter 4

System Design and Implementation

4.1 Automatic Parallelization

The implementation of automatic parallelization based on OpemMP is support both C
and C++ code. The auto-parallel- program will -insert OpenMP pragmas into the
sequential C/C++ source code automatically, if possible. The system architecture of

the auto-parallel tool shows as Figure 4-1.

Loop-Parallelizer
Loop Normalizer

Variable Classifiaction
Code Generation
Analyzer 1
: Insert Header
Eliminate Irrelevant _

_ . Dependence Relations
Liveness analysis

l l Generate OpenMP

code

Dependence analysis Attach OpenMP Pragma

Figure 4-1. System Architecture
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4.1.1 Algorithm

Automatic parallelization tool is designed to handle the conventional loops. The loops
may include variables of primitive data types or STL container types. To search parts
of dependence in a target and eliminate them later on as much as possible based on

various rules is the critical idea of the algorithm. If there are no other dependencies,

parallelization is safe. The algorithm of the auto-parallel tool shows as Figure 4-2.

Input source code

Search loops with
canonical

Loop exist?

Conduct loop
Normalization

Calling liveness

Output code

analysis

Unparallelizable Loop

Judge the loop
or parallelizable

Insert OpenMP

pragma

Figure 4-2. Algorithm of auto-parallel
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A. To search the loops in source code and normalize the loops.

B. Liveness analysis

C. Dependence analysis

D. To classify variables of OpenMP, and identifying references to the current
element, and search order-independent write accesses.

E. To eliminate dependencies associated with variables. Transform the
dependent variables to the independent variables, if possible.

F. To insert the corresponding OpenMP directives.

4.1.2 Liveness Analysis

Liveness analysis is a typical data flow analysis, which to calculate the variables for
each program point by the compiler. The variables may be potential to read before
they write next one. If the variable holds a value which may be needed in the future, it
is live at a point in a program's execution path.

And we can access live-in and live-out variables from a translator based on the
virtual control flow graph node after calling liveness analysis. The code accesses the
control flow graph node of the for statement and retrieve live-in variables of the true
edge's target node as the live-in variables of the loop body. Similarly, when getting the
live-in variables of the node after the loop, the live-out variables of the loop are
obtained (target node of the false edge). Simply, live-in is the set of variables that are
live at the entry point of a loop and live-out is the set of variables that are live at the

exit point of a loop.
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4.1.3 Dependence Analysis

Dependence analysis is used to find the constraints of execution-order between
statements/instructions. Broadly speaking, a statement P1 must be executed before a
statement P2 if P2 depends on P1. Two statements which access or modify the same
resource may incur data dependence. The types of the data dependence included flow
dependence (RAW), anti-dependence (WAR), output dependence (WAW), and input
dependence (RAR). Most of the data dependence could not be parallel.

Dependence analysis is the basis for the auto-parallel tool, and the analysis is
used to judge whether the statements of the loop could be executed independently.
Figure 4-3 shows an example for an input code, in which a statement is surrounded
by two loops. It is clear that the example code in Figure 4-3 cannot be parallelized

because of loop-carried dependences in the loop levels.

1 for(i=0;i<m;i++){

2 for(j=0;j<n;j++){

3 s[illil=s[ilLi-11 * s[i-11(l;
4 }

5}

Figure 4-3. An example of dependence

4.1.4 Variable Classification

A private variable of a loop is neither live-in nor live-out of the loop. It means the
variable is immediately redefined inside the loop and then used inside the loop, but is
never used anywhere after the loop. To avoid possible race condition, so all loop

index variables are classified as OpenMP private variables. On the other hand, the
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variables of firstprivate and lastprivate are live respectively at either only the
beginning or only the end of the loop. The shared variables are live at both the
beginning and the end of the loop.

Reduction variables are used to increase the opportunities for parallelization. For
example, the statement of z=z+a[i] in a loop is a typical operation of reduction
variables. It would cause loop-carried anti-dependence and loop-carried output
dependence. We use an analysis to search such typical operations, and when deciding

if a loop is parallelizable, exclude the associated loop-carried dependences.

4.1.5 Interface

In order to simplify the use of ROSE for user, we integrated ROSE into Eclipse.

When we want to parallelize the source code, just only need to click a button.

