

私立東海大學

資訊工程研究所

碩士論文

指導教授：呂芳懌 博士

在固定封包速率下並基於頻寬分配之事件觸發式無線感測器網路

多路徑壅塞控制

A Rate-allocation Based Multi-path Congestion Control Scheme for

Event-Driven Wireless Sensor Networks on Constant Event Packet

Rates

研 究 生：邱炫又

中華民國一○○年七月

 i

摘要

在本論文中，我們提出一在事件觸發式無線感測器網路(Wireless Sensor Network, WSN)

下，基於速率分配及使用高可用性封包傳遞路徑之多路徑壅塞控制方式(multi-path

congestion control approach)。本方式包含兩部分，第一部分為建立一以基地台(sink)

為根節點，連接 WSN 中各感測器之生成樹，並以其為初始路由路徑。第二部分為藉由使

用多路徑及速率分配，來建立一公平之封包傳遞環境。一般來說，新事件的發生會增加

網路中的流量，將會使新建立的路由路徑上之節點產生雍塞，尤其是在基地台附近之節

點，因而破壞原先流量之平衡並導致封包之丟棄。事實上，若干事件之訊息無法即時地

傳遞到 sink，可能會造成決策者因資訊不足而做出錯誤的決策。而在事件結束時，因停

止傳送封包，亦將破壞路由上之中間節點的流量平衡。因此，我們動態地調整頻寬以維

持各流量間之公平性和善加利用現有資源。實驗結果顯示本方法可有效的改善無線感測

器網路的吞吐量、封包延遲及封包遺失率。

關鍵詞：事件觸發，多路徑壅塞控制，公平傳輸，無線感測器網路，速率控制，頻寬調

整

 ii

Abstract

In this paper, we proposed a rate-allocation based multi-path congestion control approach,

called multi-path-congestion control method (MUCON for short), which enforcing high path

availability of packet delivery for event-driven Wireless Sensor Networks (WSNs) consists of

two parts. The first is constructing a spanning tree to connect all sensor nodes of a WSN to the

sink for initial routing. The second is establishing a fair packet forwarding environment by

employing multi-path and rate control to deliver packets through routing paths with a

balanced manner. Generally, the occurrence of an event will increase net flow, which may

congest the nodes on the newly established routing path if the nodes are currently shared by

several routing paths, particularly for those nodes near the sink, consequently ruining

originally balanced traffic on paths and forcing some event packets to be dropped. In fact,

without the information conveyed on the lost packets, users may make an inaccurate decision

and react improperly for events. When an event disappears, the surrounding sensor(s) stops

transmitting packets. This will again destroy the fairness and unbalance net flows flowing

through the co-node routing paths. Thus, to maintain the fairness and balance net flows for a

WSN, a downstream node needs to dynamically adjust bandwidths for all its upstream nodes.

Experimental results show that this method can effectively improve a WSN’ throughputs,

shorter end-to-end delays and reduce packet loss rates.

Key Words: Event-driven systems, Multi-path congestion control, Transmission fairness,

Wireless sensor networks, Rate control, Bandwidth adjustment.

 iii

致謝

 首先感謝指導教授呂芳懌博士，在這段期間內，老師在論文及其他方面的指導，讓

我體會到做研究應具備的熱忱、淵博的知識、及嚴謹的態度；很高興能在您的指導下完

成此篇論文。感謝東海資工陳隆彬老師、楊朝棟老師與林祝興老師在我大學及碩班時

期，於專題上及課業上的教導，使我獲益良多。也感謝各位口試委員的建議及指教，使

本論文更臻完善。

 另外感謝資料庫實驗室志揚、梗延、宏瑋及永倫學長們，在研究方面的指點，使我

可以快速融入實驗室的環境；國基和佩勳同學的陪伴與課業上的協助，使我的研究生活

更多采多姿；還有逸夫、勝捷、信良、渝新、妙亨學弟妹們的加入，令實驗室多了許多

歡笑，在此謝謝你們。

 最後感謝我的家人，有你們無怨無悔的付出與支持，讓我可以無後顧之憂的專注在

學業上，僅將此文獻給你們。

 千言萬語，說不盡的感謝，在這段日子裡，有你/妳們的陪伴，是我最大的榮幸，謝

謝你們。

 iv

List of Contents

摘要 ... i

Abstract .. ii

致謝 ... iii

List of Contents ... iv

List of Figures .. v

List of Tables ... vi

I. Introduction .. 1

II. Related Work .. 3

III. The Proposed Scheme .. 5

3.1. System phases .. 5

3.2. The link establishment phase and configuration table ... 5

3.3. The rate allocation and adjustment phase .. 8

3.4. Multipath congestion alleviation phase .. 14

3.5. Algorithms .. 20

IV. Simulation Results and Discussion .. 32

4.1. Different Data Rates ... 32

4.2. Different Packet Sizes .. 36

4.3. Different Number of Events ... 37

4.4. Different Event-lasting Times .. 40

4.5. Different Node Densities .. 42

V. Conclusions and Future Work .. 45

References .. 46

Appendix .. 48

 v

List of Figures

Figure 1. Fields of an LREQ packet ... 6

Figure 2. The link establishment phase... 7

Figure 3. Extra fields of a piggybacked packet as the first or the last packet of an event 8

Figure 4. Fields of an RACK packet ... 9

Figure 5. An example network for illustrating the process of the rate allocation and

adjustment phase ... 12

Figure 6. The sequence diagrams of rate allocation and adjustment phase 14

Figure 7. Fields of a MREQ packet .. 15

Figure 8. Fields of a MACK packet .. 15

Figure 9. Fields of a MEST packet ... 15

Figure 10. Network activities on the example topology shown in Figure 5 in its multipath

congestion alleviation phase ... 18

Figure 11. The sequence diagram of multipath congestion alleviation stage 19

Figure 12. The program structure of a node other than the sink ... 20

Figure 13. The Sink() function .. 21

Figure 14. The Node() function .. 22

Figure 15. The transferData() function .. 23

Figure 16. The rcvPacket () function .. 23

Figure 17. The eventStart() function ... 24

Figure 18. The eventStop() function ... 24

Figure 19. The linkCreation() function ... 25

Figure 20. The linkDeletion() function ... 26

Figure 21. The rcvDataAtNode() function .. 27

Figure 22. The rcvCtrlAtNode() function ... 28

Figure 23. The rcvLREQ() function .. 29

Figure 24. The rcvRACK() function .. 30

Figure 25. The rcvMREQ() function ... 30

Figure 26. The rcvMACK() function ... 31

Figure 27. Experimental results of the tested algorithms on different packet rates when

packet size = 1KB ... 34

Figure 28. Experimental results of the tested algorithms on different packet sizes 37

Figure 29. Experimental results of the tested algorithms on different number of events 39

Figure 30. Experimental results of the tested algorithms on different event-lasting times 41

Figure 31. Experimental results of the tested algorithms on different node densities 44

 vi

List of Tables

Table 1. Node a’s configuration table after the link establishment phase (see Figure 2b) 7

Table 2. Node e’s configuration table after the link establishment phase (see Figure 2b) 8

Table 3. Node e’s configuration table after the rate allocation and adjustment phase (see

Figure 2b) .. 14

Table 4. Node e’s configuration table after the multipath congestion alleviation phase (see

Figure 2b) .. 19

Table 5. Parameters of the experimental environment ... 32

 1

I. Introduction

In recent years, congestion control is one of the most important issues in wireless sensor

network (WSN) research [1]. When congestion occurs at a sensor node (a node for short),

newly arriving packets will be dropped or enqueued in the node’s buffer, causing the facts that

upstream nodes have to consume extra energy to retransmit the dropped packets, or packet

arrival does not follow the departure sequence. These will not only waste device resources

and decrease their lifetime when nodes are powered by batteries [2], but also make the sink to

receive discrete and incomplete information, with which users may hard to realize the details

of the event and then make an accurate decision to respond to the event in a real time manner.

Generally, congestions will degrade network throughputs [1], prolong packet delivery delays

[3], and increase packet loss rates [1][3][4], which together are WSN’s challenges,

particularly for a real-time sensing/monitoring environment.

In an event-driven WSN, sensor nodes detect environmental changes as the occurrence

of an event. When there is no events, the load is light. But when events, like fire blaze,

earthquake, landslide, or mudflows, occur, a huge number of packets will be suddenly

generated. The network traffic from the event points to the sink will be heavy [5]. In a

large-scale WSN, hundreds to thousands of sensor nodes are employed to sense events and

relay packets [6]. The probability that a node is congested is high, especially for those near

the sink [1]. However, if network traffic can be regulated, congestion can be mitigated and

packet drop rates will be lowered [1][3][4].

A method to avoid network congestion is load-balanced routing which implies

establishing multiple paths [7] between a source node and the sink, and transfers data via the

paths. A multi-path routing not only addresses load balancing, and route failure and recovery

[8], but also distributes energy consumption and improve packet delivery quality, reliability

and throughputs [8][9][10]. Constructing a spanning tree to route packets has been used by

[10][11]. In fact, if we can construct such a tree as the initial routing tree for a WSN during its

system startup, then when events occur, packets can be delivered immediately without

sending a route request packet to establish a path from the source to the sink before packets

can be sent, consequently shortening packet delivery delays. Furthermore, when the paths are

congested, if we can establish alternate paths, i.e., a multi-path routing, then the packet

delivery performance can be further improved [11].

Therefore, in this paper, we propose a rate-allocation based congestion control approach,

 2

called multi-path-congestion control method (MUCOM for short), which can be deployed by

an event-driven WSN to construct multiple paths for a congested node and regulate packet

flows for the paths so as to improve performance of packet delivery. Experimental results

show that the MUCOM not only reduces packet drop rates and congestion probability, but

also dramatically mitigates the waste of network bandwidth and improves performance of

packet transmission.

The key contributions of this study are as follows.

1) In the MUCOM, when a node N is congested, we do not decrease the data rates of all

source nodes of which the routing paths go through N. Instead, we establish alternate links

for N to acquire additional bandwidth to transfer congested data packets.

2) We use rate-based bandwidth control to adjust the bandwidth for each link when an event

occurs or disappears so as to effectively improve the total utilization rate for a WSN.

3) We construct a spanning tree as the initial routing paths for source nodes so that when an

event occurs, source node can delivers data packets immediately, i.e., omitting the delay

due to route discovery.

