總目錄

中文摘要	I
英文摘要	IV
論文綜覽	4
實驗部份	6
Part I. 維他命C還原Fe(CN)5L2-錯合物之反應動力學	探討
1.1 序論	18
1.2 實驗部份	29
1.3 結果	
1.3.1 光譜鑑定	32
1.3.2 反應計量	37
1.3.3 電化學	39
1.3.4 反應動力學	41
1.3.5 陽離子效應	48
1.4 討論	
1.4.1 還原反應動力學	50
1.4.2 Marcus Theory	54
1.5 結論	60
1.6 參考文獻	61

Part II. Al(III)與 quercetin 及類黃酮衍生物形成螯合錯合物光譜及

動力學探討

2.1	序論	65
2.2	實驗部份	75
2.3	結果與討論	
	2.3.1 光譜鑑定	77
	2.3.2 螯合物鑑定-反應計量	79
	2.3.3 螯合位置鑑定- ¹ H-NMR	82
	2.3.4 動力學	
	2.3.4.1 類黃酮在酸性條件下之穩定性	88
	2.3.4.2 形成反應動力學	89
	2.3.5 Al(III)-flavonoids 錯合物之 affinity	99
2.4	結論	103
2.5	參考文獻	104
Pa	rt III. Quercetin、rutin 和 taxifolin 在鹼性條件與 O2:	之反應探討
3.1	序論	108
3.2	結果與討論	
	3.2.1 光譜分析	109
	3.2.2 ¹ H-NMR 光譜	111

	3.2.3 反應動力學	113
3.3	結論	116

3.4 參考文獻------117

Part IV. 兒茶酚及類黃酮在甲醇溶劑中與 dpph·之氧化還原反應

4.1 序論------119

4.2 結果與討論

4.2.1	吸收光譜與計量分析	121
4.2.2	¹ H-NMR 光譜	123
4.2.3	反應動力學	125
4.3 結論	ĵ	130
4.4 參考	⁻ 文獻	131
附錄(圖))	132
附錄(表))	159

論文綜覽

本論文以探討取代反應與氧化還原反應為主,利用熱力學與動力 學探討,以了解反應的穩定性及活性,主要分為四部份:

第一部份:維他命C還原五氰鐵(III)錯合物動力學之探討

實驗室過去在研究鐵氰系統時,經常使用維他命C作為還原劑, 即使錯合物在還原態[Fe(CN)₅L]³⁻,溶液中常加入維他命C,以防止空 氣對錯合物之干擾。儘管維他命 C 雖為本實驗常用的試劑,大部分 情況的使用皆為過量,一直未進一步去探討反應動力學,因此本部份 我們將探討維他命C與五氰鐵(III)錯合物,Fe(CN)₅L²⁻之反應動力學, 並藉 Marcus 理論的分析以確定其反應機制。

第二部份: Al(III)與 quercetin 及類黃酮形成螯合錯合物的光譜及動力 學之探討

類黃酮的生物醫藥活性主要與其具有金屬螯合(metallation)以及 抗氧化能力(antioxidation)有關,在本部份我們將探討 Al³⁺與 quercetin 之螯合反應,從光譜及動力學探討錯合物反應活性以及穩定性,由於 quercetin 具多重螯合位置,我們將同時探討 fisetin、luteolin、chrysin、 3-hydroxyflavone 和 5-hydroxyflavone,也藉以幫助確定 quercetin 的螯 合位置。

4

第三部份:Quercetin、rutin 和 taxifolin 在鹼性條件與 O2之反應探討

一般類黃酮的水溶性都很低,為了克服此問題,以便能在水溶液 中探討反應,我們乃嘗試在鹼性溶液中探討類黃酮的氧化反應,結果 發現 quercetin 在鹼性溶液中相當不穩定,同時探討其他類黃酮並未 有此現象,因此引發我們的興趣,在本部份我們將探討 quetcetin、rutin 和 taxifolin 在 0.01M NaOH 溶液中與 O₂的反應,從熱力學及動力學 結果進一步了解造成 quercetin 如此快被氧化的原因。

第四部份:兒茶酚及類黃酮在甲醇溶劑中與 dpph·之氧化還原反應

雖然 dpph·在有機溶劑中,已廣泛被使用為氧化劑,但大部份的 研究皆從有機化學角度探討,偏重在熱力學,而對反應活性一直沒有 深入探討,在本研究中我們主要將探討 dpph·與 pyrocatechol、 3,5-di-tert-butylcatechol、4-methylcatechol、3,4-dihydroxy benzoic acid 和 4-nitrocatechol 之反應動力學,以期了解取代基對反應速率的影響,我們同時也將探討 taxifolin 與 rutin 的反應,以了解 flavonoid 結 構對反應活性的影響。

