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Abstract

In this paper, we proposed a rate-allocation based multi-path congestion control approach,
called multi-path-congestion control method (MUCON for short), which enforcing high path
availability of packet delivery for event-driven Wireless Sensor Networks (WSNs) consists of
two parts. The first is constructing a spanning tree to connect all sensor nodes of a WSN to the
sink for initial routing. The second is establishing a fair packet forwarding environment by
employing multi-path and rate control to deliver packets through routing paths with a
balanced manner. Generally, the occurrence of an event will increase net flow, which may
congest the nodes on the newly established routing path if the nodes are currently shared by
several routing paths, particularly for those nodes near the sink, consequently ruining
originally balanced traffic on paths and forcing some event packets to be dropped. In fact,
without the information conveyed on the lost packets, users may make an inaccurate decision
and react improperly for events. When an event disappears, the surrounding sensor(s) stops
transmitting packets. This will again destroy the fairness and unbalance net flows flowing
through the co-node routing paths. Thus, to maintain the fairness and balance net flows for a
WSN, a downstream node needs to dynamically adjust bandwidths for all its upstream nodes.
Experimental results show that this method can effectively improve a WSN’ throughputs,

shorter end-to-end delays and reduce packet loss rates.

Key Words: Event-driven systems, Multi-path congestion control, Transmission fairness,

Wireless sensor networks, Rate control, Bandwidth adjustment.
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. Introduction

In recent years, congestion control is one of the most important issues in wireless sensor
network (WSN) research [1]. When congestion occurs at a sensor node (a node for short),
newly arriving packets will be dropped or enqueued in the node’s buffer, causing the facts that
upstream nodes have to consume extra energy to retransmit the dropped packets, or packet
arrival does not follow the departure sequence. These will not only waste device resources
and decrease their lifetime when nodes are powered by batteries [2], but also make the sink to
receive discrete and incomplete information, with which users may hard to realize the details
of the event and then make an accurate decision to respond to the event in a real time manner.
Generally, congestions will degrade network throughputs [1], prolong packet delivery delays
[3], and increase packet loss rates [1][3][4], which together are WSN’s challenges,
particularly for a real-time sensing/monitoring environment.

In an event-driven WSN, sensor nodes detect environmental changes as the occurrence
of an event. When there is no events, the load is light. But when events, like fire blaze,
earthquake, landslide, or mudflows, occur, a huge number of packets will be suddenly
generated. The network traffic from the event points to the sink will be heavy [5]. In a
large-scale WSN, hundreds to thousands of sensor nodes are employed to sense events and
relay packets [6]. The probability that a node is congested is high, especially for those near
the sink [1]. However, if network traffic can be regulated, congestion can be mitigated and
packet drop rates will be lowered [1][3][4].

A method to avoid network congestion is load-balanced routing which implies
establishing multiple paths [7] between a source node and the sink, and transfers data via the
paths. A multi-path routing not only addresses load balancing, and route failure and recovery
[8], but also distributes energy consumption and improve packet delivery quality, reliability
and throughputs [8][9][10]. Constructing a spanning tree to route packets has been used by
[10][11]. In fact, if we can construct such a tree as the initial routing tree for a WSN during its
system startup, then when events occur, packets can be delivered immediately without
sending a route request packet to establish a path from the source to the sink before packets
can be sent, consequently shortening packet delivery delays. Furthermore, when the paths are
congested, if we can establish alternate paths, i.e., a multi-path routing, then the packet
delivery performance can be further improved [11].

Therefore, in this paper, we propose a rate-allocation based congestion control approach,
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called multi-path-congestion control method (MUCOM for short), which can be deployed by

an event-driven WSN to construct multiple paths for a congested node and regulate packet

flows for the paths so as to improve performance of packet delivery. Experimental results
show that the MUCOM not only reduces packet drop rates and congestion probability, but
also dramatically mitigates the waste of network bandwidth and improves performance of
packet transmission.

The key contributions of this study are as follows.

1) In the MUCOM, when a node N is congested, we do not decrease the data rates of all
source nodes of which the routing paths go through N. Instead, we establish alternate links
for N to acquire additional bandwidth to transfer congested data packets.

2) We use rate-based bandwidth control to adjust the bandwidth for each link when an event
occurs or disappears so as to effectively improve the total utilization rate for a WSN.

3) We construct a spanning tree as the initial routing paths for source nodes so that when an
event occurs, source node can delivers data packets immediately, i.e., omitting the delay
due to route discovery.

The rest of this paper is organized as follows. Section II describes the related work of this
study. Section III introduces the algorithms and processes of the MUCOM. Its simulation
results are presented and discussed in Section I'V. Section V concludes this paper and outlines

our future research.



1. Related Work

So far, several congestion control approaches [1][3][5][6][12][13] and routing protocols
[10][11] have been proposed. Hybrid Congestion Control Protocol (HCCP) [1] integrated a
buffer-based congestion control method and a rate-based congestion control method to control
congestions. When the net flow flowing through a node N exceeds N’s buffer size, the HCCP
regulates N’s data rate to mitigate packet drop rates. However, the authors did not describe
how to adjust the system-wide rates, but pointing out that it is insufficient for congestion
control if only buffer and packet delivery rates are considered. In the MUCOM, the
bandwidth required by the source nodes along a path is always equal to or less than the
available bandwidth of the path so that the influence of buffer size is small and can be even
ignored.

Priority-based Congestion Control Protocol [3] predicted the probable congestion by
collecting packet service time and packet inter-arrival time, with which a scheduler was
developed to control network bandwidth. Fairness-Aware Congestion Control (FACC) [5]
categorized intermediate relay nodes into near-source nodes and near-sink nodes, and used
different strategies to assign appropriate fair rates to them to avoid congestion and save energy.
Near-source nodes maintain a per-flow state by monitoring channel business and allocate an
approximately fair rate to each passing flow. Near-sink nodes are installed a lightweight
probabilistic dropping algorithm based on queue occupancy and hit frequency. If the queue
occupancy is higher than a predefined upper bound, the arrival packet will be dropped and the
rate of all passing flows will be reduced. If the queue occupancy is now between the upper
and lower bounds, the data rate of the corresponding source node will be adjusted. However,
when the scale of a WSN is small, it is unclear that a node is a near-source or a near-sink
node.

Monowar et al. [6] employed a queuing model composed of many queues to handle
different types of data packets and a classifier provisioned in network layer to classify
heterogeneous traffic. It used packet service ratio denoted on average packet service rate and
packet scheduling rate to detect congestions. Sankarasubramaniam et al. [12] proposed an
Event-to-sink reliable transport (ESRT) which defines network states, the corresponding
operations of a state, current state, and a reliability indicator denoted by the realistic number
of received packets and the desired number of received packets. By frequently updating

current state and reliability indicator at the sink, the ESRT could accurately identify current
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network state, and then executes the corresponding operations, like adjusting source nodes’
reporting frequencies. However, all the computations are performed at the sink, of which the
load is high.

Congestion detection and avoidance (CODA) [13] detected buffer utilization of nodes, and
current and previous channel loading rates to predict degree of congestion for receiver nodes.
The CODA also employed sampling monitors in an appropriate time to reduce energy
consumption. When the node is congested, it backpressures all upstream nodes to adjust data
transmission rates or drop packets. As with the CODA, the MUCOM adjusts bandwidth for
each node along a routing path when necessary. The adjustment activates are propagated from
the sink toward upstream nodes.

Lou [10] developed a distributed ‘N-to-1’ multi-path finding protocol that used flooding
approach to generate a typical spanning tree from the sink, and find multiple node-disjoint
paths from sensor nodes simultaneously, in order to reduce the latency of path establishment.
It also offered a packet salvaging strategy to improve the reliability of packet delivery. But
this approach needs path information from source to the sink so that the loading of nodes is
heavy. EAMTR [11] is a light weighting routing protocol which generates multiple trees for a
source node, and each node selects the least congested routes based on Link Quality
Indication, the index defined by 802.15.4 standard, to send packets to the sink. It improves the
reliability of links by providing redundant paths. But the generation of multiple trees is a
heavy burden for those highly-occurred event areas.

The abovementioned methods are proposed under their specific environments. Each has
its own advantages and disadvantages. However, the congestion control methods except the
FACC did not address fairness of packet transmission among routing paths. Generally, these
methods start when congestion occurs. In the MUCOM, the flow control between a node and
its upstream nodes begins only when events occur and terminate. When congestion occurs on
a node N, N starts finding multiple paths to relieve congestion. The relief is performed by all
sensor nodes in a distributive manner, instead of by the base station. This can reduce the

computation burden of the base station and network load of its surrounding nodes.



I11.The Proposed Scheme

In the study, we assume that: 1) A node is linked with at least one neighbor node, i.e., each
node is reachable from the sink(s) so that packets can be successfully delivered to the sink(s);
2) A node knows where the sink is and the relationships between itself and all its upstream
nodes and downstream nodes; 3) In a WSN, a link’s initial bandwidth B, also called default
bandwidth, is the maximum bandwidth of the link and known beforehand; 4) The data rates
Rs generated by different source nodes are the same, i.e., R is a constant which is less than or
equal to the default bandwidth of a link; 5) The sizes of data packets are the same.

