R FE i Bl

T* AR FHEAEE ZRFRE GRSk
Implementation of a Medical Image File Accessing System with

Virtualization Fault Tolerance on Cloud

REREBEIEMBGIXFRELE

RERZFERIEZER HAA

A O FE O OARIHBX

AR RSB B B BRV GRS
B A %

By #REE R & B &

s & ~ 4 B 7 ¥
A ¥y 18

% B é’ij) (R

K

P
S
QND
A
D
-

A

%

e

#“"XA

FERHR 100 F 6 A 28 B8

&
HER ZRELERH G S RPETY AP OER 2R ELRERTG B
BT~ T EHGE R SRS P > RS ATnT Rl B - B AT R R R R
PERRLR Y AR EER A AR AT T U BT R
TRIRERIAE S A B F R Bfor el TR - BB LR

do BB ok R B AR R FS 3 FRBRPRE AT 3 T B

4

Rye i 38 1% > 35 i 4 2 e B fcummw%%%ﬁ?fowm%ﬁﬁt?uﬁﬂ?%m
FI*F - RBIMFORFAE PHHPEEAAA SRR E R BRI

1 i L R R A FRAEE - AR R AR

BiL a3 T O g R o A EE (T - B %5-‘}%:;%3 e B 7 % SRE G PRI
JF#L_ 11& ?",»3_ e rf}é‘;{"%mﬁg \” ﬁﬁa‘g' ZEE o EEAAG R A B
e B REA Mo R R R - B RETER o e 8 B o T T AR

BT 0 AR R R BBk B TR EEF T

ALz g 4

WAL © Bl s T LA b st F %ﬁﬁ%{:*%&%‘ﬁﬁﬁﬁﬁﬁﬁ‘
AR BB HE EEFH BT

Abstract

In recent years, Cloud Computing and Virtualization has become the most popular computer
science field. Cloud Computing through the existing network, parallel and distributed
technology, distributed computer composed of a cluster can provide powerful features for
Internet users to provide computing, storage and software and hardware services. The local
computer may not be as traditional as the computer needs enough hard disk space, high-power
processors and high-capacity memory, only the necessary hardware devices such as network
devices and basic input and output devices. Users will not need to know where the server,
don't care how it works internally, through the Internet can be transparent use of resources.
Server virtualization can improve resource utilization, improve deployment flexibility and
help streamline the management of manpower and energy-saving and carbon benefits through
virtualization management tools, management applications can be more flexible allocation of
resources. This paper focuses on the cloud storage virtualization technology into the cluster to
achieve high-availability services. We really make a medical imaging system and the system
architecture in a distributed file system. Namenode using the virtual machine to do a build,
through Distributed Replicated Block Device can be specified by the network equipment to
do an entire disk image. Finally, through experiments also proved the high reliability data

storage clustering and fault tolerance capabilities.

Keywords: Picture Archiving and Communications System (PACS), Digital Imaging and
Communications in Medicine (DICOM), Cloud Computing, Distributed File
System (DFS), Virtualization, Virtualization Management, Virtualization Fault

Tolerence(VFT), High Availability (HA)

Acknowledgements
B AR DR Y B EFw Y R TR Bk SRRk g

FFEOFTER G AL AHERLE Y xé‘gs}"HL% Rl TR P ARE

A

SEERTE T A FF L Lo B RSP R E R
A EH R A FH P RE Ll B EGE {E Y h LA i -
AT B2 TAL R B R BRI EHT 2y T R R A
ﬁ%ﬁ&%%\ﬁiﬁﬁﬁ\g%ﬁ%ﬁﬁﬁ%“%ﬁﬁﬁ%ﬁﬁ%&iﬁﬂ’%@$
W L Av A o R EURRBRL o
gx&@wﬁzﬁgﬁﬁéﬁ\kﬁw’%ﬁﬁ% SR B T ERE A Ao 3
A FNR- AR HREERH A TR RS X REITF R ESED R

7
1

T o

3
oy

ﬁ%i%ﬁﬁﬁ’ﬂﬁﬁWﬁﬁﬁHﬂ’ﬁ%%?ﬁiﬁﬂﬁp a1
g\,;}gﬁ;\m?\/\ » Il »}; i i et ;}3‘;&:@@%,: ;;z,.?g ‘;.IE«T RN i;gg‘(ﬁg%

PoEARLF o ATy FIEAEA MUE AL > R d R e

Table of Contents

BB B s iii
N] 1 - Uo! SRRSO \Y
ACKNOWIEAGEMENTS.......oiiiiiieieee et as st saeans e s beesteereesreesreeneenneenrs v
List of Figures SRW.......... e, 0 0 e e viil
Chapter 1 INTrOGUCTIONciiit ittt ettt sbe et e st e s e s aas e beabe e saaseesseensannaeabeeneens 1
IS 1Y [0 Y= 1 (o] RPN 1

1. 2ContriDution®..... SE... ANRRR. SW0N. (. S0 .L. S . S % ... 3

1.3 TeSIS OFQaniZATION.ueeiuiaueiseeiseaueaseessaaseasaesseasseasssssseeessasssesssesseesseessensesssessnnneens 4
Chapter 2 BaCKOIrOUNG.o oieiuieeeireesseasseaseesueessssssesssessesssssseessssssessasssssssnssesssaesesssesanssens 5
2.1 MediCal TECANOIOGY . .eue. ettt ese e ebeabe e sb et e e bbb e 5
Al.1PAGS™ L. 7. e . Y. 5

2.1.2 DICOM VS. NaNOGICOMueeiieaiuesieiiieie i seeaeeeseesteesessneesseeseesaessaessesseesseesees 6

2.2 VITTUALIZALION ...ttt ettt e ste s et te s ake e b e eneestaennesneesraeeens 7
2.2.1 Virtualization TeChNOIOQY .. c..ciciiiiiui ittt 7

2.2.2 Virtualization Fault TOIEIraNCEccceeiviieieeece e 10

2.2.3 Virtual Machine Managementocooieeeieie e 11

20 4 0T o OSSPSR 13
2.3.1 Hadoop and HDFSooiiiieeee e 13

2.4 Distributed Replicated BIOCK DEVICE..........ccovviiieiiiiiiccie et 14

2.5 REIAtEA WOTKS ..ottt et nna e 16

Vi

Chapter 3 System Design and Implementationcccocveveiiieieeie i 18

3.1 Virtualization Fault Tolerance DeSIgNccccoviieieiieieieiesesee s 18

3.2 SYStEM ATCHITECLUIE ...eveeieee et 21

3.3 SYSIEM WOIKFIOW ... s 25

3.4 MIFAS SyStem INTErACEccveiieiieee e 26

3.5 Virtualization Manager INTEIfaCe.coii i 30
Chapter 4 EXperimental RESUITS ...ttt b e 31
4.1 Experimental ENVIFONMENTScc.viiiiiiii itttk 31

4.2 RESUts ... 4. N A ... " TAAAS N .. 32
4.2.1 Performance COMPAIISONcueiveiutriseeiieeeesiesstsseseesiesseeseeseesnesseseessessesseas 32

4.2.2 Network Fault TOIEFaNCEccocv ittt 34

4.2.3 Datanodes Fault TOIBIrANCEcceiiiiiiiiiiiaiisiie ittt enne s 35

4.2.4 Use DRBD with Heartbeat on Namenode..............ccoeveiereneneienie s 36

4.2.5 Use DRBD with Heartbeat under Live Migrationccccooeiienenerinnen. 37

Chapter 5 Conclusion and FUtUre WOIKcccciiiiiiiin it 41
5.1 ConCluding REMAIK.........iiuiiiiiieiies bbbt 41

5.2 Future WOKk................ % Bl 8 0. 00T 42

=] 1o [ToTo] =1 o] 1)U UR PP UPOTP PRSP 43
APPENDIX A Prepare SOFtWAKEcoviiiiiiic ettt 48
APPENDIX B INStallation GUITE.........ccccuiiieiieie e nre e 49

Vil

List of Figures

Figure 1-1. U.S. Diagnostic Imaging Archive Storage Requirement Forecastc.coc...... 1
Figure 2-1. OpenNebula Internal ArChItECTUIe.........covviiiiii e 12
Figure 2-2. DRBD System WOIKFIOWcooiiiiiie e e 15
Figure 2-3. DRBD With HEartheatcovieiiiiiie e 16
Figure 3-1. Virtualization Fault Tolerance FIOWcccooviiiiiie s 19
Figure 3-2. HA COMPONENTScoiiiiiiiiitisiessisee i it iae ekt e e e nne st ettt ie e eseennenes 20
Figure 3-3. HOW 10 THIQQEr VT ...t sttt e st ena e s sne e nns 21
Figure 3-4. SYStem COMPONENTSoiuiitiiuiiuesseeseassessesseibeseesibnsesiaasaesasssseesbessessessessssinsseeseenes 22
Figure 3-5. Deploy Namenode HA on Virtualization..............ccccceviveieeveecc i cee e 23
Figure 3-6. Compress DICOM 10 JPEG.c.uiiieiiiiianeinieniestinesiisesseeeeseesne e sbe s nnsne s 24
Figure 3-7. MIFAS System WOIKFIOWc.covuiiiiieniciieie s et 26
Figure 3-8. AUthOrization INTEITACEeiiiiie ettt 27
Figure 3-9. Portal 0f MIFAS SYStEIM......ciiuiiiiieiierieiieieestesseseeseenaesae s eitesse e ssesessee e ennenns 27
FIQUIE 3-10. FUNCTIONS Leiiiueviruiaiueneeiianasseanesnssnsennensessassassesesssinsansessssbeseessiinesse shessessessbaneensenses 28
FIGUIE 3-11. FIlE STALUS ..uiitt ittt s s sne e ake e teahe et e ne e deese e veenasannentaeneeenes 28
Figure 3-12. Medical IMage PrEVIEWc..ceiieiieiieiie ittt sbe bt 29
Figure 3-13. PatieNt RECOIUS ... cceireiiiiieiieiit ettt aesbe e ste e asene e e teenaesreesreenneenes 29
Figure 3-14. Upload MediCal IMAagesS........oc ittt ettt 29
Figure 3-15. Web-Based INtEITaCE.cciiuiiii ittt 30
Figure 3-16. Virtual Machines ManagErcccoueieiereiiiieiisieseeee et 30
Figure 4-1. Experimental ENVIFONMENTScociiiiiiiiic et 31
Figure 4-2. Compare of Physical Host and Virtual Machine Throughputccocoovinee. 32
Figure 4-3. Compare of Physical Host and VM Networking Performanceccccceeune.e. 33
Figure 4-4. Compare of PACS and MIFAS Networking Performanceccccccoevvvevvenenne. 33

