R B m B

O mEE T AT 2t Hadoop Ah % kAT A
Improving Availability of Hadoop File System with Virtualization

Fault Tolerant Mechanism

REBERLBILTEMHXFRELZ

RBREERIZESR LA

R A B B # ARZHX

& M JE #4625 55 4%) 2 & Hadoop 42 £ 4 #.89
TRM

BAZRAREL HEHELTPRHUERE -

L EREE 4 Y
2 £ A 2N 4

e
22
e

e a B X
%%/e@
L F

s ww AR,

e
mr

TERB 100 4+ 6 A 27 =8

F &

R s S LR T L T R S ik e
B BRSO R A T AT SO R e R S Bl A B R R

JATRE o KA o e AR TS RNE BRI T AR T h BEEY ot
Lm TRl XA ORRAE c R E - A LRI R B TR £ HE A
238455 o Hadoop #_f7 ta¥z (Apache)® & 7 2 — 38 B > T GRK I ARACE - SRR
AR FF PGP E S F B REFTE o LA o BT L1k
AR HME - ALY AR Bl E T o E R AP R b
Xen g AR B 45 i Bojke ~ OpenNebula s ang 21 2 > 25 « KL~ 22 7
R AP AR R T - A A EA P2 £:3 25 Hadoop
BT R AP L RET AR AP ANEHRKI SN R A PR
FOFREDEI P oA PAPTRT - BFFLEF EF L PONEEY APk
BIoARES B A BPER{ AN BLFEIER TN R ROV AR

3 kg AT @2 Hadoop st 0 L F MABB I F PR Bk Suendp s o

Abstract

In most cases, cluster-based architecture can be divided into front-end node (Front-end) and
back-end node (Back-end), we can increase or reduce the number of back-end nodes
flexibility to face with highly variable system resource requirements. However, how to ensure
that front-end node (Front-end) High Availability is an issue needs to be explored and studied.
Virtualization is a common strategy for improving the existing computing resources,
particularly within cloud computing field. Hadoop, one of Apache projects, it is designed to
scale up from single servers to thousands of machines, each offering local computation and
storage. However, how to guarantee stability and reliability will be good study topics. In this
article, we were using currently open-source based software and platform to hit our goal. For
instance, Xen-Hypervisor virtualization technology, OpenNebula virtual machines
management tool, etc. After extended component capabilities, we developed a mechanism to
support our idea, and reached Hadoop High Availability, which called Virtualization Fault
Tolerance (VFT). This thesis we consider a practical problem that occur frequently in our
system today, the results also confirmed the downtime time can shorten if failure occurred. In
this case, it is not only for the Hadoop applications, but also can be extended to more areas of

cluster-based systems.

Keywords: High Availability, Cloud Computing, Virtualization, Virtualization Fault Tolerance

(VFT)

Acknowledgements

- IR LA RFIFEF ETARIEREDA R E B il ANA s EREREESE

EHeoRBly CERE R Ryt R e AR I ARG LT R RN
BEFELRBFEEERE BAAR AT EIRIRRLT g RADEE R
RAedo R ARL SRR BT R EDFRARER > ASRDIELT 4 G

§LFFYTEESHE £ pJ AT Db o

BRFNAS FALRR IR ERE-PIR L AR EHT LI RS At
PR RRAFEFE R A LR RFR AR T A LT @ g R R B3 o
AR BT FPREEY RARE T 5 AR B E L AP s o f ko4 &
E#HTRFE LT PR A2 BAfhme it {hechnd - BREHPEAFE - R F
LSRR I 3 NE “‘%EFTF PHE R T AN L P T fp e
Bt —BA R TARAR G R ER I - 2 S ER2ZY AT B LA PRL
I AR IR FREFEROREFEY AT VOEFETRE R B IEE H5H
FHROEL AR 2 A FRAFRE DT B o

ph A B RIR A R R S AR L ﬁﬂmxﬁﬁw‘aﬂﬁﬁéﬁﬂ
AW (AR FPEALE o defs o IR B R R S R 2

=2

PP -t tmEinfG-Fr3g o

Tables of Contents

BB B s iii
ADSEFACT ...ttt \Y%
ACKNOWIEAGEMENTS ..ottt st e e te e teebeeneesreeeennes %
TaDIES OF CONTENTS ...ttt Vi
LI TS Ao T U USSR viii
Listof Tables 2a S .. a0 N e X
Chapter 1 1] 8 oo (101 o] o [PPSR 1
1.1 GEotivaion M . e erepewromsgmrrraggmmma. -« eceee e ecreeee e Do 2
1.2 CONIIDULIONSciiiii ittt ettt st be sttt e s nne b e 3
1.3 TheSiS OrganiZatioN........ccceecueeeeirieiieiiesieeiseseesteessesseesseessesseesseesessaessessesssessasnsesseens 4
Chapter 2 Background Review and Related WOFKcccooveiiieiiiiieiieiecie e 5
2.1 Apache Project: HADOOP...........ccceiiiiiiiciie e ceeite et et eaesreesressaesreessesnaesseenseeneas 5
2.2 High AVAITEDITILY ..ottt 6
2.3 Fault Tolerance TEChNOIOQYcccieiuieieiiieiieiesieete ettt sre et s ve s 7
2.4 Virtualization TEChNOIOGIES.....ccueeuireieieeiesiesieete et ae e see s 10
2.5 Virtual Machine Management........c..ccvueeiiieiieeiieeiieiireeseeesreeseeereesreeereeseesreesreeens 13
2.6 Dynamic Resource AlIOCAtION.........cccevveviereeriieieceere et 15
2.7 REIAEA WOTKS ...t 15
Chapter 3 System IMPIemMENTAtioNcccveiiiiiiieii e 18
3.1, SYSIEM OVEIVIBW ...ttt ettt ettt et s te e ae e e beessaesabeessaeenbeessaeenreas 18
3.1.1. NEetWOrk CoNfIQUIAtioNccooiiiiiiieie e e 20

Vi

3.1.2. DRBD Configurationcccveiiiiiiieic e 21

3.1.3. Heartheat Configurationccooveiiei i 23

3.2. Virtualization Fault Tolerant Methodologyccovceerieiirienieesereeeeeee e 24
3.3, SYSIEM INLEITACEc.vieeieeieeeeeeeee ettt e esra e teeaeennens 28
Chapter4 Experimental Environment and ResUltS...........cccccoeveiieve e 30
4.1. Experimental ENVIFONMENTc.ccoviiiiiieiieiesie e see st te st e e aessee e saessaesreenesnnens 30
4.2, Networking Capabilityccccocieeeieieiiries e 32
4.3. Measurement Server Performance with HPCC Benchmarkcccooevveveneninnene 34
4.4, Virtual Maching Life MIgrationcccooereeerininiieeiieienene et 36
4.5. Hadoop Namenode FAIlOVEr.........ccooieiuieiiieieieeie ettt sre e 37
4.6, VFT EXPErIMENTAl....c.oiiiiiiiiiiieieiei ettt 39
Chapter5 Conclusions and FULUIe WOKKcccccoiiiiiininiiieece s 41
T8 I 0 o [1 o [o T =T 0 =T S 41
5.2, FULUIE WOTK...eiiiiiitieiieieee ettt sttt ettt ss e et eae s esseneeas 41
=L o] FTo o T =1 o]) 2N SO ST PSRRPN 43
Appendix.... ... WL E2ALRAL R A 47
A. Hadoop HA Setup and Configurationcceeerierieeeeneeniesiieseenie e seeesee e seeeneeeneas 47
Al Install IDK 6 PACKAGEooveviiiiiiiiiiiiee et 48
A2, Configure NEIWOIKINGeoiviiiieeiie ettt ae e 48
A.3. DRBD and Heartbeat installation.............ccocveeiieiiiic e 49
A4, ConfIgure DRBD.......c.ooiiiiie ittt e 50
A5, Hadoop INSLAIIAtIONooviiiiii s 53
A.6. Heartbeat ConfigUIatioNcvoiiiiiiiiic e 54