Here, a link is defined as the direct connection between two nodes, e.g., nodes a and b,
without any immediate node located between them. A path consists of many links, i.e., at least

k nodes and £+ links located between a and b, 1<k.

3.1. System phases

In this study, we define three operational phases for data delivery between a source node
and the sink, including link establishment, rate allocation and adjustment, and the multipath
congestion alleviation. The link establishment phase is to establish a spanning tree from root
node (the sink) to all sensor nodes for a WSN so that each source node of the WSN has its
own initial routing path to deliver packets.

The sink on receiving the first packet of an event, which is a piggybacked data packet
[14] called start piggybacked packet (SP_packet for short) issued by a source node, or the last
packet of an event, also a piggybacked packet called end piggybacked packet (EP_packet for
short), starts adjusting the bandwidths for all its upstream nodes.

Once a routing path, e.g., P, is congested at a node N, i.e., the bandwidth allocated to N
is lower than N’s current data rate, which occurs when a new event is sensed by N or extra
bandwidth is required by N’s upstream nodes (by issuing an SP_packet to N), the multipath

congestion alleviation phase is then triggered to establish an additional downlink for N.

3.2. The link establishment phase and configuration table

In this study, a spanning tree is established by using a flooding-based approach from
downstream nodes toward upstream nodes when the WSN being considered starts up. The
sink first broadcasts an LREQ packet which as shown in Figure 1 contains the message type,
i.e., LREQ, and the SenderID which is the ID of the sink. Initially, all nodes of the WSN are
full of energy.



LREQ | SenderID
Figure 1. Fields of an LREQ packet

If any neighbor node Q which currently has already established a link, i.e., an downlink,
with other node, replies a negative response NACK and discards the LREQ since in this phase
one node can establish only one downlink. Otherwise, it replies an LACK (the abbreviation of
Link ACK), broadcasts the LREQ to all its neighbors to continue constructing links for the
tree, and discards all later receiving LREQ packets. The process repeats until no more LREQ
is sent, i.e., all active nodes are linked together as a spanning tree. Note that in this phase only
the node N that has established a downlink and has no upstream nodes can issue an LREQ
packet, and N may receive LACKSs from several O’s. Hence, N may have several uplinks.

We assume that the neighbor nodes of the sink are all connected to the sink after the link
establishment phase because each of them receives the LREQ issued by the sink and replies
an LACK. Figures 2a and 2b respectively show a partial process of the link establishment
phase and the established spanning tree after this phase.

o @
® %
N

() Qi& @ NACK
@ “ &—— NACK

e ¥

(a) A partial process of the link establishment phase



(b) The established spanning tree after the phase
Figure 2. The link establishment phase

With the MUCOM, a node N records the information of the concerned nodes and links in
a table, called configuration table, which as shown in Table 1 includes NodelD, LinkType,
LinkedNodelD, LinkNum and Bandwth, in which NodelD records the node’s unique ID, i.e., V.
LinkType representing the type of a link connecting one of N’s neighbor node, e.g., S and N
can be one of the three values, GN, UP and DW, which respectively indicate that N is a source
node, S is an upstream node of N and a downstream node of N. If N has more than one
connection, i.e., having many upstream nodes and downstream nodes, we create multiple
tuples to record each of them. LinkNodelD lists the ID of the concerned node, i.e., S. LinkNum
field records the order an N’s downlink is established. Note that only N’s downlinks are
considered. Hence, it is empty if the corresponding node is an upstream node or a source node,
i.e., LinkType = UP or GN. Its value will be described later. Bandwth field records the
bandwidth that a downstream node D; allocates to N if LinkType = DW or N allocates to the
corresponding upstream node U, if LinkType = UP, and the default data rate if LinkType = GN.
In this phase, the bandwth field values of all established tuples are set to default bandwidth.

Table 1. Node a’s configuration table after the link establishment phase (see Figure 2b)

NodelD LinkType LinkNodelD LinkNum Bandwth
a up f -- default
a DW e 1 default




Table 2. Node e’s configuration table after the link establishment phase (see Figure 2b)

nodelD LinkType LinkNodelD LinkNum Bandwth
e UP a -- default
e UP n -- default
e DW Sink 1 default

Tables 1 and 2 respectively list the configuration tables for nodes a and e in the topology
illustrated in Figure 2b. Node a is one of node e’s upstream nodes. The other is node n. The

field Bandwth in each tuple will be updated during the rate allocation and adjustment phase.

3.3. The rate allocation and adjustment phase

A data packet consists of two parts, the sensed data and metadata. The sensed data may
be degree of brightness, temperature, humility, or the shake of a detected object depending on
what type of sensor the node is equipped. The metadata contains the common information
about the data packet p, including the coordinates of the node generating p, e.g., node N, and
N’s neighbor nodes, the time p is sensed, packet sequence, N’s residual energy and other
information used to recognize the packet. But data packets are not the focus of this paper.

In the rate allocation and adjustment phase, the two piggybacked packets, i.e., SP_packet
and EP packet as stated above, are created for each event to respectively represent the
beginning and the end of an event. Figure 3 shows their format including EventType, SrcID,
SenderID, RecverID and Bandwth fields. Here, EventType shows that the packet p is an
SP_packet or EP_packet. SrcID keeps the source node ID. SenderID and RecverID records
the ID of the node that sends/receives p. For example, if an SP_packet generated by a source
node ¢ (i.e., SrcID = q) is sent by an intermediate node s to node ¢, the value of SenderID is s
instead of ¢ and the value of RecverID is . The Bandwth field carries the default data rate of ¢
if p is an SP_packet or the allocated bandwidth if p is an EP_packet so that a receiving node

can accordingly calculate the total data rate for all its upstream nodes for the next time slot.

SenderID | RecverID | Bandwth | a data packet :

EventType | SrcID

Figure 3. Extra fields of a piggybacked packet as the first or the last packet of an event

The rate allocation and adjustment phase begins when the first event of the concerned
WSN occurs. Each time, nodes discover that there are events, they send SP_packets to tell
nodes along the routing paths to increase their upstream-node data rates, and indicate that

regular data packets of the new events will soon arrive. When a node N on the path overflows,




it sends an MREQ packet to request establishing an alternate path so that packets can safely
arrive at the sink. Once one of node N’s upstream events disappears, due to previous rate
adjustment, k links of N may be no longer required where £ is the smallest integer, 1<k <n,

satisfying the condition that
DBy =2 Bz (B + 285 (D)
i=1 i=k =1
in which »n and m are respectively the numbers of N’s immediate downstream and upstream

nodes, B, is the bandwidth allocated to the link between upstream nodes U; and N in
timeslot #, By, is the allocated bandwidth of the link D; between N and its downstream node

D,, and B, is the default data rate of N if N is now an active source node. By = 0 if Nis a

non-source node or currently an inactive source node that only relays packets for its upstream

nodes. Generally, Y Bj, is N’s output bandwidth and By"'+ > B;" is the input data rate of

i=1 j=1

N. Eq. (1) implies [,,/,.,,,...,I ,,I can be released. We follow the sequence: [,/ ,..... ./,

to release the links. N delivers n-k+I1 EP packets though the n-k+/ downlinks

L0 ,....,]_,,I that are links between N and n-k+1 downstream nodes D,,D, ,,...,D, . D; on

O 'n-1°"n +1°°°

receiving the packet removes the corresponding uplink by deleting N’s corresponding tuple
from D;’s configuration table, i=kk+1,.,n-1,n. N also deletes the corresponding n-k+1
tuple from its configuration table. If Eq. (1) is “>" instead of “>”, implying the bandwidth of
lr.; needs to be reduced, an additional EP-packet with Bandwth =
B, —[Zn: B, — Zn:B,g,. (B + iB{];Tl)] will be sent through ;.
i=1 i=k J=1

We set a timer at the sink to count the length of a time slot. Basically, the sink receives
packets including data and piggybacked packets from its upstream nodes. When the
underlying time slot ¢ expires, if sink has received at least one piggybacked packet in current
timeslot, it sends an RACK packet which as shown in Figure 4 contains the SenderID = the
sink, RecverID = U, and Bandwth = the default bandwidth as the response to all piggybacked
packets, SP_packets and/or EP_packets, received in . Otherwise, it does not send any RACK

to its upstream nodes to reduce control traffic.

RACK | SenderID | RecverID | Bandwth
Figure 4. Fields of an RACK packet




Anode, e.g., N, on receiving an RACK packet at timeslot ¢ allocates the bandwidth B/’
to its upstream node U; for time slot #+/ where
t+1 : Blt/z N 1+l
BUi = mln(BUl,default > —m x z BDi ) (2)
B,+> B, "
j=1
implying this is a frequency division scheme [15] where B, ., 18 the default bandwidth of

the link between U; and N, m is the number of N’s active upstream nodes, n is the number of

N’s downstream nodes allocating bandwidths to N, Bj;l, the bandwidth conveyed on the

received RACK, is the bandwidth that N’s downstream node D; allocates to N for t+1, B, is

the bandwidth allocated to the link between N’s upstream node U; and N at ¢ (if U; is a newly

established link, B;, is the default bandwidth) and B, is the default data rate if N is now an

active source node. Otherwise, B) =0. An active source node is a node discovering an event.