viii

Figure 4-5. Network Fault TOIEIaNCecoveieieeii et 34

Figure 4-6. Single Site of Hardware Failure ... 35
Figure 4-7. Compare of HDFS Download and Upload Throughput...........ccccceeieiiiieivennenne. 36
Figure 4-8. Compare of HDFS Download and Upload Networking Performance................... 36
Figure 4-9. DRBD with Heartbeat on physical environment..............cccocveveiiienieeve e se e 37
Figure 4-10. DRBD with Heartbeat on virtual environment..............cccoocveveiienienie e 38
Figure 4-11. Experimental ENVIFONMENLS wociviiiiiiiiiiiiiiee e sae s 39
Figure 4-12. Shutdown HOSE @Nd VIMZc.oouiiiiiii ittt e 40
Figure 4-13. VFT IMECNANTSM 1. c.iiiuieii it eesiisiessssnneaseesseesiaeseeinaesaaesaessaesssassessaessesnnessessseensenses 40

Chapter 1

Introduction

1.1 Motivation

More and more long-term costs control an onsite medical imaging archive. In 2005, the
typical U.S. provider estimated that 50 MB of storage were required for an average study.
According to the U.S. diagnostic imaging archive storage demand forecasts (Figure 1-1), it
attempting to arrive at an estimate of the total storage volume required to store medical image
data. The first assumption that one has to make is to consider only the primary copies of
images, that is, to assume that there is no data duplication taking place for the sake of

redundancy (e.g. RAID) or disaster recovery planning [1-4].

Required Storage Volume for Primary Copies
120000 BR@
% RADIOLOGY
9 100000 QUALITY IS OUR IMAGE
>
3
o5 80000
08
— >
o 'c% 60000
(%) [Radiolo
355 gy
% £ 40000 [Cardiology
[%2]
>
o
c 20000 -
|_
0 .
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
Year

Figure 1-1. U.S. Diagnostic Imaging Archive Storage Requirement Forecast

It is worth noting that while storage cost per Terabyte is declining, the overall cost to
manage storage is growing. The common misperception is that storage is inexpensive, but the
reality is that storage volumes continue to grow faster than hardware price declines. Using of
cloud computing promises to reduce costs, high scalability, availability and disaster
recoverability, can we solve the long-term face the problem of medical image archive[5-9].

Build cloud computing in this large-scale parallel computing cluster is growing with
thousands of processors [3-5, 9-14]. In such a large number of compute nodes, faults are
becoming common place. Current virtualization fault tolerance response plan, focusing on
recovery failure, usually relies on a checkpoint/restart mechanism. However, in today's
systems, node failures can often be predicted by detecting the deterioration of health
conditions [15-25].

For over a decade, the majority of all hospital and private radiology practices have
transformed from film-based image management systems to a fully digital (filmless and
paperless) environment but subtly dissimilar (in concept only) to convert from a paper
medical chart to an HER. Film and film libraries have given ways to modern picture archiving
and communication systems (PACS). And they offer highly redundant archives that tightly
integrate with historical patient metadata derived from the radiology information system.
These systems may be not only more efficient than film and paper but also more secure as
they incorporate with safeguards to limit access and sophisticate auditing systems to track the
scanned data. However, although radiologists are in favor of efficient access to the
comprehensive imaging records of our patients within our facilities, we ostensibly have no
reliable methods to discover or obtain access to similar records which might be stored
elsewhere [6-8].

According to our research, there were few Medical Image implementations on cloud

environment. However, a familiar research presented the benefits of Medical Images on cloud

were: Scalability, Cost effective and Replication [9]. In the same study, they also presented a

HPACS system but lacked of management interface.

1.2 Contribution

We build a HDFS as a platform for Medical Image File Access System (MIFAS), and to do
fault-tolerant for HDFS. Instead of a reactive scheme for Virtualization Fault Tolerance (VFT),
we are promoting a one where processes automatically migrate from “unhealthy” nodes to
healthy ones. Our approach relies on operating system virtualization techniques exemplified
by Xen. It leverages virtualization techniques combined with health monitoring and
load-based migration. We exploit Xen’s live migration mechanism for a guest operating
system (OS) to migrate a Namenode from a health-deteriorating node to a healthy one without
stopping the Namenode task during most of the migration.

Our FT daemon orchestrates the tasks of health monitoring, load determination and
initiation of guest OS migration. The results showed that the actual cost of relocation hidden
cost of live migration has been seamless transfer can be done. Furthermore, migration
overhead is shown to be independent of the number of nodes in our experiments indicating
the potential for scalability of our approach. Overall, our enhancements make FT a valuable
asset for long running HDFS task, particularly as a complementary scheme to reactive FT
using full checkpoint/restart schemes. In the context of OS virtualization, we believe that this
is the first comprehensive study of fault tolerance where live migration is actually triggered

by health monitoring.

1.3 Thesis Organization

This paper is organized as follows. First, in section 2 we introduce the background and related
works. Section 3 describes the implementation details of system architecture. In section 4 we
show a result of the experiment, and finally section 5 outlines the main conclusions and the

future work.

Chapter 2
Background

2.1 Medical Technology

To be able to define why we need the cloud in medicine and health care? What are the
benefits of using it? And how we can use it? We need first to define the key characteristics of

all categories.

2.1.1 PACS

PACS is an acronym that stands for Picture Archiving and Communication System. It
revolutionized the field of radiology, which now consists of all digital, computer-generated
images as opposed to the analog film of yesteryear. Analog film took up space and time for
filing and retrieval and storage, and was prone to being lost or misfiled. PACS therefore saves
precious time and money, and reduces the liability caused by filing errors and lost films. A
PACS consists of four major components: the imaging modalities such as CT and MRI, a
secured network for the transmission of patient information, workstations for interpreting and
reviewing images, and archives for the storage and retrieval of images and reports. Combined
with available and emerging Web technology, PACS has the ability to deliver timely and
efficient access to images, interpretations, and related data. PACS breaks down the physical
and time barriers associated with traditional film-based image retrieval, distribution, and
display. PACS is primarily responsible for the inception of virtual radiology, as images can

now be viewed from across town, or even from around the world. Additionally, PACS acts as

a digital filing system to store patients' images in an organized way which enables records to

be retrieved with ease as needed for future reference.

2.1.2 DICOM vs. Nanodicom

What is DICOM? Short for Digital Imaging and Communications in Medicine, a standard in
the field of medical informatics for exchanging digital information between medical imaging
equipment (such as radiological imaging) and other systems, ensuring interoperability. The
standard specifies: a set of protocols for devices communicating over a network the syntax
and semantics of commands and associated information that can be exchanged using these
protocols a set of media storage services and devices claiming conformance to the standard,
as well as a file format and a medical directory structure to facilitate access to the images and
related information stored on media that share information. The standard was developed
jointly by ACR (the American College of Radiology) and NEMA (the National Electrical
Manufacturers Association) as an extension to an earlier standard for exchanging medical
imaging data that did not include provisions for networking or offline media formats [26].

DICOM enables the integration of scanners, servers, workstations, printers, and network
hardware from multiple manufacturers into a picture archiving and communication system
(PACS). The different devices come with DICOM conformance statements which clearly state
the DICOM classes they support. DICOM has been widely adopted by hospitals and is
making inroads in smaller applications like dentists' and doctors' offices.

DICOM differs from some, but not all, data formats in that it groups information into
data sets. That means that a file of a chest X-Ray image, for example, actually contains the
patient 1D within the file, so that the image can never be separated from this information by

mistake. This is similar to the way that image formats such as JPEG can also have embedded

tags to identify and otherwise describe the image.

A DICOM data object consists of a number of attributes, including items such as name,
ID, etc., and also one special attribute containing the image pixel data (i.e. logically, the main
object has no "header™ as such - merely a list of attributes, including the pixel data). A single
DICOM object can only contain one attribute containing pixel data. For many modalities, this
corresponds to a single image. But note that the attribute may contain multiple "frames",
allowing storage of cine loops or other multi-frame data. Another example is NM data, where
an NM image by definition is a multi-dimensional multi-frame image. In these cases
three-dimensional or four-dimensional data can be encapsulated in a single DICOM object.
Pixel data can be compressed using a variety of standards, including JPEG, JPEG Lossless,
JPEG 2000, and Run-length encoding (RLE). LZW (zip) compression can be used for the
whole data set (not just the pixel data) but this is rarely implemented.