File Edit Source Refactor Navigate Search Run Project Parallelization Window Help

riv @ & B @ @D 0 a- o »- Eo
[t Project Explorer 3 = <;==5 Auto Parallelization (Ctrl+86) |

= test int ir[ J:][ |

int a[10e8][1088];

v B lest2 void foo()

Vv (= 5rC i

[2 test2.cpp for (1=8;1<180;1++)

{
for (j=0; j<l00; j++)
b 1=lvmc_ppo {

b 1= vmc_ppo2 a[i][jl=alil[j]+1;
b e vmc_ppo3 ) )
H

P =test3

[ Problems 2 ¥ Tasks | Bl Console = Properties
0 errors, 14 warnings, 0 others

Description Resource Path
b & Warnings (14 items) i

o* 0 items selected

[hpc] hpc@localh-- || E3 workspace £3 vmc_ppo3 £9 runtime-Ecl-- || @ c/c++-te-- | [

Figure 4-4. The button of automatic parallelization in Eclipse
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CicLL -tactdicreitest2.cpp - Eclipse Platform

File Edit Source Refactor Mavigate Search Run .g@ el = e | Window  Help

J Fiv J g & v @ J

1 Project Explorer &

= test
v =test2

v [ZslC

[¢) test2.cpp

b =test3
P =vme_ppo
b 1 vme_ppo2
P vme_ppo3

&% emwe = | o
& T =0 [test2.cpp 1
int i, j;
int a[100][100];

for (i=0;i<100;i++)

{
for (j=0; j<100; j++)
|

alil[j1=ali] [j]+1;

£ Problems 2 . ¥ Tasks} =] COnsolew =] Propertiesw
0 errors, 14 warnings, 0 others

Description Resource Path Locatiol
b & Warnings (14 items) : :
J g 0 items selected
[ [hpc] “ hpc@localh-- " workspace H vmc_ppo3 H runtime-Ecl-- I[E CJC++ - te-- ] [
Figure 4-5. Example for auto-parallel
[ ] L/L++ = [B5LZ/S5TC/IESLL.CPP = ECIIPSE Flarorm
ile Edit Source Refactor Navigate Search Run Project Parallelization Window Help
B J@vﬁv@v@vj-._a .JﬁjﬁvovqivJa,pvJ g J . Ev 45 &y
{5 Project Explorer 3 G ¥ =0 [4test2.cpp %
Stest int ii j:][ |
int a[lee][1ee];
7 test2 oid foo()
7 [=SIC _
[ rose_test2.cpp Vmcippos =
i test2.cop ically parallelized a | l
B test2.o Automatically parallelized a loop at line:5
b =test3 Automatically parallelized a loop at line: 7
b 2vme_ppo
b 5dvme_ppo2
b i4vmc_ppo3
[l Problems 52 . ¥ Tasks} =] Console} B Properties}
0 errors, 14 warnings, 0 others
Description Resource Path Location | T
P& Warnings (14 items)
22\

Figure 4-6. Show the lines where be inserted OpenMP pragma
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ile Edit Source Refactor Mavigate Search Run Project Parallelization Window Help

iy L & | @ &8 - @ (| B | B [ 0v Qv | ® & || 4B @ | & &y o oo

3 Project Explorer 2 = & ¥ = 0| [E test2.cpp [€] rose_test2.cpp 2
= test 2 #include "omp.h"
int i;
=test2 int jil
¥ (=5 int a[1060UL][106UL];
[ rose_test2.cpp
= id f
B test2.cpp ‘{"’1 oo()
o test2.0
' = test3 #pragma omp parallel for private (i,j)
J for (i=0; 1 <=100 - 1; i += 1) {
» ivme_ppo

i vme_ppo2 #pragma omp parallel for private (j
» 1 vmc_ppo3 for ;j =8; j =180 - 1; ] +=

alilljl = (alil[j]l + 1);

firstprivate (i)

)
A

1
1

(<] T
[Z Problems 2 . ¥ Tasks| El Conscle | = Properties

0 errors, 14 warnings, 0 others
Description Resource Path
b & Warnings (14 items)

0 runtime-EclipseApplication Writable Smart Inse

=] [hpc] |[@ hpc@localh-- |(£3 workspace |3 vmc_ppo3 | £3 runtime-Ecl- | @ C/C++-te- | @

Figure 4-7. Output codes for auto-parallel
And we also implement an interface which shows in Figure 4-8. Figure 4-9 shows
that optimization of loop. First, open the file which will be optimized. Second, choose
the parameter of optimization. Finally, click the “Optimize” button. Figure 4-10
shows that auto-parallelization of loop. First, open the file which will be parallelized.

And then click the “AutoParallel” button.
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Opticns
VMC-PPO R o
Optimize [T Fuson T spitting AutoParallel
Open Savet [ Fisson [ Unrol
B EeiTHh CER
B ViR
¥ % F 4k A
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Figure 4-8. Interface of auto-parallel tool
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Options