The rest of this paper is organized as follows. Section II describes the related work of this

study. Section III introduces the algorithms and processes of the MUCOM. Its simulation

results are presented and discussed in Section IV. Section V concludes this paper and outlines

our future research.

 3

II. Related Work

 So far, several congestion control approaches [1][3][5][6][12][13] and routing protocols

[10][11] have been proposed. Hybrid Congestion Control Protocol (HCCP) [1] integrated a

buffer-based congestion control method and a rate-based congestion control method to control

congestions. When the net flow flowing through a node N exceeds N’s buffer size, the HCCP

regulates N’s data rate to mitigate packet drop rates. However, the authors did not describe

how to adjust the system-wide rates, but pointing out that it is insufficient for congestion

control if only buffer and packet delivery rates are considered. In the MUCOM, the

bandwidth required by the source nodes along a path is always equal to or less than the

available bandwidth of the path so that the influence of buffer size is small and can be even

ignored.

 Priority-based Congestion Control Protocol [3] predicted the probable congestion by

collecting packet service time and packet inter-arrival time, with which a scheduler was

developed to control network bandwidth. Fairness-Aware Congestion Control (FACC) [5]

categorized intermediate relay nodes into near-source nodes and near-sink nodes, and used

different strategies to assign appropriate fair rates to them to avoid congestion and save energy.

Near-source nodes maintain a per-flow state by monitoring channel business and allocate an

approximately fair rate to each passing flow. Near-sink nodes are installed a lightweight

probabilistic dropping algorithm based on queue occupancy and hit frequency. If the queue

occupancy is higher than a predefined upper bound, the arrival packet will be dropped and the

rate of all passing flows will be reduced. If the queue occupancy is now between the upper

and lower bounds, the data rate of the corresponding source node will be adjusted. However,

when the scale of a WSN is small, it is unclear that a node is a near-source or a near-sink

node.

 Monowar et al. [6] employed a queuing model composed of many queues to handle

different types of data packets and a classifier provisioned in network layer to classify

heterogeneous traffic. It used packet service ratio denoted on average packet service rate and

packet scheduling rate to detect congestions. Sankarasubramaniam et al. [12] proposed an

Event-to-sink reliable transport (ESRT) which defines network states, the corresponding

operations of a state, current state, and a reliability indicator denoted by the realistic number

of received packets and the desired number of received packets. By frequently updating

current state and reliability indicator at the sink, the ESRT could accurately identify current

 4

network state, and then executes the corresponding operations, like adjusting source nodes’

reporting frequencies. However, all the computations are performed at the sink, of which the

load is high.

Congestion detection and avoidance (CODA) [13] detected buffer utilization of nodes, and

current and previous channel loading rates to predict degree of congestion for receiver nodes.

The CODA also employed sampling monitors in an appropriate time to reduce energy

consumption. When the node is congested, it backpressures all upstream nodes to adjust data

transmission rates or drop packets. As with the CODA, the MUCOM adjusts bandwidth for

each node along a routing path when necessary. The adjustment activates are propagated from

the sink toward upstream nodes.

 Lou [10] developed a distributed ‘N-to-1’ multi-path finding protocol that used flooding

approach to generate a typical spanning tree from the sink, and find multiple node-disjoint

paths from sensor nodes simultaneously, in order to reduce the latency of path establishment.

It also offered a packet salvaging strategy to improve the reliability of packet delivery. But

this approach needs path information from source to the sink so that the loading of nodes is

heavy. EAMTR [11] is a light weighting routing protocol which generates multiple trees for a

source node, and each node selects the least congested routes based on Link Quality

Indication, the index defined by 802.15.4 standard, to send packets to the sink. It improves the

reliability of links by providing redundant paths. But the generation of multiple trees is a

heavy burden for those highly-occurred event areas.

 The abovementioned methods are proposed under their specific environments. Each has

its own advantages and disadvantages. However, the congestion control methods except the

FACC did not address fairness of packet transmission among routing paths. Generally, these

methods start when congestion occurs. In the MUCOM, the flow control between a node and

its upstream nodes begins only when events occur and terminate. When congestion occurs on

a node N, N starts finding multiple paths to relieve congestion. The relief is performed by all

sensor nodes in a distributive manner, instead of by the base station. This can reduce the

computation burden of the base station and network load of its surrounding nodes.

 5

III. The Proposed Scheme

In the study, we assume that: 1) A node is linked with at least one neighbor node, i.e., each

node is reachable from the sink(s) so that packets can be successfully delivered to the sink(s);

2) A node knows where the sink is and the relationships between itself and all its upstream

nodes and downstream nodes; 3) In a WSN, a link’s initial bandwidth B, also called default

bandwidth, is the maximum bandwidth of the link and known beforehand; 4) The data rates

Rs generated by different source nodes are the same, i.e., R is a constant which is less than or

equal to the default bandwidth of a link; 5) The sizes of data packets are the same.

 Here, a link is defined as the direct connection between two nodes, e.g., nodes a and b,

without any immediate node located between them. A path consists of many links, i.e., at least

k nodes and k+1 links located between a and b, 1≤k.

3.1. System phases

In this study, we define three operational phases for data delivery between a source node

and the sink, including link establishment, rate allocation and adjustment, and the multipath

congestion alleviation. The link establishment phase is to establish a spanning tree from root

node (the sink) to all sensor nodes for a WSN so that each source node of the WSN has its

own initial routing path to deliver packets.

The sink on receiving the first packet of an event, which is a piggybacked data packet

[14] called start piggybacked packet (SP_packet for short) issued by a source node, or the last

packet of an event, also a piggybacked packet called end piggybacked packet (EP_packet for

short), starts adjusting the bandwidths for all its upstream nodes.

Once a routing path, e.g., P, is congested at a node N, i.e., the bandwidth allocated to N

is lower than N’s current data rate, which occurs when a new event is sensed by N or extra

bandwidth is required by N’s upstream nodes (by issuing an SP_packet to N), the multipath

congestion alleviation phase is then triggered to establish an additional downlink for N.

3.2. The link establishment phase and configuration table

In this study, a spanning tree is established by using a flooding-based approach from

downstream nodes toward upstream nodes when the WSN being considered starts up. The

sink first broadcasts an LREQ packet which as shown in Figure 1 contains the message type,

i.e., LREQ, and the SenderID which is the ID of the sink. Initially, all nodes of the WSN are

full of energy.

 6

LREQ SenderID

Figure 1. Fields of an LREQ packet

If any neighbor node Q which currently has already established a link, i.e., an downlink,

with other node, replies a negative response NACK and discards the LREQ since in this phase

one node can establish only one downlink. Otherwise, it replies an LACK (the abbreviation of

Link ACK), broadcasts the LREQ to all its neighbors to continue constructing links for the

tree, and discards all later receiving LREQ packets. The process repeats until no more LREQ

is sent, i.e., all active nodes are linked together as a spanning tree. Note that in this phase only

the node N that has established a downlink and has no upstream nodes can issue an LREQ

packet, and N may receive LACKs from several Q’s. Hence, N may have several uplinks.

We assume that the neighbor nodes of the sink are all connected to the sink after the link

establishment phase because each of them receives the LREQ issued by the sink and replies

an LACK. Figures 2a and 2b respectively show a partial process of the link establishment

phase and the established spanning tree after this phase.

LR
EQ

LREQ

LREQ

LREQ

LREQ

LACK

LACK

LA
C

K

LACK

LACK

(a) A partial process of the link establishment phase

 7

e

a

n
f

b

g

h

c

i

d

j

m

l

k

(b) The established spanning tree after the phase

Figure 2. The link establishment phase

With the MUCOM, a node N records the information of the concerned nodes and links in

a table, called configuration table, which as shown in Table 1 includes NodeID, LinkType,

LinkedNodeID, LinkNum and Bandwth, in which NodeID records the node’s unique ID, i.e., N.

LinkType representing the type of a link connecting one of N’s neighbor node, e.g., S and N

can be one of the three values, GN, UP and DW, which respectively indicate that N is a source

node, S is an upstream node of N and a downstream node of N. If N has more than one

connection, i.e., having many upstream nodes and downstream nodes, we create multiple

tuples to record each of them. LinkNodeID lists the ID of the concerned node, i.e., S. LinkNum

field records the order an N’s downlink is established. Note that only N’s downlinks are

considered. Hence, it is empty if the corresponding node is an upstream node or a source node,

i.e., LinkType = UP or GN. Its value will be described later. Bandwth field records the

bandwidth that a downstream node Di allocates to N if LinkType = DW or N allocates to the

corresponding upstream node Uj if LinkType = UP, and the default data rate if LinkType = GN.

In this phase, the bandwth field values of all established tuples are set to default bandwidth.

Table 1. Node a’s configuration table after the link establishment phase (see Figure 2b)

NodeID LinkType LinkNodeID LinkNum Bandwth

a UP f -- default

a DW e 1 default

 8

Table 2. Node e’s configuration table after the link establishment phase (see Figure 2b)

nodeID LinkType LinkNodeID LinkNum Bandwth

e UP a -- default

e UP n -- default

e DW Sink 1 default

Tables 1 and 2 respectively list the configuration tables for nodes a and e in the topology

illustrated in Figure 2b. Node a is one of node e’s upstream nodes. The other is node n. The

field Bandwth in each tuple will be updated during the rate allocation and adjustment phase.

3.3. The rate allocation and adjustment phase

A data packet consists of two parts, the sensed data and metadata. The sensed data may

be degree of brightness, temperature, humility, or the shake of a detected object depending on

what type of sensor the node is equipped. The metadata contains the common information

about the data packet p, including the coordinates of the node generating p, e.g., node N, and

N’s neighbor nodes, the time p is sensed, packet sequence, N’s residual energy and other

information used to recognize the packet. But data packets are not the focus of this paper.

In the rate allocation and adjustment phase, the two piggybacked packets, i.e., SP_packet

and EP_packet as stated above, are created for each event to respectively represent the

beginning and the end of an event. Figure 3 shows their format including EventType, SrcID,

SenderID, RecverID and Bandwth fields. Here, EventType shows that the packet p is an

SP_packet or EP_packet. SrcID keeps the source node ID. SenderID and RecverID records

the ID of the node that sends/receives p. For example, if an SP_packet generated by a source

node q (i.e., SrcID = q) is sent by an intermediate node s to node t, the value of SenderID is s

instead of q and the value of RecverID is t. The Bandwth field carries the default data rate of q

if p is an SP_packet or the allocated bandwidth if p is an EP_packet so that a receiving node

can accordingly calculate the total data rate for all its upstream nodes for the next time slot.

