

私立東海大學

資訊工程學系研究所

碩士論文

指導教授：楊朝棟 博士

在雲端環境中提供一個動態資源分配模型

管理虛擬機器

A Dynamic Resource Allocation Model for

Virtual Machine Management on Cloud

研 究 生：鄭翔耀

中華民國一○○年七月

 ii

 iii

摘要摘要摘要摘要

現今的 x86 硬體大多設計為執行單一作業系統與執行單一或多個應用程式，當該

服務硬體資源占用太低，就顯得整體資源利用率不高。虛擬化技術可以在一台實

體機器上運行多台虛擬機器，每台虛擬機器可在一台實體機上共享資源。要達到

多台實體機器的管理、虛擬機器在實體機器中的不中斷遷移都是目前研究的議

題。其中，如何確保多台虛擬機器在多台實體機器上的負載可達到平衡點，則是

我們所要面臨及探討的。本研究中，我們基於虛擬化技術現有的線上遷移的方

式，設計了一套方法為動態資源分配的方式，達到虛擬機器在實體機器上的負載

平衡。本文裡設計了一個虛擬化平台的管理系統，並將本方法實際運用在此管理

系統，結果證實了虛擬機器在負載變高時，可以透過線上遷移服務，在不停止的

狀態下，將虛擬機器搬移置不同的實體機器，達到負載平衡。

關鍵字關鍵字關鍵字關鍵字：：：：虛擬化、線上遷移、動態資源分配、雲端運算

 iv

Abstract

Today’s x86 computer hardware was designed to run a single operating system and a

single application, leaving most machines vastly underutilized. Virtualization

Technology lets you run multiple virtual machines on a single physical machine, with

each virtual machine sharing the resources of that one physical computer across

multiple environments. It is current issue to achieve the goal of management multiple

virtualization platform and multiple virtual machine migration across physical

machine without disruption. We have to face and discuss that ensure load balance

when multiple virtual machine run on multiple physical machine. In this thesis we

present a system which is implementation of optimization with Dynamic Resource

Allocation(DRA) dealing with virtualization machines on physical machines. And

practice DRA method in this system. The results confirmed that the virtual machine

which loading becomes too high, it will automatically migrated to another low loading

physical machine without service interrupting. And let total physical machine loading

reaching balance.

Keywords- Virtualization, Live Migration, Dynamic Resource Allocation (DRA),

Cloud Computing

 v

Acknowledgements

回想當初推薦甄試進入東海資工研究所時，自己對要研究哪種議題都尚未沒

有很明確的方向，入學後隨著系上安排的課程進行學習，當年雲端運算的議題正

漸漸的明朗化，故自己就決定要針對此技術做進一步探討，自行找了楊朝棟老

師，表明希望能加入他的團隊，很榮幸的獲得楊老師的首肯，才能進入高效能計

算實驗室，與同學進行互相討論及研究。

學業即將完成，首先我要感謝指導教授－楊朝棟 博士，在學期間給予我明

確的指導方向與支持鼓勵，無論是參與國際研討會的論文發表或者是在課堂之中

及研究的過程或學習的過程中都充滿挑戰且富有成就感，我很榮幸能成為楊老師

實驗室的一員，在東海高效能計算實驗室培養之下，造就出的抗壓性及知識，以

應付未來更多的挑戰。

接著我也要感謝研究所合作的學長、同學們威利、政達、冠傑、智霖等，在

研究所的兩年內提供協助，還要特別感謝公司同事這陣子的體諒與支持我將無法

順利完成論文，沒有你們無私的付出，更遑論畢業取得碩士學位。

最後，我要感謝我的家人，沒有家人的支持與體諒，我將不可能完成我的學

業，謝謝你們大家，並且再一次深深感謝楊老師的指導。

 vi

Tables of Contents

摘要摘要摘要摘要.. iii

Abstract..iv

Acknowledgements ..v

Tables of Contents...vi

List of Figures... viii

List of Tables ...ix

Chapter 1 Introduction..10

1.1 Research Background ..10

1.2 Motivation and purpose ... 11

1.3 Thesis Organization ...12

Chapter 2 Background Review...13

2.1 Virtualization..13

2.2 OpenNebula ...20

2.3 Virtual Machine Migration...24

2.4 Dynamic Resource Allocation ...27

2.5 Related Work..28

Chapter 3 System Implementation...30

3.1 System Architecture ...30

3.2 Dynamic Resource Allocation Algorithm..32

3.3 Management Interface ...35

Chapter 4 Experimental Results...38

4.1 Performance and Capability Testing ..38

4.2 DRA Experimental Results ..41

Chapter 5 Conclusions...46

 vii

Bibliography ...47

Appendix – Installation Guide..50

Appendix A. Prerequisite ..50

Appendix B. OpenNebula Server Installation...50

a. Configure Xen environment ..52

b. Install Xen-tools and configure..52

c. Create Virtual Machine ..52

d. Virtual Machine basic configuration..53

e. Install OpenNEbula..53

f. Edit OpenNEbula Setting...53

g. OpenNEbula daemon start ...54

h. Add OpenNEbula Client ..55

i. Convert Xen VM to OpenNEbula Format ...55

j. Using One Open VM ...55

k. Shutdown VM..56

Appendix C. OpenNEbula Client Installation...56

a. Configure Xen environment ..56

b. NFS mount server partition..56

c. Migrate VM..56

Appendix D. OpenNebula Script...57

a. Host Management ..57

b. VM Management ...61

c. RRDTool Graph Script...67

 viii

List of Figures

Figure 2-1. Process and System VMs...14

Figure 2-2. Full Virtualization ..15

Figure 2-3. Para-virtualization..17

Figure 2-4. OpenNebula Architecture ..21

Figure 2-5. Eucalyptus Architecture...23

Figure 2-6. Process migration example. p1 has migrated from host1 to host2.............25

Figure 2-7. Migrating p1 from host1 to host2 by means of operating system migration.

..25

Figure 2-8. virtual machine migration procedure ...26

Figure 2-9. Global Load Balance Algorithm concept...27

Figure 3-1. System Architecture...32

Figure 3-2. Web-Based Authorization..35

Figure 3-3. Virtual Machine Manager ..36

Figure 3-4. CPU Performance ..36

Figure 3-5. Memory Performance ..37

Figure 4-1. Memory Performance ..39

Figure 4-2. HPCC Performance Computing on different nodes graph.........................39

Figure 4-3. Time Cost ...42

Figure 4-4. Floating Point Count ..42

Figure 4-5. Host Machine CPU usage ..44

 ix

List of Tables

Table 2-2. Cloud Architectures Compared..24

Table 4-1. HPCC Performance Computing on different nodes value...........................40

Table 4-2. Floating Point Count Value compared when DRA enabled or not43

Table 4-3. HPCC finished time when DRA enabled or not ..43

 10

Chapter 1

Introduction

1.1 Research Background

A virtual machine was originally defined by Popek and Goldberg as ―an efficient,

isolated duplicate of a real machine. A virtual machine provides the interface identical

to underlying bare hardware, i.e., all devices, interrupts, memory, page tables, etc.[1].

Virtual machines are separated into two major categories, based on their use and

degree of correspondence to any real machine. A system virtual machine provides a

complete system platform which supports the execution of a complete operating

system (OS). In contrast, a process virtual machine is designed to run a single

program, which means that it supports a single process. An essential characteristic of

a virtual machine is that the software running inside is limited to the resources and

abstractions provided by the virtual machine—it cannot break out of its virtual world.

Virtual machine operates in a virtual platform can be considered an independent

operating system. In addition, due to the independence of this individual, the gust

operating system can operate from the original virtual platform, and to maintain the

operation of the original schedule. And this move action, generally referred to as

Migration [2-23]. The migration is dynamic: if a move action, cause the system to

pause time is extremely small enough, it cannot be aware of user using the system

services.

 11

1.2 Motivation and purpose

Setting up virtual machine cluster environment on physical machine can provide

stable service, but this environment often includes unpredictable workloads. Currently

most systems of virtual machine are loading balanced statically, as the systems where

the load changes dynamically over time run it is inevitable that some physical hosts

with higher load, so for throughput and response time of a system to be maximized it

is necessary for load to be distributed to each part of the system in proportion to their

computing/IO capacity[3, 20, 24-27].

In this thesis, we develop an adaptive resource control system on a virtual

machine cluster that dynamically adjusts the resource shares to individual tiers in

order to meet DRA (Dynamic Resource Allocation) goals. There are three efforts in

this thesis: (1) supporting DRA mechanism; (2) implementation OpenNebula

management tool on a web-based interface; and (3) efficiently isolating the cluster

workloads.

 12

1.3 Thesis Organization

This thesis structure is as follows: the second chapter discusses related research,

describes the development of virtual technology, the dynamic migration of relevant

thesis and research reports, and current use of the operating system migration and

production procedures related thesis checkpoint; third chapter represents thesis work

out solutions to issues of content; fourth chapter performance evaluation, the use of

the systems do the actual number of operation, record all aspects of operation

efficiency, and make the analysis and discussion; the fifth chapter is the conclusion

and future directions.