實驗部份

1. 藥品來源

磁口苗士夕	燕口山寸夕	化學士	水 沥
ホ四六入石 Sodium nitronrusside	不四 入石		
dihydrate	五氰鐵鈉鹽	$Na_2[Fe(CN)_5NO] \cdot 2H_2O$	RDH
Ammonia gas	氨氣	NH ₃	大統氣體
Ammonia water (35%)	氨水	NH ₄ OH	BDH
L-Ascorbic acid, >99.7%	維他命C	$C_6H_8O_6$	Merck
Quercetin dihydrate	槲皮素	$C_{15}H_{10}O_7 \cdot 2H_2O$	Sigma
4,4'-Bipyridine	4,4'-聯吡啶	$C_{10}H_8N_2$	Fluka
Perchloric acid, 70-72%	過氯酸	HClO ₄	J.T. Baker
Lithium perchlorate trihydrate	過氯酸鋰	LiClO ₄ ·3H ₂ O	Aldrich
Potassium hexacyanoferrate (III)	六氰鐵(III)鉀鹽	K ₃ [Fe(CN) ₆]	Merck
Sodium persulfate	過氧二硫酸鈉	$Na_2S_2O_8$	Sigma
Pyridine, >99.9%	叱啶	C_5H_5N	Merck
Isonicotinamide, >99%	異菸鹼醯胺	$C_6H_6N_2O$	Merck
Zinc granular	鋅粒	Zn	Merck
Mercury(II) chloride	氯化汞	HgCl ₂	Merck
Ethanol	乙醇	C ₂ H ₅ OH	Merck
Diethyl Ether	乙醚	$C_2H_5OC_2H_5$	Merck
Sodium Acetate, >99%	醋酸鈉	CH ₃ COONa	Merck
Acetic acid	醋酸	CH ₃ COOH	Merck
Tris(hydroxyl methyl) aminomethane, >99.8%	三甲醇硝基甲烷	$C_4H_{11}NO_3$	Merck
Chromium(III) chloride hexahydrate	三氯化鉻	CrCl ₃ ·6H ₂ O	Merck
Methanol	甲醇	CH ₃ OH	Merck

藥品英文名	藥品中文名	化學式	來源
Fisetin, 97%	漆黃素	$C_{15}H_{10}O_{6}$	Alfa Aesar
Luteolin, 97%	木犀草素	$C_{15}H_{10}O_{6}$	Alfa Aesar
3-Hydroxyflavone, 98%	3-羥基黃酮	$C_{15}H_{11}O_3$	Alfa Aesar
5-Hydroxyflavone, 97%	5-羥基黃酮	$C_{15}H_{11}O_3$	Alfa Aesar
Chrysin, >99%	白楊素	$C_{15}H_{11}O_4$	Acros
Taxifolin	花旗松素	$C_{15}H_{12}O_7$	MP Biomedicals
Morin Dihydrate	桑色素	$C_{15}H_{10}O_7{\cdot}2H_2O$	Riedel-de haen ag Seelze-hannover
(+)-Catechin hydrate, 98%	兒茶素	$C_{15}H_{14}O_{6}$	Aldrich
3',4' –Dihydroxyflavone, 97%	3',4'-二羥基黃酮	$C_{15}H_{11}O_4$	Alfa Aesar
Rutin trihydrate >97%	芸香苷	$C_{27}H_{30}O_{16}$	Provided by professor Decheng Wu of Sichuang University
Alumium perchlorate nonahydrate 98%	過氯酸鋁	Al(ClO ₄) ₃ ·9H ₂ O	Adrich
Deuterium oxide, 99.9% D atom	重水	D_2O	Adrich
Deuterium chloride, 35 wt. % inD ₂ O	氯化氘	DC1	Adrich
Methanol-D ₄	氚化甲醇	CD ₃ OD	Adrich
2,2-Diphenyl-1-picrylhyd razyl (dpph·)	2,2-二苯基-1-苦 味肼基	$C_{18}H_{12}N_5O_6$	SIGMA
Pyrocatechol	鄰苯二酚	$C_6H_6O_2$	Fluka
4-Methylcatechol	4-甲基鄰苯二酚	$C_7H_8O_2$	Acros
4-Nitrocatechol	4-硝基鄰苯二酚	C ₆ H ₅ NO ₄	Aldrich
3,4-Dihydroxy benzoic acid 97%	3,4-二羥基苯甲酸	$C_7H_6O_4$	Alfa Aesar
3,5-Di-tert-butylcatechol 99%	3,5-二叔丁基鄰苯 二酚	$C_{14}H_{22}O_2$	Aldrich

2. 溶液配製與藥品純化

異菸鹼醯胺(isonicotinamide)的純化

將10克的isonicotinamide溶於15 mL的二次去離子水,加熱(不 超過50℃)溶解後,加入一小匙活性碳,趁熱過濾,將濾液置於冰 浴冷卻二小時後過濾,以乙醚清洗,可得白色針狀結晶,置於真空 乾燥器抽乾三小時。

4, 4'-聯吡啶(4, 4'-bipyridine)的純化

將 2~3 克的 4,4'-bipyridine 加入 10mL 的二次去離子水,加熱(不 超過 50℃)溶解後,靜置約 3~5 分鐘後即形成針狀結晶析出,冷卻過 濾並以 0℃乙醇沖洗(勿攪拌,以免溶化),可得白色針狀結晶,置於 真空乾燥器抽乾三小時。

純水系統(doubly distilled water)

自來水先經過逆滲透裝置純化,再通入 Barnstead NANOpure Diamond 去離子超純水設備,純化後得二次去離子水,本論文的所有 合成、緩衝溶液配製以及反應所需水溶液均採用二次去離子水。

鋅汞膏(zinc/mercury amalgam, Zn/Hg)之製備

將適量的鋅粒,以 6M 鹽酸(HCI)洗數分鐘以去除表面氧化物,

再以二次去離子水反覆清洗鋅粒,使表面的鹽酸殘留物完全去除;加 入飽和氯化汞溶液(於 0.1M 硫酸溶液中)汞化,即得閃亮的鋅汞齊, 再以二次去離子水清洗鋅汞齊的表面,以kimwipe 試紙拭乾,所得的 鋅汞齊必須立即使用以免被空氣氧化。