EventType SrcID SenderID RecverID Bandwth a data packet

Figure 3. Extra fields of a piggybacked packet as the first or the last packet of an event

The rate allocation and adjustment phase begins when the first event of the concerned

WSN occurs. Each time, nodes discover that there are events, they send SP_packets to tell

nodes along the routing paths to increase their upstream-node data rates, and indicate that

regular data packets of the new events will soon arrive. When a node N on the path overflows,

 9

it sends an MREQ packet to request establishing an alternate path so that packets can safely

arrive at the sink. Once one of node N’s upstream events disappears, due to previous rate

adjustment, k links of N may be no longer required where k is the smallest integer, 1 k n ,

satisfying the condition that

1 1

1 1

()
n n m

t t t t
Di Di N Uj

i i k j

B B B B

 (1)

in which n and m are respectively the numbers of N’s immediate downstream and upstream

nodes, t
UjB is the bandwidth allocated to the link between upstream nodes Uj and N in

timeslot t, t
DiB is the allocated bandwidth of the link Di between N and its downstream node

Di, and NB is the default data rate of N if N is now an active source node. BN = 0 if N is a

non-source node or currently an inactive source node that only relays packets for its upstream

nodes. Generally,
1

n
t
Di

i

B

 is N’s output bandwidth and 1 1

1

m
t t
N Uj

j

B B

 is the input data rate of

N. Eq. (1) implies 1 1, ,..., ,k k n nl l l l can be released. We follow the sequence: 1 1, ,..., ,n n k kl l l l

to release the links. N delivers n-k+1 EP_packets though the n-k+1 downlinks

1 1, ,..., ,k k n nl l l l that are links between N and n-k+1 downstream nodes 1, ,...,k k nD D D . Di on

receiving the packet removes the corresponding uplink by deleting N’s corresponding tuple

from Di’s configuration table, i = k,k +1,...,n -1,n . N also deletes the corresponding n-k+1

tuple from its configuration table. If Eq. (1) is “>” instead of “≥”, implying the bandwidth of

lk-1 needs to be reduced, an additional EP-packet with Bandwth =

1 1
1

1 1

[()]
n n m

t t t t t
Dk Di Di N Uj

i i k j

B B B B B

 will be sent through lk-1.

We set a timer at the sink to count the length of a time slot. Basically, the sink receives

packets including data and piggybacked packets from its upstream nodes. When the

underlying time slot t expires, if sink has received at least one piggybacked packet in current

timeslot, it sends an RACK packet which as shown in Figure 4 contains the SenderID = the

sink, RecverID = U, and Bandwth = the default bandwidth as the response to all piggybacked

packets, SP_packets and/or EP_packets, received in t. Otherwise, it does not send any RACK

to its upstream nodes to reduce control traffic.

RACK SenderID RecverID Bandwth

Figure 4. Fields of an RACK packet

 10

A node, e.g., N, on receiving an RACK packet at timeslot t allocates the bandwidth 1t
UiB

to its upstream node Ui for time slot t+1 where

1 1

1

1

,min(,)
t n

t tUi
Ui Dim

t i
Uj

j

Ui default
t
N

B
B B B

BB

 (2)

implying this is a frequency division scheme [15] where ,Ui defaultB is the default bandwidth of

the link between Ui and N, m is the number of N’s active upstream nodes, n is the number of

N’s downstream nodes allocating bandwidths to N, 1t
DiB , the bandwidth conveyed on the

received RACK, is the bandwidth that N’s downstream node Di allocates to N for t+1, t
UiB is

the bandwidth allocated to the link between N’s upstream node Ui and N at t (if Ui is a newly

established link, t
UiB is the default bandwidth) and t

NB is the default data rate if N is now an

active source node. Otherwise, 0t
NB . An active source node is a node discovering an event.

It remains active until the termination of the event. During the period of time, N send data

packets to the sink periodically. N also relays packets for its upstream nodes, no matter it is an

active source node or not. The data rate generated by an active source node is a constant.

Figure 5 illustrates an example of the network derived from Figure 2b in which nodes e, f,

and k are new active source nodes, and node g is an existing active source node. Figures 6a

and 6b illustrate the sequence of activities of the rate allocation and adjustment phase for

nodes e, f and g.

 11

e

a

n
f

b

g

h

c

i

d

j

m

l

k

new

new

existing

An SP_packet

An EP_packet

new

An existing active node

An inactive source node
or a relay node

(a)

(b)

 12

e

a

n
f

b

g

h

c

i

d

j

m

l

k

Adjusted data flow

(c)

Figure 5. An example network for illustrating the process of the rate allocation and adjustment

phase. (a) a network topology derived from Figure 2b, in which node g is an existing active

source node, but its event has just disappeared. Nodes e, f, and k discover new events, and

others are inactive nodes or non-source nodes; (b) the sink and intermediate nodes deliver

RACKs to adjust bandwidth for each node; (c) nodes e, f, and k follow their allocated

bandwidths to deliver data packets

 13

(a) The procedure for newly discovered events by nodes f and e

 14

Node b Node g

The concerned event has
been removed

An EP-packet as
the last packet

data packets and
piggybacked packets
from node e

1. collects the piggybacked packets
2. sends a RACK with default
bandwidth to each active upstream node

Sink

t

t+1

1. adjust the bandwidth of b in the
configuration table based on the
bandwidth conveyed on the EP-packet
2. forward the EP-packet

An EP-packet as
the last packet

(b) The procedure for a disappearing event

Figure 6. The sequence diagrams of rate allocation and adjustment phase

Table 3. Node e’s configuration table after the rate allocation and adjustment phase (see

Figure 2b)

NodeID LinkType LinkNodeID LinkNum Bandwth

e UP a -- default bandwidth

e UP n -- default bandwidth

e DW Sink 1 default bandwidth

e GN e -- default data rate

Table 3 lists the configuration table for node e in the topology illustrated in Figure 2b

after the rate allocation and adjustment phase. The last tuple is added since e is now an active

source node. Node a’s configuration table after this phase is still the one shown in Table 1.

3.4. Multipath congestion alleviation phase

The multipath congestion alleviation phase begins when a node, e.g., node N’s, allocated

 15

or newly adjusted bandwidth 1

1

n
t
Di

i

B

 for timeslot t+1 is lower than its total data rate

1

m
t t
N Uj

j

B B

 in t+1. Then, N broadcasts a MREQ packet which as shown in Figure 7 includes

SenderID, i.e., N, and

BandReq = 1

1 1

() 0
m n

t t t
N Uj Di

j i

B B B

 (3)

MREQ SenderID BandReq

Figure 7. Fields of a MREQ packet

Any neighbor node, e.g., node Q, on receiving the MREQ packet looks up Q’s

configuration table. If N is in the LinkNodeID field of a tuple, implying that the link already

exists, Q drops the packet. Otherwise, Q replies an MACK packet, which as shown in Figure

8 includes a sender ID, i.e., Q, a receiver ID, i.e., N, indicating the reply of the MREQ packet,

i.e., the MACK, is sent to N, and BandAvail = default bandwidth since current no traffic flows

through the link that will be established link between Q and N. N on receiving the first MACK

packet, e.g., sent by Q, establishes a link lNQ between itself and Q, assigns BNQ =

min(BandReq, BandAvail) to lNQ, and replies an MEST, of which the format is shown in

Figure 9, with Bandwth field = BNQ to tell Q the bandwidth of the newly established link lNQ,

denoted by BNQ. Like that in the link establishment phase, N discards the later receiving

MACK packets. However, if BandReq > BandAvail implying N is still congested. N issues

another MREQ with BandReq = BandReq – BandAvail to request another downlink. The

process repeats until BandReq = min(BandReq, BandAvail) which means BandAvail

BandReq, i.e., N is no longer congested. In Figure 9, LinkNum is the sequence the downlink is

established.

MACK SenderID RecverID BandAvail

Figure 8. Fields of a MACK packet

MEST SenderID RecverID LinkNum Bandwth

Figure 9. Fields of a MEST packet

Each time when a data packet or a piggybacked packet should be delivered by N, and N

has more than one downlink, N sends the packet to its downstream node Di with the

 16

probability t
DiP

1

t
t Di

Di n
t
Dj

j

B
P

B

 (4)

where n is the number of downstream nodes of N, and t
DiB is the bandwidth allocated to the

link between N and Di by Di for time slot t. Note that the spanning tree path and the paths

established beforehand are still in use.

The creation and deletion of multiple links is based on the field value of LinkNum, which

is generated in the link establishment phase and multipath congestion alleviation phase. In the

link establishment phase, when a downlink of N is established, LinkNum of the corresponding

tuple as states above is set to 1, representing it is a link of the spanning tree, called N’s

primary link, which cannot be deleted, even though its traffic is zero. In the multipath

congestion alleviation phase, LinkNum of which the value ranged from 2 to n is used to record

the order that a new link is established. When some links due to zero traffic are no longer

required by N, we delete the links following the reverse order, from n to 2, of LinkNum.

Since we assume that the data rate of an event sensed by node N cannot exceed the

default bandwidth of the link between N and one of its downstream nodes so that we only

need to create an additional downstream link for N once an event is discovered by N.

However, it is possible that N’s h upstream nodes also discover events, h≥1. Then, BandReq

conveyed on an MREQ is higher than the default bandwidth of a link. That is why N may

continuously create k downlinks, k≥1. Figure 10 illustrates an example network derived from

Figure 5. In this example network, nodes e and j individually broadcast an MREQ packet and

receive MACK packets. Only m replies an MACK to e, and d replies MACK to j, e and j

consequentially establishing the links, e m and j d . Now node e (node j) can also

deliver packets through the alternate paths e m d Sink (j d Sink). Figure 11

shows the sequence diagram of the multipath congestion alleviation phase.

 17

(a)

M
R

EQ

M
R

EQ

M
REQ

M
R

E
Q

M
A

C
K

M
ES

T

(b)

 18

(c)

Figure 10. Network activities on the example topology shown in Figure 5 in its multipath

congestion alleviation phase (a) a derived network topology from Figure 5c in which e, f, j

and k transfer data packets to their downstream nodes, and e and j are congested; (b) e and j

broadcast MREQs, e receives an MACK from m and j receives an MACK from d, and e (j)

chooses m (d) as an alternate link; (c) e uses path e Sink and e m d Sink , and j

uses path j c Sink and j d Sink to transfer data packets.