 13

Chapter 2

Background Review

2.1 Virtualization

Virtualization is simply the logical separation of the request for some service from the

physical resources that actually provide that service. In practical terms, virtualization

provides the ability to run applications, operating systems, or system services in a

logically distinct system environment that is independent of a specific physical

computer system. Obviously, all of these have to be running on a certain computer

system at any given time, but virtualization provides a level of logical abstraction that

liberates applications, system services, and even the operating system that supports

them from being tied to a specific piece of hardware. Virtualization, focusing on

logical operating environments rather than physical ones, makes applications, services,

and instances of an operating system portable across different physical computer

systems. Virtualization can execute applications under many operating systems,

manage IT more efficiently, and allot resources of computing with other

computers[4].

It’s not a new technique, IBM had implemented on 360/67 and 370 on 60, 70

eras. Virtualization gets hardware to imitate much hardware via Virtual Machine

Monitor, and each one of virtual machines can be seemed as a complete individual

 14

unit. For a virtual machine, there are memories, CPUs, unique complete hardware

equipment, etc... It can run any operating systems, called Guest Os, and do not affect

other virtual machines. In recent years, many research proposed the application of

virtual machine technology [5-7] to solve many system problems. For examples, fault

tolerance, migration, intrusion detection and debugging.

Virtual machine can divide into two categories by client service: system virtual

machine and process virtual machine[28] in Figure 2-1. The difference is the range of

virtualization. System virtual machine provides an integrated system platform where

guest OS can operate self-reliant. Process virtual machine only served only single

process. This thesis will use system virtual machine technology to investigate the

issue of platform switching.

Figure 2-1. Process and System VMs

 15

In general, most virtualization strategies fall into one of three major categories:

Full virtualization: it is similar to emulation. As in emulation, unmodified

operating systems and applications run inside a virtual machine. Full virtualization

differs from emulation in that operating systems and applications are designed to run

on the same architecture as the underlying physical machine. This allows a full

virtualization system to run many instructions directly on the raw hardware. The

hypervisor in this case monitors access to the underlying hardware and gives each

guest operating system the illusion of having its own copy. It no longer must use

software to simulate a different basic architecture as shown in Figure 2-2.

Figure 2-2. Full Virtualization

Hardware Assisted Virtualization: Recognizing the importance of

virtualization, hardware vendors Intel and AMD have added extensions to the x86

architecture that make virtualization much easier[8]. While these extensions are

 16

incompatible with each other, they are essentially similar, consisting of

� A new guest operating mode: the processor can switch into a guest mode, which

has all the regular privilege levels of the normal operating modes, except that

system software can selectively request that certain instructions, or certain

register accesses, be trapped. VMM(Virtual Machine Monitor) will make

necessary processing.

� Hardware state switch: when switching to guest mode and back, the hardware

switches the control registers that affect processor operation modes, as well as

the segment registers that are difficult to switch, and the instruction pointer so

that a control transfer can take effect.

� Exit reason reporting: when a switch from guest mode back to host mode occurs,

the hardware reports the reason for the switch so that software can take the

appropriate action.

Para-virtualization: In some instances this technique is also referred to as

enlightenment. In Para-virtualization[9], VMM will provide Hypercall[10] to allow

domains to perform a synchronous software trap into the hypervisor to perform a

privileged operation, analogous to the use of system calls in conventional operating

systems. The hypervisor exports a modified version of the underlying physical

hardware. The exported virtual machine is of the same architecture, which is not

necessarily the case in emulation. Instead, targeted modifications are introduced to

make it simpler and faster to support multiple guest operating systems.

For example, the guest operating system might be modified to use a special

 17

hyper call application binary interface (ABI) instead of using certain architectural

features that would normally be used. This means that only small changes are

typically required in the guest operating systems, but any such changes make it

difficult to support closed-source operating systems that are distributed in binary form

only, such as Microsoft Windows. As in full virtualization, applications are typically

still run without modifications.

Para-virtualization, like full virtualization, Para-virtualization also uses a

hypervisor, and also uses the term virtual machine to refer to its virtualized operating

systems. However, unlike full virtualization, Para-virtualization requires changes to

the virtualized operating system. This allows the VM to coordinate with the

hypervisor, and reduce the use of the privileged instructions that are typically

responsible for the major performance penalties in full virtualization.

Figure 2-3. Para-virtualization

The advantage is that Para-virtualized virtual machines typically outperform

fully virtualized virtual machines. The disadvantage, however, is the need to modify

 18

the Para-virtualized virtual machine or operating system to be hypervisor-aware. The

framework of Para-virtualization is shown in Figure 2-3.

In order to evaluate the viability of the difference between virtualization and

non-virtualization, the virtualization software we used in this thesis is Xen. Xen is a

virtual machine monitor (hypervisor) that allows you to use one physical computer to

run many virtual computers — for example, running a production Web server and a

test server on the same physical machine or running Linux and Windows

simultaneously. Although not the only virtualization system available, Xen has a

combination of features that make it uniquely well suited for many important

applications. Xen runs on commodity hardware platforms and is open source. Xen is

fast, scalable, and provides server-class features such as live migration.

Xen is chosen to be our system’s virtual machine monitor because it provides

better efficiency, supports different operating system work simultaneously, and gives

each operating system an independent system environment.

This free software is mainly divided into two kinds of simulate types,

Para-virtualization and Full virtualization, as mentioned before. Para-virtualization

implements virtualization technology, mostly via the modified kernel of Linux.

The characteristic of Para-virtualization is as follows:

� Virtual machine quite like real machine on operating efficacy

� At most supporting more than 32 cores of computer structures

� Supporting x86/32, with PAE technique and x86/64 hardware platform

 19

� Good hardware driver support, almost for any Linux device driver

There are restricts with full virtualization, and it can be only executed when the

hardware satisfy these conditions in the following:

� Intel VT technique (Virtualization Technology, Intel-VT)

� AMD SVM technique (Secure Virtual Machine, AMD-SVM or, AMD-V)

Besides, PAE is the Intel Physical Addressing Extensions technique, and this

method enables 4 gigabytes physical memory of 32 bits hardware platform to support

the platform that is only supported by 64 gigabytes memory. Then Xen could almost

execute on all P-II or more high level hardware platform.

Currently, there are two major software series for platform virtualization:

VMWare and Xen, each of them has its own advantages. VMWare is a commercial

software series comprised of lots of products including vCloud, vSphere[11],

VMWare ESX Server and so on. It has numerous functions and supports kinds of

hardware and protocols excellently. There is also a commercial software series based

on Xen called XenServer[12].

As a result of the widespread of virtual machine software in recently years, two

best x86 CPU manufacturers Intel/AMD, with efficiency of x86 computers and

increasing of compute core of CPU, both have published the new integrated

virtualization on CPU, one for Intel Vander pool and another for AMD Pacifica. These

technologies also support Xen, and make efficiency step up more than initial

stages[1].

 20

2.2 OpenNebula

Cloud computing systems fundamentally provide access to large pools of data and

computational resources through a variety of interfaces similar in spirit to existing

grid and HPC resource management and programming systems. These systems

provide a wide variety of interfaces and abstractions ranging from the ability to

dynamically provision entire virtual machine (i.e., Infrastructure-as-a-Service systems

such as Amazon EC2 and others[29, 30]) to flexible access to hosted software services

(i.e., Software-as-a-Service systems such as salesforce.com and others[24, 25, 31]).

We have focused our efforts on the “lowest” layer of cloud computing systems (IaaS)

because here we can provide a solid foundation on top of which language-, service-,

and application-level cloud computing systems can be explored and developed.

In this work, we present OpenNebula: an open-source cloud computing

framework. The OpenNebula is a virtual infrastructure engine that enables the

dynamic deployment and re-allocation of virtual machines in a pool of physical

resources. The OpenNebula system extends the benefits of virtualization platforms

from a single physical resource to a pool of resources, decoupling the server, not only

from the physical infrastructure but also from the physical location[4]. The

OpenNebula contains one frontend and multiple backend. The front-end provides

users with access interfaces and management functions. The back-ends are installed

on Xen servers, where Xen hypervisors are started and virtual machines could be

backed. Communications between frontend and backend employ SSH. The

OpenNebula gives users a single access point to deploy virtual machines on a locally

distributed infrastructure.

 21

Figure 2-4. OpenNebula Architecture

OpenNebula orchestrates storage, network, virtualization, monitoring, and

security technologies to enable the dynamic placement of multi-tier services (groups

of interconnected virtual machines) on distributed infrastructures, combining both

data center resources and remote cloud resources, according to allocation policies[4].

The architecture of OpenNebula can be described as Figure 2-4.