亞鉻溶液(chromous solution)的製備

將40克三氯化鉻 CrCl₃·6H₂O 溶於 500mL 的 1M 過氯酸水溶液 中,加入適量鋅汞齊,再持續通入氫氣直到所有的三價鉻離子完全還 原成藍色二價鉻溶液為止,此時水溶液顏色由綠色轉變成藍色澄清溶 液。

緩衝溶液(buffer solution)的配製

(a) pH = 4 醋酸根/醋酸緩衝溶液(acetate-acetic buffer)

將 13.6g 醋酸鈉溶於 400mL 二次去離子水,以醋酸或鹽酸滴定 此溶液達到 pH = 4,再稀釋此溶液至 500mL,即為 pH = 4之 OAc⁻ /HOAc buffer ([OAc⁻] = 0.20M)。

(b) pH = 5.5 醋酸根/醋酸緩衝溶液(acetate-acetic buffer)

將 13.6g 醋酸鈉溶於 400mL 二次去離子水,以醋酸或鹽酸滴定

此溶液達到 pH = 5,再稀釋此溶液至 500mL,即為 pH = 5.5 之 OAc⁻/HOAc buffer ([OAc⁻] = 0.20M)。

(c) pH = 8 三-(烴基甲基)-胺基甲烷緩衝溶液(tris(hydroxy methyl) amimomethane buffer; tris buffer)

取三-(烴基甲基)-胺基甲烷 12.1 克,溶於 400 mL 二度去離子水 中,以 HCl 滴定到 pH = 8,再以量瓶稀釋到 500 mL 的標線刻度, 即為 pH = 8 之 tris buffer([tris base] = 0.20M)。

(d) pH=9 碳酸根-碳酸氫根緩衝溶液(carbonate-bicarbonate buffer)

取碳酸鈉 8.3 克,溶於 400 mL 二度去離子水中,以 HCl 滴定到 pH=9,再以量瓶稀釋到 500 mL 的標線刻度,即為 pH = 9 之 $CO_3^{2^-}/HCO_3^{-}$ buffer ([$CO_3^{2^-}$] = 0.20M)。

3. 絕氧處理系統

由於維他命 C (L-ascorbic acid)對空氣十分敏感,所有溶液的配 製包括 Fe(III)及維他命 C 溶液與反應過程,均需維持在飽和氫氣或氮 氣下操作,以防止滲入空氣的干擾,我們所使用的隔氧系統如 Fig. 1 所示,鋼瓶中的氫氣,先經過含過量鋅汞齊的 Cr(II)溶液的氣體洗滌 瓶,以除去氫氣鋼瓶中少量的空氣,再經裝有二次去離子水的氣體洗

11

滌瓶,以防止含鋅汞齊的溶液直接與空氣接觸而容易被氧化,同時平衡反應瓶內水溶液的含量,氮氣系統(N₂-line)與氫氣系統(Ar-line)的組合相同,僅以氯化亞釩取代鉻(II)化合物。

處理過程乃以針筒及不銹鋼針連結反應物溶液,如Fig.1所示, 先將溶劑置於血清瓶內,瓶口以血清塞塞住,再將兩根(一長一短) 注射鋼針插入,長針沒入溶劑中,為氫氣(或氮氣)入口,短針則遠 離液面,為氫氣(或氮氣)出口,通入氫氣至少五分鐘,以除去溶劑 中的溶氧,然後加入錯合物。

Fig.1 去氧處理系統示意圖

4. 分析儀器及方法

微量秤重测量

- 三位天平 OHAUS TS 400D
- 四位天平 PRECISA 125A

五位天平 METTLERAE-42C

酸鹼度測量

使用 Orion 420A pH 儀,量測之前視緩衝液之 pH,分別以 pH=7、 4 或 pH=7、10 標準溶液先校正儀器。

紫外-可見光吸收光譜

以 Hitachi U-2000 或 HP 8453 UV/VIS 光譜儀測量錯合物之紫外-可見光區(UV-VIS)吸收光譜,樣品槽(cell)使用 1.0 公分的石英材質 樣品槽。

消光係數(extinction coefficient, ε_{max})可從錯合物吸收波峯的吸收 依 Beer's law(A= ε bc)求得。

動力學測量

反應動力學按照反應速率快慢,分別以 Photo RA 401 Stopped Flow Spectrophotometer 或 Hewlett Packard HP 8453 UV-Vis Spectrophotometer 測量,並用 Hotech 63HP 恆溫槽控制反應溫度。反 應在偽一級條件下進行,並以 ascorbic acid 為過量,藉觀測 Fe(II)的 形成,反應的變化隨時間改變成單指數曲線,且 lnlA_t-A_il對時間變 化呈線性關係,如 Fig. 2。k_{obs} 可利用線性最小平方差(linear least-square fit)分析 lnlA_t-A_il對時間之關係圖,從斜率求得。