 19

Figure 11. The sequence diagram of multipath congestion alleviation stage

Table 4. Node e’s configuration table after the multipath congestion alleviation phase (see

Figure 2b)

NodeID LinkType LinkNodeID LinkNum Bandwth

e UP a -- default bandwidth

e UP n -- default bandwidth

e DW Sink 1 default bandwidth

e DW m 2
em

B

e GN e -- default data rate

Table 4 lists the configuration table for node e in the topology illustrated in Figure 2b

after the multipath congestion alleviation phase. The fourth tuple is added since m is now a

new downlink of e, and with allocated bandwidth min(,)
em

B BandReq BandAvail where

 20

BandReq and BandAvail are respectively calculated by node e and m. Node a’s configuration

table after this phase is still the one shown in Table 1.

3.5. Algorithms

The algorithms proposed in this scheme can be classified into function of the sink S and

those of a node N other than the sink. The former only includes Sink(), whereas the latter

contains 13 functions, including Node(), eventStart(), eventStop(), rcvPacket(),

rcvDataAtNode(), rcvCtrlAtNode(), linkCreation(), linkDeletion(), transferData(), rcvLREQ(),

rcvRACK(), rcvMREQ(), and rcvMACK(). The two parts constitute operations of a concerned

WSN. Sink() in S and Node() in N are the main programs of S and N, respectively. Figure 11

illustrates the program structure of N. eventStart() (eventStop()), involved when N starts (stops)

sensing an event E, further calls linkCreation() (linkDeletion()) to create an additional link

(delete multiple links) when N overflows (some downlinks of N are no more required).

rcvPacket(), involved when N receives a packet p, invokes rcvDataAtNode() (rcvCtrlAtNode())

if p is a data packet (control packet). transferData() is called by Node() and rcvDataAtNode()

to transfer data packets though a path or paths. When N receives an LREQ, a RACK, an

MREQ and an MACK packets, rcvCtrlAtNode() will call rcvLREQ(), rcvRACK(), rcvMREQ()

and rcvMACK(), respectively, to perform the corresponding tasks.

Figure 12. The program structure of a node other than the sink

At the beginning of the system, the sink S activates Sink() which broadcasts an LREQ

packet and sets a timer to the time period TP. After that when S receives a packet p, it judges

what type of packets that p is. If p is a data packet, it performs the corresponding statistics for

 21

p. If p is an LACK packet issued by an upstream node U (the NACK is a reply of an LREQ

issued by U), S creates a new tuple for U in its configuration table and establishes an uplink

with U. The other control packets that S receives will be discarded since the MUCOM,

MREQ, MEST, LREQ, NACK, RACK, and MACK packets are useless for the sink. When

the timer TP expires, if S has received at least one piggybacked packet in TP, S sends an

RACK with Bandwth = default bandwidth to each of its upstream node U to adjust

bandwidths for all active node in the WSN. Figure 13 lists the Sink() function.

Algorithm: Sink() //performed by the sink of the system

Input: a packet p

Output: a control packet LREQ or RACK

01: broadcast an LREQ to neighbor nodes;

 //only when system starts up, SenderID = S;

02: set timer TP = t units of time;

03: while (1) {

04: if (TP expires) { //the sink periodically sends an RACK to adjust bandwidth for links

05: if (received any piggybacked packet in t units of time)

06: send an RACK with Bandwth = default bandwidth to each of its upstream node

 U;

07: reset TP to t units of time; }

08: else { //receiving packets

09: wait for receiving a packet p;

10: if (p is a data packet)

 //no matter p is an SP_packet, EP_packet or ordinary data packet

11: perform the corresponding statistics of p;

12: else if (p is a LACK packet)

13: create a new tuple for U in the configuration table;

 //tuple(nodeID = S, LinkNodeID = U, LinkType = UP, LinkNun = 1,

 Bandwth = default bandwidth)

14: else //p is a control packet of other types

15: discard the packet; } }

Figure 13. The Sink() function

 The function of Node() (see Figure 14) is activated when N receives a packet p or

discovers an event e. On discovering e, N sets a timer to the time period 'PT , calls

eventStart() to send an SP_packet and establishes alternate links if N overflows. When the

 22

timer expires, N checks to see whether e still exists or not. If yes, it calls transferData() (see

Figure 15) which generates and sends a data packet with the probability DiP to its

downstream node iD . If e disappears, N calls eventStop() to send an EP_packet and release

no-longer required links. Node() also checks the type of p, and calls rcvPacket() (see Figure

16) which contains rcvDataAtNode() and rcvCtrlAtNode() to process p.

Algorithm: Node() //performed by a node N other than the sink

Input: discovering an event e, or receiving a packet p

Output: none

01: while (1) {

02: if (e occurs) {

03: set timer T’P = t’ units of time;

04: eventStart();

 //create a tuple for e in N’s configuration table, create an additional downlink for N

 when necessary, and send an SP_packet through the latest established downlink of

 N to the corresponding downstream node

05: while (1) {
06: if ('PT expires) { //N senses its environment periodically

07: sense e;

08: if (e still exists) {

09: transferData();

 //transfer a data packet generated for e by N to a downstream node Di

 with probability t
DiP calculated by using Eq. (4), packets received from

 upstream nodes are delivered in rcvDataAtNode() function

10: reset T’P to t’ time units; }

11: else { //e disappears

12: eventStop();

 //delete the corresponding tuple of e from N’s configuration table, send

 an EP_packet through each of the k latest established downlinks to the

 corresponding downstream nodes where k is calculated by Eq. (1)

13: break; } }

14: else //T’P does not expire

15: rcvPacket(); //discriminate whether p is a control or data packet } }

16: else //no event around e occurs

17: rcvPacket(); }

Figure 14. The Node() function

 23

Algorithm: transferData() //performed by N to deliver a data packet

Input: a data packet p

Output: the data packet p

01: send p to the downstream node Di with probability

1

t Di
Di n

Dj
j

B
P

B

 where n is the

 number of downstream nodes of N, and DiB is the bandwidth allocated to the link

 between N and Di by Di;

Figure 15. The transferData() function

Algorithm: rcvPacket() //performed by N on receiving a packet

Input: a packet p

Output: none;

01: if (p is a data packet) rcvDataAtNode();

 //judge whether p is an SP_packet, EP_packet or a data packet and perform the

 corresponding activities

02: else if (p is a control packet) rcvCtrlAtNode();

 //judge whether p is an LREQ, LACK, NACK, a RACK, an MREQ, MACK or an

 MEST and perform the corresponding activities

Figure 16. The rcvPacket () function

 When executing eventStart(), N creates a tuple Q in its configuration table, adds the

default data rate defDR to the Bandwth field of the tuple corresponding to the latest

established downstream node nD in N’s configuration table, and sends an SP_packet

containing defDR to nD . eventStart() also calls linkCreation() to create alternate links when

the value of BandReq (see Eq. (3)) is larger than 0. On executing eventStop(), if there is only

one downstream node D, N deletes the tuple Q from its configuration table, subtracts defDR

from the Bandwth field of D’s corresponding tuple in N’s configuration table, and sends an

EP_packet that contains defDR to D. If there are many downstream nodes, N deletes the

tuple Q in N’s configuration table, and calls linkDeletion() to delete multiple no-longer used

links. Figure 17 and 18 respectively lists the eventStart() and eventStop() functions.

 24

Algorithm: eventStart() //performed by N on discovering an event e

Input: an event e

Output: an SP_packet

01: create a tuple Q in configuration table for e;

 //tuple(nodeID = N, LinkNodeID = N, LinkType = GN, LinkNun = n+1, Bandwth =

 defDR), under the assumption that currently N has n downlinks

02: if (BandReq = 1

1 1

() 0
m n

t t t
N Uj Di

j i

B B B

) //see Eq. (3)

03: linkCreation(); //create alternative links

04: else { //total downlink bandwidth of N is sufficient to transmit N’s out data

05: add DRdef to the Bandwth field of the tuple corresponding to node Dn, which is the

 latest downstream node linked to N, in N’s configuration table;

 //tuple(nodeID = N, LinkNodeID = Dn, LinkType = DW, LinkNun = n, Bandwth =

 bandwth + DRdef)

06: send an SP_packet with Bandwth = DRdef and other source node information to Dn;

 //SP_packet(eventType = SP, SrcID = N, SenderID = N, Bandwth = defDR) }

Figure 17. The eventStart() function

Algorithm: eventStop() //performed by N on the disappearance of event e

Input: the disappearance of event e

Output: an EP_packet

01: delete the tuple Q of the disappeared event e from the configuration table;

 //tuple(nodeID = N, LinkNodeID = N, LinkType = GN, LinkNun = --, Bandwth =

 DRdef)

02: if (there is only one downstream node D) {

03: subtract DRdef from the Bandwth field of D’s corresponding tuple, i.e., Q, in N’s

 configuration table;

 //tuple(nodeID = N, LinkNodeID = D, LinkType = DW, LinkNun = 1, Bandwth =

 Bandwth - DRdef)

04: send an EP_packet with Bandwth = DRdef to D;

 //EP_packet(eventType = EP, SrcID = N, SenderID = N, Bandwth = DRdef) }

05: else //there are many downstream nodes

06: linkDeletion();

Figure 18. The eventStop() function

 25

 linkCreation() broadcasts an MREQ with BandReq. N on receiving the reply, i.e., MACK,

calls rcvMACK() to process the MACK packet and establishes an alternate link. The details

will be described later. If the BandReq is larger than BandAvail = default bandwidth, the

bandwidth contained in the received MACK, implying more than one downlink are required,

N rebroadcasts an MREQ.

 linkDeletion() deletes k no-longer required downlinks, k≥1, by calculating X=BC-BDn

where BC is the Bandwth contained in a received EP_packet, and BDn is the bandwidth

allocated to the latest established downlink lDn between N and Dn by Dn. If X=0, indicating

BDn will be zero after the bandwidth reduction performed by Dn on receiving the EP_packet,

N deletes lDn. If X<0, N just adjusts the bandwidth of lDn where BDn=BDn-BC. Dn on receiving

the EP_packet reduces X from the bandwidth of the uplink tuple corresponding to N in its

configuration table. If X>0, representing more than one downlink will be deleted, N

respectively deletes its downlinks following the reverse order of LinkNum from n to 2 in its

configuration table until X≤0. After that, for each of the k deleted links, e.g., lm, N sends an

EP_packet with Bandwth = lm’s current allocated bandwidth to the corresponding downstream

node Dm, k≤m≤n, Dm on receiving the packet deletes N’s corresponding tuple from its

configuration table. For the bandwidth-adjusted link, e.g., lk-1, N delivers an EP_packet with

the Bandwth =
n

C Dm
m k

B B

 . Figure 19 and 20 respectively lists the linkCreation() and

linkDeletion() functions.