OpenNebula allow to use multiple storage back ends such as LVM(Logical

volume manager)[32], iSCSI(Internet Small Computer System Interface)[33], and

different hypervisors, such as VMware, Xen[10] and KVM(kernel-based virtual

machine)[8, 13]. Also having a robust and thin core, which use C++ combined with a

scripting driver plug-in back end, allows people to modify components to build their

own plug-ins, for scheduling or VM placement, for example.

 22

Eucalyptus [14] also belongs to virtual machine management platform. It is an

open-source cloud-computing framework that uses computational and storage

infrastructure commonly available to academic research group to provide a platform

that is modular and open to experimental instrumentation and study[15]. The

architecture of the Eucalyptus system is simple, flexible and modular with a

hierarchical design reflecting common resource environments found in many

academic settings. In essence, the system allows users to start, control, access, and

terminate entire virtual machines using an emulation of Amazon EC2’s SOAP and

“Query” interfaces. That is, users of Eucalyptus interact with the system using the

exact same tools and interfaces that they use to interact with Amazon EC2.

As Figure 2-5, Eucalyptus consist of three parts[15]:

� Node Controller: controls the execution, inspection, and terminating of virtual

machine instances on the host where it runs.

� Cluster Controller: gathers information about and schedules virtual machine

execution on specific node controllers, as well as manages virtual instance

network.

� Storage Controller (Walrus): is a put/get storage service that implements

Amazon’s S3 interface, providing a mechanism for storing and accessing virtual

machine images and user data.

� Cloud Controller: is the entry-point into the cloud for users and administrators. It

queries node managers for information about resources, makes high level

scheduling decisions, and implements them by making requests to cluster

controllers.

 23

Figure 2-5. Eucalyptus Architecture

The Eucalyptus system is built to allow administrators and researchers the ability

to deploy an infrastructure for user-controlled virtual machine creation and control

atop existing resources. The system is highly modular, with each module represented

by a well-defined API, enabling researchers to replace components for

experimentation with new cloud computing solutions.

OpenNebula and Eucalyptus are major open-source cloud computing software

platforms. The overall function of these systems is to manage the provisioning of

virtual machines for a cloud providing Infrastructure-as-a-Service. These various

open-source projects provide an important alternative for those who do not wish to

use commercially provided cloud. In table 1 provide a table to compare and analyze

 24

these systems[16].

Table 2-1. Cloud Architectures Compared

 Eucalyptus OpenNebula

Disk Image Options Options set by admin In private cloud,

Most libvirt options left

open

Disk Image Storage Walrus, which imitates

Amazons S3

A shared file system, by

default NFS, or SCP

Hypervisors Xen, KVM Xen, KVM, VMware

Unique Feature User management web

interface

VM migration supported

However the OpenNebula lack a management tool. In this thesis we were not

only implemented OpenNebula but also created a Web-based management system on

it. Thus, the system administrator can be easy to monitor and manage the entire

OpenNebula System on our project. We solved 3 main challenges: First, How to

combine web and OpenNebula, Second, How to monitor virtualization system and

physical machines state on the web and Finally, How to arrive at DRA.

2.3 Virtual Machine Migration

System migration technology is an important feature in virtualization. By virtual

platform providing system migration technology, virtual guest operating system will

be seemed an integrated migrated unit. Migrate an entire operating system and all of

its applications as one unit allows us to avoid many of the difficulties faced by

process-level migration approaches. In particular the narrow interface between a

virtualized operating system and the virtual machine monitor makes it easy avoid the

problem of ‘residual dependencies[17]’ in which the original host machine must

remain available and network-accessible in order to service certain system calls or

 25

even memory accesses on behalf of migrated processes. As Figure 2-6 and Figure

2-7[18]. When migration finish, original system is no more need to provide software

or hardware resources to destination system[2].

Figure 2-6. Process migration example. p1 has migrated from host1 to host2.

Figure 2-7. Migrating p1 from host1 to host2 by means of operating system migration.

Migration situation could divided two categories: online migration and offline

migration[34]. It represented a typical migration behavior could differentiate three

stages[17]:

 26

� Push phase: source virtual system processing and system content migration are in

the same time.

� Stop-and-copy phase: source virtual system has already stopped processing and

system content migration executes final migration. The end of migration, virtual

system which migrated to destination begins to process.

� Pull phase: virtual system which migrated to destination has already operated,

Figure 2-8. virtual machine migration procedure

The live migrating procedure shows as Figure 2-8, there is a shared storage

device and plenty of computing nodes which host virtual machines. All computing

nodes mount the shared storage device by NFS protocol and access it just as local

storage, but impose limitations such as CPU type and generation compatibility. A

virtual machine of node1 migrates to node2 to optimize resource allocation for virtual

machines of node1 and node2. This procedure can complete in only several seconds.

What is more, applications run on the virtual machine will keep continuous running in

the migration nearly without any interrupting, which has significant meaning to 7x24

applications or services.

 27

2.4 Dynamic Resource Allocation

Load balancing seeks to improve the performance of a distributed system by

allocating the workload amongst a set of cooperating hosts. Such system may attempt

to ensure the workload on each host is within a small tolerance of the workload on all

other physical hosts, or may attempt to avoid congestion of individual servers. Load

balancing can be either centralized or distributed[26].

Figure 2-9. Global Load Balance Algorithm concept

The purpose of DRA (Dynamic Resource Allocation) is to reach the best balance

between each physical machine. Only the resource can be evenly distributed to

achieve maximum efficiency. To achieve this, we designed a method to obtain the best

strategy. According to Global Load balancing(GLB) algorithm[27] concept, each

virtual machine’s CPU Loading value will be added and divided by the sum of

physical machine. We can learn the best loading ratio and migrate the suitable virtual

machine to physical machine. Resources utilization ratio of physical machine will

 28

reach load balancing, as Figure 2-9.

For more detail please refer to section 3.2 in this thesis.

2.5 Related Work

Recently, the dramatic performance improvements in hypervisor technologies have

made it possible to experiment with virtual machines (VM) as basic building blocks

for flexible computational platforms. Many research efforts have been introduced to

reduce the overhead of the networking in virtualized environments. Data transfer

between server nodes frequently occurs in parallel and distributed computing systems,

the high overhead of networking may induce significant performance loss in the

overall system.

Jae-Wan Jang[19] use virtualized parallel and distributed computing systems are

rapidly becoming the mainstream due to the significant benefit of high

energy-efficiency and low management cost. Processing network operations in a

virtual machine incurs a lot of overhead from the arbitration of network devices

between virtual machines, inherently by the nature of the virtualized architecture.

Wang L et al.[19] propose a new methodology for Grid computing – to use virtual

machines as computing resources and provide Virtual Distributed Environments

(VDE) for Grid users. Paul Willmann [35] presents hardware and software

mechanisms to enable concurrent direct network access by operating systems running

within a virtual machine monitor.

It is declared that employing virtual environment for Grid computing can bring

various advantages, for instance, computing environment customization, QoS

 29

guarantee and easy management. A light weight Grid middleware, Grid Virtualization

Engine, is developed accordingly to provide functions of building virtual environment

for Grids.

VMware DRS[20] achieves an on-demand resource scheduling scheme for

virtual machine cluster via migrating virtual machines among physical machines. In

our scheme, the two measures are used simultaneously while reallocating resource of

virtual machines within same physical machine is the first choice to get higher

efficiency.

Additionally, R. S. Montero[21] proposes a performance model to characterize

these variable capacity (elastic) cluster environments. The model can be used to

dynamically dimension the cluster using cloud resources, according to a fixed budget,

or to estimate the cost of completing a given workload in a target time. This thesis

focuses VMs running on physical machines and use DRA technology to

Implementation a virtualization environment of HPC.

 30

Chapter 3

System Implementation

3.1 System Architecture

The OpenNebula core orchestrates three different management areas: image and

storage technologies (that is, virtual appliance tools or distributed file systems) for

preparing disk images for VMs, the network fabric (such as Dynamic Host

Configuration Protocol [DHCP] servers, firewalls, or switches) for providing VMs

with a virtual network environment, and the underlying hypervisors for creating and

controlling VMs. The core performs specific storage, network, or virtualization

operations through pluggable drivers. Thus, OpenNebula isn’t tied to any specific

environment, providing a uniform management layer regardless of the underlying

infrastructure.

Besides managing individual VMs’ life cycle, we also designed the core to

support services deployment; such services typically include a set of interrelated

components (for example, a Web server and database back end) requiring several

VMs. Thus, we can treat a group of related VMs as a first-class entity in OpenNebula.

Besides managing the VMs as a unit, the core also handles the delivery of context

information (such as the Web server’s IP address, digital certificates, and software

licenses) to the VMs[36].