Vil

List of Figures

Figure 2-1. DRBD ATICNITECIUIEocueiiiiiiieie ettt sttt 9
Figure 2-2. A Life Cycle of Heartbeat aCtiVItiesccccovvivieiieiiiie e 10
Figure 2-3. OpenNebula Internal ArChIitECtUIe.........ccveiiiiii e 14
Figure 2-4. Dynamic Resource AHOCALIONc.ccviueiiiiiiic et 15
FIQUIE 3-1. SYSIEM OVEIVIBW........oeiieiiiitiiii ettt ekttt a bt sttt 19
Figure 3-2. Primary and Secondary Nodes Networking Configuration.........c.ccccccevvvevvenenne. 21
Figure 3-3. Part of drbd.Cconf CONTENTccoiiiiiiiieieiie s 22
Figure 3-4. CheCKk DRBD STaLe.......ccuiiiiiieiie ettt e 22
Figure 3-5. Revise the authkeys acCess PEIMISSIONcoieiviriiririiiieieiie et 23
Figure 3-6. Part of ha.Cf CONEENL.........ccoiiieece e e 23
Figure 3-7. Part of drbd.Conf CONTENToiiiiiiiieee s 24
Figure 3-8. Collection HOStS State SCIPL.......ccueiiiiiiieiiiie e 25
Figure 3-9. Lifemigrate / migrate with OpenNebula command line..........cc.ccociiiiiiicienn, 25
Figure 3-10. Virtualization Fault Tolerance FIOWccc.coeiiieieiii i 26
Figure 3-11. HOW 0 TrIQQEr VET ...ttt 27
Figure 3-12. System AULhOMIZALIONccviiiiicieece e 28
Figure 3-13. RESOUICE MONITOTcuveuviiiiiitiiiitie ettt sttt sttt 29
Figure 3-14. High Availability SEttingS........cccueiiiiiiiiii e 29
Figure 4-1. Physical Host and Virtual Machine Networking Performance...........cc.cccccevvvnenee. 33
Figure 4-2. Throughputs between Physical Host and Virtual Machine..............ccccoooveiieinnn, 34
Figure 4-3. Results of RUNNING HPCCoi i 35
Figure 4-4. Host-A Migration Memory State..........cccocvveiieiiiieiie e 36
Figure 4-5. Host-B Migration MemOory STate........cccccoveiiieieiieieeiese e 37

Figure 4-6. Lab Hadoop HDFS INfOrmation..........ccccceiveiiiieiie s

Figure 4-7. VFT Experiment Environment

Figure 4-8. Ping Loss Measurement

List of Tables

Table 3-1 VM2 - Primary Node Network SEttiNg..........cccovivereiieeiieie e 20
Table 3-2 VM1 - Secondary Node Network SEtting.........ccooverereiieiinie e 20
Table 4-1 Lab Server Hardware SPecifiCationcccoeiieviiiieiic e 30

Table 4-2 A Comparisons of Physical Host and Virtual Machine Networking Performance .. 32

Table 4-3 Throughputs between Physical Host and Virtual Machineccccccevveveieenenn, 33
Table 4-4 Results of RUNNING HPCCooiiiiiiiiieec e 35
Table 4-5 PIaNNed HOSES..........coiiiiiiiiieiieee et 38
Table 4-6 Part of Properties of hAfS-SIte. XMlcccooiiiiiii e, 38

Chapter 1

Introduction

Virtual machine (Virtual Machine) in recent decades, the annual growth rate has significantly
improved [1-5]. Whether the vendor's various related products, or is gradually emerging
applications in different fields: for example, the CPU instruction set from the most basic
dynamic conversion, analog to the popular energy saving, cluster management, or behavior
detection and so on. Virtualization technology not only provides significant secondary effects,
and even applications in many fields place. In addition to the scope of application of
virtualization technology continues to expand, broaden, the virtual machine guest operating

system in operation (Guest OS) time also continue to improve efficiency.

Hadoop [6-13] was inspired by Google's MapReduce and Google File System (GFS) [14,
15]papers which provided access to the file systems supported by Hadoop. Hadoop cluster
will include a single master and multiple worker nodes. The master node consists of a
JobTracker, task tracker, NameNode, and DataNode. The Hadoop Distributed File System
(HDFS) uses this when replicating data, to try to keep different copies of the data on different
racks. The goal is to reduce the impact of a rack power outage or switch failure so that, even if
these events occur, the data may still be readable. However, it even so took a long time to

restart the system when failure occurred.

1.1 Motivation

To using a new technology could be a big challenge for some people, but in this section, we
are not trying to discuss the learning curve, but talk about the reliability and stability issues.
Hadoop like others distribution system, it allows you use among back-end resources to
operate complex computing or as a huge storage. And front-end charge of metadata link or
resource allocation works. Developers could use these feature to achieve services everywhere.

In this thesis, we let Hadoop Namenode running on virtual machine, and developed a
high availability mechanism for Namenode. HDFS filesystem instance requires one unique
server, the name node. This is a single point of failure for an HDFS installation. If the name
node goes down, the filesystem is offline. When it comes back up, the name node must replay
all outstanding operations. This replay process can take over half an hour for a big cluster. The
filesystem includes what is called a Secondary Namenode, which misleads some people into
thinking that when the Primary Namenode goes offline, the Secondary Namenode takes over.
In fact, the Secondary Namenode regularly connects with the Primary Namenode and builds
snapshots of the Primary NameNode's directory information, which is then saved to
local/remote directories. These checkpointed images can be used to restart a failed Primary
Namenode without having to replay the entire journal of filesystem actions, the edit log to
create an up-to-date directory structure.

Various challenges are faced while developing a distributed application [3, 16-21]. The
first problem to solve is hardware failure: as soon as we start using many pieces of hardware,
the chance that one will fail is fairly high. The second problem is that most analysis tasks
need to be able to combine the data in some way; data read from one disk may need to be
combined with the data from any of the other disks. However, the HDFS and MapReduce the

original Hadoop kernels, are already fixed this problem. HDFS allows replication redundant

copies of data are kept by the system so that in the event of failure, there is another copy
available. This is mostly like RAID works. And the MapReduce provides a programming
model that abstracts the problems from disk read and writes to transform into a computation
over sets of keys and values.

However, Hadoop does not support automatic recovery in the case of a NameNode
failure. This is a well-known and recognized single point of failure in Hadoop. In Hadoop
Official site mentioned about this [6]: if the NameNode machine fails, manual intervention is
necessary. Currently, automatic restart and failover of the NameNode software to another
machine is not supported. If the NameNode single-point-of-failure is established, then trying

to solve this problem is the goal of this thesis.

1.2 Contributions

Hadoop infrastructure has become a critical part of day-to-day business operations. As such, it
was important for us to find a way to resolve the single-point-of-failure issue that surrounds
the master node processes, namely the NameNode and JobTracker. While it was easy for us to
follow the best practice of offloading the secondary NameNode data to an NFS mount to
protect metadata, ensuring that the processes were constantly available for job execution and
data retrieval were of greater importance. We’ve leveraged some existing, well tested
components that are available and commonly used in Linux systems today. Our solution
primarily makes use of DRBD [1] from LINBIT and Heartbeat from the Linux-High
Availability (HA) project which we called Virtualization Fault Tolerance (VFT). The natural
combination of these projects provides us with a reliable and highly available solution, which
addresses limitations that currently exist.

Virtualization is being used as a solution not only to provide service flexibility, but also

3

to consolidate server workloads and improve server utilization. A virtualized based system
can be dynamically adapted to the client demands by deploying new virtual nodes when the
demand increases, and powering off and consolidating virtual nodes during periods of low
demand. In this thesis, we employ the virtual machine management tool, OpenNebula [22-24],
to manage virtual machines and combine others open source resources to achieve Hadoop

Namenode high availability goal.

1.3 Thesis Organization

This thesis is organized as follows. First, we start the background and related works of this
thesis in chapter 2. Chapter 3 describes the system implementation and shows how we design
the VFT mechanism, and it also shows the interface of our virtual machine management tool.
In chapter 4, we design some scenarios to prove our system and mechanism. Finally, chapter 5

outlines main conclusions and the future works.

Chapter 2

Background Review and Related Work

2.1 Apache Project: HADOOP

Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text

search library. Hadoop has its origins in Apache Nutch, an open source web search engine,

itself a part of the Lucene project. Hadoop is best known for MapReduce and its distributed

filesystem (HDFS, renamed from NDFS), the term is also used for a family of related projects

that fall under the infrastructure for distributed computing and large-scale data processing.

The Hadoop projects that are covered projects as below lists:

a.

Common : a set of components and interfaces for distributed file systems
and general 1/O (serialization, Java RPC, persistent data structures).

Avro: a serialization system for efficient, cross-language RPC, and
persistent data storage.

MapReduce: a distributed data processing model and execution environment that runs
on large clusters of commodity machines.

HDFS: a distributed filesystem that runs on large clusters of commodity machines.

Pig: a data flow language and execution environment for exploring very large datasets.
Pig runs on HDFS and MapReduce clusters.

Hive: a distributed data warehouse. Hive manages data stored in HDFS and provides a

query language based on SQL (and which is translated by the runtime engine to

MapReduce jobs) for querying the data.

h. HBase: a distributed, column-oriented database. HBase uses HDFS for its underlying
storage, and supports both batch-style computations using MapReduce and point queries
(random reads).

i. ZooKeeper: a distributed, highly available coordination service. It provides primitives
such as distributed locks that can be used for building distributed applications.

J. Sqoop: a tool for efficiently moving data between relational databases and HDFS.

2.2 High Availability

High Availability[25] means “A system design approach and associated service
implementation that ensures a prearranged level of operational performance will be met
during a contractual measurement period”. We will focus this on cloud configurations that
remove as many single points of failure as possible and that are inherently designed with a
specific focus on operational continuity, redundancy, and fail-over capability

High Awvailability can be achieved at many different levels, including the application
level, infrastructure level, data center level, and geographic redundancy level. We will
focus on the infrastructure level in this thesis. All system outages fall into two major
categories [19, 26]:

Unplanned System Outages: unplanned outages are the result of uncontrollable random
system failures associated with faults occurring within hardware or software components.
Unplanned outages are the most costly, with the highest gains being achieved when steps are
taken to avoid this type of outage.