258 Rk F
Optiglize T~ spitting A -
Open Save+ \ ™ Fission ¥ Unrol

Save

™ Fusion

/ 0se-0.9.5a-101 j i jonCall.c  /he /D 0.9.5a-101 ; ode_Loopo, | ¥

mMIJL N ) After E|
e

L“a-y S — 2z 7
3?{‘ 7 Eix it - =]
m{double *adouble *bdouble *c,int n);
1. E”‘g }ét*%; % a, double *b, double “c, int n); 7 FUNCTIoN

wvoid dgemm(double *a,double *b,double "c.int n)

void dgemmidouble *a, double *b, double *c, int n) {
{ int i
int i, j, k; int j;
int k;
& int n; & int n; —
for (k =0, k <= n - 1; k += 1) {
for(k=0;k<n;k+=1){ for =0, J<=n-1j+= 1) {
for{=0en;i+=1){ for (I = 0; 1 <= n + -16; 1 += 16) {
for(i=0;i<n;i+=1){ int _war_0 =i
el nHl=ci n+l+alk n+]" b n+k]; cli *m) + 1 = ((cli*n) + 10+ ({allk * n) + 1) * (&[] * n)
} KNy
} _var_0 = 1 + _var_0;
¥ clli * n) + _var_0] = ((clii * n) + _wvar_0]) + ({al(k * n) +
} _wvar_0]} * (bl{j * n} + k]}})k
_var 0 =1 + _var 0;
clfj * n) + _var 0] = {(c[(j * n) + _var_0]) + ((allk * n) +
_war_0]) * (bl * n) + KK
_var_0 = 1 + _var_0;
clli * n) + _var_0] = {(c[(ji * n) + _var_0]) + ((al(k * n} +
_wvar_07) * (bl * n) + kD))
wvar 0 = 1 + wvar O; LI

Figure 4-9. Optimization of Loop

Options
VMC-PPO ST
Optimize |T Fusin I spitting AutoParallel
Open Save+ ™ Fission ™ unrel
ktop/rose-0.9.5a-101 e 0 functi sall.c I
Crigi
= , =
1R gkl % J
LR R
Keasler N Contributed by Jeff
#include “omp.h™
typedef double reald; typedef double real;
extern extern void OtherFunc(int k,real® *lreal®@ "m,reald *nreal@ *oreald
woid OtherFunciint k, reald *I, reald *m, *preald qreald rreald s[3UL]);
real@ *n, real@ ‘o, realg *p,
reald g, real8 r, reald s[3]) ; void foo(int istartint iend,real8 “areal@ “b,reald “c.int k,reald *l,reald
“myreal@ *nreald “oreald “p)
{
woid foo(int istart, int iend, reald *a, reald *b, realf *c, int k_nom_32;
int k, real® *, real@ *m, real®@ *n, real® ‘o, int i_nom_1;
reald “p) for (i_mom_1 = istart; i_nom_1 <= iend - 1, i_nom_1 += 1) {
{ real8 s[3UL];
for (int i = istart ; i < iend ; i++) { real@ afi = (ali_nom_1]);
reald s[3] ; reald bfi = (bli_nom_1]);
realg afi = ali] ; OtherFunc(k,|,m,n,o,p,afibfis);
reald bfi = bl ;
OtherFunc(k, |, m, n, o, p, afi, bfi, 5) ; #pragma omp parallel for private (k_nom_2) firstprivate (iendi_nom_1)
for (int k =0 ; k < 3 ; k++) { for (k_nom 2 = 0; k_nom_2 <= 3 - 1; k_nom_2 += 1} {
c[3i+k] = s[k] ; cli3 * i_nom_1) + k_nom_2] = (s[k_nom_2]);
} H
H 3
} }

Figure 4-10. Auto-Parallelization of Loop
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4.2 Hybrid Parallel Programming

4.2.1 Combining MPI and CUDA

We could use the GPUs which are in different severs by MPI to help us doing parallel

computing. A sample source code files as follow:

1 #include "mpi.h"

2 #include <stdio.h>

3 #include "kernel.h"

4 int main(int argc,char **argv)

5 A

6 int myid, numprocs;

7 int namelen;

8 char processor name[MPI MAX PROCESSOR NAME] ;
9 MPI Init(&argc, &argv);

10 MPI Comm rank (MPI COMM WORLD, &myid) ;

11 MPI Comm size (MPI COMM WORLD, &numprocs) ;

12 MPI Get processor name (processor name, &namelen);
13 go(myid,processor name) ;

14 MPI Finalize();

15}
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1 #include <string.h>

2 #include <stdio.h>

3 #include <math.h>

4 #include <ctime>

5 #include <iostream>

6 using namespace std;

7 #define BLOCK 16

8 global  wvoid hello(char* s) {

9 char w[50]="hello CUDA";

10 int k;

11 for (k=0; wlk]!=0; k++) slk]l=wlk];

12 s[k]=0;

13 }

14 int go(int cpu id, char* name) {

15 char* d;

1o char h[1007];

17 int gpu id = -1;

18 if (cpu 1d>=3) {

19 cudaSetDevice (cpu id $ 4);
20 }

21 else

22 cudaSetDevice (cpu id);
23 cudaGetDevice (&gpu_1id) ;

24 cudaMalloc ((void**) &d, 100);