電化學測量

錯合物之還原電位是以 Princeton Applied Research (PAR) Model 273A Potentiostat/Galvanostat 測量,所得結果由與儀器連接之個人電 腦 PC 486 DX 利用 Princeton Applied Research Model 270/250 Research Electrochemistry software ver.4.0 記錄存檔,並由 EPSON Stylus 800 Printer 列印所得之循環伏安圖。Fig. 3 為實驗所使用之環路伏安電池 裝置,以飽和甘汞電極(Saturated calomel electrode, SCE)作為參考電 極(reference electrode),鉑絲(Platinum wire)作為輔助電極(auxiliary electrode),用碳電極(carbon paste electrode)做工作電極(working electrode),電化電池一端接氮氯系統在每次測試前反應溶液必先通以 氮氟,以清除電極表面附著物,並重新將溶液混合均匀。

Fig. 2、[Fe(CN)₅isn]²⁻還原反應圖 (a) A_t vs 時間 (b) ln | A_t-A_i | vs 時間

- (a) Working Electrode(b) Saturated Calomel Electrode(c) Counter Electrode
- (d) N₂-line

Fig. 3、環路伏安儀電池裝置圖

Part I

維他命C還原Fe(CN)5L²⁻錯合物之反應動力學探討

1.1 序論

人類對抗壞血酸(ascorbic acid)的認識可追溯至十六世紀末,當時 西方海軍及船員執勤期間,因為在海上的飲食只有五穀及肉類,缺乏 蔬果,常發生有牙齦出血、皮膚出現紫斑、瘀青等現象,當時被診斷 為壞血病的症狀,且發現這類的狀況可以用檸檬汁來治療,只是為什 麼檸檬汁有此醫治功能,則不得而知,直至1920年代初期,Zilva才 從檸檬汁中分離出可治療壞血病症狀的成分化合物[1-3],只是此化合 物非常不穩定,對氧氣相當敏感,一直無法瞭解其結構,為了瞭解其 成分特性, King 以及他的學生[4], 仔細的分析所分餾出來每種成分 的化合物、在水溶液中很小心的控制 pH 值、以及盡可能的避免所得 化合物與銅或者與空氣接觸,終於確定了分子量以及一些重要性質 [5.6]。但由於當時的分析儀器並不夠精密,在結構的判別仍有其困難 性,只能推測結構可能是類似 hexurnic acid 的結構。1933 由 Szent-Györgyi[7]發現從紅椒(paprikas)提煉大量此化合物的方法。同 時,他們將此化合物命名為 ascorbic acid, ascorbic 是拉丁語,解作沒 有壞血的意思[8]。很遺憾的是仍無法決定抗壞血酸正確的結構,主 要乃抗壞血酸對氧非常的敏感,容易被氧化而破壞,儘管如此,還是 能夠確定是一個簡單且小的分子,包含了20個原子(C6H8O6),同時 也探討一些化學性質,幫助後來建立 ascorbic acid 的合成方法[9]。1964 年 Hvoslef[10,11]利用 x-ray 解析,進一步的得到其立體結構,如 Fig. 1.1 所示,同時也證實 King 所分離出類似 hexurnic acid 的化合物事實 上就是 ascorbic acid。而到目前為止,抗壞血酸酮基有酸性特性,γ -lactone ring 異常的穩定,還原能力強,以及與生物體作用後有對掌 性異構物之分,一直是生物及化學家興趣的焦點。

抗壞血酸今日已被廣泛使用,被歸類為維他命的一種,即眾所皆 知的維他命 C,維他命 C 已經成為最受歡迎也最神奇的維他命,主要 是因為已被醫學界證實,為一種抗氧化極強的物質,不僅可以對抗壞 血病[12],對於人體長期由於暴露在不良的環境中所產生的自由基, 例如長期曝露陽光下受紫外線照射以及在我們生存的含氧環境下之 正常食物代謝。自由基會破壞皮膚裡面的膠原蛋白、纖維母細胞、醣 蛋白、細胞膜以及細胞核的成分。這些改變會使結締組織分解、老化、 且產生皺紋,且可能導致癌症,特別是皮膚癌。維他命 C 可藉快速 還原消除這些自由基,因此它可以保護皮膚,中和自由基離子,避免 因曝曬陽光所產生的劇烈反應,因而損害皮膚及其成分。由於人體不 能自行合成維他命 C,必須由食物中攝取,又是屬於水溶性維他命, 多餘的也身體無法貯存,會被排出體外,一旦缺乏就會產生壞血病的 症狀,嚴重的還會因為皮下出血而死亡,因此需要經常性的補充,這 就是我們需經常服用維他命C的理由。

19

Figure 1.1、維他命C分子結構圖

在化學系統中,維他命 C 也是一個廣泛且常用的還原劑,就是 因為它的反應速率快,且濃度容易控制。維他命C為雙質子酸[13], 在不同的酸性條件下,分別以H2A,HA-及A2-型態存在,如 scheme I所示[14]。每種型態均具有兩電子的還原能力[15],而以H₂A.⁺、HA·、 A·為中間體(intermediate)。其中 H₂A·⁺因 pKa < 0, 會立即解離為 H⁺ +HA·。A·-為較穩定的自由基, pH 在 0~13[16]時, 依然可以存在, 不過 pH<0 時[17],有質子化的現象,形成 HA.。除此之外, Hvoslep [18]和 Albers[19]發現維他命 C 氧化的最後產物為去氫抗壞血酸 A(dehydroascorbic acid),如 Scheme I 所示。於惰性溶液(inert solvents) 中如 dimethylformamide 或 dimethyl sulfoxide, A 會形成穩定的二聚 物[20],在低温時,此二聚物具對稱性(symmetric dimmer)。但當溫 度逐漸升高時,其會逐漸的改變成非對稱性二聚物(unsymmetric dimmer),如Fig. 1.2所示。而在水溶液中,A亦會聚合成二聚物, 但結構不穩定,分離時又以A型態析出,Pfielstucker[21]發現,當pKa ~8.8 時會有去質子的現象,如 scheme I 所示。