 31

A separate scheduler component makes VM placement decisions. More

specifically, the scheduler has access to information on all requests OpenNebula

receives and, based on these requests, keeps track of current and future allocations,

creating and updating a resource schedule and sending the appropriate deployment

commands to the OpenNebula core. The OpenNebula default scheduler provides a

rank scheduling policy that places VMs on physical resources according to a ranking

algorithm that the administrator can configure. It relies on real-time data from both

the running VMs and available physical resources.

In Figure 3-1, it shows the system perspective. According to the previous works

we build a cluster system with OpenNebula and also provide a web interface to

manage virtual machines and physical machine. Our cluster system was built up with

four homogeneous computers; the hardware of these computers is equipped with Intel

i7 CPU 2.8 GHz, four gigabytes memory, 500 gigabytes disk, Debian operating

system, and the network connected to a gigabit switch.

 32

Figure 3-1. System Architecture

3.2 Dynamic Resource Allocation Algorithm

The Dynamic Resource Allocation is an efficient approach to increasing availability

of host machine. However, at present open source virtual machine management

software merely provide a web interface for user managing virtual machine. Such as

Eucalyptus[37] cannot accomplish load balance. When a part of virtual machines load

increasing, it will affect all virtual machine on the same host machine. Our Dynamic

Resource Allocation algorithm can overcome this obstacle, and improve host machine

performance. Dynamic Resource Allocation works by continuously monitoring all

virtual machines resource usage to determine which virtual machine have to migrate

to another host machine. The goal is to make all host machine CPU and memory

loading identically.

The Dynamic Resource Allocation process is as follows. Assuming j host

 33

machines are in this pool. Every host machine loading ideal ratio is . And i

virtual machines are not running load balancing in these host machine. Each virtual

machine resource usage is defined “ ()⁄

 (1)

Where denotes virtual machine resource usage percentage in all allocate CPU

and memory physical resource. When D_Dd__________ _

In the next step, virtual machines resource usage ratio has been added up on

different host machine. Each host machine current resource usage is defined

“ _()

 (2)

Where 〖 〗 ⁡ 〖 _() 〗

D_Dd__________�ԷϨϨ________________ , and decide which host machine

 34

to be the migrated destination host, such as: . And at last, the migrated virtual

machine is defined _()|_()〖

 (3)

The algorithm performs some calculations for monitoring physical resource

information. It is follows:

[Initialization]

Defined virtual machine amount i and host machine amount j

Calculate ideal ratio ,virtual machine resource ratio 〖〗⁡〖_()〗

do

determine migrate source host machine m

determine migrate destination host machine n

determine migrated virtual machine on HOST j

migrate virtual machine D_Dd__________ZðϨ

 35

while (value = 0)

3.3 Management Interface

We design a useful web interface for end users fastest and friendly to Implementation

virtualization environment. In Figure 3-2, it shows the authorization mechanism,

through the core of the web-based management tool, it can control and manage

physical machine and VM life-cycle.

Figure 3-2. Web-Based Authorization

The entire web-based management tool including physical machine management,

virtual machine management and performance monitor. In Figure 3-3, it can set the

VM attributes such as memory size, IP address, root password and VM name etc…, it

also including the life migrating function. Life migration means VM can move to any

 36

working physical machine without suspend in-service programs. Life Migration is one

of the advantages of OpenNebula. Therefore we could migrate any VM what we want

under any situation, thus, we have a DRA mechanism to make the migration function

more meaningful. For more detail please refer to our experiment in chapter 4.

Figure 3-3. Virtual Machine Manager

Figure 3-4. CPU Performance

RRDtool is the Open Source industry standard, high performance data logging

and graphing system for time series data. Use it to write your custom monitoring shell

scripts or create whole applications using its Perl, Python, Ruby, TCL or PHP

bindings[38]. In this thesis we use RRDtool to monitor entire system. Figure 3-4 and

Figure 3-5 show current physical machines CPU and memory usage.

 37

Figure 3-5. Memory Performance

 38

Chapter 4

Experimental Results

4.1 Performance and Capability Testing

In this section, first we measure the performance and network throughput in physical

and virtual machine. We use Apache JMeter[39] to measure the testing result. It is a

well-known web application measure performance tool of Apache project. Apache

JMeter is a 100% pure java desktop application. JMeter can be used to test the

performance of static or dynamic resources, it also can simulate the high load of

server, network or other objects to test their pressure power of providing the services

or analyze the total performance instances of their providing services under different

circumstances[40].

 39

Figure 4-1. Memory Performance

Regarding to the throughput rate as shown Figure 4-1, it can explain for server

capabilities or performance difference with physical and virtual machine.

Figure 4-2. HPCC Performance Computing on different nodes graph

In Figure 4-2, it represent the performance by different total nodes which involve

in HPCC[41] computing. We set every virtual machine 1 CPU and 1GB memory, and

distributed virtual machine on different host to prevent node centralize on the same

 40

host. HPCC is an Internet-accessible resource that promotes the exchange of

software and information among those involved with high-performance computing

and communications[42]. The input parameters of HPCC can be considered with three

key elements: P – the number of process rows, could be explained as CPU number,

Q – the number of process columns could be explained as total server number, N – the

order of the coefficient matrix A, it also called Problem Size in coming article. A

formal formula can be described the required memory space of problem size:

. The output of the HPCC is

Gflops which means rate of execution for solving the linear system.

 In Table 4-1, we can obviously

know that when the computing nodes increased, it got better performance value in the

same problem size. Furthermore, increasing the problem size, the difference of HPCC

performance computing value is more significant.

Table 4-1. HPCC Performance Computing on different nodes value Problem Size (K)Problem Size (K)Problem Size (K)Problem Size (K) 4 nodes (Gflops)4 nodes (Gflops)4 nodes (Gflops)4 nodes (Gflops) 6 nodes (Gflops)6 nodes (Gflops)6 nodes (Gflops)6 nodes (Gflops) 8 nodes (Gflops)8 nodes (Gflops)8 nodes (Gflops)8 nodes (Gflops)
1000 3.41 3.54 3.68

2000 7.01 7.51 8.05

3000 10.15 11.10 12.14

4000 12.82 14.36 16.09

5000 15.12 17.30 19.80

6000 16.88 19.69 22.97

7000 19.51 22.55 26.07

8000 21.21 24.67 28.69

9000 23.05 26.85 31.28

10000 24.98 28.78 33.16

11000 25.84 30.22 35.34

12000 27.33 31.96 37.37

13000 28.95 33.67 39.16

14000 29.33 34.54 40.67

15000 30.28 35.85 42.45

 41

16000 31.32 37.07 43.87

17000 31.36 37.79 45.54

18000 32.11 38.72 46.69

19000 33.17 39.75 47.64

20000 32.72 40.40 49.16

4.2 DRA Experimental Results

We focus on resource utilization of computing under DRA model. Therefore, we also

used HPCC software to verify that DRA has a good performance and utilization on

virtualization cluster. HPCC is an abbreviation of High Performance Computing

Challenge, the HPC Challenge Benchmark is a set of benchmarks targeting to test

multiple attributes that can contribute substantially to the real-world performance of

HPC systems, co-sponsored by the DARPA High Productivity Computing Systems

program, the United States Department of Energy and the National Science

Foundation[37].

 42

Figure 4-3. Time Cost

Figure 4-4. Floating Point Count

There were three physical machines in experimental environment. We created six

virtual machines and distributed on different host machine. Each virtual machine used

 43

one virtual CPU and 512MB virtual memory. High workloads virtual machine on

HOST 1 will be migrated to a lower resource cost physical machine when DRA

function is enabled.

Table 4-2. Floating Point Count Value compared when DRA enabled or not Problem Size Problem Size Problem Size Problem Size DRA disabled (GFlops)DRA disabled (GFlops)DRA disabled (GFlops)DRA disabled (GFlops) DRA enabled (GFlops)DRA enabled (GFlops)DRA enabled (GFlops)DRA enabled (GFlops)
1000100010001000 10.65 3.77

3000300030003000 17.98 12.19

5000500050005000 21.08 18.62

7000700070007000 22.14 24.15

9000900090009000 22.15 28.46

11000110001100011000 22.76 32.14

13000130001300013000 23.15 35.21

15000150001500015000 23.91 37.40

17000170001700017000 23.67 39.39

Table 4-3. HPCC finished time when DRA enabled or not Problem Size Problem Size Problem Size Problem Size DRA Disabled (Seconds)DRA Disabled (Seconds)DRA Disabled (Seconds)DRA Disabled (Seconds) DRA enabled (Seconds)DRA enabled (Seconds)DRA enabled (Seconds)DRA enabled (Seconds)
1000100010001000 7 42

3000300030003000 58 81

5000500050005000 116 130

7000700070007000 230 208

9000900090009000 457 383

11000110001100011000 503 416

13000130001300013000 945 737

15000150001500015000 1039 784

17000170001700017000 1924 1419

Figure 4-3 and Figure 4-4 are shown experiment results. DRA disable was red

line, DRA enable is blue one. In this experiment, we put HPCC programs into six

virtual machines and calculate HPCC performance on six virtual machines cluster. It

caused virtual machines cluster CPU usage jumped and affect HOST machine CPU

usage relatively. When DRA function disable, virtual machines located on same

HOST machine and proceeding HPCC computing simultaneously. It caused virtual

 44

machines snatch at physical resource each other. When DRA function enable, it will

detect all host machine resource usage was balancing or not, therefore, virtual

machines on same HOST machine were migrated to others automatically. As Figure

4-4, it shows better performance when virtual machines centralized on the same host

than on distributed hosts. Because HPCC performance computing on virtual machines

cluster transfer computing data to each virtual machine, so these virtual machines

deliver message to each other by the host virtual switch. But we observed that when

problem size reach 6000, as Table 4-2 and Table 4-3, DRA enabled virtual machines

distributed to different hosts, the HPCC performance is better than DRA disabled

virtual machines. Because problem size is too big, so virtual machines cluster on the

single host cannot afford the computation. Similarly, as Figure 4-3, it represented that

HPCC computing finish earlier when DRA is enabled.