25 hello<<<1l,1>>>(d);

26 cudaMemcpy (h, d, 100,

cudaMemcpyDeviceToHost) ;
27 printf ("\n%s from Device %d on %s\n",

h,gpu id, name) ;

28 cudaFree (d) ;
29 return 0;
30 }
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4.2.2 Combining OpenMP and CUDA

When there are two or more devices of GPU in a server, we can get more processes

through OpenMP to control the devices. A sample source code files as follow:

#include <string.h>
#include <math.h>
#include <ctime>

#include <iostream>

using namespace std;
#define BLOCK 16

1
2
3
4
5 #include <omp.h>
6
7
8  global  wvoid hello(char* s) {

9 char w[50]="hello CUDA";

10 int k;

11 for (k=0; wl[k]!=0; k++) s[kl=w[k];
12 s[k]=0;

13 1}

14 int go(int dn) {

15 char* d;

16 char h[100];

17 cudaMalloc ((void**) &d, 100);

18 hello<<<l,1>>>(d);

19 cudaMemcpy (h, d, 100, cudaMemcpyDeviceToHost) ;
20 printf ("\n%s from Device %d\n", h,dn);

21 cudaFree (d) ;

22 return 0;

23 }
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24 int main (int argc,char *argv[]) {

25 int numberOfGpuThread=0;

26 int deviceCount;

27 int device;

28 cudaGetDeviceCount (&deviceCount) ;

29 printf ("\nThere are %d devices supporting

CUDA\n", deviceCount) ;

30 for (int i=0;i<argc;i++) {

31 if(!strcmp (argv([i], "-openmp")) {

32 numberOfGpuThread=atoi (argv[i+1]) ;
33 }

34 }

35 printf ("\nYou select %d

device (s)\n", numberOfGpuThread) ;

36 #fpragma omp parallel for

num_ threads (numberOfGpuThread)

37 for (int 1=0; i<numberOfGpuThread; i++) {
38 int id=omp get thread num();
39 cudaSetDevice (id %

numberOfGpuThread) ;

40 cudaGetDevice (&device) ;

41 //printf ("From device
d\n",device) ;

42 go (device) ;

43 }

44 3

So maybe we could translate sequential codes into OpenMP codes by our

auto-parallel tool, and then manually converted to CUDA code.

4.2.3 System model and approach

The system model is presented in Figure 4-11, a hybrid CUDA GPU cluster is built

with two GPU Servers as shown as S1070 and C1060, which connected with a
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Gigabit Swatch. The S1070 1U server attached to Intel i7 Server is connected with
double PCI express channel for enhancing the internal-communication. We take the
Intel Core i7 which contains four cores as the control group for comparing with the
performance for GPU and CPU. In order to execute MPI and OpenMP application by
CUDA, the simplest way forward for combining MPI and OpenMP upon CUDA GPU
is to use the CUDA compiler-NVCC [44] for everything. The NVCC compiler
wrapper is somewhat more complex than the typical mpicc compiler wrapper, so it’s
easier to translate MPI and OpenMP codes-into.cu and compile with NVCC than the

other way around.

1G bps swatch

PCI Express
Channel

——

Intel i7 server Media Server with
$1070 1U Server S1060 (240 GPU Cores)
(960 GPU Cores)

Figure 4-11. System model: The hybrid CUDA GPU cluster.
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Chapter 5

Experimental Results

5.1 Part of Auto-parallelism

First, we focused on the availability of these auto-parallel tools, and checked the
correctness of the execution results.-"How much effect of the performance we could
get. And try to know that could we get the same effect on embedded system.
Experimental procedure asshown in Figure 5-1, auto-parallel tools could be
separated into two types, one is source-to-binary and the other is source-to-source.
The first one means that the kind of auto-parallel tools generate the executable files
directly form original codes. The next one means that the kind of auto-parallel tools
can get the transformed codes from source codes. If we would have experiment on

embedded system, we needed the kind of source-to-source.
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Figure 5-1. Processing flow

Then, we used these auto-parallel tools to generate the codes and the programs

which will be used in our experiment, and our experiment programs are matrix

multiplication, Nbody, and Jacobi. We exclude any factors which may affect the

performance in our experimental environments. And we executed every program 10

times, and took the average of execution time to compare. We also checked the

answer that is correct or not. We marked the wrong answer to show the situation.

That's all for ensuring the accuracy of the measured data. During the experiment, we
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used the "time" command to get the execution time of every program. In the
experiment, "sequential” means that the program was non-parallel, and "-O2" mean
that we used the command to optimize. From Figure 5-2 to Figure 5-16, we measure
the execution time to the differences. Table 5-1 shows the classification of
auto-parallel tools.