Algorithm: linkCreation() //performed by N to create alternate links

Input: none

Output: none

01: while (1) {

02: broadcast an MREQ with BandReq; //see Eq. (3)

03: while (no MACK has been received from any downstream node)

04: waiting for a time period;

05: rcvMACK(); //reply the downstream node D with an MEST packet where the

 first MACK received by N is sent by D, and create a tuple in N’s configuration table

 for D

06: if (BandReq = (BandReq – BandAvail) 0) //N has sufficient bandwidth

07: break; }

Figure 19. The linkCreation() function

 26

Algorithm: linkDeletion() //performed by N to delete a no-longer required link

Input: none

Output: an EP_packet

01: while (1) {

02: if (BC – BDn ≤ 0) {

 //BC: the Bandwth contained in a received EP_packet, BDn: the bandwidth Bn

 allocated to the latest established downlink lDn between N and Dn by Dn

03: send an EP_packet to the downstream node Dn with bandwth = BC;

 //EP_packet(eventType = EP, SrcID = N, SenderID = N, Bandwth = BC)

04: if (BC – BDn == 0)

05: delete Dn’s corresponding tuple from N’s configuration table;

 //tuple(nodeID = N, LinkNodeID = Dn, LinkType = DW, LinkNun = n,

 Bandwth = 0)

06: else //BC – BDn < 0

07: adjust the tuple of Dn with bandwth = BDn – BC in N’s configuration table;

08: break; }

09: else { //BC > BDn, hence, delete multiple links

10: send an EP_packet to the downstream node Dn with bandwth = BDn;

 //EP_packet(eventType = EP, SrcID = N, SenderID = N, Bandwth = BDn)

11: delete Dn’s corresponding tuple from N’s configuration table;

 //tuple(nodeID = N, LinkNodeID = Dn, LinkType = DW, LinkNun = n, Bandwth

 = 0)

12: BC = BC - BDn; n = n – 1; } }

Figure 20. The linkDeletion() function

When N receives a data packet p from an upstream node U, the function rcvDataAtNode()

checks to see whether p is a piggybacked packet or not. If not, representing p is an ordinary

data packet, N calls transferData() (see Figure 14) to transmit p. If yes, it further checks to see

whether N has a single downlink or multiple downlinks. Note that when N receives an

SP_packet, if BandReq > 0, it further calls linkCreation() as stated above to create multiple

downlinks. Figure 21 lists the rcvDataAtNode() function.

Algorithm: rcvDataAtNode() //performed by a node N to process a receiving data packet p

Input: a data packet p issued by an upstream node U

Output: data packet or a piggybacked packet

01: if (p is a piggybacked packet) {

 27

02: if (p is an SP_packet) {

03: if (BandReq = 1

1 1

() 0
m n

t t t
N Uj Di

j i

B B B

) linkCreation(); //see Eq. (3)

04: else if (there is only one downstream node D) {

05: add the bandwth Bu conveyed on the SP_packet sent by U to the Bandwth

 field of U’s corresponding tuple in the configuration table;

 //tuple(nodeID = N, LinkNodeID = U, LinkType = UP, LinkNun = 1, Bandwth

 = Bandwth + Bu)

06: add Bu to the bandwth field of D’s corresponding tuple in N’s configuration

 table;

 //tuple(nodeID = N, LinkNodeID = D, LinkType = DW, LinkNun = 1,

 Bandwth = Bandwth + Bu)

07: send an SP_packet with Bandwth conveyed on the received SP_packet;

 //SP_packet(eventType = SP, SrcID = X, SenderID = N, Bandwth = Bu) }

08: else // there are many downstream nodes Dn

09: send a new SP_packet with Bandwth = Bu and source node information to Dn;

 //SP_packet(eventType = SP, SrcID = X, SenderID = N, Bandwth = Dn) }

10: else { //p is an EP_packet with Bandwth = Bd

11: if (there is only one downstream node D) {

12: subtract the bandwth Bd from the Bandwth field of U’s corresponding tuple in

 the configuration table;

 //tuple(nodeID = N, LinkNodeID = U, LinkType = UP, LinkNun = 1, Bandwth

 = Bandwth - Bd)

13: update the bandwth field of D’s corresponding tuple in N’s configuration table;

 //tuple(nodeID = N, LinkNodeID = D, LinkType = DW, LinkNun = 1,

 Bandwth = Bandwth - Bd)

14: send an EP_packet with Bandwth = Bd to D;

 //EP_packet(eventType = EP, SrcID = X, SenderID = N, Bandwth = Bd) }

15: else // there are many downstream node Dn

16: linkDeletion(); } }

17: else //p is an ordinary packet

18: transferData(); //forwarding p

Figure 21. The rcvDataAtNode() function

rcvCtrlAtNode() checks the types of a control packet c, calls the rcvLREQ(), rcvRACK(),

rcvMREQ() and rcvMACK() on receiving an LREQ, a RACK, an MREQ and an MACK,

respectively. rcvCtrlAtNode() creates a tuple for U in N’s configuration table to establish an

uplink between N and U. When N receives an LACK or MEST packet from Q. Figure 22 lists

 28

the rcvCtrlAtNode() function.

Algorithm: rcvCtrlAtNode() //performed by N to process a receiving control packet c

Input: a control packet c issues by a neighbor node Q which may be an upstream node or

downstream node

Output: none

01: if (c is a LREQ packet) rcvLREQ(); //Q is a downstream node to create a downlink

 between Q and N for the spanning tree

02: else if (c is a LACK packet)

03: create a tuple for Q in N’s configuration table to establish an uplink between N and

 Q;

 //Q is an upstream node that accepts to establish a link between Q and N for the

 spanning tree

04: else if (c is a NACK packet) discard c; //Q is an upstream node which refuses to

 establish a link with N for the spanning tree

05: else if (c is a RACK packet) rcvRACK(); //Q is a downstream node which delivers a

 new bandwidth for the upstream node N to allocate bandwidth to N or adjust N’s

 bandwidth

06: else if (c is a MACK packet) rcvMACK(); //Q is a downstream node which accepts to

 establish a link with N for an alternative link

07: else if (c is a MREQ packet) rcvMREQ(); //Q is an upstream node to establish an

 alternative link

08: else //receiving a MEST packet from Q

09: create a tuple for Q in N’s configuration table to establish an uplink;

 //Q is an upstream node which selects N as the downstream node to establish an

 alternate link

Figure 22. The rcvCtrlAtNode() function

rcvLREQ() checks to see whether N has ever received an LREQ or not. If yes, indicating

that N has already established a downlink for the spanning tree, no more downlink of N is

allowed. Hence, N discards the packet and replies an NACK. Otherwise, it creates a tuple for

the connection in its configuration table, replies an LACK to the sender of the LREQ, e.g.,

node Q which is a downstream node of N, and further broadcasts an LREQ to continue

establishing a spanning tree. Note that as stated above, only the node with one downlink and

without upstream nodes can issue a LREQ.

rcvRACK() (assume the corresponding RACK is issued by N’s downstream node Q)

updates bandwidth field of Q’s corresponding tuple in N’s configuration table with the

 29

bandwidth conveyed on the received RACK, i.e., adjusting bandwidths for Q’s upstream

nodes in the rate allocation and adjustment phase. If N has upstream nodes, it calculates the

bandwidth for each upstream node U by using Eq.(2). It further sends an RACK with the

newly allocated bandwidth to U, and updates bandwidth of U’s corresponding tuple in N’s

configuration table with the bandwidth conveyed on the RACK sent.

rcvMREQ() checks to see whether the link between N and Q exists or not. Here, Q is one

of N’s upstream nodes. If yes, N discards the received packet. Otherwise, rcvMREQ() replies

an MACK with BandAvail = default bandwidth.

If N has ever received current MREQ’s corresponding MACK from other nodes,

rcvMACK() discards current receiving MACK. It allocates bandwidth with the minimum

value of BandReq and BandAvail to D, where the first corresponding MACK packet with

BandAvail received by N is sent by D. N further creates a tuple for D in the configuration

table to establish a downlink, and replies D with an MEST. Figures 23~26, respectively, list

the functions of rcvLREQ(), rcvRACK(), rcvMREQ() and rcvMACK().

Algorithm: rcvLREQ() //performed by N to process a receiving LREQ packet

Input: a control packet LREQ issued by a downstream node Q

Output: a control packet LACK or NACK

01: if (N has ever received an LREQ from a downstream node Q)

02: {discard the LREQ; reply an NACK; }

 //in link establishment phase, a node can only establish a downlink

03: else {

04: create a tuple for Q in N’s configuration table;

 //tuple(nodeID = N, LinkNodeID = D, LinkType = DW, LinkNun = 1, Bandwth =

 default bandwidth)

05: reply Q with an LACK; broadcast an LREQ; }

Figure 23. The rcvLREQ() function

 30

Algorithm: rcvRACK() //performed by N for bandwidth adjustment

Input: a control packet RACK issued by a downstream node D

Output: a RACK

01: replace bandwidth field of D’s corresponding tuple in N’s configuration table with the

 bandwth conveyed on the RACK;

02: if (N has upstream nodes) {
03: calculate bandwidth for each upstream node iU for time 1t by invoking

 Eq.(2), 1,2,...,i m ; //assume N currently has m uplinks

04: send an RACK to iU telling iU the newly allocated bandwidth UiB ;

05: update bandwidth of 'iU s corresponding tuple in N’s configuration table with

 the bandwidth UiB ; }

 //tuple(nodeID = N, LinkNodeID = U, LinkType = UP, LinkNun = 1~n, Bandwth

 = UiB)

Figure 24. The rcvRACK() function

Algorithm: rcvMREQ() //performed by N to establish an alternate uplink

Input: a control packet MREQ issued by an upstream node U

Output: a control packet MACK

01: if (MREQ is sent by U and there is an existing link between N and U)

02: discard the MREQ;

03: else

04: reply U with an MACK with BandAvail = default bandwidth;

Figure 25. The rcvMREQ() function

 31

Algorithm: rcvMACK() //performed by N on receiving an MACK from a downstream

 node D

Input: a control packet MACK issued by a downlink D

Output: a control packet MEST or none

01: if (N has ever received current MREQ’s corresponding MACK from other nodes)

 discard the MACK; //one MREQ establishes only one alternate link

02: else {

03: if (the RecverID from received MACK == the NodeID in N’s configuration table) {

04: allocate bandwidth with the min(BandReq, BandAvail) to D, where the first

MACK packet with BandAvail , which is the response of the recently sent MREQ,

received by N is sent by D;

05: create a tuple for D in the configuration table to establish a downlink;

//tuple(nodeID = N, LinkNodeID = D, LinkType = DW, LinkNun = n, Bandwth =

min(BandReq, BandAvail))

06: reply D with an MEST with Bandwth = min(BandReq, BandAvail);}

07: else discard the MACK; //the link between N and D already exists}

Figure 26. The rcvMACK() function

 32

IV. Simulation Results and Discussion

We use ns-2 [16] as the simulation tool to evaluate the MUCOM, and compare it with

HCCP [1] and the method without employing congestion control (WECC for short). The

default parameters for all experiments are listed in Table 5. The sink is placed at the center (50,

50) of the 100m x 100m field. 49 sensor nodes were randomly deployed in the field for

sensing their surrounding environments and relaying packets. The sink only collects data

packets sent by sensor nodes.