It remains active until the termination of the event. During the period of time, N send data
packets to the sink periodically. N also relays packets for its upstream nodes, no matter it is an
active source node or not. The data rate generated by an active source node is a constant.
Figure 5 illustrates an example of the network derived from Figure 2b in which nodes e, f,
and k are new active source nodes, and node g is an existing active source node. Figures 6a
and 6b illustrate the sequence of activities of the rate allocation and adjustment phase for

nodes e, fand g.
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Q An existing active node

An inactive source node
or a relay node

——> AnEP packet

(a)

(b)
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(c)

Figure 5. An example network for illustrating the process of the rate allocation and adjustment
phase. (a) a network topology derived from Figure 2b, in which node g is an existing active
source node, but its event has just disappeared. Nodes e, f, and k discover new events, and
others are inactive nodes or non-source nodes; (b) the sink and intermediate nodes deliver
RACKs to adjust bandwidth for each node; (c) nodes e, f, and k follow their allocated
bandwidths to deliver data packets
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Figure 6. The sequence diagrams of rate allocation and adjustment phase

Table 3. Node e’s configuration table after the rate allocation and adjustment phase (see

Figure 2b)
NodelD LinkType LinkNodelD LinkNum Bandwth
e UP a -- default bandwidth
e UP n -- default bandwidth
e DW Sink 1 default bandwidth
e GN e - default data rate

Table 3 lists the configuration table for node e in the topology illustrated in Figure 2b
after the rate allocation and adjustment phase. The last tuple is added since e is now an active

source node. Node a’s configuration table after this phase is still the one shown in Table 1.

3.4. Multipath congestion alleviation phase

The multipath congestion alleviation phase begins when a node, e.g., node N’s, allocated
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or newly adjusted bandwidth Z:B,’;1 for timeslot #+/ is lower than its total data rate
i=1

B + ZB{,} in t+1. Then, N broadcasts a MREQ packet which as shown in Figure 7 includes
j=1
SenderID, i.e., N, and
BandReq = (B + Y B/)-Y By >0 (3)
J i=1

—1

MREQ | SenderID | BandReq
Figure 7. Fields of a MREQ packet

Any neighbor node, e.g., node O, on receiving the MREQ packet looks up QO’s
configuration table. If N is in the LinkNodelD field of a tuple, implying that the link already
exists, O drops the packet. Otherwise, O replies an MACK packet, which as shown in Figure
8 includes a sender ID, i.e., O, a receiver ID, i.e., &V, indicating the reply of the MREQ packet,
1.e., the MACK, is sent to N, and BandAvail = default bandwidth since current no traffic flows
through the link that will be established link between O and N. N on receiving the first MACK
packet, e.g., sent by (O, establishes a link /yp between itself and Q, assigns Byp =
min(BandReq, BandAvail) to lyo, and replies an MEST, of which the format is shown in
Figure 9, with Bandwth field = By to tell O the bandwidth of the newly established link /yg,
denoted by Byp. Like that in the link establishment phase, N discards the later receiving
MACK packets. However, if BandReq > BandAvail implying N is still congested. N issues
another MREQ with BandReq = BandReq — BandAvail to request another downlink. The
process repeats until BandReq = min(BandReq, BandAvail) which means BandAvail >
BandReq, 1.e., N is no longer congested. In Figure 9, LinkNum is the sequence the downlink is

established.

MACK | SenderID | RecverID | BandAvail
Figure 8. Fields of a MACK packet

MEST | SenderID | RecverID | LinkNum | Bandwth
Figure 9. Fields of a MEST packet

Each time when a data packet or a piggybacked packet should be delivered by N, and N

has more than one downlink, N sends the packet to its downstream node D; with the
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probability P,

=5 4)

where 7 is the number of downstream nodes of N, and B, is the bandwidth allocated to the
link between N and D; by D; for time slot z. Note that the spanning tree path and the paths
established beforehand are still in use.

The creation and deletion of multiple links is based on the field value of LinkNum, which
is generated in the link establishment phase and multipath congestion alleviation phase. In the
link establishment phase, when a downlink of N is established, LinkNum of the corresponding
tuple as states above is set to /, representing it is a link of the spanning tree, called N’s
primary link, which cannot be deleted, even though its traffic is zero. In the multipath
congestion alleviation phase, LinkNum of which the value ranged from 2 to » is used to record
the order that a new link is established. When some links due to zero traffic are no longer
required by N, we delete the links following the reverse order, from n to 2, of LinkNum.

Since we assume that the data rate of an event sensed by node N cannot exceed the
default bandwidth of the link between N and one of its downstream nodes so that we only
need to create an additional downstream link for N once an event is discovered by N.
However, it is possible that N’s /# upstream nodes also discover events, #>/. Then, BandReq
conveyed on an MREQ is higher than the default bandwidth of a link. That is why N may
continuously create k downlinks, £>/. Figure 10 illustrates an example network derived from
Figure 5. In this example network, nodes e and j individually broadcast an MREQ packet and
receive MACK packets. Only m replies an MACK to e, and d replies MACK to j, e and j
consequentially establishing the links, e —>m and j—d. Now node e (node j) can also
deliver packets through the alternate paths e > m — d — Sink (j — d — Sink). Figure 11

shows the sequence diagram of the multipath congestion alleviation phase.
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—> Existing path

17



—> Existing path

——> New data flows

(c)

Figure 10. Network activities on the example topology shown in Figure 5 in its multipath
congestion alleviation phase (a) a derived network topology from Figure 5c in which e, f; j
and £ transfer data packets to their downstream nodes, and e and j are congested; (b) e and j
broadcast MREQs, e receives an MACK from m and j receives an MACK from d, and e (j)
chooses m (d) as an alternate link; (c) e uses path e — Sink and e > m —>d — Sink , and j

uses path j —c — Sink and j — d — Sink to transfer data packets.
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Figure 11. The sequence diagram of multipath congestion alleviation stage

Table 4. Node e’s configuration table after the multipath congestion alleviation phase (see

Figure 2b)
NodelD LinkType LinkNodelD LinkNum Bandwth
e UP a - default bandwidth
€ UP n -- default bandwidth
€ DW Sink 1 default bandwidth
e DW m 2 B_
€ GN e -- default data rate

Table 4 lists the configuration table for node e in the topology illustrated in Figure 2b

after the multipath congestion alleviation phase. The fourth tuple is added since m is now a

new downlink of e, and with allocated bandwidth B_ =min(BandReq, BandAvail) where
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BandReq and BandAvail are respectively calculated by node e and m. Node a’s configuration

table after this phase is still the one shown in Table 1.

3.5. Algorithms

The algorithms proposed in this scheme can be classified into function of the sink S and
those of a node N other than the sink. The former only includes Sink(), whereas the latter
contains 13 functions, including Node(), eventStart(), eventStop(), rcvPacket(),
revDataAtNode(), revCtriAtNode(), linkCreation(), linkDeletion(), transferData(), revLREQ(),
rcvRACK(), revMREQ(), and revMACK(). The two parts constitute operations of a concerned
WSN. Sink() in S and Node() in N are the main programs of S and N, respectively. Figure 11
illustrates the program structure of N. eventStart() (eventStop()), involved when N starts (stops)
sensing an event E, further calls /inkCreation() (linkDeletion()) to create an additional link
(delete multiple links) when N overflows (some downlinks of N are no more required).
rcvPacket(), involved when N receives a packet p, invokes revDataAtNode() (revCtrlAtNode())
if p 1s a data packet (control packet). transferData() is called by Node() and rcvDataAtNode()
to transfer data packets though a path or paths. When N receives an LREQ, a RACK, an
MREQ and an MACK packets, revCtriAtNode() will call revLREQ(), revRACK(), revMREQ()
and revMACK(), respectively, to perform the corresponding tasks.

Node()

Start an event Finish an event ¢ Receive a packet #
eventStart() eventStop() rcvPacket()

Receive a data Receive a
packet v control packet #
rcvDataAtNode() rcvCtrlAtNode()
Createalink ¢ Transferdata v # Delete links ¢
linkCreation() transferData() linkDeletion()
MACK y v LREQ RACK MREQ
rcvMACK() rcvLREQ() rcvRACK() rcvMREQ()

Figure 12. The program structure of a node other than the sink

At the beginning of the system, the sink S activates Sink() which broadcasts an LREQ
packet and sets a timer to the time period 7p. After that when S receives a packet p, it judges

what type of packets that p is. If p is a data packet, it performs the corresponding statistics for
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p. If p is an LACK packet issued by an upstream node U (the NACK is a reply of an LREQ
issued by U), S creates a new tuple for U in its configuration table and establishes an uplink
with U. The other control packets that S receives will be discarded since the MUCOM,
MREQ, MEST, LREQ, NACK, RACK, and MACK packets are useless for the sink. When
the timer 7p expires, if S has received at least one piggybacked packet in 7p, S sends an
RACK with Bandwth = default bandwidth to each of its upstream node U to adjust
bandwidths for all active node in the WSN. Figure 13 lists the Sink() function.