The same basic format is used for all applications, including network and file usage, but
when written to a file, usually a true "header” (containing copies of a few key attributes and
details of the application which wrote it) is added.

Nanodicom is a DICOM file parser. So far, DICOM dictionary has been updated to 2009.
Except for a few cases (multiple and conditional VVR), nearly 99% of the label can be resolved.

Image resolution can also be part of the identification of a number of formats supported.

2.2 Virtualization

2.2.1 Virtualization Technology

One of great job “Xen” was developed by University of Cambridge Computer Laboratory; as

of 2010 the Xen community develops and maintains Xen as free software, licensed under the
GNU General Public License (GPLv2). Virtualization lets you run multiple virtual machines
on a single physical machine, with each virtual machine sharing the resources of that one
physical computer across multiple environments. Virtualization is simply the logical
separation of the request for some service from the physical resources that actually provide
that service. In practical terms, virtualization provides the ability to run applications,
operating systems, or system services in a logically distinct system environment that is
independent of a specific physical computer system. Obviously, all of these have to be
running on a certain computer system at any given time, but virtualization provides a level of
logical abstraction that liberates applications, system services, and even the operating system
that supports them from being tied to a specific piece of hardware. Virtualization, focusing on
logical operating environments rather than physical ones, makes applications, services, and
instances of an operating system portable across different physical computer systems.
Virtualization can execute applications under many operating systems, manage IT more
efficiently, and allot resources of computing with other computers [15].

It’s not a new technique, IBM had implemented on 360/67 and 370 on 60, 70 eras.
Virtualization gets hardware to imitate much hardware via Virtual Machine Monitor, and each
one of virtual machines can be seemed as a complete individual unit. For a virtual machine,
there are memories, CPUs, unique complete hardware equipment, etc... It can run any
operating systems, called Guest OS, and do not affect other virtual machines.

In general, most virtualization strategies fall into one of four major categories [16]:

Full Virtualization: Also sometimes called hardware emulation. In this case an unmodified
operating system is run using a hypervisor to trap and safely translate/execute privileged
instructions on-the-fly. Because trapping the privileged instructions can lead to significant

performance penalties, novel strategies are used to aggregate multiple instructions and

translate them together. Other enhancements, such as binary translation, can further improve
performance by reducing the need to translate these instructions in the future.
Para-virtualization: Like full virtualization, para-virtualization also uses a hypervisor, and
also uses the term virtual machine to refer to its virtualized operating systems. However,
unlike full virtualization, para-virtualization requires changes to the virtualized operating
system. This allows the VM to coordinate with the hypervisor, reducing the use of the
privileged instructions that are typically responsible for the major performance penalties in
full virtualization. The advantage is that para-virtualized virtual machines typically
outperform fully virtualized virtual machines. The disadvantage, however, is the need to
modify the para-virtualized virtual machine/operating system to be hypervisor-aware. This
has implications for operating systems without available source code.

Operating System-level Virtualization: The most intrusive form of virtualization is
operating system level virtualization. Unlike both para-virtualization and full virtualization,
operating system-level virtualization does not rely on a hypervisor. Instead, the operating
system is modified to securely isolate multiple instances of an operating system within a
single host machine. The guest operating system instances are often referred to as virtual
private servers (VVPS). The advantage to operating system-level virtualization lies mainly in
performance. No hypervisor/instruction trapping is necessary. This typically results in system
performance of near-native speeds. The primary disadvantage is that all VPS instances share a
single kernel. Thus, if the kernel crashes or is compromised, all VPS instances are
compromised. However, the advantage to having a single kernel instance is that fewer
resources are consumed due to the operating system overhead of multiple kernels.

Native Virtualization: Native virtualization leverages hardware support for virtualization
within a processor itself to aid in the virtualization effort. It allows multiple unmodified

operating systems to run alongside one another, provided that all operating systems are

capable of running on the host processor directly. That is, native virtualization does not
emulate a processor. This is unlike the full virtualization technique where it is possible to run
an operating system on a fictional processor, though typically with poor performance. In x86
64 series processors, both Intel and AMD support virtualization through the Intel-VT and
AMD-V virtualization extensions. X86 64 Processors with virtualization support are relatively
recent, but are fast becoming widespread.

For the remainder of this paper we choose “Xen Hypervisors” to be our virtualization
technology platform. The reason of this choose which is we have to combine with the
virtualization management tool, and its limitation is must using “Xen” to be the platform.

As a result of the widespread of virtual machine software in recently years, two best x86
CPU manufacturers Intel/AMD, with efficiency of x86 computers and increasing of compute
core of CPU, both have published the new integrated virtualization on CPU, one for Intel
Vander pool and another for AMD Pacifica. These technologies also support Xen, and make

efficiency step up more than initial stages [27].

2.2.2 Virtualization Fault Tolerance

Virtualization Fault Tolerance (VFT) is a pioneering component, which provides continuous
availability to applications, preventing downtime and data loss in the event of server failures.
It provides operational continuity and high levels of uptime in hypervisor environments, with
simplicity and at a low cost [17-19, 28, 29].

Fault tolerant virtual machines and auxiliary copy is not allowed to run on the same host.
The two virtual machines constantly heartbeat against each other and if either virtual machine
instance loses the heartbeat, the other takes over immediately. The heartbeats are very

frequent, with millisecond intervals, making the failover instantaneous with no loss of data or

10

state. Fault tolerance using anti-affinity rules to ensure that two instances of fault-tolerant
virtual machines will never be the same host. This ensures that the host failure cannot result in
loss of two virtual machines.

Tolerance to avoid "split brain™ situation occurs, this situation may lead to the virtual
machine to recover from failure after the two active copies. Shared memory locks on the
atomic coordinate file for failover, so that only one end can be used as the primary virtual
machine continues to run by the system automatically re-generate a new auxiliary virtual

machine [20].

2.2.3 Virtual Machine Management

A key component in this scenario is the virtual machine (VM) management system. A VM
manager provides a centralized platform for efficient and automatic deployment, control, and
monitoring of VMs on a distributed pool of physical resources. Usually, these VM managers
also offer high availability capabilities and scheduling policies. The OpenNebula is a virtual
infrastructure engine that enables the dynamic deployment and re-allocation of virtual
machines in a pool of physical resources. The OpenNebula system extends the benefits of
virtualization platforms from a single physical resource to a pool of resources, decoupling the
server, not only from the physical infrastructure but also from the physical location [30].

The OpenNebula contains one frontend and multiple backend. The front-end provides
users with access interfaces and management functions. The back-ends are installed on Xen
servers, where Xen hypervisors are started and virtual machines could be backed.
Communications between frontend and backend employ SSH. The OpenNebula gives users a
single access point to deploy virtual machines on a locally distributed infrastructure.

OpenNebula orchestrates storage, network, virtualization, monitoring, and security

11

technologies to enable the dynamic placement of multi-tier services (groups of interconnected
virtual machines) on distributed infrastructures, combining both data center resources and
remote cloud resources, according to allocation policies [30]. In Figure 2-1, the OpenNebula

internal architecture can be divided into three layers.

yp— -
Command Line Other Tools
Interface

Request Manager
(XML-RPC)

Transfer Virtual Machine Information
Driver Driver Driver

Figure 2-1. OpenNebula Internal Architecture

Tool: management tools developed using the interfaces provided by the OpenNebula Core.
Core: the main virtual machine, storage, virtual network and host management components.
Drivers: it is to plug-in different virtualization, storage and monitoring technologies and
Cloud services into the core.

However the OpenNebula lack a GUI management tool. In pervious works we build
virtual machines on OpenNebula and implemented Web-based management tool. Thus, the
system administrator can be easy to monitor and manage the entire OpenNebula System on
our project. OpenNebula is composed of three main components: (1) the OpenNebula Core is
a centralized component that manages the life cycle of a VM by performing basic VM
operations, and also provides a basic management and monitoring interface for the physical

hosts (2) the Capacity Manager governs the functionality provided by the OpenNebula core.

12

The capacity manager adjusts the placement of VMs based on a set of pre-defined policies (3)
Virtualize Access Drivers. In order to provide an abstraction of the underlying virtualization
layer, OpenNebula uses pluggable drivers that expose the basic functionality of the hypervisor

[21].

2.3 Cloud

Cloud is a model for enabling convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management effort or service
provider interaction. This cloud model promotes availability and is composed of five essential
characteristics (On-demand self-service, Broad network access, Resource pooling, Rapid
elasticity, Measured Service); three service models (Cloud Software as a Service (SaaS),
Cloud Platform as a Service (PaaS), Cloud Infrastructure as a Service (laaS)); and, four
deployment models (Private cloud, Community cloud, Public cloud, Hybrid cloud). Key
enabling technologies include: (1) fast wide-area networks, (2) powerful, inexpensive server

computers, and (3) high-performance virtualization for commodity hardware [10].

2.3.1 Hadoop and HDFS

Hadoop is one of the most salient pieces of the data mining renaissance which offers the
ability to tackle large data sets in ways that weren’t previously possible due to time and cost
constraints. It is a part of the apache software foundation and its being built by the community
of contributor in all over the world. The Hadoop project promotes the development of open

source software and supplies a framework for the development of highly scalable distributed

13

computing applications [11].