Table 5-1. The classification of auto-parallel tools

A. ROSE A. Open64
B. PardAll B. - Intel
C. PGI

5.1.1 CPU (OpenMP version)

First, we measure the performance on PC, and the experimental environment as
follow:

® CPU: Genuine Intel(R) CPU U7300 @ 1.30GHz( 2 cores)

® RAM:3GB

In this part, the auto-parallel tools of source-to-binary just do optimization on the
sequential code. Figure 5-2 shows that the performance on processing the massively
parallel execution as the application of Matrix Multiplication from matrix size 512 to
2048. All the tools both improve the performance in the matrix multiplication

program, and the tool of Intel has the best performance than others.
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625 -|’
125 « M sequential
B ROSE
25 - W pda
M sequential -02
5 4 B ROSE -02
W pda -02
1 4 M open64
Wintel
0.2 A o pgi
0.04 T T
512 1024 2048
sec. / matrix size

Figure 5-2. Matrix Multiplication runs on CPU

Figure 5-3 shows that the performance measurements of n-body. In the
experiment, not any auto-parallel tool could improve the performance form the
sequential code. When we compile the code which is transformed by ROSE, we got
error. Although we could transform successfully by using PAR4ALL, from the
performance result in Figure 5-3, PAR4ALL cannot give us a better performance than
other compilers, even giving us a lower performance than the program with original
code. The Figure 5-4 shows the performance measurements of Jacobi. All the tools

both improve the performance form the sequential code, and the tool of Intel also has

the best performance than others.
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625 T
125
M sequential
M open64d
25 A
M intel
5 A H pgi
H pda
1 A W sequential -02
W pda-02
0.2 -
0.04 r T }
500000 5000000 50000000
sec/number of loops

Figure 5-3. Nbody runs on CPU

100 -]/
90 v
- .
80 sequential
H ROSE
70
W pda
60 M open64
50 M intel
40 M pgi
30 M sequential -02
M ROSE -02
20
MW pda -02
10

0

sec. / matrix size 200

Figure 5-4. Solve problem by Jacobi method on CPU

And then, also measure the performance on our server with 8 cores. The
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experimental environment as follow:

® CPU: Intel(R) Xeon(R) CPU E5520 @ 2.27GHz ( 8 cores) [54]

® RAM: 8GB

In this part of the experiment, we tried to combine the source-to-source compiler and
the source-to-binary compiler. First, generate the OpenMP code through the
source-to-source compiler, and then compile the code by using the source-to-binary
compiler. In the experiment, we recorded the parameters what we used with each kind
of compiler, and also verified that whether the parallelism program execute with
multicore. In Figure 5-5 to Figure 5-9, “-apo” is the parameter of Open64 compiler
which could do auto-parallel to the sequential code. “-mp” is the parameter of Open64
compiler and PGI compiler which could support OpenMP code. “-fast” is the
parameter of PGI compiler which could optimize the sequential code. “-parallel” is
the parameter of Intel compiler which could do auto-parallel to the sequential code.
“-openmp” is the parameter of Intel compiler which could support OpenMP code.
“-Mconcur” is the parameter of PGI compiler which could do auto-parallel to the

sequential code.
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1000

100

s 10
»
-
2048 matrix size 4096
2048 4096

M sequential 213.143 1991.279
M sequential -02 143.093 1642.686
M openCC-02 143.913 1629.159
M pgcc -fast 143.914 1642.224
M icpc -02 9.994 77.178
H ROSE -02 18.094 210.291
M pda-02 18.246 209.932
W opencc -apo -02 144.044 1632.846
1 pgcc -Mconcur -fast 143.979 1639.771
M icpc -parallel -02 10.001 83.477
M opencc+ROSE -mp -02 19.24 211.019
W opencc+pda -mp -02 18.822 206.724

pgcc+ROSE -mp -fast 18.129 208.764

pgcc+pda -mp -fast 18.113 209.17

icpc+ROSE -openmp -02 2.026 16.473
W icpc+pda -openmp -02 2.225 16.471

Figure 5-5. Matrix Multiplication runs on the CPU with 8 cores
In Figure 5-5, Intel compiler gets the best performance on optimized version even
better than some parallel programs. In parallel version, Intel compiler with OpenMP

code of ROSE also gets the best performance.
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1000

Sec.