Algorithm: Sink() //performed by the sink of the system
Input: a packet p
Output: a control packet LREQ or RACK

01: broadcast an LREQ to neighbor nodes,
//only when system starts up, SenderID = S;

02: set timer Tp = t units of time;

03: while (1) {

04: if (Tp expires) { //the sink periodically sends an RACK to adjust bandwidth for links

05: if (received any piggybacked packet in 7 units of time)

06: send an RACK with Bandwth = default bandwidth to each of its upstream node
U:

07: reset Tp to t units of time, }

08:  else{ //receiving packets

09: wait for receiving a packet p;

10: if (p is a data packet)
//no matter p is an SP_packet, EP_packet or ordinary data packet

11: perform the corresponding statistics of p;

12: else if (p is a LACK packet)

13: create a new tuple for U in the configuration table;

//tuple(nodelD = S, LinkNodelD = U, LinkType = UP, LinkNun =1,
Bandwth = default bandwidth)

14: else /lp is a control packet of other types

15: discard the packet; } }

Figure 13. The Sink() function

The function of Node() (see Figure 14) is activated when N receives a packet p or

discovers an event e. On discovering e, N sets a timer to the time period 7T'',, calls

eventStart() to send an SP_packet and establishes alternate links if N overflows. When the

21



timer expires, N checks to see whether e still exists or not. If yes, it calls transferData() (see

Figure 15) which generates and sends a data packet with the probability P, to its
downstream node D, . If e disappears, N calls eventStop() to send an EP_packet and release
no-longer required links. Node() also checks the type of p, and calls rcvPacket() (see Figure
16) which contains revDataAtNode() and revCtrlAtNode() to process p.

Algorithm: Node() //performed by a node N other than the sink
Input: discovering an event e, or receiving a packet p

Output: none

01: while (1) {

02: if (e occurs) {

03: set timer T’p = t’ units of time;
04: eventStart();

//create a tuple for e in N’s configuration table, create an additional downlink for N
when necessary, and send an SP_packet through the latest established downlink of

N to the corresponding downstream node

05: while (1) {

06: if (T', expires) { //N senses its environment periodically
07: sense e;

08: If (e still exists) {

09: transferData();

//transfer a data packet generated for e by N to a downstream node D;
with probability P) calculated by using Eq. (4), packets received from

upstream nodes are delivered in revDataAtNode() function

10: reset Tp to t’time units; }
11: else { /e disappears
12: eventStop();

//delete the corresponding tuple of e from N’s configuration table, send
an EP_packet through each of the k latest established downlinks to the
corresponding downstream nodes where £ is calculated by Eq. (1)

13: break; } }

14: else //T’p does not expire

15: rcvPacket(); //discriminate whether p is a control or data packet } }
16:  else //mo event around e occurs

17: rcvPacket(); }

Figure 14. The Node() function
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Algorithm: transferData() //performed by N to deliver a data packet
Input: a data packet p
Output: the data packet p

B Di
n

2By,
j=1

number of downstream nodes of N, and B, is the bandwidth allocated to the link
between N and D; by D;;

01: send p to the downstream node D; with probability P = where n is the

Figure 15. The transferData() function

Algorithm: rcvPacket() //performed by N on receiving a packet
Input: a packet p

Output: none;

01: if (pis a data packet)  rcvDataAtNode();
//judge whether p is an SP_packet, EP_packet or a data packet and perform the
corresponding activities

02: elseif (p is a control packet) rcvCtrlAtNode();
//judge whether p is an LREQ, LACK, NACK, a RACK, an MREQ, MACK or an

MEST and perform the corresponding activities

Figure 16. The rcvPacket () function
When executing eventStart(), N creates a tuple Q in its configuration table, adds the
default data rate DR, to the Bandwth field of the tuple corresponding to the latest
established downstream node D, in N’s configuration table, and sends an SP_packet
containing DR, to D, . eventStart() also calls linkCreation() to create alternate links when

the value of BandReq (see Eq. (3)) is larger than 0. On executing eventStop(), if there is only

one downstream node D, N deletes the tuple O from its configuration table, subtracts DR,

from the Bandwth field of D’s corresponding tuple in N’s configuration table, and sends an

EP_packet that contains DR, to D. If there are many downstream nodes, N deletes the

tuple O in N’s configuration table, and calls /inkDeletion() to delete multiple no-longer used

links. Figure 17 and 18 respectively lists the eventStart() and eventStop() functions.
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Algorithm: eventStart() //performed by N on discovering an event e
Input: an event e
Output: an SP_packet

01: create a tuple Q in configuration table for e;
//tuple(nodelD = N, LinkNodelD = N, LinkType = GN, LinkNun = n+1, Bandwth =

DR, ), under the assumption that currently N has n downlinks

02: if (BandReq= (B} +>_ B;)— Y By >0) /sec Eq. (3)
j=1 i=1
03: linkCreation(); //create alternative links

04: else { //total downlink bandwidth of N is sufficient to transmit N’s out data

05: add DR to the Bandwth field of the tuple corresponding to node D,, which is the
latest downstream node linked to N, in N's configuration table;
//tuple(nodelD = N, LinkNodelD = D,, LinkType = DW, LinkNun = n, Bandwth =
bandwth + DR z)

06: send an SP_packet with Bandwth = DR, and other source node information to D,;

/ISP _packet(eventType = SP, SrcID = N, SenderID = N, Bandwth = DR, ) }

Figure 17. The eventStart() function

Algorithm: eventStop() //performed by N on the disappearance of event e
Input: the disappearance of event e

Output: an EP_packet

01: delete the tuple Q of the disappeared event e from the configuration table;
/Ituple(nodelD = N, LinkNodelD = N, LinkType = GN, LinkNun = --, Bandwth =
DRay)

02: if (there is only one downstream node D) {

03:  subtract DR s from the Bandwth field of D's corresponding tuple, i.e., Q, in N's

configuration table;
/Ituple(nodelD = N, LinkNodelD = D, LinkType = DW, LinkNun = 1, Bandwth =
Bandwth - DR )
04: send an EP_packet with Bandwth = DRy to D;
//EP_packet(eventType = EP, SrcID = N, SenderID = N, Bandwth = DR;) }
05: else //there are many downstream nodes
06: linkDeletion();

Figure 18. The eventStop() function
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linkCreation() broadcasts an MREQ with BandReq. N on receiving the reply, i.e., MACK,
calls revMACK() to process the MACK packet and establishes an alternate link. The details
will be described later. If the BandReq is larger than BandAvail = default bandwidth, the
bandwidth contained in the received MACK, implying more than one downlink are required,
N rebroadcasts an MREQ.

linkDeletion() deletes k no-longer required downlinks, k>, by calculating X=B¢-Bp,
where B¢ is the Bandwth contained in a received EP packet, and Bp, is the bandwidth
allocated to the latest established downlink /p, between N and D, by D,. If X=0, indicating
Bp, will be zero after the bandwidth reduction performed by D, on receiving the EP_packet,
N deletes Ip,. If X<0, N just adjusts the bandwidth of /p, where Bp,=Bp,-Bc. D, on receiving
the EP_packet reduces X from the bandwidth of the uplink tuple corresponding to N in its
configuration table. If X>0, representing more than one downlink will be deleted, N
respectively deletes its downlinks following the reverse order of LinkNum from n to 2 in its
configuration table until X<0. After that, for each of the & deleted links, e.g., /,,, N sends an
EP packet with Bandwth = 1,,’s current allocated bandwidth to the corresponding downstream
node D,,, k<m<n, D,, on receiving the packet deletes N’s corresponding tuple from its

configuration table. For the bandwidth-adjusted link, e.g., /x.;, N delivers an EP_packet with

the Bandwth =BC—ZBDm. Figure 19 and 20 respectively lists the /linkCreation() and
m=k

linkDeletion() functions.

Algorithm: linkCreation() //performed by N to create alternate links
Input: none

Output: none

01: while (1) {

02:  broadcast an MREQ with BandReq, //see Eq. (3)

03:  while (no MACK has been received from any downstream node)
04: waiting for a time period;

05:  rcvMACK(); //reply the downstream node D with an MEST packet where the
first MACK received by N is sent by D, and create a tuple in N’s configuration table
for D

06: if (BandReq = (BandReq — BandAvail) < 0) //N has sufficient bandwidth

07: break; }

Figure 19. The /linkCreation() function
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Algorithm: linkDeletion() /Iperformed by N to delete a no-longer required link
Input: none
Output: an EP_packet
01: while (1) {
02: if (Bc—Bpn<0) {
//B¢: the Bandwth contained in a received EP_packet, Bp,: the bandwidth B,
allocated to the latest established downlink /5, between N and D, by D,
03: send an EP_packet to the downstream node D, with bandwth = B¢,
//EP_packet(eventType = EP, SrcID =N, SenderID = N, Bandwth = B()
04: if (Bc— Bp, == 0)
05: delete D, s corresponding tuple from N's configuration table;
//tuple(nodelD = N, LinkNodelD = D,, LinkType = DW, LinkNun =n,
Bandwth = 0)
06: else //Bc— Bp, < 0
07: adjust the tuple of D, with bandwth = Bp, — B¢ in N's configuration table;
08: break; }
09: else { //Bc > Bpy, hence, delete multiple links
10: send an EP_packet to the downstream node D, with bandwth = Bp,,;
//EP_packet(eventType = EP, SrcID =N, SenderID = N, Bandwth = Bp,)
11: delete D, s corresponding tuple from N's configuration table;
//tuple(nodelD = N, LinkNodelD = D,, LinkType = DW, LinkNun = n, Bandwth
=0)
12: Bc=Bc-Bp,  n=n-1}}

Figure 20. The linkDeletion() function

When N receives a data packet p from an upstream node U, the function rcvDataAtNode()
checks to see whether p is a piggybacked packet or not. If not, representing p is an ordinary
data packet, N calls transferData() (see Figure 14) to transmit p. If yes, it further checks to see
whether N has a single downlink or multiple downlinks. Note that when N receives an
SP_packet, if BandReq > 0, it further calls linkCreation() as stated above to create multiple
downlinks. Figure 21 lists the revDataAtNode() function.