Hadoop is a top-level Apache project being built and used by a global community of
contributors, using the Java programming language [31]. It provides a framework for
developing highly scalable distributed applications. The developer just focuses on applying
logic instead of processing detail of data sets. The HDFS stores large files across multiple
machines. It achieves reliability by replicating the data across multiple hosts, and hence does
not require RAID storage on hosts. The HDFS file system is built from a cluster of Datanodes,
each of which serves up blocks of data over the network using a block protocol. They also
serve the data over HTTP, allowing access to all content from a web browser or other client.
Datanodes can connect to each other to rebalance data, to move copies around, and to keep
the replication of data high. A file system requires one unique server, the Namenode. This is a
single point of failure for an HDFS installation. If the Namenode goes down, the file system
will be off-lined. When it comes back up, the Namenode must replay all outstanding

operations. This replay process can take over half an hour for a big cluster [12].

2.4 Distributed Replicated Block Device

Distributed Replicated Block Device (DRBD) refers to block devices designed as a building
block to form high availability clusters. It is done by mirroring a whole block device via an
assigned network. DRBD can be understood as network based raid-1. [32].

In Figure 2-2 is the DRBD of the workflow, the two block represent two servers that
form an HA cluster. The boxes contain the usual components of a Linux kernel: file system,
buffer cache, disk scheduler, disk drivers, TCP/IP stack and network interface card (NIC)
driver. The black arrows illustrate the flow of data between these components. The red arrows

show the flow of data, as DRBD mirrors the data of a highly available service from the active

14

http://en.wikipedia.org/wiki/Apache_Software_Foundation
http://en.wikipedia.org/wiki/Java_(programming_language)

node of the HA cluster to the standby node of the HA cluster.

1

w !
(_File fzstem ' l[(_File System)
1 1)
. x
v

(Buffer C:ache)
K

Raw Device J¥-.
f 9

Buffer Glache

MNIC Dirivers

.................

Figure 2-2. DRBD System Workflow

In Figure 2-3 shows a cluster where the left node is currently active, i.e., the service's IP
address that the client machines are talking to is currently on the left node. The service
including its IP address, which can be migrated to the other node at any time, either due to a
failure of the active node or as an administrative action. The lower part of the illustration
shows a degraded cluster. In HA speak the migration of a service is called failover, the reverse
process is called failback and when the migration is triggered by an administrator it is called

switchover [33].

15

___________ 1 w !____________l
e

Figure 2-3. DRBD with Heartbeat

2.5 Related Works

HDFS servers (i.e., Datanodes) and traditional streaming media servers are both used to
support client applications that have access patterns characterized by long sequential reads
and writes. As such, both systems are architected to favor high storage bandwidth over low
access latency [34].

Recently “Cloud” became a hot word in this field. S. Sagayaraj [9] proposes that Apache
Hadoop is a framework for running applications on large clusters built of commodity
hardware. The Hadoop framework transparently provides both reliability and data motion.
Hadoop implements a computational paradigm named Map/Reduce, where the application is

divided into many small fragments of work. Each fragment of work may be executed or

16

re-executed on any node in the cluster. So, by just replacing the PACS Server with Hadoop
Framework can lead to good, scalable and cost effective tool for the Imaging solution for
Health Care System. In the same study, they also presented a HPACS system but lacked of
management interface.

It is complex for kind of performance issues, but J. Shafer, et al. [13] proposed "The
Hadoop distributed file system: Balancing portability and performance” had a good view in
this field. The poor performance of HDFS can be attributed to challenges in maintaining
portability, including disk scheduling under concurrent workloads, file system allocation, and
file system page cache overhead. HDFS performance under concurrent workloads can be
significantly improved through the use of application-level 1/0 scheduling while preserving
portability. Further improvements by reducing fragmentation and cache overhead are also
possible, at the expense of reducing portability. However, maintaining Hadoop portability
whenever possible will simplify development and benefit users by reducing installation
complexity, thus encouraging the spread of this parallel computing paradigm.

In our previous reproaches [35-40] use co-allocation to solve the data transfer problem in
grid environment. It is the foundation of this paper. But it is for grid not implement on cloud,
so in this paper we have a significant change from previous works, because we implement it

on the cloud environment and use virtualization fault tolerance techniques.

17

Chapter 3

System Design and Implementation

In this section, describes a big significant improvement than previous MIFAS works. We use
virtualization technology to build our system. And also enhance HA, for more detail please

see below explanation.

3.1 Virtualization Fault Tolerance Design

Hadoop infrastructure has become a critical part of day-to-day business operations. As such, it
was important for us to find a way to resolve the single-point-of-failure issue that surrounds
the master node processes, namely the Namenode and JobTracker. While it was easy for us to
follow the best practice of offloading the secondary Namenode data to an NFS mount to
protect metadata, ensuring that the processes were constantly available for job execution and
data retrieval were of greater importance. We’ve leveraged some existing, well tested
components that are available and commonly used in Linux systems today. Our solution
primarily makes use of DRBD from LINBIT and Heartbeat from the Linux High Availability
(HA) project which we called Virtualization Fault Tolerance (VFT). The natural combination
of these two projects provides us with a reliable and highly available solution, which
addresses limitations that currently exist. In this context, virtualization is being used as a
solution not only to provide service flexibility, but also to consolidate server workloads and
improve server utilization. A virtualized based system can be dynamically adapted to the
client demands by deploying new virtual nodes when the demand increases, and powering off
and consolidating virtual nodes during periods of low demand.

The Virtualization Fault Tolerance (VFT) has three main phases: virtual machines

18

migration policy, information gathering, and keep services always Available. The work flow
can be described as follow illustration (Figure 3-1). But, there is a constraint of this
methodology which is the physical host number must bigger than three, it is the base
requirement to achieve VFT methodology. The coming section will explain this reason.
Virtual Machines Migration Policy: it stands for enable Dynamic Resource Allocation
(DRA) to ensure entire distribution virtualization cluster under a best performance.
Information Gathering: this phase is presented that we have a detection mechanism to
retrieve all Hosts and check Hosts is alive or not. In our paper we use Internet Control
Message Protocol (ICMP) to collect information every 5 minutes.

Keep Service Always Available: assume VM m is under DRBD with Heartbeat mechanism
and Host n is unavailable physical machine. Once the Host n is shutting down, if VM m is
secondary node, then it will move to on-line Host and boot automatically. If VM m is primary
node then secondary node will replace the VM m to primary node immediately. Next

pre-primary node will boot on on-line host and become secondary.

1
1
I]
1
WVirtual Machines: Dynamic Resource Allocation]
Migration Policy Mechanism (DRA) :
! :
N]
v
Information All Hosts are - Retrieve all
Gathering available Keep Detecting Hosts
TRUE Every 5 Minus

Keep Service
Always Available M m on Host n VM m = Secondary Node_ | Boot VM m (Secondary) to on-

is unavailable line Host

Heartbeat + DRBD

Active Secondary Pre-Primary VM m boot to
WM m become = on-line Host and become
VM m = Primary Node Primary Secondary

Figure 3-1. Virtualization Fault Tolerance Flow

19

In our paper, the HA components can be shown as Figure 3-2. Follow bottom to top, the
infrastructure, Hosts, means physical machines. And Xen Hypervisor is one of virtualization
technology suit for Linux series OSs. And follow up is 2 VMs, VM2 is primary node, and
VM1 is secondary node. Assume Hadoop Namenode is built on VM2 and VM1, and then
VML is the backup of VM2. Under a DRBD with Heartbeat mechanism, you can see we use 5
IP to deploy this system, one pair is for Cross Over and the other pair is for identifying the
primary and secondary, the last one is for the service usage. Finally, a key component
OpenNebula is on the top layer, it is the key of entire scenario, this component provides a
centralized platform for efficient and automatic deployment, control, and monitoring of VMs
on a distributed pool of physical hosts. And we also compose DRA and web interface

management tool components to combine with OpenNebula component.

@&’;Sg—j
[Access Services Q- @

Resource
Allocation

eth0 140.128.102.104 &ih0 140.128.102.18

HeartBeat

a2
Hadoop Hadoop

Namenode Namenode

HeartBeat

Cross Over

eth0:1 10.10.10.194 eth0:1 10.10.10.192

Xen Hypervisor

Figure 3-2. HA Components

Our approach in HA speak can be described as Figure 3-3 First one Host A was shutting

down by unexpected matter meanwhile it also trigger VFT, next the secondary node VM 2

20

became primary and handover all services from pre-primary, that we called FAILOVER.
Finally, VM 1 booted on Host C automatically and became secondary node, that we called

FAILBACK.

DRBD + HeartBeat

o~
-

\ / i | “Secondary
\
hS
-~ — -

VM 2

Xen

Hypervisor

Normal Situation

FAILBACK

SWITCHOVER

Host A
Host A is shutdown

Figure 3-3. How to Trigger VFT

3.2 System Architecture

MIFAS was developed on cloud environment, Detailed System Components, such as Figure
3-4. The distribution file system was built on HDFS of Hadoop environment. This Hadoop
platform could be described as PaaS (Platform as a Service). We extended a SaaS (Software
as Service) based on PaaS. As the shown illustration, the top level of MIFAS was web-based
interface. And now we do more things between Pass and laaS, in order to achieve the Hadoop

HA.

21

MIFAS Web-based System
e
MIFAS Middleware Saa$S

> {Software as a
| Information Service | Service)

HDFS API

DICOM API

Co-allocation

NanoDicom Hadoop-over-ftp || Curlftp | [Fzeniication Location

_gfggggggg s

(Platform as a
Service)

(Heartbeat + DRBD)
Virtualization

[aaS

{Infrastructure
as a Service)

OpenNebula Xen

Figure 3-4. System Components

laaS: in our previous work, we used OpenNebula to manage our VMs [22]. In order to
achieve our goal, we migrated our servers into OpenNebula environment. And it is also a key
feature to develop the VFT approach on virtualization.