Figure 4-5. Host Machine CPU usage

Figure 4-4 is shown HPCC computing time. The horizontal axis represented

HPCC problem size and the vertical axis represented HPCC computing time. We

noticed that while HPCC problem size growing up, the difference of HPCC

 45

computing finished time when DRA function enable or not will be more obviously.

Figure 4-5 is also shown DRA function effectiveness. The vertical axis represented

virtual machine floating point calculation performance. With DRA function enabled

will obtain good performance. It also proved our thesis is workable under this

circumstance.

 46

Chapter 5

Conclusions

In this work we have presented an optimization with dynamic resource allocation

model for clusters that allows a flexible management of these computing platforms by:

(1) supporting DRA mechanism; (2) implementation OpenNebula management tool

on web-based interface; and (3) efficiently isolating the cluster workloads. Moreover,

this architecture is able to transparently grow the cluster's capacity using an external

cluster provider. Although there is another Open Source virtualization project like,

Eucalyptus. But it is difficult to reach DRA goal, because lack life migration function.

Therefore, we choose the OpenNebula solutions to hit our goal in this thesis.

Based on this model it is straightforward to plan the capacity of the cluster to, for

instance, meet a deadline to complete a given workload. We envision the use of these

kinds of models by additional components to dynamically change the cluster capacity

according to a given budget, performance policy or in conjunction with a run and

queue wait time prediction service. Finally, the architecture presented in this work is

compatible with the use of physical resources. These resources can be divided evenly

by the mechanism.

 47

Bibliography

[1] R. P. G. Gerald J. Popek. (1974) Formal requirements for virtualizable third

generation architectures.

[2] C. Clark, et al., "Live migration of virtual machines," presented at the

Proceedings of the 2nd conference on Symposium on Networked Systems

Design & Implementation - Volume 2, 2005.

[3] Z. Yi and H. Wenlong, "Adaptive Distributed Load Balancing Algorithm

Based on Live Migration of Virtual Machines in Cloud," presented at the INC,

IMS and IDC, 2009. NCM '09. Fifth International Joint Conference on, 2009.

[4] W. v. Hagen, Professional Xen Virtualization, 2008.

[5] R. N. Uhlig, G. Rodgers, D. Santoni, A. L. Martins, F. C. M. Anderson, A. V.

Bennett, S. M. Kagi, A. Leung, F. H. Smith, L., "Intel virtualization

technology," Computer, vol. 38, pp. 48-56, 2005.

[6] A. Whitaker, et al., "Rethinking the design of virtual machine monitors,"

Computer, vol. 38, pp. 57-62, 2005.

[7] M. Rosenblum and T. Garfinkel, "Virtual machine monitors: current

technology and future trends," Computer, vol. 38, pp. 39-47, 2005.

[8] A. Kivity, et al., "kvm: the Linux virtual machine monitor," in OLS '07:

Proceedings of the Linux Symposium, Ottawa, Ontario, Canada, 2007, pp.

225-230.

[9] M. S. Andrew Whitaker, Steven D Gribble, "Denali : Lightweight Virtual

Machines for Distributed and Networked Applications," Technical Report, vol.

02, p. 10, 02,10 2002.

[10] P. Barham, et al., "Xen and the art of virtualization," presented at the

Proceedings of the nineteenth ACM symposium on Operating systems

principles, Bolton Landing, NY, USA, 2003.

[11] S. Lowe, "Mastering VMware vSphere 4," pp. 26-41, 2009.

[12] K. B. David E.Williams, Juan R. Garcia, and Rami Rosen, "Virtualization with

Xen Including XenEnterprise, XenServer, and XenExpress," pp. 23-117, 2007.

[13] R. J. Srodawa and L. A. Bates, "An efficient virtual machine implementation,"

presented at the Proceedings of the workshop on virtual computer systems,

Cambridge, Massachusetts, United States, 1973.

[14] M. H. XU Hui, WANG Xueli, WANG Zhuming "Study on the dynamic model

 48

of leaf area of Eucalyptus camaldulensis," Yunnan Forestry Science and

Technology, 2000, pp. 20-22.

[15] D. Nurmi, et al., "The Eucalyptus Open-Source Cloud-Computing System," in

Cluster Computing and the Grid, 2009. CCGRID '09. 9th IEEE/ACM

International Symposium on, 2009, pp. 124-131.

[16] P. Sempolinski and D. Thain, "A Comparison and Critique of Eucalyptus,

OpenNebula and Nimbus," in Cloud Computing Technology and Science

(CloudCom), 2010 IEEE Second International Conference on, 2010, pp.

417-426.

[17] F. D. Dejan S. Miloji, Yves Paindaveine, Richard Wheeler, Songnian Zhou,

"Process migration," ACM Comput. Surv., vol. 32, pp. 241-299, 2000.

[18] J. G. Hansen and E. Jul, "Self-migration of operating systems," presented at

the Proceedings of the 11th workshop on ACM SIGOPS European workshop,

Leuven, Belgium, 2004.

[19] C.-H. T. Chao-Tung Yang, Keng-Yi Chou and Shyh-Chang Tsaur, "Design and

Implementation of a Virtualized Cluster Computing Environment on Xen,"

presented at the The second International Conference on High Performance

Computing and Applications, HPCA, 2009.

[20] Resource Management with VMware DRS [Online].

[21] E. S. Jae-Wan Jang, Heeseung Jo, Jin-Soo Kim, "A low-overhead networking

mechanism for virtualized high-performance computing systems," The Journal

of Supercomputing, 2010.

[22] P. Willmann, et al., "Concurrent Direct Network Access for Virtual Machine

Monitors," in High Performance Computer Architecture, 2007. HPCA 2007.

IEEE 13th International Symposium on, 2007, pp. 306-317.

[23] B. Sotomayor, et al., "Virtual Infrastructure Management in Private and

Hybrid Clouds," Internet Computing, IEEE, vol. 13, pp. 14-22, 2009.

[24] D. Greschler and T. Mangan, "Networking lessons in delivering 'Software as a

Service': part I," Int. J. Netw. Manag., vol. 12, pp. 317-321, 2002.

[25] D. Greschler and T. Mangan, "Networking lessons in delivering 'Software as a

Service': part II," Int. J. Netw. Manag., vol. 12, pp. 339-345, 2002.

[26] J. H. H. K.Bubendorfer, A Compositional Classification For Load-Balancing

Algorithms, 1998.

[27] G. Somani and S. Chaudhary, "Load Balancing in Xen Virtual Machine

Monitor," in Contemporary Computing. vol. 95, S. Ranka, et al., Eds., ed:

Springer Berlin Heidelberg, 2010, pp. 62-70.

[28] J. E. Smith and N. Ravi, "The architecture of virtual machines," Computer, vol.

38, pp. 32-38, 2005.

 49

[29] Amazon Web Services home page. Available: http://aws.amazon.com/

[30] Enomalism elastic computing infrastructure. Available:

http://www.enomaly.com/

[31] Salesforce Customer Relationships Management (CRM) system. Available:

http://www.salesforce.com/

[32] Logical Volume Manager. Available:

http://linuxconfig.org/Linux_lvm_-_Logical_Volume_Manager

[33] K. Z. Meth and J. Satran, "Features of the iSCSI protocol," Communications

Magazine, IEEE, vol. 41, pp. 72-75, 2003.

[34] E. Anderson, et al., "Hippodrome: Running Circles Around Storage

Administration," presented at the Proceedings of the 1st USENIX Conference

on File and Storage Technologies, Monterey, CA, 2002.

[35] OpenNebula. Available: http://www.opennebula.org

[36] J. S. Paul Willmann, David Carr, Aravind Menon, Scott Rixner, Alan L. Cox

and Willy Zwaenepoel, "Concurrent Direct Network Access for Virtual

Machine Monitors," The second International Conference on High

Performance Computing and Applications, HPCA, 2007.