有關於維他命 C 與金屬錯合物的反應機制,內圈電子轉移機制 (inner-sphere electron transfer)與外圈電子轉移機制(outer-sphere electron transfer)均有文獻報導。維他命 C 是一個還原力強的兩個電 子還原劑,當與鐵(III)離子(ferric ion)反應時,會與鐵離子螯合

21

A•

-e

scheme I

Figure 1.2、Dehydroascorbic acid 於惰性溶液中之結構改變 (a) 低溫 (b) 高溫

(**b**)

(chelates)形成錯合物,如 scheme II 所示[22],第一個反應步驟為 H₂A 先掉一個 H⁺,再與 Fe(III)形成螯合錯合物中間體,其結構為 a,電子 迅速藉由分子內進行電子的轉移,將 Fe(III)還原成 Fe(II),而形成 b。 b 隨即解離形成 c 及 Fe(II), c 再與第二個 Fe(III)形成螯合錯合物中間 體 d,電子再次經由分子內電子的傳遞,形成最後的產物為 e。即 scheme I 中之 A。另外 Cu(II)離子同樣也可藉與維他命 C 形成螯合錯 合物,藉分子內電子傳遞進行氧化還原反應[22],機構與 Fe(III)的反 應相似,唯反應的速率比較慢,主要的原因乃受反應中間物的穩定性 以及立體效應的影響。除了與維他命 C 直接內圈電子轉移反應外, Cu(II)及 Fe(III) 還可以扮演催化劑的角色,使維他命 C 自然被空氣氣 化為去氫抗壞血酸(dehydroascorbic acid),如 Scheme III 所示[22,23], 雖然金屬離子與 O_2 的鍵結相當的弱,不過Hamilton^[24]發現可藉共振 效應會使中間物穩定(如f,g),藉由此中間物將兩電子傳遞至O2上(如 g),形成最後產物維持不變,而 O_2 被還原成過氧化氫(H_2O_2),金屬離 子維持不變。

截至目前為止,大部分維他命C與金屬錯合物離子的氧化還原 反應,多屬於外圈電子轉移機構[25~29],根據此機構,在反應前後 過程並沒有改變,電子直接由一錯合物配位圈(coordination sphere)傳 至另一錯合物配位圈,反應物首先形成離子對,為極快速之步驟,屬

24

scheme II

scheme III

於擴散控制(diffusion controlled)時間尺度,然後在離子對狀態下進行 電子傳遞之後,離子對再度解離形成最後產物,反應過程可以 eq. (1) 至 eq. (3)表示

$$ML_n^{m+} + Red \longrightarrow ML_n^{m+} \parallel Red \qquad Q_{IP}$$
 (1)

$$ML_n^{m+} \parallel \text{Red} \longrightarrow ML_n^{(m-1)+} \parallel Ox \qquad k_{et}$$
 (2)

 $ML_n^{(m-1)+} \parallel Ox \implies ML_n^{(m-1)+} + Ox$ rapid (3)

根據此機構,反應速率式為

$$-\frac{d[ML_n^{m+}]}{dt} = k_{obs}[ML_n^{m+}]$$
(4)

$$k_{obs} = \frac{k_{et}Q_{IP}[red]}{1 + Q_{IP}[red]}$$
(5)

當 1»Q_{IP}[red],亦即大部分系統的情況, eq. (5)可簡化為

$$k_{\text{obs}} = k_{\text{ox}}[\text{red}]$$
 $k_{\text{ox}} = k_{\text{et}}Q_{\text{IP}}$ (6)

所有 ascorbic acid 之外圈電子轉移還原反應之反應速率,均受溶液 pH 值之控制,且均屬於絕熱(adiabatic)反應系統,而大部分的動力學結 果都可以單電子還原之理論模型分析,因此一般均認為反應過程速率 決定步驟應屬於單電子還原。

我們過去在研究釘氨系統或者鐵氰系統時,也經常使用維他命 C 作為還原劑,即使錯合物在還原態 M(II) (M = [Ru(NH₃)₅L]²⁺, [Fe(CN)₅L]³⁻),溶液中也常加入維他命 C,以防止空氣對錯合物之干 擾。儘管如此,維他命 C 雖為本實驗常用的試劑,大部分情況的使 用皆為過量,並未控制濃度,更從未進一步去探討反應速率, Haim 等人曾以維他命 C 為還原劑探討[Ru(NH₃)₅L]³⁺錯合物之還原反應動 力學[30],由於[Fe(CN)₅L]²⁻許多熱力學及動力學性質均與 [Ru(NH₃)₅L]^{2+/3+}系統極為相似[31~34],引起我們對[Fe(CN)₅L]²⁻-H₂A 反應系統的興趣,本論文將報導我們探討結果,並以 Marcus theory 理論分析所得結果所得動力學數據,同時與[Ru(NH₃)₅L]³⁺系統所得結 果作比較。