PaaS: HDFS was a well-known could platform in this field, so we will save the introduction
of HDFS in this section. But, as we mentioned the VFT approach in section 3.1, the Hadoop

Namenode was also under HA control by our VFT approach. Figure 3-5 can be described as

our configuration.

22

OpenNebula

Hadoop Hadoop
Namenode Namenode
(Master) (Slave)

DRBD + HeartBeat

-5 -y
v ! [" R

" K

|
| preeeed
'I.l @.r 1";

Xen
Hypervisor

Xen
Hypervisor

HOSTs

Figure 3-5. Deploy Namenode HA on Virtualization

SaaS: in this layer we called Middleware. It is the core of MIFAS. From the top level a
web-based system was provided a GUI interface that users or administrators could manage
patient’s data on it also including the quick view of medical images. Nanodicom [41] was a
component that made by PHP, it could convert DICOM file into JPEG without complex
process. We applied it while uploading DICOM files, therefore the system would convert it
into JPEG format automatically (Figure 3-6). In another hand, consider to the gap between
Hadoop and general platform, we provided a good solution for it which is Hadoop-over-ftp
[42] and Curlftp [43]. Both of these components are open source based software. The
Hadoop-over-ftp could convert HDFS as FTP service, and then Curlftp could mount the FTP
service as a local level storage. Thus, we could provide kind of solution for the enterprise or
those people whom are not familiar with Hadoop as a remote storage. In generally, we split
entire system into two different levels, one is the DICOM viewer and patient management,

and the other is storage level.

23

l

Upload DICOM
Nanodicom
[
Parse DICOM Object o -
A / Pixel jpg
. . T /
Information Object Definition (I0D) | / R ES

Image Pixel Data . | m
| JPEG || JPEG2000 | | TIFF | f :
PT
N

| GIF | |PnG | [BMP | | PET

Attributes Info n
| D H MName HSexH Date ‘

‘Patient Kind || Machine ‘

= Replication Locatio .
N ~¢ HDFS
S

MIFAS Server

5

Figure 3-6. Compress DICOM to JPEG

This Middleware also collected necessary information such as bandwidth between server
and server, the server utilization rate, and network efficiency. The information provided
entirety MIFAS Co-allocation Distribution Files System to determine the best solution of
downloading allocation jobs.

Information Service: To obtained analysis in the status of host. The Middleware of MIFAS
had a mechanism to fetch the information of hosts called Information Service. In this research,
we installed the Ganglia [44] in each member of Hadoop node to get the real-time state from
all members. Therefore, we could get the best strategy of transmission data from Information

Service which is one of the components of MIFAS Middleware.

Co-allocation: As our researched into section 1II.C, Co-allocation mechanism could
conquest the parallel downloading from Datanodes. Besides, it also sped up downloading and
solved network faults problems. Due to user using MIFAS to access Medical Images, the
co-allocation will be enabled automatically. In order to reached parallel downloading
approaches, the system will split those file in to different parts and obtain data from different
Cloud depend on Cloud health status. Therefore, we can get the best downloading strategy. In
our earlier research [35-37] was also provided our co-allocation mechanism.

Replication Location Service: In this research, we built three groups of HDFS in different
locations, and each HDFS owned an amount of Datanodes. The Replication Location Service
means that the Service would automatically make duplication from private cloud to one

another when medical images uploaded to MIFAS.

3.3 System Workflow

In Figure 3-7, it shows our efforts on MIFAS. In this research, we also made a real system to
achieve our paper. The system’s workflow shows in the shown illustration. Firstly, users input
username and password to authenticate. Secondly, users could input search condition to query
patients’ information. Thirdly, users could also view patients’ Medical Images. Fourthly, users
can configure in MIFAS. Fifthly, if users can present MIFAS downing mechanism, it means

the Middleware is workable in MIFAS.

25

1.User
Authentication

MIFAS and

2.Select or
Configuration System

:

H

H Search
, Patientinfo. [1 @ 7 Jeececcccccaccaaa
H

H

3. Preview
Medical

A
E *. Information Service
E
' ||| picom api
'y E :
¥ L v
E E HDFS API]
' 2 A ;
¢+ 5. Request . ' '
! ' Download 6 .k" & ' k4
! ‘Medical Images»r il {;?,r‘ m
5 B S 0 ne G
E 6. Virtualization ——————— ' & -) .
L. Manager_ __ _,-..r--.—...-..-nr.--.—-.-..:_;. =m Replication Location Service

OpenNebula Page

Figure 3-7. MIFAS System Workflow

3.4 MIFAS System Interface

MIFAS offer authentication interface as shown in Figure 3-8, the users have to pass the
validation before login to the MIFAS. After passing the validation, you will see the Portal of
MIFAS (In Figure 3-9). In this page, there are 3 main functional block, each one has its
functional purpose.

Examine Type: it is the catalog of Medical Examination Type. Medical Images could from
various medical imaging instruments, including ultrasound (US), magnetic resonance (MR),

positron emission tomography (PET), computed tomography (CT), endoscopy (ENDO),

26

mammograms (MG), direct radiography (DR), computed radiography (CR) etc. The examine
type is cataloged depend on the definition of DICOM.

Filter: this block provided search function; users can get patient information through inputted
keyword. In web-based interface system, it is easy to reach this goal. User can capture any
information that he/she wanted by filter. Thus, like other system on the internet, MIFAS
provide multidimensional information for the users. There are four main options in the filter
function which are “Chart NO” (Examination No), “Patient Name”, “Start of Examination
Date”, and “End of Examination Date”.

Patient Information List: in this block, you will see the detail information according to the

search condition of block B and block A. And it is also including several important functions.

._ .ompull;'\g.
BREN AT

4GH PERFORMANCE COMPUTING LA

WM igh
N erformance
. omputing

W o i I W 5 F
A : Examine Type
B0 Examine Type Home Examine

o Al Chant No Patient Name Start Date End Date

B CR I I N
DES e

o MG Exan {

o MR No Patient Name Sex Birthday

0O NM AT 2 v 1979.03-19

oPT
Do us

HER M 1974-09-27 CT 0 2010-06-26 12:56:37
HET M 1975-04-08 Cr 159 2010-06-26 12.51:42
pIS =301 M 1974-06-06 V 0 2010-06-26 12:50:31

B3 1975-04-21 2010-0 12:49:47

_ z 1977-07-01 V 0 0 6-26 12.48:55
C: Pation Info. List

Figure 3-9. Portal of MIFAS System

27

Function items as shown Figure 3-10, which are the 1st Image Status, 2nd Thumbnail
viewer, 3rd PACS Reporting, 4th Download File. Display the information of file distribution
status as Figure 3-11 , including photographic description and photographic catalog.
Thumbnail viewer function is in Figure 3-12, this function show the thumbnail of Medical
Image and examination report. PACS Reporting is as shown Figure 3-13, it is the detail report
of patient medical record. For more detail of Medical Images, we can through Download File
function then utilize other professional DICOM viewer. Regarding to how to upload Medical
Images to MIFAS please see Figure 3-14. According to our paper, the Replication Location
Service will duplicate images to each cloud.

Finally the 4th icon in Figure 3-10 could download DICOM format Medical Images
from MIFAS. MIFAS will enable co-allocation mechanism to allocate file through a best

strategy.

Function

g L
EEE]

EEE
g L
CELE

Figure 3-10. Functions

Descript

Brain-1

Brain-2

Brain-3

Figure 3-11. File Status

28

[Examine Type
oA
oCl
0 MRI
0 AS
0B
oCcD
D CF
oce
OCR
DcCcs
[+ BED)

B2 Legout

Figure 3-12. Medical Image Preview

= S ‘
o PS5 |
SRR IFAS ConfigurationiS VSICm

L0 Examine
O Examine List

0 Add New

Figure 3-14. Upload Medical Images

29

3.5 Virtualization Manager Interface

We design a useful web interface for end users fastest and friendly to Implementation
virtualization environment. In Figure 3-15, it shows the authorization mechanism, through the

core of the web-based management tool, it can control and manage physical machine and VM

Login
[m] [= .
= pr
15 debian1 default 1 800 798 800 4G 1.9G6 on HA on - "
16 debians default 0 1200 1200 1200 6C 496 on HAa off - 3 (m]]
sotcbue BEER e
[D [usER] NAME | STAT | CPU] [__HosTNAmME]| TmE] Semore servr

140 root vmooz fail 1 1024 debian5 00 140.128.102.194
141 root vmoo1 =] 1 1024 debian1 06 140.128.102.192
=2

User Name
Password

Login

Figure 3-15. Web-Based Interface

The entire web-based management tool including physical machine management, virtual
machine management and performance monitor. In Figure 3-16 it can set the VM attributes
such as memory size, IP address, root password and VM name etc..., it also including the life
migrating function. Life migration means VM can move to any working physical machine
without suspend in-service programs. Life Migration is one of the advantages of OpenNebula.
Therefore we could migrate any VM what we want under any situation, thus, we have a DRA

mechanism to make the migration function more meaningful.