2048 matrix size 4096
2048 4096

M sequential 213.143 1991.279
M sequential -02 143.093 1642.686
H ROSE -02 18.094 210.291
M pda-02 18.246 209.932
M openCC-02 143.913 1629.159
W opencc -apo -02 144.044 1632.846
M opencc+ROSE -mp -02 19.24 211.019
W opencc+pda -mp -02 18.822 206.724
M pgcc -fast 143.914 1642.224
I pgcc -Mconcur -fast 143.979 1639.771

pgcc+ROSE -mp -fast 18.129 208.764

pgcc+pda -mp -fast 18.113 209.17
M icpc-02 9.994 77.178
M icpc -parallel -02 10.001 83.477

icpc+ROSE -openmp -02 2.026 16.473

icpc+p4da -openmp -02 2.225 16.471

Figure 5-6. Matrix Multiplication runs on the CPU with 8 cores
In Figure 5-6 and Figure 5-9, it is clearly to show the difference of performance on
each kind of compiler. In Figure 5-6, the compilers of GNU, PGI, and Open64 have
similar performance, only the compiler of Intel improve the performance obviously

form the same code.
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900 ] B ROSE with 2 core
B ROSE with 4 core
B ROSE with 8 core

800
B pda with 2 core

M p4a with 4 core

700 M pda with 8 core

B opencc+ROSE with 2 core

H opencc+ROSE with 4 core

600
B opencc+ROSE with 8 core

B opencc+pda with 2 core

500 B opencc+pda with 4 core

B opencc+pda with 8 core

400 B pgcc+ROSE with 2 core
M pgcc+ROSE with 4 core

B pgcc+ROSE with 8 core

300 .
M pgcc+pda with 2 core

M pgcc+pda with 4 core

200 1 pgec+pda with 8 core

M icpc+ROSE with 2 core

100 icpc+ROSE with 4 core
M icpc+ROSE with 8 core

icpc+pdawith 2 core

2048 4096 icpc+pdawith 4 core

Sec./size

Figure 5-7. Matrix Multiplication runs with 2cores to 8 cores
From Figure 5-7, we think that the matrix multiplication program is suited be
compiled by Intel compiler. In the experiment of matrix multiplication, the program
which be compiled by using the Intel compiler, PGI compiler and Open64 compiler

with their auto-parallel parameter both execute with just only one core.
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1000

100
s
10
200 matrix size 400
200 400

M sequential 77.2412 956.465
H sequential -02 29.3658 360.588
B openCC-02 28.7794 358.246
M pgcc -fast 10.1406 121.941
M icpc -02 15.349 185.634
H ROSE -02 13.0842 101.296
M p4a-02 29.9184 349.533
W opencc -apo -02 30.1542 357.469
1 pgcc -Mconcur -fast 6.886 78.849
M icpc -parallel -02 74.663 471.931
W opencc+ROSE -mp -02 4.5398 50.053
W opencc+pda -mp -02 30.1676 355.4

pgcc+ROSE -mp -fast 4.105 24.74

pgcc+pda -mp -fast 11.506 128.314

icpc+ROSE -openmp -02 13.287 70.423

icpc+pda -openmp -02 16.8078 190.255

Figure 5-8. Solve problem by Jacobi method on the CPU with 8 cores
In Figure 5-8, PGI compiler gets the best performance on optimized version even
better than some parallel programs. In parallel version, PGI compiler with OpenMP

code of ROSE gets the best performance.

38



1000
100
&
10
200 matrix size 400
200 400

M sequential 77.2412 956.465
H sequential -02 29.3658 360.588
H ROSE -02 13.0842 101.296
M pda-02 29.9184 349.533
M openCC-02 28.7794 358.246
W opencc -apo -02 30.1542 357.469
m opencc+ROSE -mp -02 4.5398 50.053
= opencc+pda -mp -02 30.1676 355.4
M pgcc -fast 10.1406 121.941
i pgcc -Mconcur -fast 6.886 78.849

pgcc+ROSE -mp -fast 4.105 24.74

pgcc+pda -mp -fast 11.506 128.314
M icpc-02 15.349 185.634
M icpc -parallel -02 74.663 471.931

icpc+ROSE -openmp -02 13.287 70.423

icpc+pda -openmp -02 16.8078 190.255

Figure 5-9. Solve problem by Jacobi method on the CPU with 8 cores
From this experiment, no matter source-to-source compilers or source-to-binary
compilers almost both improve the performance for us, but not every parallel program
all executes with multicore. And the utility rate of CPU would also affect the
performance.
In the experiment of solving problem by Jacobi method, the CPU utility rate of
the OpenMP program which be compiled by general compiler is lower than the

OpenMP program which be compiled by Intel/Open64/PGI compiler. Sometimes, the
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performance of the OpenMP code which be generated by PAR4ALL is lower than
ROSE because of the utility rate of CPU.
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B ROSE with 2 core B ROSE with 4 core B ROSE with 8 core
M p4a with 2 core M p4a with 4 core M p4a with 8 core
M opencc with 2 core B opencc with 4 core m opencc with 8 core
B opencc+ROSE with 2 core B opencc+ROSE with 4 core ® opencc+ROSE with 8 core
M opencc+pda with 2 core  mopencc+pda with 4 core  ® opencc+p4a with 8 core
B pgcc with 2 core M pgcc with 4 core i pgcc with 8 core
W pgcc+ROSE with 2 core ® pgcc+ROSE with 4 core pgcc+ROSE with 8 core
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icpc+ROSE with 2 core icpc+ROSE with 4 core icpc+ROSE with 8 core
icpc+pda with 2 core icpc+pda with 4 core icpc+pda with 8 core