Table 5. Parameters of the experimental environment

Parameter Value

Number of sink node 1

Number of sensor nodes 49

Experimental field 100 x 100 m2

MAC layer protocol IEEE 802.11

Max bandwidth of a link 250 Kbps (=31.25 KB/sec)

Radio transmission range of a node 20 m

Experimental duration 100 sec

Number of simulations for each experiment 50

Packet rate of a source node 10 pkts/sec

Packet size 1 KB/pkt

Number of events occurs for each experiment 5

Event lasting time 25 sec

In this study, five experiments were performed. The first evaluated throughputs defined

as the cumulative data size received per second by the sink, end-to-end delays defined as the

time period from when a packet is sent by its source node to the time point when the sink

receives the packet, and packet drop rates defined as (number of packets sent by all source

nodes – number of packet received by the sink) over number of packets sent by all source

nodes given different packet rates. The second, third, fourth and fifth experiments redid the

first experiment, respectively, on different packet sizes, numbers of events generated,

event-lasting times, and node densities. The default parameters for each experiment may be

changed when necessary.

4.1. Different Data Rates

In the first experiment, each active source node sends packets to the sink on different

 33

packet rates ranging between 10pkts/sec (i.e., 10KB/sec = 10pkts/sec x 1KB/pkt) and

50pkts/sec (i.e., 50KB/sec = 50pkts/sec x 1KB/pkt), instead of 10pkts/sec listed in Table 5.

Some of the total data rates issued by the five source nodes are higher than a link’s bandwidth.

The data rates of the tested schemes are shown in Figure 27a, from which we can see that the

HCCP’s are not linear. Figures 27b, 27c and 27d respectively show the throughputs,

end-to-end delays, and packet drop rates measured at the sink. Here, mul-ch standing for

multichannel represents that all the neighbor nodes of the sink are given different channels to

avoid channel contention when packets are sent between these nodes and the sink. We call this

a multi-channel environment, and call these nodes the sink-neighbor nodes. The symbols of

WECC, HCCP, and MUCOM with mul-ch mean the sink-neighbor nodes use the same

channel so that before sending packets to the sink, they need to contend the channel. We call

this a single-channel environment in which packet collision may occur.

(a) Total packet rates sent to the sink on packet size = 1KB

(b) Throughputs at the sink on packet size = 1KB

 34

(c) Average end-to-end delays on packet size = 1KB

(d) Average packet drop rates on packet size = 1KB

Figure 27. Experimental results of the tested algorithms on different packet rates when packet

size = 1KB

In the given experimental topology, there are a total of seven sink-neighbor nodes.

Therefore, theoretically, the data rate can be up to 218.75KB/sec (=31.25KB/sec x 7). When

the data rates increase, many more packets are sent per second so that the throughputs of the

tested schemes as shown in Figure 27b are higher. Due to employing multipath data transfer

and rate-based congestion control throughout the WSN, the MUCOM and MUCOM-mul-ch

outperform the other two, no matter in the single-channel or the multi-channel environment.

In the latter environment, owing to no channel contention among the sink-neighbor nodes, the

MUCOM-mul-ch’s throughputs are higher than those of the other schemes, in the former

environment, showing that channel contention among these nodes is serious. The HCCP’s

throughputs are the lowest both in the single-channel and multi-channel environments since it

 35

over-pressures the data rates, causing less data packets being transmitted to the sink, even

though the HCCP has lower end-to-end delays and drop rates than the WECC and MUCOM

have (see Figures 27c and 27d). When the data rates exceed 31.25 KB/sec, i.e., the data

generated per second by a source node exceeds the bandwidth of a link, the throughputs of the

MUCOM-mul-ch increase continuously since the employment of additional paths widens the

data delivery bandwidth.

In this experiment, the end-to-end delay of a packet, e.g., packet A, includes the time of

retransmitting A once A is dropped. In the experimental field, the average number of hops of a

path from the source node to the sink is about 3.51, i.e., there are 3.51 hops that a packet has

to travel from its source node to the sink. In Figure 27c, when the data rates are higher, owing

to higher probability of network congestion, the delays of the tested schemes increase. Also,

the MUCOM and MUCOM-mul-ch need some time to establish an alternate path for a

congested node. This also prolongs their delays. Due to few channel contention, the delays of

a tested scheme in the multi-channel environment are much shorter than those of itself in the

single-channel environment, showing that channel contention seriously lengthens packet

delivery delays, particular for the nodes in the area near the sink. The HCCP’s delays are

lower than those of the MUCOM and the WECC when the data rates are less than 30 KB/sec

because when detecting packet congestion, it suppresses its data rate to reduce the data drop

rates. When the data rates exceed 30 KB/sec, the delays of the HCCP increases sharply and

are longer than those of the MUCOM since in the single-channel environment when data rates

are over the bandwidth of a link, the HCCP does not establish alternate paths to help the

delivery of packets. Although the delays are shorter than those of the HCCP, the MUCOM

and MUCOM-mul-ch keep their data rates and use multiple links to improve system

performance. That is why their delays are shorter than those of the WECC.

In Figure 27d, due to higher probabilities of packet collision and congestion, larger data

rates result in higher packet drop rates. The drop rates of the WECC-mul-ch increase sharply

when the data rate exceeds 30KB/sec, although the multi-channel environment relieves the

channel contention among the sink-neighbor nodes, indicating that when data rates of a source

node exceed the bandwidth of a link, a method to migrate channel congestion is required. This

is also one of the motivations of this study. The MUCOM’s drop rates are lower than those of

the WECC, showing that the use of multiple paths can effectively shorten end-to-end delay.

Besides, the multi-channel environment can further improve a scheme’s the throughputs,

end-to-end delays, and drop rates.

 36

4.2. Different Packet Sizes

In the second experiment, the packet sizes range between 1KB and 5KB instead of 1KB

listed in Table 5. The packet rate of an active source node is constantly 10pkts/sec. Hence, the

data rates are between 10KB/sec (= 10pkts/sec x 1KB/pkt) and 50KB (= 10pkts/sec x

5KB/pkt). The total data rates of the tested schemes are individually the same as those shown

in Figure 27a. Figures 28a, 28b and 28c respectively show the throughputs, end-to-end delays,

and packet drop rates of this experiment.

(a) Throughputs at the sink on packet rate = 10pkts/sec

(b) Average end-to-end delays on packet rate = 10pkts/sec

 37

(c) Average packet drop rates on packet rate = 10pkts/sec

Figure 28. Experimental results of the tested algorithms on different packet sizes

When the packet sizes increase from 1KB to 5KB, the trends of the throughputs of the

tested schemes in both environments (single-channel and multi-channel) are similar to those

shown in the first experiment. Even though the indexes of the X-axises of Figure 27 and 28

are different, the total data rates of the five event source nodes on the i-th index are the same,

i=1, 2… 5. For example, in Figure 27, the first index of the X-axis is 10 KB/sec (=10pkts/sec

x 1KB/pkt), and the total data rate is 50 KB/sec (=10KB/sec x 5 events). In Figure 28, the first

index of the X-axis is 1KB, the total data rate is also 50KB/sec (= 1KB/pkt x 10pkts/sec x 5

events). In the two figures, the total data rates of the 2nd to the 5th indexes are respectively 100,

150, 200 and 250 KB/sec. Since we fix packet sizes, the packet rates of the first experiment

are 20, 30, 40, and 50pkts/sec, instead of 10pkts/sec. Due to delivering fewer numbers of

packets, the probabilities of packet collision and channel contention of this experiment is

mitigated, resulting in higher throughputs, and lower delays and drop rates. We now conclude

that in a WSN when data rates are the same, transmitting fewer packets will result in better

performance than that of delivering many more packets.

4.3. Different Number of Events

In the third experiment, the numbers of events are 5, 10, 15, 20, and 25 rather than 5

listed in Table 5. In fact, the total data size generated by all active source nodes for the i-th

index of the X-axis of Figure 29, link that described in the second experiment, is the same as

that generated for the i-th index of the X-axis in Figure 27, i=1, 2,…, 5, i.e., the total data

rates sent to the sink by the tested schemes are also individually the same as those shown in

Figure 27a. Events are randomly generated in the field. Figures 29a, 29b and 29c respectively

 38

show the throughputs measured, end-to-end delays, and packet drop rates.

(a) Throughputs at the sink

(b) Average end-to-end delays

 39

(c) Average packet drop rates

Figure 29. Experimental results of the tested algorithms on different number of events

 Since the data rate generated by a source node, i.e., 10KB/sec (= 10pkts/sec x 1KB/pkt),

does not exceed the bandwidth of a link, i.e., 31.25KB/sec, and the events may disperse in the

field instead of only occurring on five fix nodes, the probabilities of bandwidth overflow on a

link and channel contention are lower, causing higher throughputs and lower delays (see

Figures 29a and 29b) compared with those of the first experiment (see Figures 27b and 27c).

 When the numbers of events increase, the probability of packet collision is also higher.