:n:Create VM::::

VM Name Give a name for Virtual Machine

IP Address Give a physical ip address

Memory Size [512MB[=] Memory Size

Root Password eg. abc123

& mvanvial <]

ID|USER |[NAME | STAT|CPU|MEM| HOSTNAME |TIME] ____IP_____ | Functions |
vmioo01 1 1024 140.128.102.192 ——Select—El BOOT DELETE
vmoo2 1 1024 140.128.102.193 ——Select—El BOOT DELETE
vmOo03 1 1024 140.128.102.194 -—Select-El BOOT DELETE

Figure 3-16. Virtual Machines Manager

30

Chapter 4

Experimental Results

In this section which, we made the environment for the entire fault-tolerant ability to do that,

including a network failure, Datanodes fault, Namenode made when the occasion so tolerant.

4.1 Experimental Environments

In MIFAS environment, HDFS build 3 nodes (THU1, THU2 and CSMU). For each
Namenode are done in two VMs configuration, and use the DRBD with heartbeat sync to do
this part of the configuration, were configured for each Namenode four Datanodes. Figure 4-1

details the environment.

)

HDFS CsSMU
Heartbeat + DRBD |

MIFAS

Slave
Name Node

.

gJ g 5

e

=

5 N N
= = =
Data Data Data
MNode Node Node
HDFS THUA1 - HDFS THU2 " \
t Hlﬁrtieat_+ ERED_{ [Heiﬂgaat_+ RRED_'L
Méster Slave Master Slave
MName Node Name Node Name Node Name Mode

=) =)

=
Data Data Data Data Data Data Data Data
Nc:-de Node Node Node _/ Node Node Node Node

Figure 4-1. Experimental Environments

31

4.2 Results

4.2.1 Performance Comparison

At this part we do stress testing with JMeter. We set 10 Threads, and Loop count 5 times more
physical machines and virtual machine on the environment were to download 1MB, 10MB
and 50MB file sizes, etc., the resulting throughput and the ability to download data.

The results of Figure 4-2 mean the smaller of file size will enable greater throughput, and
physical machines and VMs will be more obvious differences. In Figure 4-3 shows we

download a small file, VMs transmission performance will be better than physical machines.

81.65

40.00 - , ® Hosts

30.00 - ®Vms

10.00 6.43 6.73

I o
0.00 -

M 10M 50M
File size (MB)

Throughput (Transaction /Sec)

Figure 4-2. Compare of Physical Host and Virtual Machine Throughput

32

90000.00

83,605

80000.00

70000.00

Sec)

5 60000.00

(%)
o
S
S
o
o
o

40000.00 H Hosts

30000.00 EVms

20000.00

Bandwidth (K

10000.00

0.00
1M 10M 50M

File size (MB)

Figure 4-3. Compare of Physical Host and VM Networking Performance

In this experiment, we download the same files from each PACS and MIFAS. The
purpose of this experiment is to compare of PACS and MIFAS Networking Performance.
Figure 4-4 shows the results, a smaller download file, MIFAS better transmission capacity,

whereas in downloading large files, PACS has better transmission performance.

20000.00
18000.00

‘o 16000.00
14000.00
12000.00
10000.00
8000.00
6000.00
4000.00
2000.00
0.00

=@»PACS
a@»MIFAS

Bandwidth (KB/Se

M 10M 50M 100M
File size (MB)

Figure 4-4. Compare of PACS and MIFAS Networking Performance

33

4.2.2 Network Fault Tolerance

In this system, we used three HDFS node to access data. When a HDFS node which network
disconnection, through the co-allocation mechanism, Information service will note that the
current network node there is a problem. When users access to data, system will make the
current surviving HDFS nodes to do distribution of the current file transfer request to the user.
Figure 4-5, we interrupt the THU2 HDFS and CSMU HDSF network, then the system will

transfer data THU1 HDFS as the main node.

)

HDFS CSMU

Master Slave
ame Node Name Node
5 = ~ s
L] L] L] L]
== = B =
Data Data Data Data
Node Node Node MNode
/_ HDFS THU1 - HDFS THU2 i \
[Heartbeat + DRBD { [Heartbeat + DRBD [
Master Slave Master Slave
Name Node Name Node Name Node MName Node
? ‘
=
Data Data Data Data Data Data Data Data
Mode Node Node Node Node Node Node Nod e

Figure 4-5. Network Fault Tolerance

34

4.2.3 Datanodes Fault Tolerance

Each of HDFS is deployment four Datanodes of the physical machine. We set the block size
of the file 64MB, three copies of each block to store the Datanodes.

HDFS is used to coordinate access by Namenode, through the metadata configuration
file to know the block where the Datanodes, We do note HDFS on THU1 (Figure 4-6). In the

environment, two of machine failure and does not affect the HDFS data downloads.

. Name Node —

Data Node 1 Data Node 2

1 2 1 2

3)

—_—— Y R —

1 3

./

Figure 4-6. Single Site of Hardware Failure

Data Node 2 r————I_ﬁa%__ﬁEdTe_ﬂ
I
I
I
I
I

Here we tested less Datanodes and multi Datanodes performance comparison. We set 10
threads and Loop count 5 times more 1-3 Datanodes on the THU1 HDFS environment, the
resulting throughput and the ability to download and upload data, file size is 100MB.

The result of Figure 4-7 and Figure 4-8 shows less Datanodes for the transmission

performance will not have much impact.

35

0.12

0.09
0.10 0.09

0.08

006 000 5047 0047 0047

i i i i a@=download

el@=upload

o
o
=

o
o
N}

Throughput (Transaction /Sec)

o
o
S

1 2 3 4
Datanodes Count

Figure 4-7. Compare of HDFS Download and Upload Throughput

12000.00
9845.21
9508.53
= 10000.00 9260.78 8869.36
Q
N
~ 8000.00
o0
<
c 600000 210921 439450 478864481596 —
5 hd w w e «@=download
2 4000.00 «@#=ypload
c
@
M 2000.00
0.00
1 2 3 4
Datanodes Count

Figure 4-8. Compare of HDFS Download and Upload Networking Performance

4.2.4 Use DRBD with Heartbeat on Namenode

Though make Datanodes have a better fault tolerance by HDFS configure. However, if the

Namenode fails, the whole information will can't access HDFS.

36

Here we added a mechanism DRBD with Heartbeat, DRBD can synchronize the contents
of the local disk to another host. With the heartbeat function, you can build high-availability
environment.

Figure 4-9 shows the HDFS in the THU1, we use this mechanism to establish a Master
Namenode and Slave Namenode, and the data real-time synchronization. When the Master
Namenode abnormal network (cable break or NIC failure), Slave Namenode to detect this
condition, we will stop the Primary Node in Hadoop, then took over by the Secondary Node

for the Primary Node.

-

Master Slave
MNamenode Namenode
Data Data
NDdE Mode MNode ND:!E

Figure 4-9. DRBD with Heartbeat on physical environment

4.2.5 Use DRBD with Heartbeat under Live Migration

Abnormal or major network nodes at the right time to die, although through DRBD with

Heartbeat way to do high availability Failover. But the abnormal Primary node fails, and

37

Secondary node fails too, will result this HDFS is not available.

Created through our virtual environment, we will Namenode based on the hypervisor in
Xen. When the Master Namenode network interruption or failure of a physical machine,
secondary node will then convert the primary node, and then through opennebula’s live
migration technology to convert Primary Namenode to other survivors of the physical

machine execution.

Live Migration fo
other survivars machine

(—._-_“\\\..#"‘w..) T
T - e | - .-'}
- #/ %4 e _]
< ¥ i

' Slave
Master Namenode ' Namenode
Data Data Data Data
MNode Node Mode MNode

Figure 4-10. DRBD with Heartbeat on virtual environment

This section describes the access HDFS in order to increase the reliability of MIFAS to
THU1 HDFS in the experiment, in the Namenode failure of the system's fault tolerance. Due
to the system to view or download DICOM files, are required in the HDFS's Namenode
through to each Datanodes to fetch files. Therefore, Namenode failure state, the node HDFS is
invalid.

Service IP: stand for provide service channel to external users, users through this IP to access

services. VM2 is primary node, VM1 is secondary. The different between primary and

38

secondary please refer to section II.A. Debianl, Debian2 and Debian3 are the hosts, VM2 is
living on Debian 1, and the secondary node VM1 is living on Debian2. The whole
environment is as shown illustration as Figure 4-10.