Figure 5-10. Jacobi program runs with 2 cores to 8 cores

In Figure 5-10, there are some abnormal performance the OpenMP code of Par4All

and the auto-parllel tool of Intel and Open64.
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5.1.2 GPU (CUDA version)

Second, we measure the performance on the GPU, and the experimental environment
as follow:

® CPU: Intel(R) Xeon(R) CPU E5410 @ 2.33GHz( 8 cores) [45]

® RAM: 4GB

® GPU: Tesla C1060

The compilers mentioned earlier, not everyone is support automatically translate to
CUDA. PAR4ALL and PGl are the tools that we used-in the current environment, and
then using these tools to generate CUDA application runs on GPU and comparing
with C application runs on CPU. The benchmarks of this part are the same with the

benchmarks of 5.1.1, but the method of parallelize is different.

625 {

125 -_/
25 './ B sequential
| W pda_cuda
5 -/ M pgi_cuda
1 -
0.2 T T 1

512 1024 2048
sec./matrix size

Figure 5-11. Matrix Multiplication runs on GPU
Figure 5-11 shows that the performance on processing the massively parallel

execution as the application of Matrix Multiplication from size 512 to 2048.
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Figure 5-12. Nbody runs on GPU
In Figure 5-12, the performance gap between CPU and GPU is small. The

accelerator (GPU) in this case has only speed up a little. The results of Par4all and

PGl in this example are almost the same.
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Figure 5-13. Solve problem by Jacobi method on GPU

In Figure 5-13, the results of these three applications are obvious. GPU is faster
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than CPU in this case, and the effective of PGl is better than PAR4ALL.

5.1.3 Embedded System (OpenMP version)

Finally, we measure the performance on Arm11MP Core, and the experimental
environment as follow:

® CPU: ARMv6-compatible processor rev 0 (v6l)

® bogoMIPS: 83.76, 83.55, 83.35, 83.35

® RAM: 128M

Only ROSE and PAR4ALL are the compilers of source-to-source, so we measured the
performance on the platform of Arm11MP core for these tools. In Figure 5-14 and
Figure 5-15, the performance results are similar as the performance results in 5.1.1.
In Figure 5-16, PAR4ALL didn’t give us a better performance, even worse than
sequential. From all-of the experiment in 5.1, we think the tool of PAR4ALL is

unstable because it has more problems than others.
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Figure 5-14. Matrix Multiplication runs on embedded system
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Figure 5-15. Nbody runs on embedded system
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Figure 5-16. Solve problem by Jacobi method on embedded system
Finally, we compared the performance in the three kinds of environment. From Figure
5-17 and Figure 5-18, the best performance is the OpenMP code of ROSE compiled
by Intel compiler. We think that perhaps automatic parallel technology of CUDA is

not mature, so we get the results. In theory, the performance of CUDA should better

than OpenMP.
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Figure 5-17. Matrix Multiplication executes on three kinds of environment
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Figure 5-18. Jacobi program executes on three kinds of environment
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5.2 Part of Hybrid Parallel Programming

We built a hybrid CUDA GPU cluster consisting of one Tesla C1060 and a Tesla
S1070, each with Gigabit Ethernet NIC interconnected via a D-LINK DGS-3100-24
Gigabit switch. To verify our approach, illustrate our cluster environment, and
describe the terminology for our application, we implemented programs with
MPI1/OpenMP for execution on our testbed. We then verify the performance of our
scheme upon the hybrid CUDA GPU cluster to solve problems in Matrix
Multiplication, MD5 and Merge Sorting. From Figure 5-19 to Figure 5-21we take

log of 10 at execution time to emphasize the differences.
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Figure 5-19. Matrix multiplication with problem sizes from 256 to 2048
Figure 5-19 shows that the performance of GPU on processing the massively
parallel execution as the application of Matrix Multiplication form 256 to 2048. In
this case, the execution results on MPI and OpenMP upon GPU are close. Comparing

to the performance between GPU and CPU with this instance, the performance of
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GPU obviously exceeds CPU. With the small problem size such as 256 by 256 Matrix
Multiplication; the speedup of performance is negligible. The degree of speedup

accumulates with the increasing of the problem size.
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0.01
10wor 100w 1000 1500 2000 10000 20986
ds ords words | words | words 00 51wor
words ds
m GPU 0.0389 | 0.0394 | 0.0434 | 0.0466 | 0.0541 | 12.6773 | 26.4995

M openMP-1thread | 0.013 0.029 0.183 0.255 0.394 | 164.385|332.687
i openMP-2threads| 0.044 0.055 0.141 0.168 0.203 | 82.135 | 154.648
B openMP-3threads| 0.02 0.027 0.078 0.104 0.244 | 54.916 | 116.991
B openMP-4threads| 0.023 0.026 0.062 0.111 0.142 | 58.953 | 87.909