In Figure 29a, the throughputs of the WECC-mul-ch are similar to those of the

MUCOM-mul-ch even when event numbers = 20 or 25 (please also refer to Figures 27b and

28a). This is because events disperse in the field. The probability that the data rate flowing

through a link is higher than the link’s bandwidth is lower. This also a key reason why the

throughputs of the tested schemes are generally higher than those of themselves in the first

experiment.

 As with the previous experiments, the delays and drop rates increase when numbers of

events are higher. The reason is the increased numbers of packets causes the higher

probabilities of packet collision, the cumulated data sizes own to higher bandwidth

occupation, and the interference between nodes resulting to channel contention. Since the

number of channel contention is generally reduced in the areas of sink-neighbor nodes, the

tested schemes’ delays and drop rates are lower in the multi-channel environment except

WECC-mul-ch on event number = 20 and 25, due to the serious packet collisions. The

bandwidth occupation probability is also lower than those of the previous experiment due to

the data rates cannot exceed the bandwidth of a link, the channel contention among the nodes

 40

other than the sink-neighbor nodes and the packet collision is the main reason resulting in

longer delays and higher drop rates in the multi-channel environment. By employing their

congestion control scheme, the MUCOM and HCCP gets lower delays and drop rates than the

WECC.

4.4. Different Event-lasting Times

In the fourth experiment, the event-lasting times range between 25 and 200 sec instead of

25 sec listed in Table 5. The start time of an event is random. Figures 30a, 30b, 30c and 30d

respectively show the total data rates generated by all active source nodes, their throughputs,

end-to-end delays, and packet drop rates.

(a) Total data rates

(b) Throughputs at the sink

 41

(c) Average end-to-end delays

(d) Average packet drop rates

Figure 30. Experimental results of the tested algorithms on different event-lasting times

 Generally, a longer event-lasting time represents that more packets are sent by a source

node. Figure 30a shows that the total data rates of the WECC and MUCOM are a constant

50KB/sec (1KB/pkt x 10pkt/sec x 5events). When the event-lasting times increase, due to the

increase of the numbers of packets, the packet collision and contention are worse, causing

lower throughputs and higher delays and drop rates. The throughputs of the HCCP and

HCCP-mul-ch follow their data rates (please compare Figures 30a and 30b). The phenomena

of channel congestion and packet collision among the sink-neighbor nodes appear again

between the two lines of the MUCOM and MUCOM-mul-ch, and between the two lines of

the WECC and the WECC-mul-ch. Similar to the previous three experiments, the tested

schemes’ throughputs in the multi-channel environment are better than those of themselves in

the single-channel environment. Due to over-suppressing its data rates on detecting packet

 42

congestion, the HCCP’s throughputs are the lowest both in the two environments, although its

delays and drop rates, like those in pervious experiments, are lower than those of the other test

schemes (see Figures 30c and 30d).

 In this experiment, the longer event-lasting time causes higher probabilities of packet

collision, and the retransmission of dropped packets lengthens the delays, resulting in longer

delays and higher drop rates. As with the third experiment, the data rates generated by each

source nodes does not exceed the bandwidth of a link so that the probability of packet

congestion is lower than those in the previous three experiments (comparing 27c, 28b, 29b,

and 30c, and comparing 27d, 28c, 29c and 30d). The tested schemes in the multi-channel

environment have shorter delays and lower drop rates than they in single-channel

environment have. The reason is mentioned above. The HCCP’s delays increase sharply when

the event-lasting time is 200 second because the HCCP’s congestion control cannot efficiently

reduce packet collision in such a long event-lasting time. The MUCOM’s (the

MUCOM-mul-ch’s) delays and drop rates are lower than those of the WECC (WECC-mul-ch)

due to using the multiple path data transfer and rate-based bandwidth control.

4.5. Different Node Densities

 In the fifth experiment, the number of nodes distributed the field range between 50 and

250 instead of 50 listed in Table 5, i.e., the node densities of the field range from

0.005nodes/m2 to 0.025nodes/m2 rather than 0.005nodes/m2. The role and the position of the

sink are the same as those of the previous experiments. The packet rate is 10pkts/sec, packet

size is 1KB/pkt, 5 events occur in each simulation and each event lasts 25 seconds. In the

multi-channel environment, the 11 channels of the WiFi are employed, 10 for the

sink-neighbor nodes and one for the other nodes. Figures 31a, 31b, 31c and 31d respectively

show the total data rates generated by all active source nodes, their throughputs, end-to-end

delays, and packet drop rates.

 43

(a) Total data rates

(b) Throughputs at the sink

(c) Average end-to-end delays

 44

(d) Average packet drop rates

Figure 31. Experimental results of the tested algorithms on different node densities

In Figure 31a, the total data rates of the MUCOM and WECC are 50KB/sec (=10pkts/sec

x 1KB/pkt x 5events), and the HCCP and HCCP-mul-ch are lower than 50KB/sec due to its

data rate suppression. When the node densities increase, the data rates of HCCP and

HCCP-mul-ch are higher because the increase of node densities creates many more available

paths that the HCCP can choose for a source node, when congested, there is no difficulty for it

to choose another path, resulting in less data-rate suppression.

In the multi-channel environment, when the node density exceeds 0.01, the number of

sink-neighbor nodes is higher than the number of channels assigned to those nodes so that

some of the sink-neighbor nodes are assigned the same channel. Because of less channel

contention, packet collision, and bandwidth congestion, the throughputs of the tested schemes

are almost the same as their total data rates, implying their drop rates are low (less than 1.2%)

(see Figures 31b and 31d). The multi-channel effect in this experiment is insignificant

compare to those in the previous experiments.

Generally, higher node density implies that many more nodes will be contained in a

routing path, resulting in larger hop counts and lower energy consumptions. In Figure 31c,

when node densities increase, due to the increase of the numbers of hops of a routing path, the

delays are longer. The tested schemes’ delays in the multi-channel environment are shorter

than those of themselves in the single-channel environment, although some of the

sink-neighbor nodes are allocated the same channel. The performance of MUCOM and

MUCOM-mul-ch are also better than those of the other tested schemes.

 45

V. Conclusions and Future Work

 In this paper, we propose a MUCOM which achieves fairness of packet delivery in a

WSN based on dynamic rate allocation, which at first establishes a spanning tree to connect

all nodes for initial packet delivery. When a node’s traffic overflows, the MUCOM establishes

an alternate path to deliver data packets. In other words, it is a multi-path routing environment.

To mitigate congestion for a node, the sink adjusts allocated bandwidths for its upstream

nodes which will in turn adjust bandwidth for each of it upstream nodes. The process repeats

until no more upstream nodes exist.

 Experimental results show that the performance of the MUCOM outperforms the other

two schemes. Generally, when the data rates of an event, event packet sizes, event numbers,

event-lasting times and the node densities increase, the performance of a WSN in delays and

drop rates decrease due to heavier packet collision, bandwidth congestion and channel

contention. In the single-channel environment, the channel contention among the

sink-neighbor nodes is serious, the multi-channel environment can improve a scheme’s

throughputs, end-to-end delays, and drop rates. Experimental results also shows that when

data rates of a source node exceed the bandwidth of a link, a method to migrate bandwidth

congestion is required, and when data rates are the same, due to less time of packet collision

and contention, the performance of transmitting fewer packets will be better than the that of

delivering many more packets. By employing the multipath data transfer and rate-based

congestion control, the MUCOM can effectively improve a WSN’s throughputs, end-to-end

delays and reduce packet loss rates.

 In the future we will derive the reliability model and behavior model for the MUCOM in

the WSN environment so that users can predict the system’s reliability and behavior before

using it. We will also develop an optimized spanning tree construction algorithm to further

improve the performance of a WSN. These constitute our future studies.

 46

References

[1] J.P Sheu, L.J. Chang and W.K. Hu, “Hybrid congestion control protocol in wireless

sensor networks,” Journal of Information Science and Engineering, vol. 25, 2009, pp.

1103-1119.

[2] F.B. Hussain, G. Seckin and Y. Cebi, “Many-to-one congestion control scheme for

densely populated WSNs,” IEEE/IFIP International Conference in Central Asia, 2007,

pp. 1-6.

[3] C. Wang, B. Li, K. Sohraby, M. Daneshmand and Y. Hu, “Upstream congestion control

in wireless sensor networks through cross-layer optimization,” IEEE Journal on Selected

Areas in Communications, vol. 25, 2007, pp. 786-795.

[4] V.P. Munishwar, S.S. Tilak and N.B. Abu-Ghazaleh, Congestion and Flow Control in

Wireless Sensor Networks, Guide to Wireless Sensor Networks, Springer London, 2009.

[5] X. Yin, X. Zhou, R. Huang, Y, Fang and S. Li, “A fairness-aware congestion control

scheme in wireless sensor networks,”, IEEE Transactions on Vehicular Technology, vol.

58, issue.9, 2009, pp. 5225-5234.

[6] M.M. Monowar, M.O. Rahman and C.S Hong, “Multipath congestion control for

heterogeneous traffic in wireless sensor network,” International Conference on

Advanced Communication Technology, 2008. pp. 1711-1715.

[7] H. Morino, H. Kawamura, M. Inoue and T. Sanefuji, “Load-balanced multipath routing

for wireless mesh networks: A step by step rate control approach,” International

Symposium on Autonomous Decentralized Systems, 2009. pp. 1-6.

[8] H.W. Oh, J.H. Jang, K.D. Moon, S.C. Park, E.S. Lee, and S.H. Kim, “An explicit

disjoint multipath algorithm for Cost efficiency in wireless sensor networks,” IEEE

International Symposium on Personal Indoor and Mobile Radio Communications, 2010,

pp. 1899-1904.

[9] N. Stephan, S. Varakliotis, and P. Kirstein, “Transport layer multipath on wireless sensor

network backhaul links,” International Conference on Sensor Technologies and

Applications, 2009, pp. 469-472.

[10] W.J. Lou, “An efficient N-to-1 multipath routing protocol in wireless sensor networks,”

International Conference on Mobile Adhoc and Sensor Systems, 2005, pp. 665-672.

[11] H. Fariborzi and M. Moghavvemi, “EAMTR: energy aware multi-tree routing for

wireless sensor networks,” IET Communications, vol. 3, no. 5, 2009, pp. 733-739.

 47

[12] Y. Sankarasubramaniam, Ö.B. Akan and I.F. Akyildiz, “ESRT: event-to-sink reliable

transport in wireless sensor networks,” the ACM international symposium on Mobile ad

hoc networking & computing, 2003, pp. 177-188.