Planned System Outage: a planned outage should be scheduled to have a minimum
availability impact on a system. Planned outages is the result of maintenance events revolving

6

around repair, backup, or upgrade operations. Repairs are intended to remove faulty
components and restore a system to a functional state. Backups are intended to preserve
critical data on a magnetic storage medium (disk or tape) to avoid the loss of data when a
production system experiences a main disk storage failure. Upgrades are implemented to
replace the current hardware or software with newer (or enhanced) versions.

Do we need high availability for our business? It’s all depending on your system level as
the previous definition. But in our daily lives some applications' downtime will create a
significant amount of angst for users. While Facebook, Gmail, or AT&T experience outages,
these events will receive national and often international attention. Not only can downtime in
your products turn into a disastrous PR nightmare, but more importantly, it can also seriously
tarnish the loyalty of your customer base that depends on you for their financial livelihood.
Regardless of the size of your organization, if downtime in your internal infrastructure or core
product offerings negatively impacts your bottom line, you are a perfect candidate for
exploring cloud HA. High Availability can still be a tricky and expensive proposition in
dedicated environments.

In HA field, Floyd Piedad [26] also presented availability level and measurement. In
same field they all indicated that IT must understand the level of availability users require,
and users must understand the costs of achieving these targets. Of all availability levels,
continuous availability is the most challenging and expensive to provide. In our work, we are

toward this topic and trying to make it available.

2.3 Fault Tolerance Technology

In this thesis, we consider DRBD with Heartbeat is a good solution fault tolerance technology.
DRBD is a short name of “Distributed Replicated Block Device” (DRBD) is a software-based,

7

shared-nothing, replicated storage solution mirroring the content of block devices (hard disks,
partitions, logical volumes, etc.) between servers.

DRBD mirrors data: in real time: replication occurs continuously, while applications
modify the data on the device.

Transparently: the applications that store their data on the mirrored device are oblivious
of the fact that the data is, in fact, stored on several computers.

Synchronously or asynchronously: With synchronous mirroring, a writing application
iIs notified of writing completion only after the writing has been carried out on both computer
systems. Asynchronous mirroring means the writing application is notified of writing
completion when the writing has completed locally, but before the writing has propagated to
the peer system,

DRBD technology is designed as a block device building block to form a
high-availability (HA) cluster. This is done by mirroring a whole block device via a specified
network. DRBD technology can be understood as a network RAID-1. The bottom part of this
illustration shows a cluster where the left node is currently activated, i.e., the service's IP
address that the client machines are talking to which is currently on the left node. The service,
including its IP address, can be migrated to the other node at any time, either due to a failure
of the active node or as an administrative action. The lower part of the illustration shows a
degraded cluster. In HA speak the migration of a service is called failover. The reverse process
is called failback and when the migration is triggered by an administrator it is called

switchover [27]. In Figure 2-1, it displays entire DRBD architecture.

(SERVICE) C SERVICE)

?
FILE :StYSTEM FILE SYSTEM
Primary it Secondary
BUFFER CACHE BUFFER CACHE
DRBD = RAW DEVICE DRBD [RAW DEVICE
i { TCP/IP TCP/IP
DISK SCHED H‘ DISK SCHED ﬂ‘
DISK DRIVER NIC DRIVER DISK DRIVER NIC DRIVER
ﬁ __;1‘ B S . 1T {
! — NIC NIC % J

‘."-
j T‘ o
o %

Disk
Disk

Figure 2-1. DRBD Architecture

DRBD's core functionality is implemented by way of a Linux kernel module. In
additional, DRBD constitutes a driver for a virtual block device, so DRBD is situated “right
near the bottom” of a system's I/O stack. Because of this, DRBD is extremely flexible and
versatile, which makes it a replication solution suitable for adding high availability to just
about any application.

Heartbeat[28] is a daemon that provides cluster infrastructure (communication and
membership) services to its clients. This allows clients to know about the presence (or
disappearance!) of peer processes on other machines and to easily exchange messages with
them [30]. As Figure 2-2 shown, DRBD with Heartbeat is a fault tolerance solution in Linux

based OS. And this solution is also very important in this thesis.

Service Heatbeat Detection . 11 heat 1

Feeback

Failaver ailgack

' Service Heatbeat Heatbeat Service On 1

No response, Switch Ove g

Figure 2-2. A Life Cycle of Heartbeat activities

2.4 Virtualization Technologies

Virtualization technology [1, 5, 18, 29-32] is an interesting solution to implement
cluster-based server and to overcome these problems. Cluster nodes can be virtualized using
some virtualization platform (Xen, KVM, VMWare, etc.) and can be managed by an efficient
virtual machine manager that could incorporate a provisioning model for dynamically
deploying new virtual cluster nodes when the user demand increases, and consolidate
virtual nodes when the demand decreases. Virtualization lets you run multiple virtual
machines on a single physical machine, with each virtual machine sharing the resources of
that one physical computer across multiple environments.

Virtualization is simply the logical separation of the request for some service from the
physical resources that actually provide that service. In practical terms, virtualization provides
the ability to run applications, operating systems, or system services in a logically distinct

system environment that is independent of a specific physical computer system. Obviously, all

10

of these have to be running on a certain computer system at any given time, but virtualization
provide a level of logical abstraction that liberates applications, system services, and even the
operating system that supports them from being tied to a specific piece of hardware.
Virtualization, focusing on logical operating environments rather than physical ones, makes
applications, services, and instances of an operating system portable across different physical
computer systems. Virtualization can execute applications under many operating systems,
manage IT more efficiently, and a lot resource of computing with other computers .

In general, most virtualization strategies fall into one of three major categories [1]: Full
Virtualization: Also sometimes called hardware emulation. In this case an unmodified
operating system is run using a hypervisor to trap and safely translate/execute privileged
instructions on-the-fly. Because trapping the privileged instructions can lead to significant
performance penalties, novel strategies are used to aggregate multiple instructions and
translate them together. Other enhancements, such as binary translation, can further improve
performance by reducing the need to translate these instructions in the future.

Para-virtualization: Like full virtualization, para-virtualization also uses a hypervisor,
and also uses the term virtual machine to refer to its virtualized operating systems. However,
unlike full virtualization, para-virtualization requires changes to the virtualized operating
system. This allows the VM to coordinate with the hypervisor, reducing the use of the
privileged instructions that are typically responsible for the major performance penalties in
full virtualization. The advantage is that para-virtualized virtual machines typically
outperform fully virtualized virtual machines. The disadvantage, however, is the need to
modify the para-virtualized virtual machine/operating system to be hypervisor-aware. This
has implications for operating systems without available source code.

Operating System-level Virtualization: The most intrusive form of virtualization is

operating system level virtualization. Unlike both para-virtualization and full virtualization,

11

operating system-level virtualization does not rely on a hypervisor. Instead, the operating
system is modified to securely isolate multiple instances of an operating system within a
single host machine. The guest operating system instances are often referred to as virtual
private servers (VPS). The advantage to operating system-level virtualization lies mainly in
performance. No hypervisor/instruction trapping is necessary. This typically results in system
performance of near-native speeds. The primary disadvantage is that all VPS instances share a
single kernel. Thus, if the kernel crashes or is compromised, all VPS instances are
compromised. However, the advantage to having a single kernel instance is that fewer
resources are consumed due to the operating system overhead of multiple kernels.

For the remainder of this thesis, we choose “Xen Hypervisors” to be our virtualization
technology platform. It is the basic abstraction layer of software that sits directly on the
hardware below any operating systems. It is responsible for CPU scheduling and memory
partitioning of the various virtual machines running on the hardware device. The hypervisor
not only abstracts the hardware for the virtual machines but also controls the execution of
virtual machines as they share the common processing environment. It has no knowledge of
networking, external storage devices, video, or any other common I/O functions found on a
computing system.

In same research, P. Barham [29] presented Xen, an x86 virtual machine monitor which
allows multiple commodity operating systems to share conventional hardware in a safe and
resource managed fashion, but without sacrificing either performance or functionality. This is
achieved by providing an idealized virtual machine abstraction to which operating systems

such as Linux, BSD and Windows XP, can be ported with a minimal effort

12

2.5 Virtual Machine Management

A key component in this scenario is the virtual machine (VM) management system. A VM
manager provides a centralized platform for efficient and automatic deployment, control, and
monitoring of VMs on a distributed pool of physical resources. Usually, these VM managers
also offer high availability capabilities and scheduling policies [33]. Eucalyptus, OpenNebula
and Nimbus [22-24, 34] are three major open-source cloud-computing software platforms.
The overall function of these systems is to manage the provisioning of virtual machines for a
cloud providing infrastructure-as-a-service. These various open-source projects provide an
important alternative for those who do not wish to use a commercially provided cloud. In this
thesis we employ OpenNebula to be the research object.