Algorithm: rcvDataAtNode() //performed by a node N to process a receiving data packet p
Input: a data packet p issued by an upstream node U
Output: data packet or a piggybacked packet

01: if (p is a piggybacked packet) {
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02: if (p is an SP_packet) {

03: if (BandReq = (B + Y B;)— Y By >0) linkCreation(); //see Eg. (3)
j=1 i=1
04: else if (there is only one downstream node D) {
05: add the bandwth B, conveyed on the SP_packet sent by U to the Bandwth

field of U's corresponding tuple in the configuration table;
//tuple(nodelD =N, LinkNodelD = U, LinkType = UP, LinkNun = 1, Bandwth
= Bandwth + B,)

06: add B, to the bandwth field of D's corresponding tuple in N's configuration
table;
//tuple(nodelD = N, LinkNodelD = D, LinkType = DW, LinkNun =1,
Bandwth = Bandwth + B,)

07: send an SP_packet with Bandwth conveyed on the received SP_packet;
//SP_packet(eventType = SP, SrcID = X, SenderID = N, Bandwth =B,) }

08: else // there are many downstream nodes D,

09: send a new SP_packet with Bandwth = B, and source node information to D,;

//SP_packet(eventType = SP, SrcID = X, SenderID = N, Bandwth=D,) }

10:  else { /Ipisan EP_packet with Bandwth = B,

11: if (there is only one downstream node D) {

12: subtract the bandwth B, from the Bandwth field of U's corresponding tuple in
the configuration table;
//tuple(nodelD = N, LinkNodelD = U, LinkType = UP, LinkNun = 1, Bandwth
= Bandwth - B,)

13: update the bandwth field of D's corresponding tuple in N's configuration table;
//tuple(nodelD = N, LinkNodelD = D, LinkType = DW, LinkNun=1,
Bandwth = Bandwth - B,)

14: send an EP_packet with Bandwth = B, to D;
//EP_packet(eventType = EP, SrcID = X, SenderID = N, Bandwth = B,) }
15: else // there are many downstream node D,
16: linkDeletion(); } }
17: else //p is an ordinary packet
18: transferData(); //forwarding p

Figure 21. The revDataAtNode() function

revCtriAtNode() checks the types of a control packet ¢, calls the revLREQ(), revRACKY(),
revMREQ() and revMACK() on receiving an LREQ, a RACK, an MREQ and an MACK,
respectively. rcvCtriAtNode() creates a tuple for U in N’s configuration table to establish an
uplink between N and U. When N receives an LACK or MEST packet from Q. Figure 22 lists
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the revCtriAtNode() function.

Algorithm: revCtrlAtNode() //performed by N to process a receiving control packet c
Input: a control packet ¢ issues by a neighbor node Q which may be an upstream node or
downstream node

Output: none

01: if (cis a LREQ packet) rcvLREQ(); //Q is a downstream node to create a downlink
between Q and N for the spanning tree
02: else if (c is a LACK packet)
03:  create a tuple for Q in N5 configuration table to establish an uplink between N and
0;
//Q 1s an upstream node that accepts to establish a link between O and N for the
spanning tree
04: elseif (cis a NACK packet) discard c; //Q is an upstream node which refuses to
establish a link with N for the spanning tree
05: elseif (cis a RACK packet) rcvRACK(); //Q is a downstream node which delivers a
new bandwidth for the upstream node N to allocate bandwidth to N or adjust N’s
bandwidth
06: elseif (cisa MACK packet) rcvMACK(); //Q is a downstream node which accepts to
establish a link with N for an alternative link
07: elseif (c isa MREQ packet) rcvMREQ(); //Q is an upstream node to establish an
alternative link
08: else //receiving a MEST packet from O
09:  create a tuple for Q in N's configuration table to establish an uplink;
//Q 1s an upstream node which selects N as the downstream node to establish an

alternate link

Figure 22. The rcvCtriAtNode() function

revLREQ() checks to see whether N has ever received an LREQ or not. If yes, indicating
that NV has already established a downlink for the spanning tree, no more downlink of N is
allowed. Hence, N discards the packet and replies an NACK. Otherwise, it creates a tuple for
the connection in its configuration table, replies an LACK to the sender of the LREQ, e.g.,
node QO which is a downstream node of N, and further broadcasts an LREQ to continue
establishing a spanning tree. Note that as stated above, only the node with one downlink and
without upstream nodes can issue a LREQ.

rcvRACK() (assume the corresponding RACK is issued by N’s downstream node Q)
updates bandwidth field of O’s corresponding tuple in N’s configuration table with the
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bandwidth conveyed on the received RACK, i.e., adjusting bandwidths for Q’s upstream
nodes in the rate allocation and adjustment phase. If N has upstream nodes, it calculates the
bandwidth for each upstream node U by using Egq.(2). It further sends an RACK with the
newly allocated bandwidth to U, and updates bandwidth of U’s corresponding tuple in N’s
configuration table with the bandwidth conveyed on the RACK sent.

revMREQ() checks to see whether the link between N and Q exists or not. Here, Q is one
of N’s upstream nodes. If yes, N discards the received packet. Otherwise, revMREQ() replies
an MACK with BandAvail = default bandwidth.

If N has ever received current MREQ’s corresponding MACK from other nodes,
revMACK() discards current receiving MACK. It allocates bandwidth with the minimum
value of BandReq and BandAvail to D, where the first corresponding MACK packet with
BandAvail received by N is sent by D. N further creates a tuple for D in the configuration
table to establish a downlink, and replies D with an MEST. Figures 23~26, respectively, list
the functions of revLREQ(), revRACK(), revMREQ() and revMACK().

Algorithm: rcvLREQ() //performed by N to process a receiving LREQ packet
Input: a control packet LREQ issued by a downstream node Q
Output: a control packet LACK or NACK

01: if (N has ever received an LREQ from a downstream node Q)

02: {discard the LREQ; reply an NACK; }
//in link establishment phase, a node can only establish a downlink

03: else {

04: create a tuple for Q in N's configuration table;
//tuple(nodelD = N, LinkNodelD = D, LinkType = DW, LinkNun = 1, Bandwth =
default bandwidth)

05: reply Q with an LACK;  broadcast an LREQ, }

Figure 23. The rcvLREQ() function

29



Algorithm: rcvRACK() //performed by N for bandwidth adjustment
Input: a control packet RACK issued by a downstream node D
Output: a RACK

01: replace bandwidth field of D's corresponding tuple in N's configuration table with the
bandwth conveyed on the RACK;
02: if (V has upstream nodes) {

03: calculate bandwidth for each upstream node U, for time t+1 by invoking
Eq.(2), i=1,2,...m; //assume N currently has m uplinks

04: send an RACK to U, telling U, the newly allocated bandwidth B, ;

05: update bandwidth of U,'s corresponding tuple in N's configuration table with

the bandwidth B, }

//tuple(nodelD = N, LinkNodelD = U, LinkType = UP, LinkNun = 1~n, Bandwth
= By)

Figure 24. The rcvRACK() function

Algorithm: rcvMREQ() //performed by N to establish an alternate uplink
Input: a control packet MREQ issued by an upstream node U
Output: a control packet MACK

01: if (MREQ is sent by U and there is an existing link between N and U)

02: discard the MREQ;
03: else
04: reply U with an MACK with BandAvail = default bandwidth,

Figure 25. The revMREQ() function
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Algorithm: rcvMACK() /Iperformed by N on receiving an MACK from a downstream

node D

Input: a control packet MACK issued by a downlink D

Output: a control packet MEST or none

01: if (Vhas ever received current MREQ’s corresponding MACK from other nodes)

discard the MACK,; //one MREQ establishes only one alternate link

02: else {

03: if (the RecverID from received MACK == the NodelD in N’s configuration table) {

04: allocate bandwidth with the min(BandReq, BandAvail) to D, where the first
MACK packet with BandAvail , which is the response of the recently sent MREQ,
received by N is sent by D;

05: create a tuple for D in the configuration table to establish a downlink;
//tuple(nodelD = N, LinkNodelD = D, LinkType = DW, LinkNun = n, Bandwth =
min(BandReq, BandAvail))

06: reply D with an MEST with Bandwth = min(BandReq, BandAvail), }

07: else  discard the MACK; //the link between N and D already exists}

Figure 26. The revMACK() function
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1. Simulation Results and Discussion

We use ns-2 [16] as the simulation tool to evaluate the MUCOM, and compare it with
HCCP [1] and the method without employing congestion control (WECC for short). The
default parameters for all experiments are listed in Table 5. The sink is placed at the center (50,
50) of the 100m x 100m field. 49 sensor nodes were randomly deployed in the field for
sensing their surrounding environments and relaying packets. The sink only collects data

packets sent by sensor nodes.