In Figure 4-11, we shutdown Debianl doesn’t cause the Service IP stop providing service.
You can see the connection status of Service IP in the bottom of Figure 4-12, it only lost one
pack. The reason is under our VFT mechanism (Figure 4-13), the secondary node is replaced
primary node immediately. In HA speak it called FAILOVER. It is a good practice of HA
mechanism. And VFT also boot on the VM2 to on-line host Debian3. In this case, we can say

VFT is a good solution to solve HA problem on virtualization.

penNebulg

140.128.102.171
]
[]

Front-End Host

Debian 1 Debian 2 Debian 3

Figure 4-11. Experimental Environments

39

.192. H ; TTL=56
-102. : TTL=56
-102. _ TTL=56
146.128.102. : TTL=56
140.128.102. : TTIL=56
140.128.102. ; = TTL=56

140.128.102. 3 TTL=56
140.128.102. : TTL=56
140.128.102. TTL=56

.182. : fymaE=-32 E%F'ﬁ 30ms TTL=56

VM2 is shutdown

g, 140128102192 -t o8]
.182.192: =32 [iF[]=60ns TTL=56
.182.192: =32 F[]=79ns TTL=56
.182. s =32 HF[]=98ms TTL=56
.182. H =32 HFfi=121ms TTL=56
.182.192: =32 §F[j=113ns TTL=56
.182.192: =32 [F[]=27ns TTL=56
.182.192: =32 [F[@]=31ns TTL=56
.182. : =32 HF[]=29ms TTL=56
.182. s =32 HF[i=24ms TTL=56
.182.192: =32 HF[Ej=23ms TTL=56
.182.192: =32 [ZF[]=25ns TTL=56
.182.192: =32 [F[]=30ns TTL=56
.182. : TaH=32 HFEj=32ms TTL=56

140.128.182.174
140.128.1082.174
140.128.1082.174
140.128.1082.174
140.128.1082.174

{ 140.128.102.174 ; - = 2
149,128 .162.174 Service IP is keep
140.128.102.174 going. only one
140.128.102.174 : ack lost
1408.128.102.174 7 : P u

140.128.1082.174

Figure 4-12. Shutdown Host and VM2

:::Create VM::::
VM Name
IP Address
Memory Size | 5128 v
Root Password
[Create VM |

= Manual L'_
mmmmm-m-__mz_
113 root vmoo1 EB 512 debiang ¢ 140128102192 | ~Select- [~
114 oot vmD02 g 1 512 dj-.-t'zlar' 00 140.128.102.194 —-Salect- E_ MIGRATE SHUTDOW d
——
L
o
.
L)

= v 5 B
= Manual || A
mmmm-mm___mm_
115 v 001 g Biang 0 .f..“,‘.it 02192 Select v] SH

.
116 f1o01 vmDO2 gl 1 512 debiand A 140.128.102.198 --Se:ect-;]",.s...'.:' HUTDOWN

Figure 4-13. VFT Mechanism

40

Chapter 5

Conclusion and Future Work

5.1 Concluding Remark

At present the computer node failure can usually be detected through the monitoring
mechanism for system health. Compared to passive solutions, the recovery has occurred in
response to failure, we are actively promoting the virtualization fault tolerance (VFT).
Systems that exhibit truly continuous availability are comparatively rare and higher priced,
and most have carefully implemented specialty designs that eliminate any single point of
failure and allow online hardware, network, operating system, middleware, and application
upgrades, patches, and replacements. Zero downtime system design means that modeling and
simulation indicates mean time between failures significantly exceeds the period of time
between planned maintenance, upgrade events, or system lifetime.

We use VFT mechanism to build a high availability of HDFS. Combining virtualization
techniques, load balancing, health monitoring and live migration, to be able to run virtual
machines from hardware failure on one machine and restart on another machine without
losing any state. Xen’s live migration allows a guest OS to be relocated to another node,
including running tasks of a Namenode job. DRBD can avoid a single hardware failure
affecting the host system operation, and the two hosts of the information produced by DRBD
machine instant synchronization, data inconsistencies will not occur. We exploit this feature
when a health-deteriorating node is identified, which allows computation to proceed on a
healthy node, thereby avoiding a complete restart necessitated by node failures. Experimental

results show that this solution can effectively increase the system availability.

41

5.2 Future Work

In the future, for the entire system to enhance the part of the following:

® Because the DICOM standard is updated constantly, for the DICOM parser part, we have
to correspond, in order to achieve a complete inspection data.

® In the current Web page can view the patient's examination picture, but can’t be editing
notes, and that it will do this part of the plan.

® HDFS parameters for performance optimization to do the adjustment.

42

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Prepare for Disasters & Tackle Terabytes When Evaluating Medical Image Archiving.

Available: http://www.frost.com/

C. C. Teng, J. Mitchell, C. Walker, A. Swan, C. Davila, D. Howard, and T. Needham,
"A medical image archive solution in the cloud,” in Software Engineering and Service
Sciences (ICSESS), 2010 IEEE International Conference on, 2010, pp. 431-434.

L. A. B. Silva, C. Costa, and J. L. Oliveira, "A PACS archive architecture supported on
cloud services," International Journal of Computer Assisted Radiology and Surgery,
pp. 1-10, 2011.

D. D. J. D. Macedo, A. V. Wangenheim, M. A. R. Dantas, and H. G. W. Perantunes,
"An architecture for DICOM medical images storage and retrieval adopting distributed
file systems,"” Int. J. High Perform. Syst. Archit., vol. 2, pp. 99-106, 2009.

C. T. Yang, L. T. Chen, W. L. Chou, and K. C. Wang, "Implementation of a Medical
Image File Accessing System on Cloud Computing,” in Computational Science and
Engineering (CSE), 2010 IEEE 13th International Conference on, 2010, pp. 321-326.
L. Faggioni, E. Neri, C. Castellana, D. Caramella, and C. Bartolozzi, "The future of
PACS in healthcare enterprises,” European Journal of Radiology, 2010.

E. Bellon, M. Feron, T. Deprez, R. Reynders, and B. V. d. Bosch, "Trends in PACS
architecture,” European Journal of Radiology, vol. 78, pp. 199-204, 2010.

L. N. Sutton, "PACS and diagnostic imaging service delivery--A UK perspective,”
European Journal of Radiology, vol. 78, pp. 243-249, 2011.

G. Ganapathy and S. Sagayaraj, "Circumventing Picture Archiving and
Communication Systems Server with Hadoop Framework in Health Care Services,"
Journal of Social Sciences, vol. 6, pp. 310-314, 2010.

National Institute of Standards and Technology(NIST). Available: http://www.nist.gov/

43

http://www.frost.com/
http://www.nist.gov/

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J. Venner, Pro Hadoop. 1st Edn, 2009.

R. L. Grossman, Y. Gu, M. Sabala, and W. Zhang, "Compute and storage clouds using
wide area high performance networks,” Future Generation Computer Systems, vol. 25,
pp. 179-183, February 2009 2009.

J. Shafer, S. Rixner, and A. L. Cox, "The Hadoop distributed filesystem: Balancing
portability and performance,” in Performance Analysis of Systems & Software
(ISPASS), 2010 IEEE International Symposium on, 2010, pp. 122-133.

J. Liu, L. Bing, and S. Meina, "THE optimization of HDFS based on small files," in
Broadband Network and Multimedia Technology (IC-BNMT), 2010 3rd IEEE
International Conference on, 2010, pp. 912-915.

W. v. Hagen, Professional Xen Virtualization: Wrox; 1 edition (January 29, 2008),
2008.

J. P. Walters, V. Chaudhary, M. Cha, S. G. Jr., and S. Gallo, "A Comparison of
Virtualization Technologies for HPC," in Advanced Information Networking and
Applications, 2008. AINA 2008. 22nd International Conference on, 2008, pp. 861-868.
J. Zhu, Z. Jiang, Z. Xiao, and X. Li, "Optimizing the Performance of Virtual Machine
Synchronization for Fault Tolerance," Computers, IEEE Transactions on, vol. PP, pp.
1-1, 2010.

T. C. Bressoud and F. B. Schneider, "Hypervisor-Based Fault-Tolerance,” SIGOPS
Oper. Syst. Rev., vol. 29, pp. 1-11, 1995.

J. Walters and V. Chaudhary, "A fault-tolerant strategy for virtualized HPC clusters,"
THE JOURNAL OF SUPERCOMPUTING, vol. 50, pp. 209-239, 20009.

Clinical Data Update System (CDUS). Available: http://www.cdus.org

M. V. Rafael, R. S. Montero, and I. M. Llorente, "Elastic management of cluster-based

services in the cloud,"” presented at the Proceedings of the 1st workshop on Automated

44

http://www.cdus.org/

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

control for datacenters and clouds, Barcelona, Spain, 2009.

C. T. Yang, H. Y. Cheng, W. L. Chou, and C. T. Kuo, " A Dynamic Resource
Allocation Model for Virtual Machine Managemant on Cloud,” in Symposium on
Cloud and Service Computing 2011.

B. Varghese, G. McKee, and V. Alexandrov, "Implementing intelligent cores using
processor virtualization for fault tolerance," Procedia Computer Science, vol. 1, pp.
2197-2205, 2010.

O. Villa, S. Krishnamoorthy, J. Nieplocha, and D. M. J. Brown, "Scalable transparent
checkpoint-restart of global address space applications on virtual machines over
infiniband," presented at the Proceedings of the 6th ACM conference on Computing
frontiers, Ischia, Italy, 2009.

J. E. Simons and J. Buell, "Virtualizing high performance computing,” SIGOPS Oper.
Syst. Rev., vol. 44, pp. 136-145, 2010.

DICOM. Available: http://medical.nema.org/

C. T. Yang, C. H. Tseng, K. Y. Chou, S. C. Tsaur, C. H. Hsu, and S. C. Chen, "A
Xen-Based Paravirtualization System toward Efficient High Performance Computing
Environments,"” in Methods and Tools of Parallel Programming Multicomputers. vol.
6083, C.-H. Hsu and V. Malyshkin, Eds., ed: Springer Berlin / Heidelberg, 2011, pp.
126-135.

VMware. Available: http://www.vmware.com/

A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott, "Proactive fault tolerance
for HPC with Xen virtualization,” presented at the Proceedings of the 21st annual
international conference on Supercomputing, Seattle, Washington, 2007.

OpenNebula. Available: http://www.opennebula.org

Apache Hadoop Project. Available: http://hadoop.apache.org/hdfs/

45

http://medical.nema.org/
http://www.vmware.com/
http://www.opennebula.org/
http://hadoop.apache.org/hdfs/

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

DRBD Official Site. Available: http://www.drbd.org

P. Pla, "Drbd in a heartbeat," Linux J., vol. 2006, p. 3, 2006.

A. L. N. Reddy and J. Wyllie, "Disk scheduling in a multimedia 1/0 system,"
presented at the Proceedings of the first ACM international conference on Multimedia,
Anaheim, California, United States, 1993.