[13] C.Y. Wan, S.B. Eisenman and A.T. Campbell, “CODA: congestion detection and

avoidance in sensor networks,” the international conference on Embedded Networked

Sensor Systems, 2003, pp. 266-279.

[14] Y. Xiao, “Concatenation and piggyback mechanisms for the IEEE 802.11 MAC,”

Wireless Communications and Networking Conference, 2004, pp. 1642-1647.

[15] B.H. Walke, S. Mangold and L. Berlemann, IEEE 802 Wireless Systems: Protocols,

Multi-Hop Mesh/Relaying, Performance and Spectrum Coexistence. Wiley, 2007.

[16] ns-2, http://www.isi.edu/nsnam/ns/

 48

Appendix

Figure A1. Flow chart for the operations performed by the sink S

 49

Start

Event appears?

Set timer T to t
units of time

T expires?

Sense the
underlying event

Reset T to t units of
time

Event still
exists?

Yes

Yes

No

No

eventStart()

eventStop()

rcvPacket()

rcvPacket()

transferData()

Yes

No event on N

An event on N

No

Figure A2. Flow chart for the operations performed by a node N other than the sink

(T’= packet size / data rate; 1/T’ is the packet generation frequency)

Receiving a data
packet?

No

rcvDataAtNode()

rcvCtrlAtNode()

Yes
(data packet)

Receiving a control
packet?

Yes
(control packet)

rcvPacket()

return

No

Include SP_packet and EP_packet

Figure A3. Flow chart for N on receiving a packet

 50

1

Send the data packet to downstream node with

probability , where is the number

of downstream nodes of , and is the bandwidth

allocated to the link between and by

i

i

i

i

i

D
D n

D
i

D

i i

D

B
P n

B

N B

N D D

transferData()

return

Figure A4. Flow chart for N to transfer a data packet

eventStart()

Create a tuple Q in configuration
table for the event e

tuple(nodeID = N, LinkNodeID = N,
LinkType = GN, LinkNun = --,

Bandwth = default data rate DRdef)

BandReq > 0?Yes

SP_packet(eventType = SP, SrcID = N,
SenderID = N, Bandwth = DRdef)

tuple(nodeID = N, LinkNodeID = Dn,
LinkType = DW, LinkNun = n, Bandwth =

bandwth + DRdef)

Send an SP_packet with Bandwth = DRdef

and other source node information to Dn

Add the default data rate DRdef to the Bandwth field of
the tuple corresponding to node Dn, which is the latest
downstream node linked to N in N’s configuration table

No

Return

linkCreation()

To generate an alternate link

1

1 1

()
m n

t t t
N Uj Di

j i

BandReq B B B

Figure A5. Flow chart for N on discovering an event

 51

Figure A6. Flow chart for N on the termination of an event

linkCreation()

Receive an MACK
from any downstream

node?

Broadcast an MREQ
with BandReq

Waiting for a time
period

rcvMACK()

Yes

No

Return

BandReq is the bandwidth
required by N

BandReq = (BandReq
BandAvail) > 0

No

Establish an alternate link since D’s
BandAvail is insufficient to deliver
BandReq needed by N

Yes

Figure A7. Flow chart for N to create multiple downlinks

(D: a downstream node; U: an upstream node)

 52

linkDeletion()

n = n - 1

EP_packet(eventType = EP, SrcID =
N, SenderID = N, Bandwth = BDn)

tuple(nodeID = N, LinkNodeID
= Dn, LinkType = DW, LinkNun

= n, Bandwth = 0)

BC - BDn <= 0?

Send an EP_packet to the downstream
node Dn with bandwth = BDn

Delete Dn’s corresponding tuple from
N’s configuration table

No

Send an EP_packet to the downstream
node Dn with bandwth = BC

BC - BDn = 0?

Yes

Return

Yes
(BDn = BC)

EP_packet(eventType = EP, SrcID =
N, SenderID = N, Bandwth = BC)

tuple(nodeID = N, LinkNodeID
= Dn, LinkType = DW, LinkNun

= n, Bandwth = 0)

BDn : the current allocated bandwidth of the latest
established downlink of N (LinkNum = n)

BC : the current bandwidth that released from an
disappeared event E or Bandwth contained in a

received EP_packet by N

Adjust the tuple of Dn in N’s configuration
table with bandwth = BDn - BC

BC = BC - BDn

The latest established
downstream link is
now Dn-1

Delete Dn’s corresponding tuple
from N’s configuration table

Adjust the tuple of Dn in N’s
configuration table with

bandwth = BDn - BC

No

Figure A8. Flow chart for N to delete multiple downlinks

 53

tuple(nodeID = N, LinkNodeID
= U, LinkType = UP, LinkNun =

1, Bandwth = Bandwth + Bu)

tuple(nodeID = N, LinkNodeID
= D, LinkType = DW, LinkNun
= 1, Bandwth = Bandwth + Bu)SP_packet(eventType = SP, SrcID

= X, SenderID = N, Bandwth = Bu)

SP_packet(eventType = SP, SrcID
= X, SenderID = N, Bandwth = Bu)

EP_packet(eventType = EP, SrcID
= X, SenderID = N, Bandwth = Bd)

tuple(nodeID = N, LinkNodeID
= U, LinkType = UP, LinkNun =

1, Bandwth = Bandwth - Bd)

tuple(nodeID = N, LinkNodeID
= D, LinkType = DW, LinkNun
= 1, Bandwth = Bandwth - Bd)

1

1 1

()
m n

t t t
N Uj Di

j i

BandReq B B B

rcvDataAtNode()

Receiving a
piggybacked

packet?

Yes

An SP_packet?
Subtract the Bandwth Bd conveyed on the EP_packet
sent by an upstream node U from the Bandwth field of

U’s corresponding tuple in N’s configuration table

Add the Bandwth Bu conveyed on the SP_packet sent
by an upstream node U to the Bandwth field of U’s

corresponding tuple in N’s configuration table

Return

Single downstream
node D?

Single downstream
node D?

Yes

Yes

Yes

No

Sent a new SP_packet that
conveys Bandwth = Bu and

source node information as the
first data packet to Dn with
LinkNum = n (the largest)

No
(multiple downstream nodes)

No
(multiple

downstream nodes)

linkDeletion()

No
(EP_packet)

Yes

linkCreation()

Send an SP_packet with Bandwth conveyed
on the received SP_packet, i.e.,Bu

BandReq > 0?

transferData()

Subtract Bd from the Bandwth field of D’s
corresponding tuple in N’s configuration table

Send an EP_packet with Bandwth conveyed
on the received EP_packet, i.e., Bd

Add Bu to the Bandwth field of D’s
corresponding tuple in N’s configuration table

No
(an ordinary
data packet)

Figure A9. Flow chart for N on receiving a data packet

 54

rcvCtrlAtNode()

RACK packet from
D?

MREQ packet from
U?

Return

Discard the packet

No

No
(MEST packet from U)

Yes

Yes

LREQ packet from
D?

No

LACK packet from
U?

No

NACK packet from
U?

No

Yes

Yes

Yes rcvRACK()

rcvLREQ()

rcvMACK()

Create a tuple for U in the
configuration table to establish an

uplink between N and U

For establish a

spanning tree

(phase 1)

For multipath routing

(phase 3)

For bandwidth

adjustment

(phase 2)

MACK packet from
D?

No

Create a tuple for U in
the configuration table to

establish an uplink

rcvMREQ()

Yes

tuple(nodeID = N, LinkNodeID = U,
LinkType = UP, LinkNun = 1, Bandwth = --)

tuple(nodeID = N, LinkNodeID = U,
LinkType = UP, LinkNun = 2~n,

Bandwth = min(BandReq, BandAvail))

Figure A10. Flow chart for N on receiving a control packet

(D: a downstream node; U: an upstream node)

 55

Received an LREQ from a
downstream node D

beforehand?

Discard the
LREQ

rcvLREQ()

Reply an
NACK

Reply D with an LACK

Broadcast an LREQ

No
Yes

Return

Create a tuple for D in the
configuration table

(establishing a downlink with D)

tuple(nodeID = N, LinkNodeID
= D, LinkType = DW, LinkNun

= 1, Bandwth = --)

Has establish a link with
one of its neighbor (a

downstream node)

To establish a link
toward source node

Figure A11. Flow chart for N on receiving an LREQ from a downstream node D

 56

rcvRACK()

Return

N has upstream
nodes?

Yes

1

1

1

Calculate bandwidth for each upstream node for time 1

with equation , where () is the

bandwidth of link between and a downstream node

(an upstream node

i i j

j

i

t n
t t t tUi
Ui D D Um

t i
U

j

i

U t

B
B B B B

B

N D

U

) at time j t

tuple(nodeID = N, LinkNodeID
= U, LinkType = UP, LinkNun =

1~n, Bandwth = BUi)

Update bandwidth of D in D’s corresponding
tuple in the configuration table with the

bandwth conveyed on the RACK

(By checking its
configuration table)

Send an RACK to node telling the newly

allocated bandwidth , 1, 2,...,
i i

Ui

U U

B i m

Update bandwidth of in 's corresponding

tuple in the configuration table with the

bandwidth , 1, 2, ...,

i i

Ui

U U

B i m

No

Figure A12. Flow chart for N on receiving an RACK from a downstream node D

Yes

rcvMREQ()

MREQ is sent by a node U and
there is an existing link between N

and U?

Discard the
MREQ

Return

No

Reply an MACK with
BandAvail

1

1 1

()
n m

t t t
Di N Uj

i j

BandAvail B B B

Figure A13. Flow chart for N on receiving an MREQ from a node U

 57

rcvMACK()

Has ever received current MREQ’s
corresponding MACK from other

nodes?

Discard the
MACK

Create a tuple for D in the configuration
table to establish a downlink

Reply D with an MEST with Bandwth =
min(BandReq, BandAvail)

Return

No

Yes

Allocate bandwidth min(BandReq, BandAvail) to
the link between N and a downstream node D,

where the first corresponding MACK packet with
BandAvail received by N is sent by D

tuple(nodeID = N, LinkNodeID = D,
LinkType = DW, LinkNun = n, Bandwth

= min(BandReq, BandAvail))

Assume N originally has n-1
downlinks

RecverID from received MACK =
NodeID in N’s configuration table?

Yes

No

Figure A14. Flow chart for N on receiving an MACK from a node D