1.2 實驗部分

1.2.1 鐵氰(III)錯合物之合成

(1). Na₃[Fe(CN)₅NH₃]・3H₂O之合成[35]

將10克的 Na₂[Fe(CN)₅NO]·2H₂O 加入盛有40 mL 二度蒸餾水 的錐形瓶,置於冰鹽混合浴中冷卻,通以飽和氨氣並隨時控制氨氣流 量,使反應溫度不超過0°C,15分鐘後開始有黃色晶體產生,繼續反 應直至反應完全(約3小時),直到有氨氣溢出且反應溫度明顯下降, 過濾,以乙醇及乙醚清洗數次,得黃色結晶粗產物。

再結晶:

將初產物溶於 28~32% 氨水中,過濾去除雜質,將乙醇逐滴加入 濾液中,直到溶液成為混濁狀,置於冰浴中冷卻約兩小時,過濾,以 乙醇和乙醚沖洗數次所得淡黃色針狀結晶,置於真空乾燥器中乾燥, 放置冰櫃中保存,其產率為 33.7%,產物的純度可以與吡啶形成之錯 合物吸收光譜鑑定。光譜結果顯示 $\lambda_{max}=365 \text{nm}$, $\varepsilon_{max}=3706 \text{ M}^{-1} \text{cm}^{-1}$ 與文獻值相符[36]。

(2). H₂bpy[Fe(CN)₅L]之合成 (L=py,isn)

將 3 mmol 的配位基溶於 20mL 的水中,加入 0.13g(0.4 mmol) 的 Na₃[Fe(CN)₅NH₃]·3H₂O 於避光的環境下反應 20 min,再以 0.95 g (4 mmol) Na₂S₂O₈ 氧化 15min 後加入 0.5mL 濃鹽酸,再加入固體 4,4'-bipyridine 持續攪拌直到溶液混濁後冰浴二小時,過濾收集沉澱 物用乙醇、乙醚清洗。

再結晶 :

將粗產物溶於 5mL 熱水,溫度維持在 40-50℃,趁熱過濾後加入 0.1 mL HCl,將濾液置於冰浴冷卻二小時後過濾,用乙醇、乙醚清洗 產物,真空乾燥三小時,產率 60% (L=py);43%(L=isn)。元素分析 L=py 之分子式為 FeC₂₀H₁₃N₈,計算值 C:56.8%、N:26.5%、H:3.60%。 實驗值 C:56.6%、N:26.9%、H:3.70%。L=isn 之分子式為 FeC₂₁N₉H₁₅O·H₂O,計算值 C:54.1%、N:27.0%、H:3.50%。實驗 值 C:53.8%、N:26.9%、H:3.80%。

(3). Na₃[Fe(CN)₅(4,4'-bpy)]之合成[37]

將 1.67g 4,4'-Bipyridine 溶入 55 mL 的水中,加入 0.35g 的 Na₃[Fe(CN)₅NH₃]·3H₂O 於避光的環境下反應 40 min 後過濾,將濾 液以 Br₂(g)氧化,直至溶液會由深紫色轉變為淡黃色,且有黃綠色沉 澱物,冰浴二小時後,過濾收集沉澱物用乙醇、乙醚清洗。

再結晶 將粗產物溶於 70 mL 熱水,溫度維持在≤40℃,趁熱過 濾不純物,將濾液置於冰浴冷卻二小時後,過濾,用乙醇、乙醚清洗 產物,真空乾燥三小時,產率 26%。元素分析 FeC₂₅H₂₄N₉O₃計算值 C: 53.2%、N:22.7%、H:4.36%。實驗值C:52.4%、N:22.1%、H: 4.70%。

1.2.2 儀器

紅外光吸收光譜

使用 Perkin-Elmer 1725X FT-IR 紅外光光譜儀,將樣品壓製成 KBr 薄片後測量。產物測量 v_{CN}結果為 2110 cm⁻¹(py), 2110 cm⁻¹(isn), 2118 cm⁻¹(4,4'-bpy),屬於 Fe(III)錯合物的範圍[38],表示合成產物皆為五 氰鐵(III)錯合物。

元素分析

所有化合物均送往中興大學貴重儀器中心,以 Heraeus CHN-O Rapid 元素分析儀,偵測樣品之N、C、H 元素的含量百分比。

1.3 結果

1.3.1 光譜鑑定

 $[Fe(CN)_5L]^{2-}$ (L=py, isn)錯合物在可見光區(UV-Vis)皆有明顯的 MLCT(metal to ligand charge transfer)吸收,所得光譜結果皆列於 Table 1.1,當L=py時,由Fig. 1.3 可以發現,Fe(III)在光譜上 λ =369nm 和 415nm 各有一個吸收,當還原成Fe(II)時波長在 λ =367nm。當L =isn時,如Fig. 1.4所示,還原成Fe(II)時波長在438 nm,[Fe(CN)₅py]²⁻ 和[Fe(CN)₅sin]²⁻錯合物的吸收光譜皆不受 pH 的改變影響。