The OpenNebula is a virtual infrastructure engine that enables the dynamic deployment
and re-allocation of virtual machines in a pool of physical resources. The OpenNebula system
extends the benefits of virtualization platforms from a single physical resource to a pool of
resources, decoupling the server, not only from the physical infrastructure but also from the
physical location. The OpenNebula contains one frontend and multiple backend. The
front-end provides users with access interfaces and management functions. The back-ends are
installed on Xen servers, where Xen hypervisors are started and virtual machines could be
backed. Communications between frontend and backend employ SSH. The OpenNebula gives
users a single access point to deploy virtual machines on a locally distributed infrastructure.

OpenNebula orchestrates storage, network, virtualization, monitoring, and security
technologies to enable the dynamic placement of multi-tier services (groups of interconnected
virtual machines) on distributed infrastructures, combining both data center resources and
remote cloud resources, according to allocation policies. In Figure 2-3, the OpenNebula

internal architecture can be divided into three layers.

13

a. Tools, management tools developed using the interfaces provided by the OpenNebula
Core.

b. Core, the main virtual machine, storage, virtual network and host management
components.

c. Drivers, it is to plug-in different virtualization, storage and monitoring technologies and

Cloud services into the core.

Tools _Command Other Tools
Line Interface

SQL Pool

@atabase |
Drivers
Driver

Figure 2-3. OpenNebula Internal Architecture

Core

In previous works we build virtual machines on OpenNebula and implemented
Web-based management tool. Thus, the system administrator can be easy to monitor and
manage the entire OpenNebula System on our project. OpenNebula is composed of three
main components: (1)the OpenNebula Core is a centralized component that manages the life
cycle of a VM by performing basic VM operations, and also provides a basic
management and monitoring interface for the physical hosts (2) the Capacity
Manager governs the functionality provided by the OpenNebula core. The capacity manager
adjusts the placement of VMs based on a set of pre-defined policies (3) Virtualizer Access
Drivers. In order to provide an abstraction of the underlying virtualization layer, OpenNebula

uses pluggable drivers that expose the basic functionality of the hypervisor [2].

14

2.6 Dynamic Resource Allocation

In our previous paper “A Dynamic Resource Allocation Model for Virtual Machine
Management on Cloud” published Dynamic Resource Allocation (DRA) algorithm, which has
a detail description of DRA [25], and it is one of the key components of this thesis basis. In
this work, we focus on enhance Hadoop HA architecture problem, therefore DRA is not
described in detail in this thesis; if you are interested in DRA, please refer to “A Dynamic
Resource Allocation Model for Virtual Machine Management on Clusters” article. However,
the purpose of DRA is to reach the best balance between each physical machine. To avoid
computing resources centralized on some specify physical machines, how to balance the
resources is most important issue. To achieve the maximum efficiency the resource must be

evenly distributed.

1. All Resource 2. A hostis 0%
are 80% full resource usage

.. .‘ .. -
80% 80% 80% 0%

3 Evenly Allocated Resources

Figure 2-4. Dynamic Resource Allocation

2.7 Related Works

In this field, there still have another choice to achieve fault tolerance which is OpenVVZ[35], it
container-based virtualization for Linux. OpenVZ creates multiple secure, isolated containers

15

on a single physical server enabling better server utilization and ensuring that applications do
not conflict. And in same research, J. Walters and V. Chaudhary [18], proposed “A
Fault-Tolerant Strategy for Virtualized HPC Clusters”, using both checkpointing and
replication in order to ensure the lowest possible checkpointing overhead. However, they still
have some open issues which are how to integration checkpointing and fault-tolerance system
into common cluster batch schedulers. But they still provide us a nice practice to handle fault
tolerance for virtualization on single site.

G. Vallee [20] proposed a frame to solve fault tolerance issue. Such a framework enables
the implementation of various fault tolerance policies, including policies presented in the
literature that were not validated by experimentation; therefore G. Vallee presented
framework, coupled with their fault tolerance simulator, provides a complete solution for the
study of proactive fault tolerance policies. The framework prototype currently provides a
single policy based on Xen VM migration but new policies are currently under development
in their work. Aim to this point, Xen VM migration issue has been overcome under our
framework. The reason is kind of framework need be managed via VM management tool,
such as OpenNebula [36].

Regarding to Fault Tolerance mechanism on Hadoop, a good solution has been presented
by Cloudera [11]. Cloudera is focus on provide various Hadoop solution. In Sep.2009,
Christophe Bisciglia presented an article of "Hadoop HA Configuration”. It was implemented
Headbeat and DRBD to enhance Hadoop HA, and we extended it on visualization today.

H. Zhong et al. [37] proposed an optimized scheduling algorithm to achieve the
optimization or sub-optimization for cloud scheduling problems. In same research, the
authors investigated the possibility to allocate the Virtual Machines (VMSs) in a flexible way
to permit the maximum usage of physical resources. Author used an Improved Genetic

Algorithm (IGA) for the automated scheduling policy. The IGA used the shortest genes and

16

introduces the idea of Dividend Policy in Economics to select an optimal or suboptimal

allocation for the VMs requests. This thesis inspired us to find out how to get an optimized

algorithm to hit our goal.

Our paper focuses VMs running on physical machines and use DRA technology to

implementation virtualization fault tolerance.

17

Chapter 3

System Implementation

In this chapter, we introduce our system architecture and how we composed those components.
Of course, the OpenNebula plays a key role in the entire system. The most advantage which is
Live Migration function, compare to other virtualization management tools, Live Migration is
all they lacked. Since OpenNebula proposed this unique function, we might think another
possibility to enhance system high availability, which is combined with DRBD and Heart
Beat. In order to achieve this goal, we made following systems and experiments. For more

detail, please see below sections.

3.1. System Overview

The entire system is according to official OpenNebula manual. The OpenNebula core
orchestrates three different management areas: image and storage technologies (that is, virtual
appliance tools or distributed file systems) for preparing disk images for VMs, the network
fabric (such as Dynamic Host Configuration Protocol servers, firewalls, or switches) for
providing VMs with a virtual network environment, and the underlying hypervisors for
creating and controlling VMs. The core performs specific storage, network, or virtualization
operations through pluggable drivers. Thus, OpenNebula isn’t tied to any specific
environment, providing a uniform management layer regardless of the underlying

infrastructure.

18

As the shown illustration in Figure 3-1, it is over view of system architecture. According
to the previous works, we build a cluster system with OpenNebula and also provide a web
interface to manage virtual machines and physical machine. Our cluster system was built up
with four homogeneous computers; the hardware of these computers is equipped with Intel i7
CPU 2.8 GHz, four gigabytes memory, 500 gigabytes disk, Debian operating system, and the

network connected to a gigabit switch.

OpenNebulg/

140.123.102:.171

HeartBeat

Front-End Host

Debian 1 Debian 2 Debian 3

Figure 3-1. System Overview

Follow bottom to top, the infrastructure, Hosts, means physical machines. And Xen
Hypervisor is one of virtualization technology suit for Linux series OSs. And follow up are
two VMs, VM2 is primary node, and VML is secondary node. Assume Hadoop Namenode is
built on VM1 as primary node; the VM2 is the slave node of VM1. Under a Heartbeat +
DRBD mechanism, you can see we use 5 IP to deploy on this system, one pair is for Cross

Over and the other pair is for identify the primary and secondary, the last one is for the service

19

usage. Finally, a key component OpenNebula is on the top layer, it is the key of entire
scenario, this component provides a centralized platform for efficient and automatic
deployment, control, and monitoring of VMs on a distributed pool of physical hosts. And we
also compose a web interface management tool via DRA and OpenNebula’s components to

manage virtual machines.

3.1.1. Network Configuration

Due to limitation physical IP address, we build a private network environment in our
laboratory. Before the HA mechanism was active, some works need be done before that. First,
we need to set the IPs on both virtual machines. The IP 192.168.123.210 means Service IP, it
is controlled by Heartbeat, and it is using to provide service for users. In this scenario, we
assume VM2 is primary node (Table 3-1) and VML is secondary (Table 3-2), you can also

refer to Figure 3-2.

Table 3-1 VM2 - Primary Node network setting

IP Setting Description

eth0 192.168.123.212 For identify this machine

eth0:0 192.168.123.210 Service IP, Control By Heartbeat to provide services for
outside users

eth1 10.1.1.211 For data transfer control by DRBD

Table 3-2 VML1 - Secondary Node network setting

IP Setting Description
eth0 192.168.123.212 For identify this machine
eth0:0 192.168.123.210 Service IP, control by Heartbeat, disabled when this machine

IS secondary node

eth1 10.1.1.212 For data transfer control by DRBD

20

& -

[Access Services .'