Figure 5-20. MD5 hashing on 10 to 2,098,651 words
Also, Figure 5-20 reveals that single GPU presents better performance than
single CPU with multiple threads on MDS5 hashing computation. Again, the
performance of GPU could not be observed in the small problem size due to the

constraint on the internal overhead of starting execution.
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Figure 5-21. Sorting numbers 640 times from 65,536 to 524288 floating point
numbers
Finally, Figure 5-21 shows that the comparison of performance on multiple GPU
with MPI and OpenMP. The results of MPI and OpenMP are approximate to each

other.
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Chapter 6

Conclusions and Future Work

6.1 Concluding Remark

In conclusion, we discovered some of the automatic parallel tools which could
translate the sequential codes to the parallel code to reduce our time on rewrite codes
for parallel processing on multicore system. And we verified the available of these
tools, and then we implement an interface for ROSE to simplify the complexity of use.
From our experiment, we know that through these auto-parallel tools almost could
both help us easily transform our non-parallel codes to parallel codes and run on
multicore system. After comparing, we make a table to show what tool is best in each
environment in Table 6-1. The perfect auto-parallelizing compiler is yet to be
produced. However, there are some cases where auto-parallelization is perfectly
suited.

Table 6-1. The best tool in each.environment

environment ke Gl matrix Nbody Jacobi
CPU Intel+ROSE X PGI+ROSE
GPU PGI PGI PGI
embedded system ROSE X ROSE

And we propose a parallel programming approach using hybrid CUDA and MPI
programming, which partition loop iterations according to the number of C1060 GPU

nodes in a GPU cluster which consists of one C1060 and one S1070. During the
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experiment, loop iterations assigned to one MPI process and processed in parallel by
CUDA run by the processor cores in the same computational node. The experiment
reveals that the hybrid parallel multicore GPU currently processing with OpenMP and

MPI as a powerful approach of composing high performance clusters.

6.2 Future Work

In the future, we may add more experiments especially on GPU and embedded system
in the aspect of automatic parallelism. And we will compare the difference between
parallelism of automatic and manual. In the aspect of hybrid parallel programming,
we think that the algorithm of dispatch task can still be improved. We may accord the

computing power of machine to allocate.
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Appendix

A. Setup of auto-parallel tool

1 ROSE

Environment: Ubuntu 9.10

Before install ROSE, following as command

I. $ sudo aptget install libboostl.4-*
II. $ sudo aptget install sun-jdk-6-sun

The steps of installation as following:

I. Download package from https://outreach.scidac.gov/projects/rose/
Il. Untar package
$ tar -zxfv rose-0.9.5a-without-EDG-15163.tar.gz

I1l. Run the configure script
$ ./configure -with-java={path of JAVA}

V. Run make
S make

V. To install ROSE, type make install
$ make install
VI. Set PATH

2 PardAll

The steps of installation as following:

I.  Download package from http://www.par4all.org/download/
Il. Untar package

S tar -zxfv <package>.tar.gz
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3

It will create a directory named par4all. Move this directory to its final location:

$ sudo mv pardall /usr/local

In any case, you will then need to source one of the following shell scripts which
set up the environment variables for proper Par4All execution:

If you use bash, sh, dash, etc...
$ source /usr/local/pardall/etc/pard4all-rc.sh
If you use csh, tcsh, etc...

$ source /usr/local/pardall/etc/pardall-rc.csh

Intel® Composer XE 2011 for Linux

The steps of installation as following:

4

Download package from
http://software.intel.com/en-us/articles/intel-software-evaluation-center/
Untar package

$ tar -zxfv <package>.tgz
Run the install script

S sh install.sh

Set PATH

PGI Accelerator C/C++ Workstation 10.9

The steps of installation as following:

Download package from http://www.pgroup.com/support/downloads.php
Untar package

S tar -zxfv <package>.tar.gz
Run the install script

$ sh install.sh

Set PATH
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5 Open64 compiler 4.2.3

The steps of installation as following:

I.  Download package from
http://www.open64.net/download/open64-4x-releases.html

Il.  Untar package
S tar jxfv <package>.tar.bz2
I1l. Set PATH
B. Interface
1 VMC-PPO

I.  Get the package of VMC_PPO_GUIl.zip
Il. Unzip the package

$ unzip VMC PPO GUI.zip

I1l. Execute the program

$ ./VMC_PPO_GUI.sln

2 Plug-in of Eclipse

I.  Get the package of vmcppo.zip

Il. Copy the package to the directory of Eclipse
$ cd /usr/lib/eclipse

I1l.  Unzip the package and restart Eclipse

$ unzip VMC PPO_GUI.zip
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