當 L=4,4'-bpy 時,由於配位為含氮芳香雜環, $[Fe(CN)_5(4,4'-bpy)]^3$ 錯合物在可見光區有一極強的 $Fe(II) \longrightarrow \pi_{bpy}$ 電荷轉移吸收,且錯合 物有一未鍵結之吡啶鹼基可供質子化,而 H⁺又有很強的拉電子效 應,因此在酸性溶液中錯合物配位子的質子化,導致 π_{bpy} 能量降低 [40],而使吸收波長較未質子化情況為大, $[Fe(CN)_5(4,4'-bpyH)]^{2-([H^+]=0.01M)} [Fe(CN)_5(4,4'-bpy)]^{3-(pH=8)}吸$ 收波長分別在 477及 437nm,如 Fig. 1.5 所示, pH=8 之光譜結果與文 $獻值相符[41], <math>[Fe(CN)_5(4,4'-bpy)]^{2-3}$ 錯合物由於缺少 MLCT 吸收,因 此只在 $\lambda_{max}=426nm$ 有 $-\pi_{bpy}$ 吸收,與 Fe(CN)₆³⁻錯合物相似。

當 L=CN[·]時,由 Fig. 1.6 我們可以發現,Fe(III)在光譜上有三個 吸收,分別在 λ =261、303、420nm,與文獻報告值相符[42],其中 λ

=261nm 為配位基的吸收, λ =303nm 為 d-d band 的吸收, λ =420nm 下有 π_{CN} → d π 的吸收, 當還原成 Fe(II)時波長在 λ =313nm 有一微 小的肩形吸收屬於 d-d 躍遷, 由於 d π → π_{CN} 能量太高無法從光譜 上觀察得到, Fe(CN)₆^{3-/4-}錯合物的吸收光譜不受 pH 的改變影響。

Complex	λ_{max}	$10^{-3} \varepsilon_{\max}(M^{-1}cm^{-1})$
2		
$[Fe(CN)_5py]^{2-1}$	369	0.93
	415	1.16
$[Fe(CN)_5py]^{3-}$	367	3.61
$[Fe(CN)_5 isn]^{2-}$	419	1.05
[Fe(CN) ₅ isn] ³⁻	438	4.84
$[Fe(CN)_5(4,4'bpy)]^{2-}$	426	1.73
$[Fe(CN)_5(4,4'bpy)]^{3-}$	477 ^b	3.59
	437	5.46
$\operatorname{Fe}(\operatorname{CN})_{6}^{3-}$	261	1.18
	303	1.53
	420	0.94
$\operatorname{Fe}(\operatorname{CN})_{6}^{4-}$	313	0.36

Table 1.1、[Fe(CN)5L]^{2-/3-}錯合物的 UV-vis 光譜^a

a. pH=8.00 (tris buffer) , μ =
b. in [HCO₄]=0.01M

Figure 1.4、[Fe(CN)₅isn]^{2-/3-}吸收光譜圖 (a) [Fe(CN)₅isn]²⁻ (b)[Fe(CN)₅isn]³⁻

Figure 1.5、[Fe(CN)5(4,4'-bpy)]^{2-/3-}吸收光譜圖

- a. [H⁺]=0.01M [Fe(CN)₅(4,4'-bpy)]²⁻
- b. [H⁺]=0.01M [Fe(CN)₅(4,4'-bpyH)]²⁻
- c. pH=8.00 (tris buffer) [Fe(CN)₅(4,4'-bpy)]³⁻

Figure 1.6、[Fe(CN)₆]^{3-/4-}吸收光譜圖 (a) [Fe(CN)₆³⁻] (b) [Fe(CN)₆⁴⁻]
1.3.2 反應計量

為了確認維他命 C 與[Fe(CN)₅isn]²⁻之反應計量,我們將維他命 C 的濃度固定,分別與不同濃度之[Fe(CN)₅isn]²⁻反應,並偵測 [Fe(CN)₅isn]³⁻生成,發現在[H₂A]/[Fe(III)]的比例為 0.5 時, *ε* 值並不 會再上升,表示維他命 C 是以 2 個電子來還原[Fe(CN)₅L]²⁻錯合物, 如同反應 eq. (1),反應計量圖如 Fig. 1.7 所示。

$$2Fe(CN)_5L^{2-} + H_2A \longrightarrow 2Fe(CN)_5L^{3-} + A + 2H^+ \quad (1)$$

Figure 1.7、維他命 C 還原[Fe(CN)₅isn]²⁻的化學計量關係 [Fe(III)]= 2×10⁻⁴M, pH=5.0, μ=0.10LiClO₄

雖然確認維他命 C 為 2 個電子的還原劑,但速率決定步驟為單 電子的還原過程,我們由動力學的觀測中得知,無論是[Fe(CN)₅isn]²⁻ 錯合物或是維他命 C 為限量試劑, lnlA_t-A_il 對時間作圖皆呈線性關 係,如 Fig. 1.8 所示,顯示反應對維他命 C 及 Fe(III)皆為一級,也就 是速率決定步驟為第一個電子的氧化。

Figure 1.8、維他命 C 還原[Fe(CN)₅isn]²⁻錯合物於 pH=5.05 之下以 lnlA∞-Atl 對時間作圖 (a) [Fe(III)]= 5.17×10⁻⁴M, [H₂A]= 5.10×10⁻⁵M

(b) $[Fe(III)] = 4.88 \times 10^{-4} M$, $[H_2A] = 5.56 \times 10^{-3} M$

1.3.3 電化學

Fe(CN)₅L^{2-/3-}錯合物的電化學分別於不同 pH 值下進行,所有條件 均維持在離子強度 μ =0.1M 及 T=25°C 皆同時呈現有氧化還原波,結果 列於 Table 1.2。由循環伏安圖之波峰間距(80-90mV),可知 Fe(CN)₅L^{2-/3-}錯合物的氧化還原過程屬於單電子之可逆步驟,如 Fig. 1.9 所示。