Table 5. Parameters of the experimental environment

Parameter Value
Number of sink node 1

Number of sensor nodes 49
Experimental field 100 x 100 m*
MAC layer protocol IEEE 802.11
Max bandwidth of a link 250 Kbps (=31.25 KB/sec)
Radio transmission range of a node 20 m
Experimental duration 100 sec
Number of simulations for each experiment 50

Packet rate of a source node 10 pkts/sec
Packet size 1 KB/pkt
Number of events occurs for each experiment | 5

Event lasting time 25 sec

In this study, five experiments were performed. The first evaluated throughputs defined
as the cumulative data size received per second by the sink, end-to-end delays defined as the
time period from when a packet is sent by its source node to the time point when the sink
receives the packet, and packet drop rates defined as (number of packets sent by all source
nodes — number of packet received by the sink) over number of packets sent by all source
nodes given different packet rates. The second, third, fourth and fifth experiments redid the
first experiment, respectively, on different packet sizes, numbers of events generated,
event-lasting times, and node densities. The default parameters for each experiment may be

changed when necessary.

4.1. Different Data Rates

In the first experiment, each active source node sends packets to the sink on different
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packet rates ranging between 10pkts/sec (i.e., 10KB/sec = 10pkts/sec x 1KB/pkt) and
50pkts/sec (i.e., SOKB/sec = 50pkts/sec x 1KB/pkt), instead of 10pkts/sec listed in Table 5.
Some of the total data rates issued by the five source nodes are higher than a link’s bandwidth.
The data rates of the tested schemes are shown in Figure 27a, from which we can see that the
HCCP’s are not linear. Figures 27b, 27c and 27d respectively show the throughputs,
end-to-end delays, and packet drop rates measured at the sink. Here, mul-ch standing for
multichannel represents that all the neighbor nodes of the sink are given different channels to
avoid channel contention when packets are sent between these nodes and the sink. We call this
a multi-channel environment, and call these nodes the sink-neighbor nodes. The symbols of
WECC, HCCP, and MUCOM with mul-ch mean the sink-neighbor nodes use the same
channel so that before sending packets to the sink, they need to contend the channel. We call

this a single-channel environment in which packet collision may occur.
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Figure 27. Experimental results of the tested algorithms on different packet rates when packet

size = 1KB

In the given experimental topology, there are a total of seven sink-neighbor nodes.
Therefore, theoretically, the data rate can be up to 218.75KB/sec (=31.25KB/sec x 7). When
the data rates increase, many more packets are sent per second so that the throughputs of the
tested schemes as shown in Figure 27b are higher. Due to employing multipath data transfer
and rate-based congestion control throughout the WSN, the MUCOM and MUCOM-mul-ch
outperform the other two, no matter in the single-channel or the multi-channel environment.
In the latter environment, owing to no channel contention among the sink-neighbor nodes, the
MUCOM-mul-ch’s throughputs are higher than those of the other schemes, in the former
environment, showing that channel contention among these nodes is serious. The HCCP’s

throughputs are the lowest both in the single-channel and multi-channel environments since it

34



over-pressures the data rates, causing less data packets being transmitted to the sink, even
though the HCCP has lower end-to-end delays and drop rates than the WECC and MUCOM
have (see Figures 27c and 27d). When the data rates exceed 31.25 KB/sec, i.e., the data
generated per second by a source node exceeds the bandwidth of a link, the throughputs of the
MUCOM-mul-ch increase continuously since the employment of additional paths widens the
data delivery bandwidth.

In this experiment, the end-to-end delay of a packet, e.g., packet A, includes the time of
retransmitting A once A is dropped. In the experimental field, the average number of hops of a
path from the source node to the sink is about 3.51, i.e., there are 3.51 hops that a packet has
to travel from its source node to the sink. In Figure 27c, when the data rates are higher, owing
to higher probability of network congestion, the delays of the tested schemes increase. Also,
the MUCOM and MUCOM-mul-ch need some time to establish an alternate path for a
congested node. This also prolongs their delays. Due to few channel contention, the delays of
a tested scheme in the multi-channel environment are much shorter than those of itself in the
single-channel environment, showing that channel contention seriously lengthens packet
delivery delays, particular for the nodes in the area near the sink. The HCCP’s delays are
lower than those of the MUCOM and the WECC when the data rates are less than 30 KB/sec
because when detecting packet congestion, it suppresses its data rate to reduce the data drop
rates. When the data rates exceed 30 KB/sec, the delays of the HCCP increases sharply and
are longer than those of the MUCOM since in the single-channel environment when data rates
are over the bandwidth of a link, the HCCP does not establish alternate paths to help the
delivery of packets. Although the delays are shorter than those of the HCCP, the MUCOM
and MUCOM-mul-ch keep their data rates and use multiple links to improve system
performance. That is why their delays are shorter than those of the WECC.

In Figure 27d, due to higher probabilities of packet collision and congestion, larger data
rates result in higher packet drop rates. The drop rates of the WECC-mul-ch increase sharply
when the data rate exceeds 30KB/sec, although the multi-channel environment relieves the
channel contention among the sink-neighbor nodes, indicating that when data rates of a source
node exceed the bandwidth of a link, a method to migrate channel congestion is required. This
is also one of the motivations of this study. The MUCOM’s drop rates are lower than those of
the WECC, showing that the use of multiple paths can effectively shorten end-to-end delay.
Besides, the multi-channel environment can further improve a scheme’s the throughputs,

end-to-end delays, and drop rates.
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4.2. Different Packet Sizes

In the second experiment, the packet sizes range between 1KB and 5KB instead of 1KB
listed in Table 5. The packet rate of an active source node is constantly 10pkts/sec. Hence, the
data rates are between 10KB/sec (= 10pkts/sec x 1KB/pkt) and 50KB (= 10pkts/sec x
5KB/pkt). The total data rates of the tested schemes are individually the same as those shown
in Figure 27a. Figures 28a, 28b and 28c¢ respectively show the throughputs, end-to-end delays,

and packet drop rates of this experiment.
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Figure 28. Experimental results of the tested algorithms on different packet sizes

When the packet sizes increase from 1KB to 5KB, the trends of the throughputs of the
tested schemes in both environments (single-channel and multi-channel) are similar to those
shown in the first experiment. Even though the indexes of the X-axises of Figure 27 and 28
are different, the total data rates of the five event source nodes on the i-th index are the same,
i=1, 2... 5. For example, in Figure 27, the first index of the X-axis is 10 KB/sec (=10pkts/sec
x 1KB/pkt), and the total data rate is 50 KB/sec (=10KB/sec x 5 events). In Figure 28, the first
index of the X-axis is 1KB, the total data rate is also 50KB/sec (= 1KB/pkt x 10pkts/sec x 5
events). In the two figures, the total data rates of the 2™ to the 5™ indexes are respectively 100,
150, 200 and 250 KB/sec. Since we fix packet sizes, the packet rates of the first experiment
are 20, 30, 40, and 50pkts/sec, instead of 10pkts/sec. Due to delivering fewer numbers of
packets, the probabilities of packet collision and channel contention of this experiment is
mitigated, resulting in higher throughputs, and lower delays and drop rates. We now conclude
that in a WSN when data rates are the same, transmitting fewer packets will result in better

performance than that of delivering many more packets.

4.3. Different Number of Events

In the third experiment, the numbers of events are 5, 10, 15, 20, and 25 rather than 5
listed in Table 5. In fact, the total data size generated by all active source nodes for the i-th
index of the X-axis of Figure 29, link that described in the second experiment, is the same as
that generated for the i-th index of the X-axis in Figure 27, i=1, 2,..., 5, i.e., the total data
rates sent to the sink by the tested schemes are also individually the same as those shown in

Figure 27a. Events are randomly generated in the field. Figures 29a, 29b and 29c¢ respectively
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show the throughputs measured, end-to-end delays, and packet drop rates.
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Figure 29. Experimental results of the tested algorithms on different number of events

Since the data rate generated by a source node, i.e., I0KB/sec (= 10pkts/sec x 1KB/pkt),
does not exceed the bandwidth of a link, i.e., 31.25KB/sec, and the events may disperse in the
field instead of only occurring on five fix nodes, the probabilities of bandwidth overflow on a
link and channel contention are lower, causing higher throughputs and lower delays (see
Figures 29a and 29b) compared with those of the first experiment (see Figures 27b and 27¢).

When the numbers of events increase, the probability of packet collision is also higher.
In Figure 29a, the throughputs of the WECC-mul-ch are similar to those of the
MUCOM-mul-ch even when event numbers = 20 or 25 (please also refer to Figures 27b and
28a). This is because events disperse in the field. The probability that the data rate flowing
through a link is higher than the link’s bandwidth is lower. This also a key reason why the
throughputs of the tested schemes are generally higher than those of themselves in the first
experiment.