[37] Eucalyptus. Available: http://open.eucalyptus.com

[38] R. S. M. Borja Sotomayor, Ignacio M. Llorente, Ian Foster, "Virtual

Infrastructure Management in Private and Hybrid Clouds," IEEE Internet

Computing, vol. 13, 2009.

[39] Apache JMeter. Available: http://jakarta.apache.org

[40] J. You, et al., "JMeter-based aging simulation of computing system," in

Computer, Mechatronics, Control and Electronic Engineering (CMCE), 2010

International Conference on, 2010, pp. 282-285.

[41] HPCC. Available: http://icl.cs.utk.edu/hpcc/

[42] S. Browne, et al., "The National HPCC Software Exchange," Computational

Science & Engineering, IEEE, vol. 2, pp. 62-69, 1995.

 50

Appendix – Installation Guide

Appendix A. Prerequisite

Appendix B. OpenNebula Server Installation

System Partition:

 / 40GB

 Swap 4GB

/data other space

Operation System:

 Debian 5.0 i386

Kernel:

 2.6.26-2-xen-686

Install Package:

 xen-linux-system-2.6.26-2-xen-686

 python-xml

 xen-tools

 g++ ruby

 libsqlite3-0

 sqlite3

 libsqlite3-dev

 libsqlite3-ruby

 libxmlrpc-c3-dev

 libxmlrpc-c3

 libssl-dev

 scons

 mysql-server-5.0

 php5

 etherwake

 expect

 php5-mysql

 nfs-kernel-server

 51

Configuration Modified:

 /etc/hosts

127.0.0.1 localhost

140.128.102.171 debian1.hpc.cs.thu.edu.tw debian1

140.128.102.172 debian2.hpc.cs.thu.edu.tw debian2

140.128.102.173 debian3.hpc.cs.thu.edu.tw debian3

140.128.102.174 debian4.hpc.cs.thu.edu.tw debian4

/etc/ssh/sshd_config

StrictHostKeyChecking no

/etc/xen/xend-config.sxp

(xend-http-server yes)

(xend-unix-server yes)

(xend-tcp-xmlrpc-server yes)

#(xend-unix-xmlrpc-server yes)

(xend-relocation-server yes)

(xend-relocation-port 8002)

(xend-address localhost)

(xend-relocation-hosts-allow '')

(network-script 'network-bridge netdev=eth0')

#(network-script network-dummy)

/etc/exports

/data/domains

140.128.102.171(rw,sync,no_subtree_check,no_root_squash)

140.128.102.172(rw,sync,no_subtree_check,no_root_squash)

140.128.102.173(rw,sync,no_subtree_check,no_root_squash)

140.128.102.174(rw,sync,no_subtree_check,no_root_squash)

140.128.102.181(rw,sync,no_subtree_check,no_root_squash)

140.128.98.31(rw,sync,no_subtree_check,no_root_squash)

/data/one

140.128.102.171(rw,sync,no_subtree_check,no_root_squash)

140.128.102.172(rw,sync,no_subtree_check,no_root_squash)

140.128.102.173(rw,sync,no_subtree_check,no_root_squash)

140.128.102.174(rw,sync,no_subtree_check,no_root_squash)

140.128.102.181(rw,sync,no_subtree_check,no_root_squash)

 52

a. Configure Xen environment

b. Install Xen-tools and configure

c. Create Virtual Machine

virtual machine will create in /data/domains.

/data/xen

140.128.102.171(rw,sync,no_subtree_check,no_root_squash)

140.128.102.172(rw,sync,no_subtree_check,no_root_squash)

140.128.102.173(rw,sync,no_subtree_check,no_root_squash)

140.128.102.174(rw,sync,no_subtree_check,no_root_squash)

140.128.102.181(rw,sync,no_subtree_check,no_root_squash)

$ sudo su

echo xen.independent_wallclock=1 >> /etc/sysctl.conf

echo loop max_loop=100 >> /etc/modules

echo xenblktap >> /etc/modules

ln -s /usr/lib/xen-3.2-1/bin/tapdisk /usr/sbin

$ sudo aptitude -y install xen-tools

$ cd /etc/xen-tools

$ sudo gedit xen-tools.conf

dir = /data/xen

size = 4Gb

dist = lenny

gateway = 192.168.200.254

netmask = 255.255.255.0

broadcast = 192.168.200.255

passwd = 1

mirror = http://free.nchc.org.tw/debian

serial_device = hvc0

output = /data/domains

$ sudo mkdir /home/domains

$ sudo xen-create-image --hostname=vm01 --ip=192.168.200.X

 53

d. Virtual Machine basic configuration

Start virtual machine.

Virtual machine basic configuration.

e. Install OpenNEbula

f. Edit OpenNEbula Setting

$ sudo xm console vm01

aptitude -y install udev ntpdate

cp /usr/share/zoneinfo/Asia/Taipei /etc/localtime

ntpdate time.nist.gov

echo xen.independent_wallclock=1 >> /etc/sysctl.conf

$ cd

$ wget http://dev.opennebula.org/attachments/download/103/one-1.4.0.tar.gz

$ tar zxvf one-1.4.0.tar.gz

$ cd one-1.4

$ sudo scons

$ sudo mkdir /home/one

$ sudo ./install.sh -d /home/one

$ sudo su

echo export ONE_LOCATION=/home/one >> ~/.bashrc

echo export ONE_XMLRPC="http://localhost:2633/RPC2" >> ~/.bashrc

echo export PATH='$ONE_LOCATION/bin:$PATH' >> ~/.bashrc

echo export ONE_AUTH=/home/one/.one/one_auth >> ~/.bashrc

mkdir /home/one/.one

echo "root:cloud123" >> /home/one/.one/one_auth

cd /home/one

gedit etc/oned.conf

HOST_MONITORING_INTERVAL = 5

VM_POLLING_INTERVAL = 10

 54

g. OpenNEbula daemon start

root ssh without password

IM_MAD = [

 name = "im_xen",

 executable = "one_im_ssh",

 arguments = "im_xen/im_xen.conf"]

#IM_MAD = [

name = "im_kvm",

executable = "one_im_ssh",

arguments = "im_kvm/im_kvm.conf"]

VM_MAD = [

 name = "vmm_xen",

 executable = "one_vmm_xen",

 default = "vmm_xen/vmm_xen.conf",

 type = "xen"]

#VM_MAD = [

name = "vmm_kvm",

executable = "one_vmm_kvm",

default = "vmm_kvm/vmm_kvm.conf",

type = "kvm"]

TM_MAD = [

name = "tm_ssh",

executable = "one_tm",

arguments = "tm_ssh/tm_ssh.conf"]

 TM_MAD = [

 name = "tm_nfs",

 executable = "one_tm",

 arguments = "tm_nfs/tm_nfs.conf"]

ssh-keygen

cp ~/.ssh/id_rsa.pub ~/.ssh/authorized_keys

scp -r ~/.ssh debian2:~

scp -r ~/.ssh debian3:~

scp -r ~/.ssh debian4:~

 55

start oned

h. Add OpenNEbula Client

i. Convert Xen VM to OpenNEbula Format

j. Using One Open VM

ssh-keygen

cp ~/.ssh/id_rsa.pub ~/.ssh/authorized_keys

scp -r ~/.ssh debian2:~

scp -r ~/.ssh debian3:~

scp -r ~/.ssh debian4:~

onehost add debian1 im_xen vmm_xen tm_nfs

onehost add debian2 im_xen vmm_xen tm_nfs

onehost add debian3 im_xen vmm_xen tm_nfs

onehost add debian4 im_xen vmm_xen tm_nfs

NAME = vm01

CPU = 1

MEMORY = 512

OS = [kernel = /boot/vmlinuz-2.6.26-2-xen-686,

 initrd = /boot/initrd.img-2.6.26-2-xen-686,

 root = sda2]

DISK = [source = /data/xen/domains/vm01/disk.img,

 clone = no,

 target = sda2,

 readonly = no]

DISK = [type = swap,

 size = 128,

 target = sda1,

 readonly = no]