HeartBeat LD AR £in 140128102192 HeartBeat

eth0:0 140.128.102.174
Hadoop Hadoop
Namenode Namenode
Cross Over

eth0:1 10.10.10,194 ethd:1 10.10.10.192

Xen Hypervisor

Figure 3-2. Primary and Secondary Nodes Networking Configuration

3.1.2. DRBD Configuration

After downloaded the DRBD package and installed it complete [30], then, we could start to
set DRBD config file in both two nodes, gave the same setting as shown Figure 3-7. Part of
drbd.conf Content in /etc/drbd.conf. For the reminder, it is needed consistency setting in both

primary and secondary.

global {
usage-count yes;

}

common {
syncer { rate 30M; }

}

resource r0 {
protocol C;
startup {

21

wfc-timeout 0;
degr-wfc-timeout 120;
}

disk {
on-io-error detach;
no-disk-flushes;
no-md-flushes
size 1G;

}

net {
}

on debian-hal { #VM 2

device /dev/drbdo;

disk /dev/sdb1l;
address 10.1.1.211:7789;
meta-disk internal;

}

on debian-ha2 { #VM 2

device /dev/drbdo;

disk /dev/sdb1l;
address 10.1.1.212:7789;
meta-disk internal;

Figure 3-3. Part of drbd.conf Content

To check the DRBD state with below commands:

#cat /proc/drbd

or

#drbdadm state rO

Figure 3-4. Check DRBD State

22

3.1.3. Heartbeat Configuration

There are many options available for the Heartbeat configuration. In this section, we attempt
to show our methods. There are there main files that we edit to configure the Heartbeat
package:
a. /etc/ha.d/authkeys
b. /etc/ha.d/ha.cf/
c. letc/ha.d/haresources
First, authkeys should also be the same on both servers. Remember to change the

permission as following introduction.

chmod 0600 /etc/ha.d/authkeys #remember to revise the permission

Figure 3-5. Revise the authkeys access permission

Second, ha.cf, defines the general settings of the cluster. Our example:

logfile /var/log/ha-log

logfacility local0

keepalive 2 #Detection period
warntime 5

deadtime 20

initdead 120

#hopfudge 1

udpport 694 #Using UDP 694

auto_failback off #if failback, resume to master

#baud 19200

bcast ethl #using ethl, to be the heartbeat network card
ucast eth0 192.168.123.211

ucast eth1 10.1.1.211

node debian-hal #Node 1, Server Name
node debian-ha2 #Node 2, Server Name

ping 192.168.123.254 #Ping our Gateway, check heart self

respawn hacluster /usr/lib/heartbeat/ipfail
apiauth ipfail gid=haclient uid=hacluster

Figure 3-6. Part of ha.cf Content

23

Finally, the last file, haresources, defines all cluster resources that will fail over from one
node to the next. The resources include the Service IP address of the cluster, the DRBD
resource “r0” (from /etc/drbd.conf), the file system mount, and the three Hadoop master node

initiation scripts that are invoked with the “start” parameter upon failover.

debian-hal \
192.168.123.210/24 \
drbddisk::r0 Filesystem::/dev/drbd0::/drbd::ext3::noatime \

hadoop-namenode

Figure 3-7. Part of drbd.conf Content

3.2. Virtualization Fault Tolerant Methodology

Our approach for the virtual machine's management is an efficient mechanism to reach high
available under limited resources. Apart from this, how to research fault-tolerant on
virtualization machines and then raise reliability is the topic we want to solve in this thesis. In
order to provide continuous availability for applications in the event of server failures a
detection methodology is necessary in this thesis.

The Virtualization Fault Tolerance (VFT) has three main phases: virtual machine
migration policy, information gathering, and keep services always available. The workflow
can be described as follows the illustration (Figure 3-10). However, there is a constraint of
this methodology, which is the physical host number must be bigger than three. It is the base
requirement to achieve VFT methodology. The coming section will explain this reason.

Virtual Machine Migration Policy: it stands for enabled DRA to make sure the entire
distribution virtualization cluster under a best performance.

Information Gathering: this phase is presented that we have a detection mechanism to

24

retrieve all Hosts and check Hosts is alive or not. We detect the hosts’ state with Ping
command every five minutes by running Linux schedule via “crontab”. In Figure 3-8, its

shows how we detect the server state with a Ping command with Shell Script.

#!/bin/bash
#spilt hosts with whitespace
HOSTS="host1 hots2”
for LOOP in $HOSTS
do
if | ping -c 3 $LOOP > /dev/null 2>&1; then
echo "Warning:The host $LOOP is unavaiable now! " >> error.log
fi
done

if [-ferror.log]; then
#send mail to myself
mail -s "Warning:Host is off-line” nagage@gmail.com < error.log
rm -f error.log
#star to next phase you. . .
fi

Figure 3-8. Collection Hosts State Script

Keep Service Always Available: assume VM m is under Heartbeat + DRBD mechanism
and Host n is unavailable physical machine. Once the Host n is shutting down, if VM m is the
secondary node, then it will move to on-line Host and boot automatically. If VM m is the
primary node then secondary node will replace the VM m to primary node immediately. Next
pre-primary node will boot on available host/hots and become secondary. In OpenNebula,
command onevm is to submit, control and monitor virtual machines (Figure 3-9). This helps

us control dead VM to deploy on others available physical host.

onevm livemigrate <vm_id> <host_id>

or

onevm migrate <vm_id> <host_id>

Figure 3-9. Lifemigrate / migrate with OpenNebula command line

25

Virtual Machines!
Migration Policy |
1

Information
Gathering

Keep Service !
Always Available
1

This flow was made as one of the schedule programs and deployed on front-end. It is
reasonable to enhance this function on front-end of OpenNebula, because the OpenNebula

control all the VMs operation. There was an example could explain under single-failure event

Dynamic Resource Allocation
Mechanism (DRA)

All Hosts are

available
TRUE

M m on Host n

VM m = Secondary Node_

Keep Detecting
Every 5 Minus

Hosts

is unavailable

Boot VM m (Secondary) to on-

line Host

Heartbeat + DRBD

VM m = Primary Node

Active Secondary
VM m become >
Primary

Pre-Primary YM m boot to
on-line Host and become

Secondary

Figure 3-10. Virtualization Fault Tolerance Flow

triggered our VFT approach as Figure 3-11.

First one Host A was shutting down by unexpected matter, in few minutes later the
front-end detected it and also triggered VFT, next, the secondary node VM 2 became primary

and handover all services from pre-primary, that we called FAILOVER. Finally, VM 1 booted

on Host C automatically and became the secondary node, that we called FAILBACK.

26

DRBD + HeartBeat

Normal Situation

SWITCHOVER

Host A is shutdown

Figure 3-11. How to Trigger VFT

27

3.3. System Interface

As mentioned above, we build a web interface to manage the virtual machines, in following
introduction, we would not list all the functions of it, but we focus on this thesis implantation.
Figure 3-12, it shows the system authorization, through the core of the web-based
management tool, which provided a basic protection for the system. Via this website can
control and manage physical machine and VM life-cycle.

RRDtool [38] is the Open Source industry standard, high performance data logging and
graphing system for time series data. We use it to create our system log monitor. Resource
monitor as shown Figure 3-13, it plays a real important role of entire system. It split into two

categories, one is CPU usage percentage and the other one is memory usage state.

Login

User Name
Password
Login

Figure 3-12. System Authorization

28

debianl cpu usage % debianl memory usage %
= |~ . -
2| 2
é 1800 — 3000
200 | “|u 4
u 2| & o
= &0 C| R 2009)
o l u
=k | > 1000 =
S 2m 4l o A
o E
[} - - £ 0 - -
82: 30 82:35 92: 30 92:35
W debianl use cpu =l B debianl use memary (MB) 0
H debianl total cpu B0O O debianl total memory (MB) 3015
debianZ cpu usage % debian2 memory usage g
o | . -
(= =
§ 1000 1L a0 <
800 | = E
v 2| & o
= &00 C| R 2e00 -
S a0 e I
—~ =i =
-g =l & 1000 =
= 200 7| e =
(] u
[} - - g o - -
82:30 82:35 B2: 30 82:35
W debian2 use cpu 6] B debianz use memary (MB) 0
@ debian2 total cpu 8O0 [0 debian2 total memory (MB) 3015
debian3 cpu usage E debian3 memory usage 2
5 1000 T1Z 0 ze00 3
808 ——— “lu o
w 2 o E
o eoo S| & 2000)
S a0 alz ﬁ
= EIrS =
- 1060
E 200 5o =
o E
0 g 04 - :
83:15 03: 20 83:15 3: 20
W debian3 use cpu [¢] B debian3 use memory (MB) 0
| H debian3 total cpu BOO O debian3 total memory (MB) 3015
o=

Figure 3-13. Resource Monitor

And then we also provided a quick HA setting as shown Figure 3-14. After HA is

enabled, VFT mechanism will be active automatically.

m OpenNebula Logoff

debian1 08 Dabian 5.0
debian2 08 Debian 5.0
debian3 0S; Deblan 5.0
debiand 08:Debian 5.0

| HostName | Descripon | ___ HAState |
HA
on
HA
of

Yes@ NolJ
Yes No®
Yes® Nol

Yes No@

Figure 3-14. High Availability Settings

29

Chapter 4

Experimental Environment and Results

4.1. Experimental Environment

In our experimental environment each server has same specification. We give a table list as
shown Table 4-1 it descripted our servers CPU, Memory and storages capabilities. And we
also measured the basic capability of its performance with known benchmark. Table 4-1 Lab
Server Hardware Specification shows the server’s hardware specification. In the next

experiments, we will via Apache JMeter and HPCC to complete our experiment’s data.