As with the previous experiments, the delays and drop rates increase when numbers of
events are higher. The reason is the increased numbers of packets causes the higher
probabilities of packet collision, the cumulated data sizes own to higher bandwidth
occupation, and the interference between nodes resulting to channel contention. Since the
number of channel contention is generally reduced in the areas of sink-neighbor nodes, the
tested schemes’ delays and drop rates are lower in the multi-channel environment except
WECC-mul-ch on event number = 20 and 25, due to the serious packet collisions. The
bandwidth occupation probability is also lower than those of the previous experiment due to

the data rates cannot exceed the bandwidth of a link, the channel contention among the nodes
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other than the sink-neighbor nodes and the packet collision is the main reason resulting in
longer delays and higher drop rates in the multi-channel environment. By employing their
congestion control scheme, the MUCOM and HCCP gets lower delays and drop rates than the
WECC.

4.4. Different Event-lasting Times

In the fourth experiment, the event-lasting times range between 25 and 200 sec instead of
25 sec listed in Table 5. The start time of an event is random. Figures 30a, 30b, 30c and 30d
respectively show the total data rates generated by all active source nodes, their throughputs,

end-to-end delays, and packet drop rates.
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Figure 30. Experimental results of the tested algorithms on different event-lasting times

Generally, a longer event-lasting time represents that more packets are sent by a source
node. Figure 30a shows that the total data rates of the WECC and MUCOM are a constant
50KB/sec (1KB/pkt x 10pkt/sec x Sevents). When the event-lasting times increase, due to the
increase of the numbers of packets, the packet collision and contention are worse, causing
lower throughputs and higher delays and drop rates. The throughputs of the HCCP and
HCCP-mul-ch follow their data rates (please compare Figures 30a and 30b). The phenomena
of channel congestion and packet collision among the sink-neighbor nodes appear again
between the two lines of the MUCOM and MUCOM-mul-ch, and between the two lines of
the WECC and the WECC-mul-ch. Similar to the previous three experiments, the tested
schemes’ throughputs in the multi-channel environment are better than those of themselves in

the single-channel environment. Due to over-suppressing its data rates on detecting packet
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congestion, the HCCP’s throughputs are the lowest both in the two environments, although its
delays and drop rates, like those in pervious experiments, are lower than those of the other test
schemes (see Figures 30c and 30d).

In this experiment, the longer event-lasting time causes higher probabilities of packet
collision, and the retransmission of dropped packets lengthens the delays, resulting in longer
delays and higher drop rates. As with the third experiment, the data rates generated by each
source nodes does not exceed the bandwidth of a link so that the probability of packet
congestion is lower than those in the previous three experiments (comparing 27c, 28b, 29b,
and 30c, and comparing 27d, 28c, 29c and 30d). The tested schemes in the multi-channel
environment have shorter delays and lower drop rates than they in single-channel
environment have. The reason is mentioned above. The HCCP’s delays increase sharply when
the event-lasting time is 200 second because the HCCP’s congestion control cannot efficiently
reduce packet collision in such a long event-lasting time. The MUCOM’s (the
MUCOM-mul-ch’s) delays and drop rates are lower than those of the WECC (WECC-mul-ch)

due to using the multiple path data transfer and rate-based bandwidth control.

4.5. Different Node Densities

In the fifth experiment, the number of nodes distributed the field range between 50 and
250 instead of 50 listed in Table 5, i.e., the node densities of the field range from
0.005nodes/m” to 0.025nodes/m? rather than 0.005nodes/m”. The role and the position of the
sink are the same as those of the previous experiments. The packet rate is 10pkts/sec, packet
size is 1KB/pkt, 5 events occur in each simulation and each event lasts 25 seconds. In the
multi-channel environment, the 11 channels of the WiFi are employed, 10 for the
sink-neighbor nodes and one for the other nodes. Figures 31a, 31b, 31c and 31d respectively
show the total data rates generated by all active source nodes, their throughputs, end-to-end

delays, and packet drop rates.
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Figure 31. Experimental results of the tested algorithms on different node densities

In Figure 31a, the total data rates of the MUCOM and WECC are 5S0KB/sec (=10pkts/sec
x 1KB/pkt x Sevents), and the HCCP and HCCP-mul-ch are lower than 50KB/sec due to its
data rate suppression. When the node densities increase, the data rates of HCCP and
HCCP-mul-ch are higher because the increase of node densities creates many more available
paths that the HCCP can choose for a source node, when congested, there is no difficulty for it
to choose another path, resulting in less data-rate suppression.

In the multi-channel environment, when the node density exceeds 0.01, the number of
sink-neighbor nodes is higher than the number of channels assigned to those nodes so that
some of the sink-neighbor nodes are assigned the same channel. Because of less channel
contention, packet collision, and bandwidth congestion, the throughputs of the tested schemes
are almost the same as their total data rates, implying their drop rates are low (less than 1.2%)
(see Figures 31b and 31d). The multi-channel effect in this experiment is insignificant
compare to those in the previous experiments.

Generally, higher node density implies that many more nodes will be contained in a
routing path, resulting in larger hop counts and lower energy consumptions. In Figure 31c,
when node densities increase, due to the increase of the numbers of hops of a routing path, the
delays are longer. The tested schemes’ delays in the multi-channel environment are shorter
than those of themselves in the single-channel environment, although some of the
sink-neighbor nodes are allocated the same channel. The performance of MUCOM and
MUCOM-mul-ch are also better than those of the other tested schemes.
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V. Conclusions and Future Work

In this paper, we propose a MUCOM which achieves fairness of packet delivery in a
WSN based on dynamic rate allocation, which at first establishes a spanning tree to connect
all nodes for initial packet delivery. When a node’s traffic overflows, the MUCOM establishes
an alternate path to deliver data packets. In other words, it is a multi-path routing environment.
To mitigate congestion for a node, the sink adjusts allocated bandwidths for its upstream
nodes which will in turn adjust bandwidth for each of it upstream nodes. The process repeats
until no more upstream nodes exist.

Experimental results show that the performance of the MUCOM outperforms the other
two schemes. Generally, when the data rates of an event, event packet sizes, event numbers,
event-lasting times and the node densities increase, the performance of a WSN in delays and
drop rates decrease due to heavier packet collision, bandwidth congestion and channel
contention. In the single-channel environment, the channel contention among the
sink-neighbor nodes is serious, the multi-channel environment can improve a scheme’s
throughputs, end-to-end delays, and drop rates. Experimental results also shows that when
data rates of a source node exceed the bandwidth of a link, a method to migrate bandwidth
congestion is required, and when data rates are the same, due to less time of packet collision
and contention, the performance of transmitting fewer packets will be better than the that of
delivering many more packets. By employing the multipath data transfer and rate-based
congestion control, the MUCOM can effectively improve a WSN’s throughputs, end-to-end
delays and reduce packet loss rates.

In the future we will derive the reliability model and behavior model for the MUCOM in
the WSN environment so that users can predict the system’s reliability and behavior before
using it. We will also develop an optimized spanning tree construction algorithm to further

improve the performance of a WSN. These constitute our future studies.
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Appendix

Broadcast LREQ for establishing
a spanning tree

»l

Yes

Received an
piggybacked data
packet?

Yes
\ 4

Py

Set timer T to 7 units of time

Send an RACK with Bandwth =
default bandwidth of the link
between U and the sink to U

B

T expires?

No

A packet arrives? No >
Yes Perform the
corresponding statistics
for the data packet, no
N 5
YesP matter it is a SP_packet, B
EP_packet or an
No ordinary data packet
he control packe
is an LACK packet No¥ Discard the packet — —f
ent by a node /7

Yes

(establishing a spanning tree from the sink)
A 4

Create a new tuple for U in the configuration table

(establishing an uplink with U)

tuple(nodelD = S, LinkNodelD = U, LinkType = |
UP, LinkNun = 1, Bandwth = default bandwidth)

Figure A1. Flow chart for the operations performed by the sink S
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No event on N

I rcvPacket() Ic

Event appears?

Yes
\ 4

Set timer T'to ¢~
units of time

v

eventStart()

Yes
A 4

Sense the
underlying event

eventStop()

T

No

o]

NoP

rcvPacket()

An event on N

Reset T to ¢ "units of

time

YesP

transferData()

|

Figure A2. Flow chart for the operations performed by a node N other than the sink

(T’= packet size / data rate; 1/T" is the packet generation frequency)

rcvDataAtNode() Yes

Include SP_packet and EP_packet

revCtrlAtNode() Yes

4_(data packet)

4(u:ontrol packet)

packet?

packet?

JNo

Figure A3. Flow chart for N on receiving a packet

rcvPacket()

eceiving a data

Receiving a contro




| transferData()

Send the data packet to downstream node D, with

B

probability P, = %, where n is the number
2B
i=1

of downstream nodes of N, and B/, is the bandwidth

allocated to the link between N and D, by D,

v
(/ return

Figure A4. Flow chart for N to transfer a data packet

/,—
{ eventStart()

Create a tuple Q in configuration
table for the event e

tuple(nodelD =N, LinkNodelD =N,

LinkType = GN, LinkNun = --, m o
Bandwth = default data rate DR ) BandReq :(BN +ZE_¢)_Z Di
= =]

_— —

-

_— T~
|/ linkCreation() «Yes BandReq>0?