C. T. Yang, S. Y. Wang, C. H. Lin, M. H. Lee, and T. Y. Wu, "Cyber Transformer: A
Toolkit for Files Transfer with Replica Management in Data Grid Environments,”
presented at the Proceedings of the Second Workshop on Grid Technologies and
Applications (WoGTA' 05), 2005.

C. T. Yang, S. Y. Wang, and C. P. Fu, "A Dynamic Adjustment Mechanism for Data
Transfer in Data Grids," presented at the Network and Parallel Computing: IFIP
International Conference, NPC 2007, 2007.

C. T.Yang, Y. C. Chi, T. F. Han, and C. H. Hsu, "Redundant Parallel File Transfer with
Anticipative Recursively-Adjusting Scheme in Data Grids," ALGORITHMS AND
ARCHITECTURES FOR PARALLEL PROCESSING, vol. 4494, pp. 242-253, 2007.
C.T. Yang, I. H. Yang, S. Y. Wang, C. H. Hsu, and K. C. Li, "A Recursively-Adjusting
Co-allocation scheme with a Cyber-Transformer in Data Grids," Future Generation
Computer Systems, vol. 25, pp. 695-703, July 2009 2009.

C. T. Yang, I. H. Yang, K. C. Li, and S. Y. Wang, "Improvements on dynamic
adjustment mechanism in co-allocation data grid environments,” J. Supercomput., vol.
40, pp. 269-280, 2007.

C. T. Yang, S. Y. Wang, and W. Chu, "Implementation of a dynamic adjustment
strategy for parallel file transfer in co-allocation data grids,” THE JOURNAL OF
SUPERCOMPUTING, vol. 54, pp. 180-205, 2009.

Nanodicom. Available: http://www.nanodicom.org/

46

http://www.drbd.org/
http://www.nanodicom.org/

[42] Hadoop-over-ftp. Available: http://www.hadoop.iponweb.net/Home/hdfs-over-ftp

[43] Curlftp. Available: http://curlftpfs.sourceforge.net/

[44] Ganglia. Available: http://ganglia.sourceforge.net/

47

http://www.hadoop.iponweb.net/Home/hdfs-over-ftp
http://curlftpfs.sourceforge.net/
http://ganglia.sourceforge.net/

APPENDIX A

Prepare Software

No Service \ersion Description
1 | Apache 2.2.15 Application
2 | MySQL 5.147 Database System
Web Service
3 | PHP 5.3.3 Scripting Language
4 | phpMyAdmin 2821 MySQL Management Tool
5 | Java 6u23 Java Runtime Environment
6 | Hadoop 0.20.3-dev | One of Apache Projects
1.0.1 Connect to HDFS using FTP
7 | HDFS-over-ftp Hadoop Service
client
0.9.2 file system for accessing FTP
8 | Curlftpfs
hosts
9 | Xen 5.0 Hypervisor Virtualization
10 | OpenNebula 2.0 VM Management Service

48

APPENDIX B

Installation Guide

A. Configure networking

The following is an example from our systems.

Edit the file /etc/hosts

127.0.0.1 localhost
10.1.1.211 debian-hal
10.1.1.212 debian-ha2

192.168.123.210 hadoop.namenode

Edit the file /etc/network/interface:

This file describes the network interfaces available on your system

and how to activate them. For more information, see interfaces(5).

The loopback network interface

auto lo

iface lo inet loopback

The primary network interface

allow-hotplug ethO

allow-hotplug ethl

iface ethO inet static
address 192.168.123.211
netmask 255.255.255.0
network 192.168.123.0

broadcast 192.168.123.255

49

gateway 192.168.123.254

dns-nameservers 168.95.1.1

dns-search csie.thu.edu.tw
iface ethl inet static

address 10.1.1.211

netmask 255.255.255.0

Finally, reboot the system or restart networking:

B. Java

http://www.oracle.com/technetwork/java/javase/downloads/index.html

$mv jre-6u23-linux-i586.bin to /usr

$sh jre-6u23-linux-i586.bin

C. Hadoop

http://hadoop.apache.org/

conf/core-site.xml

i mifas@localhost-~/hadoopfconf
= P

51" href="configuration.xsl"?>
- site-specific property owverrides in this file. ——>

onfigura
<< Prao

</configu

50

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://hadoop.apache.org/

conf/hdfs-site.xml

mifas@localhost:~/hadoocp/conf
Pp.

onfiguratior 1m2>

in this file. ——=>

dfs.name.dir: Namenode storage
dfs.data.dir: Datanode storage

dfs.replication: Number of replication

D. Hdfs-over-ftp

http://www.hadoop.iponweb.net/Home/hdfs-over-ftp

users.conf

28 mifas@localhost~/hdfs-over-ftp

H

r
r
r
r
r
r
r
r
rv

51

http://www.hadoop.iponweb.net/Home/hdfs-over-ftp

hdfs-over-ftp.conf

£# mifas@localhost:~/hdfs-over-ftp

run ftp

E. Curlftpfs

http://sourceforge.net/projects/curlftpfs/

$ apt-get install curl
$mkdir /nome/mifas/public_html/www/pacsdata
$cd /home/mifas/public_html/www

$sudo curlftpfs -v -0 allow_other ftp:// ****:****@140.128.98.20:2222 pacsdata

Check service status

52

http://sourceforge.net/projects/curlftpfs/

F. Xen

$ sudo aptitude -y install xen-tools
$ cd /etc/xen-tools

$ sudo gedit xen-tools.conf

dir = /data/xen

size =4Gb

dist =lenny

gateway = 192.168.200.254
netmask = 255.255.255.0
broadcast = 192.168.200.255
passwd = 1

mirror = http://free.nchc.org.tw/debian

serial_device = hvcO

output = /data/domains

G. OpenNebula

http://dev.opennebula.org/

$ wget http://dev.opennebula.org/attachments/download/103/one-1.4.0.tar.gz

$ tar zxvf one-1.4.0.tar.gz

$cd one-1.4

$ sudo scons

$ sudo mkdir /nome/one

$ sudo ./install.sh -d /home/one

$ sudo su

53

http://dev.opennebula.org/

echo export ONE_LOCATION=/home/one >> ~/.bashrc

echo export ONE_XMLRPC="http://localhost:2633/RPC2" >> ~/.bashrc
echo export PATH='$ONE_LOCATION/bin:$PATH' >> ~/.bashrc

echo export ONE_AUTH=/home/one/.one/one_auth >> ~/.bashrc

mkdir /home/one/.one

echo "root:cloud123" >> /home/one/.one/one_auth

H. DRBD and Heartbeat

http://www.drbd.org/

apt-get -y install drbd82 kmod-drbd82 heartbeat

[etc/drbd.conf

global { usage-count yes; }
common{ syncer{rate 30M;} }
resource r0 {
protocol C;
startup {
wifc-timeout O;
degr-wfc-timeout 120;
}
disk {
on-io-error detach;
no-disk-flushes;
no-md-flushes

size 1G;

}

54

http://www.drbd.org/

net {
}
on debian-hal {
device /dev/drbdO0;
disk /dev/sdb1;
address 10.1.1.211:7789;
meta-disk internal;
}
on debian-ha2 {
device /dev/drbdo;
disk /dev/sdbl;
address 10.1.1.212:7789;

meta-disk internal;

}

admin@debian-hal:/etc/network$ clera
-bash: clera: command not found
admin@debian-hal:/etc/network$ clear
admin@debian-hal:/etc/network$ cat /etc/drbd.conf
global {

usage-count yes;
}
common {

syncer { rate 30M; }

55

resource r0 {

protocol C;

startup {
wifc-timeout 0O;
degr-wfc-timeout 120;

}

disk {
on-io-error detach;
no-disk-flushes;
no-md-flushes

#size 1G;

net {
}
on debian-hal {
device /dev/drbdO;
disk /dev/sdb1;
address 10.1.1.211:7789;
meta-disk internal;
}
on debian-ha2 {
device /dev/drbdO0;
disk /dev/sdb1l;
address 10.1.1.212:7789;

meta-disk internal;

56

. Heartbeat Configuration

Create Soft Link

#cd /etc/ha.d/resource.d

#In -s /etc/init.d/hadoop-0.20-namenode hadoop-namenode

#In -s /etc/init.d/hadoop-0.20-jobtracker hadoop-jobtracker

fletc/ha.d/ha.cf

start of ha.cf
logfile /var/log/ha-log

logfacility localO

keepalive 2 #Detection period
warntime 5

deadtime 20

initdead 120

#hopfudge 1

udpport 694 #Using UDP 694

auto_failback off #if failback, resume to master

#baud 19200

bcast ethl #using ethl, to be the heartbeat network card
ucast eth0 192.168.123.211

ucast ethl 10.1.1.211

57

node debian-hal #Node 1, Server Name

node debian-ha2 #Node 2, Server Name

ping 192.168.123.254 #Ping our Gateway, check heart self

respawn hacluster /usr/lib/heartbeat/ipfail

apiauth ipfail gid=haclient uid=hacluster

end of ha.cf

/etc/ha.d/haresources

#vim /etc/ha.d/haresources
debian-hal 192.168.123.210/24 drbddisk::rO Filesystem::/dev/drbd0::/drbd::ext3::noatime

hadoop-namenode

Heartbeat Restart

#/etc/init.d/heartbeat stop

#/etc/init.d/heartbeat start

58