Table 4-1 Lab Server Hardware Specification

Disk | Memory
No Model Cores CPU MHz Comments
(Giga) | (Giga)

Intel(R) Core(TM) i7 CPU
1 4 2,800 500 4 Front-End
860@2.80GHz

Intel(R) Core(TM) i7 CPU
2 4 2,800 500 4 Back-End
860@2.80GHz

Intel(R) Core(TM) i7 CPU
3 4 2,800 500 4 Back-End
860@2.80GHz

Intel(R) Core(TM) i7 CPU
4 4 2,800 500 4 Back-End
860@2.80GHz

30

We design a basic experiment of server performance and its throughputs as well.
“Apache JMeter” [39], one of Apache projects, is a well-known web application measure
performance tool. “Apache JMeter” is open source software, a 100% pure Java desktop
application designed to load test functional behavior and measure performance. It was
originally designed for testing Web Applications but has since expanded to other test

functions. Apache JMeter features include:

a. Can load and performance test many different server types: HTTP, HTTPS, SOAP,
JDBC, LDAP, and JMS.

b. Mail - POP3(S) and IMAP(S)

c. Complete portability and 100% Java purity

d. Full multithreading framework allows concurrent sampling by many threads and
simultaneous sampling of different functions by separate thread groups.

e. Careful GUI design allows faster operation and more precise timings.

f. Caching and offline analysis/replaying of test results.

g. Highly Extensible

High-Performance Computing Cluster (HPCC) [40] is used to describe computing
environments which utilize supercomputers and computer clusters to address complex
computational requirements, support applications with significant processing time
requirements, or require processing of significant amounts of data. It is also a benchmark for
measure computing performance. The input parameters of HPCC can be considered with three
key elements: P - the number of process rows, could be explained as CPU number, Q - the
number of process columns could be explained as total server number, N - the order of the
coefficient matrix A, it also called Problem Size in coming article. A formal formula can be
described the required memory space of problem size:

31

matrixSize’ x 8 bits = Required Memory . The output of the HPCC is Gflops which

means rate of execution for solving the linear system.

4.2. Networking Capability

In this section we evaluate the previous architecture by studying the effect of virtualizing the
worker nodes and physical host. In order to quantify the different network throughput for
local and remote nodes, Table 4-2 compares the transfer times, using the HTTP protocol, for
different file sizes between the physical host and virtual machine. In same condition, Table

4-3 compares the throughputs via HTTP protocol under various file sizes and threads.

Table 4-2 A Comparisons of Physical Host and Virtual Machine Networking Performance

Networking Transfer(KB/sec)

20 Threads 50 Threads 100 Threads

Debain 70035.83 32750.53 36844.41
10MB

Xen 68865.80 29646.50 35545.68

Debain 48174.20 38210.20 25922.33
50MB

Xen 46802.77 36307.15 24924.86

32

Networking Performance

80000 17003583
70000

60000 -
50000 -
40000 -
30000 -
20000 -
10000 -

38210.20 36844.41 B Debain 10MB

32750.53 = Xen

Debain 50MB

Bandwidth (KB/sec)

Xen

20 50 100
Theards (Concurrent Users)

Figure 4-1. Physical Host and Virtual Machine Networking Performance

Table 4-3 Throughputs between Physical Host and Virtual Machine

Throughputs
20 Threads 50 Threads 100 Threads
Debain 6.80 3.20 3.60
10MB
Xen 6.73 2.90 3.47
Debain 0.94 0.75 0.49
50MB
Xen 0.91 0.71 0.49

33

Throughputs

8.00

6.80

N
o
S

6.00
5.00
4.00
3.00
2.00
1.00
0.00

B Debain 10MB

H Xen

i Debain 50MB

Xen

Throughput (KB /Sec.)

20 50 100
Theards (Concurrent Users)

Figure 4-2. Throughputs between Physical Host and Virtual Machine

A significant result as shown previous Tables and Figures, the virtual machine

performance is a little less than physical machine, it also match our expectancy.

4.3. Measurement Server Performance with HPCC Benchmark

Aim to the specific purpose, we need to know our server’s performance as determine data to
allocate how much resources in each site. Thus, we run hpcc test in this section to measure the
server capabilities. In the coming Table, Experiments were conducted on eight nodes cluster,
and each server owned two VMs on it. The nodes runs para-virtualization Linux 2.6.26-2
kernel as a privileged virtual machine on top of the Xen hypervisor. The guest virtual
machines are configured to run the same version of the Linux kernel as that of the privileged
one. They are constrained within 1 GB of main memory and allocated 1 CPU. Hence, total
eight VMs were evenly distributed on four physical hosts, and we measure the floating points
of the result.

We obtained result as shown Table 4-4, while the problem size was increased, computing

34

resource was also coming to physical limitations and, of course, it impacted the outcome data.
You can see the curve is going gentle during problem size 19,000 — 25,000. Oppositely, it

rapidly rose in the beginning of small problem sizes.

Table 4-4 Results of Running HPCC

Results of Running HPCC on 8 VMs Input
PS(K) |1 2 3 4 5 6 7 8 9 10
GFP 3.68E+00 8.05E+00 1.21E+01 1.61E+01 1.98E+01 2.30E+01 2.61E+01 2.87E+01 3.13E+01 3.32E+01
PS(K) | 11 12 13 14 15 16 17 18 19 20
GFP 3.53E+01 3.74E+01 3.916E+01 4.07E+01 4.245E+01 4.387E+01 4.554E+01 4.669E+01 4.764E+01 4.916E+01
PS(K) | 21 22 23 24 25
G.FP 5.022E+01 5.114E+01 | 5.213E+01 | 5.309E+01 | 5.389E+01

Results of Running HPCC

6.00E+01

5.389E+01
506400 +—F7 —F7 ¥——7Z 90— 00— — — — — -

Int

4006401 +—

3006401 +—— o 0

2006401 ———————— — — — — — — — — — — — — —

Giga Floating Po

‘s 1.00E+01 —— — — — — — — — — — —

0.00E+00
1 2 3 45 6 7 8 9101112131415 1617 18 19 20 21 22 23 24 25

Problem Size (K)

Figure 4-3. Results of Running HPCC

35

4.4. Virtual Machine Life Migration

We performed test migrations between an identical pair server machines, each with eight
i7-Core 2.8GHz CPUs and 4GB memory. The machines are connected via switched Gigabit
Ethernet. Before the migrate, demon required 1G space on each host, thus, the maximum
available memory space was 3G for each host. There was only one virtual machine on Host-A,
and zero VMs on Host-B, the VM on Host-A cost 1 G memory space, and we migrated the

VM from Host-A to Host-B, you can see the memory usage variance in Figure 4-4 and Figure

4-5.

Migration Memory State (Host A)

3.5

W Host ARAM

Avaiable Memory (GB)

P EL PP DD DD D P PP

VW VY R A
SIS N N AN
Time (Minuntes)

SEESEESEENEENE

Figure 4-4. Host-A Migration Memory State

36

Migration Memory State (Host B)

3.5

B Host B RAM

Avaiable Memory (GB)

Time (Minuntes)

Figure 4-5. Host-B Migration Memory State

4.5. Hadoop Namenode Failover

In this experiment we gave below settings, Table 4-5 and Table 4-6, to build HDFS on virtual
machine, it content one live node, and 28.61 GB spaces. In this scenario, we try to monitor the
HDFS failover while downloading from it. Another tool for this test is FUSE [41], this tool
allow user operate HDFS as local disk. Through the virtual IP setting we could get the HDFS

information as shown Figure 4-6.

37

Table 4-5 Planned Hosts

NO Hostname IP Address

1 debian-hal 192.168.123.211
2 debian-ha2 192.168.123.212
Virtual hadoop.namenode 192.168.123.210

Table 4-6 Part of Properties of hdfs-site.xml

Property Value Comments

dfs.data.dir /drbd/hadoop/hdfs/data On DRBD replicated volume
dfs.name.dir /drbd/hadoop/hdfs/namenode On DRBD replicated volume
fs.default.name hdfs:// hadoop.namenode:8020 Shared virtual name
mapred.job.tracker hadoop.namenode:8021 Shared virtual name

f Hadoop NameMode debisan-hs

- @ 192,168, 122.210:50070/Afshealth . isp
A tErme s CTEEENRREIEE PIETAE T | E0sE | | T eee= |
NameMNode "debian-hazZ2.local:8020"

Started: SatJul 02 18:11:53 ST 2011

Wersion: 0.20.2-cdh32ul, r81 256ad0fZedabZbd 2400475 323d25a6c23686add1 4
Compiled: Sat har 26 00:14:04 LT 2011 by root

Upagrades: There are no updrades in progress.

Browse the Tileswystemnm
Mamenode Logs

Cluster Sumim:anry

1 files and directories, O blocks = 1 total. Heap Size is 47.98 ME 966,69 MEB {4%)

Configured Capacity . Z22.61 =8B
DIFS Used : 28 KB
MNon DFS Usedd : 4. 62 =B
DFS Rernmvaining : Z2=2.99 =B
DFS Used: : 0 24

DIFS Rermaining o : 23.8656 2%
Live Modes :
Dread Nodes

Decommimissioning Mode s

MNMumber of Under-Replicated Blocks

oo|o|=

Figure 4-6. Lab Hadoop HDFS Information

38

While the downloading began from HDFS, we terminated the primary node (debian-hal)
and as our expectation, the downloading action was disconnected, after about 10-20 seconds,
Namenode was resumed on debian-ha2 automatically. This result shows our design is only
working on Active/Standby state. However, due to we still keep the metadata controlled by
DRBD, the entire HDFS would not crash under unexpected system outages. It is really an
enhancement for Hadoop Namenode issue, because lots of issues are talking about Namenode

fail problems after unexpected system shutdown.