NIC=[IP="192.168.200.X", MAC="00:16:00:00:00:XX"]

onevm create vm01.one ; onevm deploy vm01 debian2

 56

k. Shutdown VM

Appendix C. OpenNEbula Client Installation

a. Configure Xen environment

b. NFS mount server partition

c. Migrate VM

onevm list

onevm shutdown vm01

$ sudo su

echo xen.independent_wallclock=1 >> /etc/sysctl.conf

echo loop max_loop=100 >> /etc/modules

echo xenblktap >> /etc/modules

ln -s /usr/lib/xen-3.2-1/bin/tapdisk /usr/sbin

$ sudo aptitude install nfs-common

$ sudo mkdir /home/domains

$ sudo mount.nfs debian1:/data/domains /data/domains

$ sudo mkdir /home/one

$ sudo mount.nfs debian1:/data/one/ /data/one

$ sudo mkdir /home/xen

$ sudo mount.nfs debian1:/data/xen/ /data/xen

login debian1

$ cd /home/domains

$ sudo su

onevm create vm01.one ; onevm deploy vm01 debian1

onevm livemigrate vm01 debian2

 57

Appendix D. OpenNebula Script

a. Host Management

add_host.sh

delete_host.sh

collect_mac.sh

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

sudo -s

source /root/.bashrc

onehost add $1 im_xen vmm_xen tm_nfs

/var/www/script/rrd_graph/src/make_cpu_mem.sh $1

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

sudo -s

source /root/.bashrc

hostid=`onehost list | grep $1 | awk '{print $1}'`

onehost delete $hostid

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

sudo -s

source /root/.bashrc

host_server=`onehost list | sed 1d | awk '{print $2}'`

for input_server in $host_server

do

 input_mac=`ssh $input_server ifconfig | grep peth | awk '{print $5}'`

 echo $input_server $input_mac >> host_mac.list

done

 58

boot_host.sh

shutdown_host.sh

enable_host.sh

disable_host.sh

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

sudo -s

source /root/.bashrc

input_mac=`cat /var/www/script/host_mac.list | grep $1 | awk '{print $2}'`

etherwake $input_mac

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

sudo -s

source /root/.bashrc

onehost disable $!

ssh $1 shutdown -h now

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

sudo -s

source /root/.bashrc

onehost enable $1/var/www/script/rrd_graph/src/delete_cpu_mem.sh $1

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

sudo -s

source /root/.bashrc

onehost disable $1

 59

initial_host.sh

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

sudo -s

source /root/.bashrc

#scp /etc/apt/sources.list $1:/etc/apt/

ssh -n $1 "apt-get update"

ssh -n $1 "apt-get -y install openssh-server ntpdate"

ssh -n $1 "/etc/init.d/network-manager-dispatcher stop"

ssh -n $1 "/etc/init.d/network-manager stop"

ssh -n $1 "apt-get -y remove network-manager"

#install xen deb

ssh -n $1 "apt-get -y install xen-linux-system-2.6.26-2-xen-686 python-xml"

#env setup

ssh -n $1 "echo xen.independent_wallclock=1 >> /etc/sysctl.conf"

ssh -n $1 "echo loop max_loop=100 >> /etc/modules"

ssh -n $1 "echo xenblktap >> /etc/modules"

ssh -n $1 "ln -s /usr/lib/xen-3.2-1/bin/tapdisk /usr/sbin"

#create directory for opennebula

mkdir /data/domains

mkdir /data/one

mkdir /data/xen

#deliver basic config and reboot

scp /var/www/script/config/xend-config.sxp $1:/etc/xen/

scp /var/www/script/config/hosts $1:/etc/

scp /var/www/script/config/rc.local $1:/etc/

scp /var/www/script/config/ssh_config $1:/etc/

ssh -n $1 "/etc/rc.local"

ssh -n $1 "df -h"

#install opennebula package

ssh -n $1 "apt-get -y install ruby libsqlite3-0 sqlite3 libsqlite3-dev libsqlite3-ruby

libxmlrpc-c3-dev libxmlrpc-c3 libssl-dev scons"

ssh -n $1 "reboot"

 60

one_start.sh

one_stop.sh

reboot_host.sh

show_host.sh

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

sudo -s

source /root/.bashrc

one start

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

sudo -s

source /root/.bashrc

one stop

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

sudo -s

source /root/.bashrc

onehost disable $!

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

sudo -s

source /root/.bashrc

onehost show $1

 61

b. VM Management

boot_one_vm.sh

convert.sh

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

sudo -s

source /root/.bashrc

cd /data/domains

onevm create $1.one

onevm deploy $1 $2

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

sudo -s

source /root/.bashrc

#xen disk path

host_path="/data/domains"

host_cfg=$1

#xen cfg form

host_name=`cat $host_path/$host_cfg.cfg | grep name | awk '{print $3}' | sed 1d

| cut -d \' -f 2`

host_mem=`cat $host_path/$host_cfg.cfg | grep memory | awk '{print $3}' | sed

1

d | cut -d \' -f 2`

host_kernel=`cat $host_path/$host_cfg.cfg | grep kernel | awk '{print $3}' | cut

 -d \' -f 2`

host_ramdisk=`cat $host_path/$host_cfg.cfg | grep ramdisk | awk '{print $3}' | c

ut -d \' -f 2`

host_disk=`cat $host_path/$host_cfg.cfg | grep root | awk '{print $3}' | cut -d

\' -f 2 | cut -d \/ -f 3`

host_sourcedisk=`cat $host_path/$host_cfg.cfg | grep file | grep disk | cut -d \' -f 2

| cut -d \/ -f 6 | cut -d \, -f 1`

 62

host_target=`cat $host_path/$host_cfg.cfg | grep file | grep disk | cut -d \' -f 2 | cut

-d \/ -f 6 | cut -d \, -f 2`

host_swap=`cat $host_path/$host_cfg.cfg | grep file | grep swap | cut -d \' -f 2 | cut

-d \/ -f 6 | cut -d \, -f 2 `

host_ip=`cat $host_path/$host_cfg.cfg | grep vif | awk '{print $4}' | cut -d \' -f 2 |

cut -d \, -f 1 | cut -d \= -f 2`

host_mac=`cat $host_path/$host_cfg.cfg | grep vif | awk '{print $4}' | cut -d \' -f 2

| cut -d \, -f 2 | cut -d \= -f 2`

#create opennebula cfg form

sudo echo "NAME = $host_name" > $host_path/$host_cfg.one

sudo echo "VCPU = 1" >> $host_path/$host_cfg.one

sudo echo "MEMORY = $host_mem" >> $host_path/$host_cfg.one

sudo echo "OS = [kernel = $host_kernel," >>

$host_path/$host_cfg.one

sudo echo " initrd = $host_ramdisk, " >>

$host_path/$host_cfg.one

sudo echo " root = $host_disk]" >>

$host_path/$host_cfg.one

sudo echo "DISK = [source =

/data/xen/domains/$host_name/$host_sourcedisk," >> $host_path/$host_cfg.one

sudo echo " clone = no," >> $host_path/$host_cfg.one

sudo echo " target = $host_target," >>

$host_path/$host_cfg.one

sudo echo " readonly = no]" >>

$host_path/$host_cfg.one

sudo echo "DISK = [type = swap," >> $host_path/$host_cfg.one

sudo echo " size = 128," >> $host_path/$host_cfg.one

sudo echo " target = "$host_swap"," >> $host_path/$host_cfg.one

sudo echo " readonly = "no"]" >> $host_path/$host_cfg.one

sudo echo "NIC=[IP=\"$host_ip\", MAC=\"$host_mac\"]" >>

$host_path/$host_cfg.one

 63

create_default_vm.sh

create_vm.sh

#!/usr/bin/expect

#set env var

set host_name [lindex $argv 0]

set host_ip [lindex $argv 1]

set host_size [lindex $argv 2]

set host_passwd [lindex $argv 3]

set timeout 2400

#create vm

spawn xen-create-image --hostname=$host_name --ip=$host_ip --size=$host_size

--force

expect "Enter new UNIX password: "

send "$host_passwd\r"

expect "Retype new UNIX password: "

send "$host_passwd\r"

interact

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

sudo -s

source /root/.bashrc

sudo /var/www/script/create_default_vm.sh $1 $2 $3 $4

sudo xm create /data/domains/$1.cfg

sudo /var/www/script/install_default_vm.sh $1 $2 $3 $4

sudo xm destroy $1

sudo /var/www/script/convert.sh $1

 64

delete_vm.sh

edit_vm.sh

install_default_vm.sh

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

sudo -s

source /root/.bashrc

rm /data/domains/$1.cfg

rm /data/domains/$1.one

rm -rf /data/xen/domains/$1

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

sudo -s

source /root/.bashrc

cat /data/domains/"$1".one | sed "s/VCPU..*/VCPU = "$2"/g" | sed

"s/MEMORY..*/MEMORY = "$3"/g" > /data/domains/"$1".one

#!/usr/bin/expect

#set env var

set host_name [lindex $argv 0]

set host_ip [lindex $argv 1]

set host_size [lindex $argv 2]

set host_passwd [lindex $argv 3]

set timeout 2400

#install vm default package

spawn /usr/sbin/xm console $host_name

expect "$host_name login: "

send "root\r"

 65

list_all_vm.sh

sleep 2

expect "Password: "

send "$host_passwd\r"

sleep 2

send "cp /usr/share/zoneinfo/Asia/Taipei /etc/localtime\r"

send "echo xen.independent_wallclock=1 >> /etc/sysctl.conf\r"

send "ping 168.95.1.1\r"

expect "64 bytes from 168.95.1.1: icmp_seq="

send "\003"

send "ntpdate time.nist.gov\r"

send "aptitude -y install udev ntpdate\r"

expect "Reading task descriptions... Done"

send "\x1d"