D,

To generate an alternate link

JNo
\ 4

Add the default data rate DR, to the Bandwth field of
the tuple corresponding to node Dn, which is the latest
downstream node linked to NV in N's configuration table

tuple(nodelD =N, LinkNodelD = Dn,
LinkType = DW, LinkNun = n, Bandwth =
bandwth + DRdQ[)
\ 4
Send an SP_packet with Bandwth = DR,
and other source node information to Dn

SP_packet(eventType = SP, SrcID =N,
SenderID=N,Bandwth=DR,) ¥

/ A
| Return

Figure AS. Flow chart for N on discovering an event




Delete the tuple Q, which is the
corresponding tuple of the disappeared
event E, from the configuration table

tuple(nodelID = N, LinkNodelD = N,
LinkType = GN, LinkNun = --,

Bandwth = DR ;)

tuple(nodelD =N, LinkNodelD
=D, LinkType = DW, LinkNun
=1, Bandwth = Bandwth - DR ;)

EP packet(eventType = EP, SrcID =

N, SenderID =N, Bandwth = DR ;)

Figure A6. Flow chart for NV on the termination of an event

BandReq is the bandwidth Broadcast an MREQ

required by N

Yes
A 4

Subtract DR, from the Bandwth
field of D’s corresponding tuple
in N's configuration table

Send an EP_packet with
Bandwth = DR .rto D

\ 4

linkDeletion()

A\ 4

Return

linkCreation()

with BandReq

N|

Waiting for a time
period

Receive an MAC
from any downstream

Figure A7. Flow chart for N to create multiple downlinks

Yes
\ 4

revMACK()

andReq = (BandRe
—BandAvail) > 0

Establish an alternate link since D’s
BandAvail is insufficient to deliver
BandReq needed by N

(D: a downstream node; U: an upstream node)
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linkDeletion()

B¢ : the current bandwidth that released from an
disappeared event £ or Bandwth contained in a
received EP packet by N ‘

Bp, : the current allocated bandwidth of the latest "
established downlink of N (LinkNum = ) v

No Bc-Bp,<=0?
Yes
\ 4
Send an EP_packet to the downstream Send an EP_packet to the downstream
node D, with bandwth = Bp,, node D, with bandwth = B¢

EP_packet(eventType = EP, SrcID =
N, SenderID = N, Bandwth = B),)

EP_packet(eventType = EP, SrcID =
N, SenderID =N, Bandwth = B()

\ 4 \ 4
Delete D,’s corresponding tuple from Adjust the tuple of D, in N’s configuration
N’s configuration table table with bandwth = By, - B¢
The latest established 1uple(n_0deID :E\]’ Linkl\_lodeID
downstream link is =Dy, Ll_nkTépe ; D:V_’ I(;mkNun
now D, \ 4 =n, Bandwth =0) Be-Bp,=0? No
BC = BC - BDn
Yes
(Bpa=Bc)
A 4
v ) ) . e
Delete D, ’s corresponding tuple PIRAIE tuple of D, m R
from N’ fiouration tabl configuration table with
Be=mo ] om N's configuration table bandwth = By, - Be

tuple(nodelD = N, LinkNodelD

=D,, LinkType = DW, LinkNun <
= n, Bandwth = 0) Y

Return

Figure A8. Flow chart for N to delete multiple downlinks
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rcvDataAtNode()
piggybaced ~  No
\PanrU/(EPﬁpacket)
Yes

No
(multiple
Yes downstream nodes)

No Subtract the Bandwth Bd conveyed on the EP_packet
(an ordinary sent by an upstream node U from the Bandwth field of
data packet) U’s corresponding tuple in N's configuration table
BandReq = (By + Y By)-> B;'  Yes
=1 i=l

tuple(nodelD =N, LinkNodelD

’ 4 =U, LinkType = UP, LinkNun =
linkCreation() | [4Yes 1, Bandwth = Bandwth - Bd) v v
r >

Subtract Bd from the Bandwth field of D’s . .

. R . linkDeletion()
corresponding tuple in N's configuration table

tuple(nodelD = N, LinkNodelD

=D, LinkType = DW, LinkNun

No = 1, Bandwth = Bandwth - Bd)

\ 4

Send an EP_packet with Bandwth conveyed
on the received EP_packet, i.e., Bd

v EP_packet(eventType = EP, SrclD |
=X, SenderID = N, Bandwth = Bd) >
ingle downstrea
transferData() node D? Yes #
Add the Bandwth Bu conveyed on the SP_packet sent
N by an upstream node U to the Bandwth field of U’s
(multiple down(;tream nodes) corresponding tuple in N's configuration table

tuple(nodelD =N, LinkNodelD
=U, LinkType = UP, LinkNun =

1, Bandwth = Bandwth + Bu
Sent a new SP_packet that \ 4 )
ey di"";:?ﬁ‘; cil”aasngle Add Bu to the Bandwth field of D’s

first data packet to Dn with corresponding tuple in N's configuration table
LinkNum = n (the largest) tuple(nodelD =N, LinkNodelD
=D, LinkType = DW, LinkNun
SP_packet(eventType = SP, SrcID =1 Bandw)g: = Bandwth + Bu)

=X, SenderID = N, Bandwth = Bu) 4 ’

Send an SP_packet with Bandwth conveyed
on the received SP_packet, i.e.,Bu

SP_packet(eventType = SP, SrcID
_| =X, SenderID = N, Bandwth = Bu)

il

Y

Return

Figure A9. Flow chart for N on receiving a data packet
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revCtrlAtNode()

revLREQ()

Create a tuple for U in the
YesP configuration table to establish an —»
uplink between N and U

For establish a
spanning tree

(phase 1)
No tuple(nodelD = N, LinkNodelD = U,
LinkType = UP, LinkNun = 1, Bandwth = --)
Discard the packet ' o
For bandwidth
adjustment rcvRACK() >
(phase 2)
No
B0 pgf,ket rom Yes—Pp revMREQ() >
No
v
MACK packet from Yes—p reyMACK() >
. . D?
For multipath routing )
No

(phase 3)
(MEST packet from U)
A 4

i tuple(nodelD =N, LinkNodelD = U,
Create a tuple for U'in LinkType = UP, LinkNun = 2~n,

the configuration table to| Bandwth = min(BandReq, BandAvail))
establish an uplink

L e
Figure A10. Flow chart for N on receiving a control packet

(D: a downstream node; U: an upstream node)
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cecived an LREQ
downstream node D
beforehand?

Has establish a link with
one of its neighbor (a
downstream node)

No
v Yes

Create a tuple for D in the
configuration table
(establishing a downlink with D)

tuple(nodelD = N, LinkNodelD
=D, LinkType = DW, LinkNun

=1, Bandwth = --)
\ 4 \ 4
. Discard the
Reply D with an LACK LREQ
Reply an
Broadcast an LREQ NACK

Toestablishalink | [
toward source node

Figure A11. Flow chart for N on receiving an LREQ from a downstream node D
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| rcvRACK()

Update bandwidth of D in D’s corresponding
tuple in the configuration table with the
bandwth conveyed on the RACK

i (By checking its

—Nhas upstr% configuration table)
nodes?

Yes
A\ 4

Calculate bandwidth for each upstreamnode U, for time ¢ +1

withequationt‘:fix B, , where B, (BL})isthe
23& i=1
A

bandwidth of link between N and a downstream node D,

(an upstream node U at time ¢

Send an RACK to node U, telling U, the newly
allocated bandwidth B

s 1=1,2,...,m

v

Update bandwidth of U, in U,'s corresponding

tuple in the configuration table with the
bandwidth B,,,i=1,2,....m
tuple(nodelD = N, LinkNodelD e

= U, LinkType = UP, LinkNun=
1~n, Bandwth = BUi) ( Return

Figure A12. Flow chart for N on receiving an RACK from a downstream node D

(o)
[ rcvMREQ()
//// \\\\
_ MREQ is sent by a node U-and

~there is an existing link between N \\/—I
W Yes
No l
v

Reply an MACK with Discard the
BandAvail MREQ

Banddvail =S B, (B, +i%) < |
i=l j=1  /

/g r
( Return

Figure A13. Flow chart for N on receiving an MREQ from a node U
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rcvMACK()

er received current s

corresponding MACK from other
nodes?

Yes
No
cverlD from received MA
elD in N's configuration ta No )
Yes
4
Allocate bandwidth min(BandReq, BandAvail) to \ 4
the link between N and a downstream node D, Discard the
where the first corresponding MACK packet with MACK
BandAuvail received by N is sent by D

Assume N originally has n-1
y downlinks

Create a tuple for D in the configuration
table to establish a downlink

tuple(nodelD =N, LinkNodelD =D,
LinkType = DW, LinkNun = n, Bandwth
= min(BandReq, BandAvail))

Y

Reply D with an MEST with Bandwth =
min(BandReq, BandAvail)

|¢

Return

Figure A14. Flow chart for N on receiving an MACK from a node D
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