4.6. VFT Experimental

In this scenarios, we design an experiment to validate the virtual machine will migrate
automatically or not if the host is off-line. Service IP: stand for provide service channel to
external users, users through this IP to access services, it also name VIP in DRBD speaking.
Node2 is primary node, Nodel is secondary. The different between primary and secondary is
secondary will take over the service if primary node is done. Debianl, Debian2 and Debian3
are the physical hosts, Node2 is living on Debian 1, and the secondary node, Nodel, is living

on Debian2.

Yy’ Web-based Management
e Tool

7
WAN

service 1P OpenNebula|

Front-End Host

Node 2 Node 1

Xen Hypervisor Xen Hypervisor Xen Hypervisor I

Debian 1 Debian 2 Debian 3

Figure 4-7. VFT Experiment Environment

39

In Figure 4-8, t shows that after Debianl is disconnected that does not impassion the
Service IP terminated, and it might only get lost one pack during the failover behavior enabled.
The reason is that entire system is under our VFT mechanism that secondary is replaced
primary node immediately. Finally, about 5-7 minutes the Node2 reboot automatically and

become secondary.

VIP packet loss

loo
20
=]
40
20
o+

ping loss %

21: 30 21:35 21: 40 21: 45 21:58 21:55

B packet loss % [c]

Model packet loss

100
=0
]
40
EL]

o

ping loss &%

21: 20 21: 35 21: 48 21: 45 21:58 21:55

W packet loss % =]

Modez packet loss

loa
=6
=]
40
20
-

ping loss %

21: 30 21:35 21: 48 21: 45 21:58 21:55

B packet loss =% Q

Figure 4-8. Ping Loss Measurement

The benefit of VFT mechanism is obtained a shortest downtime time. Although, we
cannot guarantee the data without losing while downtime occurring. However, we still

decrease the downtime, provided a low-cost solution for enterprise.

40

Chapter 5

Conclusions and Future Work

5.1. Concluding Remarks

High-Availability (HA), we proposed in this thesis, was to achieve Hadoop Namenode
Active-Standby architecture. Under this architecture, the service can be failover since the
primary node was failed. The most improvement was if you keep at last three physical hosts
available, then the primary and secondary nodes would be always existed. Therefore, there are
four main key features in this work, first is Xen Hypervisor, second is OpenNebula, third is
DRBD with Heartbeat component, and the last is our VFT mechanism. Each of components is
important and indispensable in our architecture. Systems continuous availability means
comparatively and higher priced, and most has carefully implemented specialty designs that
eliminate any single point of failure and allow online hardware, network, operating system,
middleware, and application upgrades, patches, and replacements. In another word, the series
high reliability also must be dependent on building a good human behavior institution.
However, the future goal of this thesis is to extend our fault-tolerance work beyond failure

management in order to enable better utilization of virtualization cluster resources.

5.2. Future Work

Some known issues in this thesis, like checkpoint problem and data transferring interruption

41

problem must enhance in next step. For instance, we could set more checkpoints to validate
exists server or service. In the other hand, the transfer interruption issue is including complex
difficult issues, but we could consider solving it with a tool named Zookper. Regarding green
issues, how to raise the energy saving rate will be an essential work today. And we believe
those vision will be implemented under the OpenNebula architecture. Therefore, we need to

design more patterns aim to various situations.

42

Bibliography

[1]

[2]

[3]

[4]

[5]
[6]
[7]

[8]

[9]

V. Chaudhary, C. Minsuk, J. P. Walters, S. Guercio, and S. Gallo, "A Comparison of
Virtualization Technologies for HPC," in Advanced Information Networking and
Applications, 2008. AINA 2008. 22nd International Conference on, 2008, pp. 861-868.
M.-V. Rafael, S. M. Ruben, and M. L. Ignacio, "Elastic management of cluster-based
services in the cloud," in Proceedings of the 1st workshop on Automated control for
datacenters and clouds, ed. Barcelona, Spain: ACM, 2009, pp. 19-24.

C. Engelmann, S. L. Scott, C. Leangsuksun, and X. He, "Symmetric Active/Active
High Availability for High-Performance Computing System Services:
Accomplishments and Limitations,” in Cluster Computing and the Grid, 2008.
CCGRID '08. 8th IEEE International Symposium on, 2008, pp. 813-818.

D. Turner and C. Xuehua, "Protocol-dependent message-passing performance on
Linux clusters,” in Cluster Computing, 2002. Proceedings. 2002 IEEE International
Conference on, 2002, pp. 187-194.

Xen. Available: http://www.xen.org/

Hadoop. Available: http://hadoop.apache.org

C. Ning, W. Zhong-hai, L. Hong-zhi, and Z. Qi-xun, "Improving downloading
performance in hadoop distributed file systm,” JOURNAL OF COMPUTER
APPLICATIONS, vol. 30, 2010.

R. L. Grossman, Y. Gu, M. Sabala, and W. Zhang, "Compute and storage clouds using
wide area high performance networks,” Future Generation Computer Systems, vol. 25,
pp. 179-183, 2009.

J. Shafer, S. Rixner, and A. L. Cox, "The Hadoop distributed filesystem: Balancing

portability and performance,” in Performance Analysis of Systems & Software

43

http://www.xen.org/
http://hadoop.apache.org/

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

(ISPASS), 2010 IEEE International Symposium on, White Plains, NY 2010, pp.
122-133.

G. Mackey, S. Sehrish, and W. Jun, "Improving metadata management for small files
in HDFS," in Cluster Computing and Workshops, 2009. CLUSTER '09. IEEE
International Conference on, 2009, pp. 1-4.

Cloudera. Available: http://www.cloudera.com

L. Xuhui, H. Jizhong, Z. Yungin, H. Chengde, and H. Xubin, "Implementing WebGIS
on Hadoop: A case study of improving small file 1/0 performance on HDFS," in
Cluster Computing and Workshops, 2009. CLUSTER '09. IEEE International
Conference on, 2009, pp. 1-8.

T. White. (October 2010). Hadoop: The Definitive Guide (Secondary ed.).

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. E. Gruber, "Bigtable: A Distributed Storage System for Structured
Data,” ACM Trans. Comput. Syst., vol. 26, pp. 1-26, 2008.

S. Ghemawat, H. Gobioff, and S.-T. Leung, "The Google file system," SIGOPS Oper.
Syst. Rev., vol. 37, pp. 29-43, 2003.

C. Engelmann, S. L. Scott, C. Leangsuksun, and X. He, "Active/active replication for
highly available HPC system services," in Availability, Reliability and Security, 2006.
ARES 2006. The First International Conference on, 2006, p. 7 pp.

L. Fei-fei, Y. Xiang-zhan, and W. Gang, "Design and Implementation of High
Availability Distributed System Based on Multi-level Heartbeat Protocol," in Control,
Automation and Systems Engineering, 2009. CASE 2009. IITA International
Conference on, 2009, pp. 83-87.

J. Walters and V. Chaudhary, "A fault-tolerant strategy for virtualized HPC clusters,"

The Journal of Supercomputing, vol. 50, pp. 209-239, 2009.

44

http://www.cloudera.com/

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

E. Vargas, "High Availability Fundamentals,” ed: Sun Microsystems, Inc., Nov. 2000.
G. Vallee, C. Engelmann, A. Tikotekar, T. Naughton, K. Charoenpornwattana, C.
Leangsuksun, and S. L. Scott, "A Framework for Proactive Fault Tolerance,” in
Availability, Reliability and Security, 2008. ARES 08. Third International Conference
on, 2008, pp. 659-664.

C.-W. Ang and C.-K. Tham, "Analysis and optimization of service availability in a HA
cluster with load-dependent machine availability,” IEEE Trans. Parallel Distrib. Syst.,
vol. 18, pp. 1307-1319, 2007.

M. Dejan, L. M. Liorente, and R. S. Montero, "OpenNebula: A Cloud Management
Tool," Internet Computing, IEEE, vol. 15, pp. 11-14, 2011.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D.
Zagorodnov, "The Eucalyptus Open-Source Cloud-Computing System," presented at
the Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid, 20009.

P. Sempolinski and D. Thain, "A Comparison and Critique of Eucalyptus, OpenNebula
and Nimbus,” in Cloud Computing Technology and Science (CloudCom), 2010 IEEE
Second International Conference on, 2010, pp. 417-426.

C.-T. Yang, H.-Y. Cheng, W.-L. Chou, and C.-T. Kuo, " A Dynamic Resource
Allocation Model for Virtual Machine Managemant on Cloud,” in Symposium on
Cloud and Service Computing 2011.