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

sudo -s

source /root/.bashrc

vm_name=`ls /data/domains/ | grep .one | cut -d . -f 1`

for input_vm in $vm_name

do

 vcpu=`cat /data/domains/$input_vm.one | grep VCPU | cut -d = -f 2`

 vmem=`cat /data/domains/$input_vm.one | grep MEMORY | cut -d = -f

2`

 vm_ip=`cat /data/domains/$input_vm.one | grep IP | cut -d \" -f 2`

 echo "NAME = $input_vm"

 echo "CPU = $vcpu"

 echo "MEM = $vmem"

 echo "IP = $vm_ip"

done

 66

list_boot_vm.sh

migrate_one_vm.sh

shutdown_one_vm.sh

shutdown_vm.sh

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

sudo -s

source /root/.bashrc

#main code

onevm list

interact

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

sudo -s

source /root/.bashrc

onevm livemigrate $1 $2

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

sudo -s

source /root/.bashrc

onevm shutdown $1

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

sudo -s

source /root/.bashrc

xm destroy $1

 67

ssh_vm.sh

c. RRDTool Graph Script

delete_cpu_mem.sh

#!/usr/bin/expect

#set env var

set host_ip [lindex $argv 0]

set host_passwd [lindex $argv 1]

set timeout 2400

#create vm

spawn ssh root@$host_ip

expect "password: "

send "$host_passwd\r"

interact

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

sudo -s

source /root/.bashrc

rrd_path="/var/www/script/rrd_graph"

graph_path="/var/www/graph"

rm "$rrd_path"/rrd/"$1"_cpufree.rrd

rm "$rrd_path"/rrd/"$1"_memuse.rrd

rm "$graph_path"/"$1"_cpufree.png

rm "$graph_path"/"$1"_memuse.png

 68

graph_cpu_mem.sh

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

sudo -s

source /root/.bashrc

while true ;

do

server=`/data/one/bin/onehost list | sed 1d | awk '{print $2}'`

for input_server in $server

do

rrd_path="/var/www/script/rrd_graph"

graph_path="/var/www/graph"

cpu_rrd="$rrd_path"/rrd/"$input_server"_cpufree.rrd

mem_rrd="$rrd_path"/rrd/"$input_server"_memuse.rrd

now=`date +%s`

tcpu=`onehost list | grep "$input_server" | awk '{print $5}'`

fcpu=`onehost list | grep "$input_server" | awk '{print $6}'`

use_cpu=` expr $tcpu - $fcpu `

vm_free_mem=`ssh "$input_server" xm info | grep free_memory | awk '{print

$3}'`

vm_use_mem=`onevm list | grep "$input_server" |grep runn | awk '{print $6}' |

cut -d M -f 1`

initial_vm_mem=0

for plus_vm_mem in $vm_use_mem

do

 initial_vm_mem=`expr "$initial_vm_mem" + "$plus_vm_mem"`

done

vm_use_mem=$initial_vm_mem

 69

if [-z "$vm_use_mem"] ; then

 vm_use_mem=0

fi

vm_total_mem=`expr $vm_free_mem + $vm_use_mem`

#rrdtool update data

rrdtool update $cpu_rrd $now:$use_cpu:$tcpu

rrdtool update $mem_rrd $now:$vm_use_mem:$vm_total_mem

#rrdtool graph rrd data

rrdtool graph $graph_path/"$input_server"_cpufree.png \

--title ""$input_server" cpu usage " \

DEF:t1=$cpu_rrd:"$input_server"-fcpu:AVERAGE \

DEF:t2=$cpu_rrd:"$input_server"-tcpu:AVERAGE \

COMMENT:"--\n" \

AREA:t1#ff0000:""$input_server" use cpu" \

GPRINT:t1:LAST:" %7.0lf \n" \

LINE1:t2#00ff00:""$input_server" total cpu" \

GPRINT:t2:LAST:"%7.0lf \n" \

-v "available cpu" -M -u 1000 -l 0\

-Y -X b -h 100 -w 400 -s `date --date='10 minute ago' +%s`

rrdtool graph $graph_path/"$input_server"_memuse.png \

--title ""$input_server" memory usage " \

DEF:t1=$mem_rrd:"$input_server"-umem:AVERAGE \

DEF:t2=$mem_rrd:"$input_server"-tmem:AVERAGE \

COMMENT:"--\n" \

AREA:t1#ff0000:""$input_server" use memory (MB) " \

GPRINT:t1:LAST:" %7.0lf \n" \

LINE1:t2#00ff00:""$input_server" total memory (MB)" \

GPRINT:t2:LAST:" %7.0lf \n" \

-v "memory usage (%)" -M -u 100 -l 0\

-Y -X b -h 100 -w 400 -s `date --date='10 minute ago' +%s`

done

sleep 12

done

 70

graph_pdu_rrd.sh

#!/bin/sh

#--------------------env variable-------------

input_rrd=""

rrd_cmd="/usr/bin/rrdtool"

image_path="/var/www/graph"

pdu_rrd=""

now=`date +%s`

pdu_snmp="public"

pdu_ip="140.128.102.193"

#for paper record

day=`date +%d`

month=`date +%m`

#---

for temp_ip in $pdu_ip

do

 pdu_total=`/usr/bin/snmpwalk -c $pdu_snmp -v 1 $temp_ip

enterprises.17420.1.1.4.2.1.2.0 | awk '{print $4}'`

 pdu_total_w=`echo "scale=4;$pdu_total * 11" | bc`

 input_rrd="$now:$pdu_total_w"

 #update rrd value

 pdu_rrd="/var/www/script/rrd_graph/rrd/pdu_$temp_ip.rrd"

 $rrd_cmd update $pdu_rrd $input_rrd

 #graph rrd png

 lastip=`echo $temp_ip | cut -d . -f 4`

 $rrd_cmd graph $image_path/pdu_$temp_ip.png \

 --title "HPC.THU PDU Watt Usage" \

 DEF:t1=$pdu_rrd:pdu-$lastip-total:AVERAGE \

 71

make_cpu_mem.sh

COMMENT:"--CURRENT---------------------

--------------------------------\n" \

 LINE2:t1#FF0000:"pdu $temp_ip $line_1 " \

 GPRINT:t1:LAST:"%7.2lf \n" \

 -v "PDU Power Watt" -M -l 0\

 -Y -X b -h 250 -w 600 -s `date --date='1 day ago' +%s`

 #for paper record

 date +%H-%M >> /var/www/script/rrd_graph/tmp/$day-$month

 echo $pdu_total_w >> /var/www/script/rrd_graph/tmp/$day-$month

done

#!/bin/sh

PATH=/data/one/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

rrd_path="/var/www/script/rrd_graph"

rrdtool create "$rrd_path"/rrd/"$1"_memuse.rrd -s 60 \

DS:"$1"-umem:GAUGE:60:0:10000000 \

DS:"$1"-tmem:GAUGE:60:0:10000000 \

RRA:AVERAGE:0.5:1:603 \

RRA:AVERAGE:0.5:6:603 \

RRA:AVERAGE:0.5:24:603 \

RRA:AVERAGE:0.5:288:800 \

RRA:MAX:0.5:1:603 \

RRA:MAX:0.5:6:603 \

RRA:MAX:0.5:24:603 \

RRA:MAX:0.5:288:800

 72

make_pdu_rrd.sh

rrd_path="/var/www/script/rrd_graph"

rrdtool create "$rrd_path"/rrd/"$1"_cpufree.rrd -s 60 \

DS:"$1"-fcpu:GAUGE:60:0:10000000 \

DS:"$1"-tcpu:GAUGE:60:0:10000000 \

RRA:AVERAGE:0.5:1:603 \

RRA:AVERAGE:0.5:6:603 \

RRA:AVERAGE:0.5:24:603 \

RRA:AVERAGE:0.5:288:800 \

RRA:MAX:0.5:1:603 \

RRA:MAX:0.5:6:603 \

RRA:MAX:0.5:24:603 \

RRA:MAX:0.5:288:800

#!/bin/sh

rrd_dir="/var/www/script/rrd_graph/rrd"

input_rrd=""

rrd_cmd="/usr/bin/rrdtool"

pdu_ip="140.128.102.193"

for temp_ip in $pdu_ip

do

lastip=`echo $temp_ip | cut -d . -f 4`

$rrd_cmd create $rrd_dir/pdu_$temp_ip.rrd -s 300 \

DS:pdu-$lastip-total:GAUGE:300:0:10000000 \

RRA:AVERAGE:0.5:1:603 \

RRA:AVERAGE:0.5:6:603 \

RRA:AVERAGE:0.5:24:603 \

RRA:AVERAGE:0.5:288:800 \

RRA:MAX:0.5:1:603 \

RRA:MAX:0.5:6:603 \

RRA:MAX:0.5:24:603 \

RRA:MAX:0.5:288:800

done

 73