F. Piedad and M. Hawkins, High availability, design, techniques and processes:
Prentice-Hall, Inc., Jan. 2001.

DRBD Official Site. Available: http://www.drbd.org

Heartbeat - Linux High Availability. Available: http://linux-ha.org/wiki/Heartbeat

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, 1. Pratt,

45

http://www.drbd.org/
http://linux-ha.org/wiki/Heartbeat

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]
[39]
[40]

[41]

and A. Warfield, "Xen and the art of virtualization,” SIGOPS Oper. Syst. Rev., vol. 37,
pp. 164-177, 2003.

W. v. Hagen, Professional Xen Virtualization, 2008.

C.-T. Yang, C.-H. Tseng, K.-Y. Chou, and S.-C. Tsaur, "Design and Implementation of
a Virtualized Cluster Computing Environment on Xen," presented at the The second
International Conference on High Performance Computing and Applications, HPCA,
2009.

A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott, "Proactive fault tolerance
for HPC with Xen virtualization,” presented at the Proceedings of the 21st annual
international conference on Supercomputing, Seattle, Washington, 2007.

R. S. Montero, R. Moreno-Vozmediano, and I. M. Llorente, "An elasticity model for
High Throughput Computing clusters,” Journal of Parallel and Distributed
Computing, vol. 71, pp. 750-757, 2011.

B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, "Virtual Infrastructure
Management in Private and Hybrid Clouds," IEEE Internet Computing, vol. 13, 2009.

OpenVZ. Available: http://wiki.openvz.org/Main_Page

OpenNebula. Available: http://www.opennebula.org

Z. Hai, T. Kun, and Z. Xuejie, "An Approach to Optimized Resource Scheduling
Algorithm for Open-Source Cloud Systems,” in ChinaGrid Conference (ChinaGrid),
2010 Fifth Annual, 2010, pp. 124-129.

RDDtool. Available: http://oss.oetiker.ch/rrdtool/

Apache JMeter. Available: http://jakarta.apache.org

HPCC. Available: http://icl.cs.utk.edu/hpcc

MountableHDFS. Available: http://wiki.apache.org/hadoop/MountableHDFS

46

http://wiki.openvz.org/Main_Page
http://www.opennebula.org/
http://oss.oetiker.ch/rrdtool/
http://jakarta.apache.org/
http://icl.cs.utk.edu/hpcc
http://wiki.apache.org/hadoop/MountableHDFS

Appendix

A. Hadoop HA Setup and Configuration

HA Setup and Configuration, below list is our planning hosts

NO Hostname IP Address

1 debian-hal 192.168.123.211
2 debian-ha2 192.168.123.212
Virtual hadoop.namenode 192.168.123.210

Properties that will be defined as part of our hadoop-site.xml:

Property Value Comments

dfs.data.dir /drbd/hadoop/hdfs/data On DRBD replicated volume
dfs.name.dir /drbd/hadoop/hdfs/namenode On DRBD replicated volume
fs.default.name hdfs:// hadoop.namenode:8020 Shared virtual name
mapred.job.tracker hadoop.namenode:8021 Shared virtual name

Regarding to the HA setup comes down to six parts:
a. Install JDK 6 package
b. Configure networking
c. DRBD and Heartbeat installation
d. Configure DRBD
e. Install Hadoop

f. Configure Heartbeat

47

Al Install JDK 6 package

Consider the only version of Java JDK that should be used with Hadoop is Sun’s own. It has

been a well collection in http://www.oracle.com/technetwork/java/index.html. At the time of

this writing, the latest version is jdk-6u22-linux-i586.

chmod +x jdk-6u22-linux-i586-rpm.bin

./[jJdk-6u22-linux-1586-rpm.bin

A.2. Configure networking

The following is an example from our systems.

Edit the file /etc/hosts

127.0.0.1 localhost
10.1.1.211 debian-hal
10.1.1.212 debian-ha2

192.168.123.210 hadoop.namenode

Edit the file /etc/network/interface:

This file describes the network interfaces available on your system

and how to activate them. For more information, see interfaces(5).

The loopback network interface

auto lo

48

http://www.oracle.com/technetwork/java/index.html

iface lo inet loopback

The primary network interface

allow-hotplug ethO

allow-hotplug ethl

iface ethO inet static
address 192.168.123.211
netmask 255.255.255.0
network 192.168.123.0
broadcast 192.168.123.255
gateway 192.168.123.254
dns-nameservers 168.95.1.1

dns-search csie.thu.edu.tw

iface ethl inet static

address 10.1.1.211

netmask 255.255.255.0

Finally, reboot the system or restart networking:

A.3. DRBD and Heartbeat installation

DRBD (including its kernel module) and Heartbeat are part of the “extras” repository:

apt-get -y install drbd82 kmod-drbd82 heartbeat

Sometimes the installation of the Heartbeat package fails on the first try. Just try again; it may

work for you the second time.

49

A.4. Configure DRBD

Before continuing with the DRBD configuration, we highly recommend reading through the
documentation and reviewing examples to get a clear understanding of the architecture and
intended goals: http://www.drbd.org/docs/about/.

The following /etc/drbd.conf file is created on both nodes:

global { usage-count yes; }
common{ syncer{rate 30M;} }
resource r0 {
protocol C;
startup {
wfc-timeout 0;
degr-wfc-timeout 120;
}
disk {
on-io-error detach;
no-disk-flushes;
no-md-flushes
#size 1G;

¥

net {
¥
on debian-hal {
device /dev/drbd0;

disk /dev/sdbl;

50

address 10.1.1.211:7789;
meta-disk internal;
}
on debian-ha2 {
device /dev/drbd0;
disk /dev/sdbl;
address 10.1.1.212:7789;

meta-disk internal;

¥

admin@debian-hal:/etc/network$ clera
-bash: clera: command not found
admin@debian-hal:/etc/network$ clear
admin@debian-hal:/etc/network$ cat /etc/drbd.conf
global {

usage-count yes;
}
common {

syncer { rate 30M; }
}
resource r0 {

protocol C;

startup {

wfc-timeout 0;

degr-wfc-timeout 120;

51

}

disk {
on-io-error detach;
no-disk-flushes;
no-md-flushes

size 1G;

net {
}
on debian-hal {
device /dev/drbd0;
disk /dev/sdbl;
address 10.1.1.211:7789;
meta-disk internal;
}
on debian-ha2 {
device /dev/drbd0;
disk /dev/sdbl;
address 10.1.1.212:7789;

meta-disk internal;

52

A5, Hadoop Installation

Hadoop is OpenSource software; there is lot of resource on internet. We used the web-based
configurator provided by Cloudera (https://my.cloudera.com/), which builds an RPM
containing repos for your custom configuration and the rest of their distribution. The resulting
RPM is then installed on BOTH master nodes.

Add APT List

#vi letc/apt/sources.list
#willie 06.05 Cloudra Hadoop

deb http://archive.cloudera.com/debian maverick-cdh3 contrib

deb-src http://archive.cloudera.com/debian maverick-cdh3 contrib

APT update

#apt-get update

CURL Install

#apt-get install curl

GPG Key Install

#curl -s http://archive.cloudera.com/debian/archive.key | sudo apt-key add

Hadoop Install

#apt-get install hadoop hadoop-conf-pseudo hadoop-jobtrackerhadoop-namenode

hadoop-0.20-native hadoop-secondarynamenode

Cancel Auto Run

#update-rc.d -f hadoop-namenode remove

#update-rc.d -f hadoop-secondarynamenode remove

#update-rc.d -f hadoop-jobtracker remove

53

A.6. Heartbeat Configuration

There are many options available for the Heartbeat configuration. Here, we attempt to show
only the basics that how to enable the Hadoop via Heartbeat. There are three key files that we
edit to configure the Heartbeat package:

letc/ha.d/ha.cf

letc/ha.d/haresources

/etc/ha.d/authkeys

Create Soft Link

#cd /etc/ha.d/resource.d
#In -s /etc/init.d/hadoop-0.20-namenode hadoop-namenode

#In -s /etc/init.d/hadoop-0.20-jobtracker hadoop-jobtracker

fetc/ha.d/ha.cf

start of ha.cf
logfile /var/log/ha-log

logfacility localO

keepalive 2 #Detection period
warntime 5

deadtime 20

initdead 120

#hopfudge 1

udpport 694 #Using UDP 694

auto_failback off #if failback, resume to master

54

#baud 19200
bcast ethl #using ethl, to be the heartbeat network card
ucast eth0 192.168.123.211

ucast eth1 10.1.1.211

node debian-hal #Node 1, Server Name

node debian-ha2 #Node 2, Server Name

ping 192.168.123.254 #Ping our Gateway, check heart self

respawn hacluster /usr/lib/heartbeat/ipfail

apiauth ipfail gid=haclient uid=hacluster

end of ha.cf

/etc/ha.d/haresources

#vim /etc/ha.d/haresources
debian-hal 192.168.123.210/24 drbddisk::r0 Filesystem::/dev/drbd0::/drbd::ext3::noatime

hadoop-namenode

Heartbeat Restart

#letc/init.d/heartbeat stop

#/etc/init.d/heartbeat start

55