Table. 1.2、Fe(CN)5L²⁻錯合物之還原電位

Complex	E _f , Volt vs. NHE
$Fe(CN)_5(py)^{2-/3-}$	$0.44^{a,b,c}$
$\operatorname{Fe}(\operatorname{CN})_5(\operatorname{isn})^{2\text{-/}3\text{-}}$	$0.50^{\mathrm{a,b,c}}$
$[Fe(CN)_5(4,4'-bpyH)]^{1-/2-}$	0.54 ^a
$[Fe(CN)_5(4,4'-bpy)]^{2-/3-}$	$0.49^{b,c}$
$Fe(CN)_{6}H^{2-/3-}$	0.50^{a}
$Fe(CN)_{6}^{3-/4-}$	$0.37^{b,c}$

a. $\mu = 0.1$ M LiClO₄, pH=1

b. $\mu = 0.1$ M LiClO₄, pH=5

c. $\mu = 0.1$ M LiClO₄, pH=7.5

Figure 1.9、[Fe(CN)₅(L)]^{2-/3-}錯合物的循環伏安圖 μ=0.1M LiClO₄, 25℃

1.3.4 反應動力學

在動力學探討中,維他命 C 雖對空氣敏感,但因在可見光區無 吸收,不會影響反應的觀察,因此我們還是以之為過量 ($[H_2A]\geq 10[Fe(III)]$),以維持反應在偽一級條件下進行。分別在 $[H^+]$ =0.01~0.10M (HClO₄),以及 pH=4~8.0 範圍下,於 μ =0.1M LiClO₄, T=25℃的條件下進行還原反應的測量,觀測反應速率(k_{obs})與 H₂A 濃 度呈線性關係,如 Fig. 1.10-1.17 所示。於不同環境濃度下觀測反應 速率常數 k_{obs} 列於 Table A1-A10。

Figure 1.10、[Fe(CN)₅py]²⁻之 k_{obs} 與維他命 C 濃度線性關係圖([H⁺]=0.01-0.10M) ◆0.01M, ▲0.02M, ■0.03M, ●0.04M, □0.05M, ◇0.06M, △0.07M, ○0.08M, * 0.09M, ×0.10M

Figure 1.11、[Fe(CN)₅py]²⁻之 k_{obs} 與維他命 C 濃度線性關係圖 (a) pH=4.0-5.25 ■pH=4.0, ▲pH=4.25, ◆ pH=4.50, ◇pH=5.00, ●pH=5.25 (b) PH=7.50

Figure 1.12、[Fe(CN)₅isn]²⁻之 k_{obs} 與維他命 C 濃度線性關係圖([H⁺]=0.01-0.10M) ◆0.01M, ▲0.02M, ■0.03M, ●0.04M, □0.05M, ◇0.06M, △0.07M, ○0.08M, * 0.09M, ×0.10M

Figure 1.13、[Fe(CN)₅isn]²⁻之 k_{obs} 與維他命 C 濃度線性關係圖
(a) pH=4.0-5.25 ◆pH=4.0, ▲pH=4.25, ■pH=4.50, ●pH=5.00, ◇pH=5.25
(b) PH=7.50

Figure 1.14、[Fe(CN)₅bpy]²⁻之 k_{obs} 與維他命 C 濃度線性關係圖([H⁺]=0.01-0.10M) ◆0.01M, ▲0.02M, ■0.03M, ●0.04M, □0.05M, ◇0.06M, △0.07M, ○0.08M, * 0.09M, ×0.10M

Figure 1.15、[Fe(CN)₅bpy]²⁻之 k_{obs} 與維他命 C 濃度線性關係圖
(a) pH=4.0-5.25 ◆pH=4.0, ▲pH=4.25, ■pH=4.50, ●pH=5.00, ◇pH=5.25
(b) PH=7.50

Figure 1.16、[Fe(CN)₆]²⁻之 *k*_{obs} 與維他命 C 濃度線性關係圖([H⁺]=0.01-0.10M) ▽0.01M, △0.02M, ○0.03M, □0.04M, ★0.05M, ◆0.06M, ▼0.07M, ▲0.08M, ●0.09M, ■0.10M

Figure 1.17、[Fe(CN)₆]²⁻之 k_{obs} 與維他命 C 濃度線性關係圖 (a) pH=4.0-5.25 (b) pH=8.02

二級反應速率常數k,可以單參數線性最小平方差(linear least square fits)方法分析 k_{obs} vs. $[H_2A]$ 圖,從斜率獲得,結果列於Table 1.3–1.4,從表中可得知k隨著 $[H^+]$ 濃度增加而遞減,但呈非線性關係。

Table 1.3、維生素C還原Fe(CN) $_{5}L^{2}$ 之二級速率速率常數 k^{a}

	$k, M^{-1}s^{-1}$					
	L					
$[\mathrm{H}^+]$	ру	Isn	bpy	CN		
0.01	8.81±0.09	32.6±0.4	63.3±0.2	4.70±0.06		
0.02	5.30±0.08	20.3±0.4	33.8±0.9	2.61±0.05		
0.03	3.92±0.09	16.4±0.2	24.5±0.5	1.90 ± 0.02		
0.04	3.53±0.08	13.9±0.6	18.7±0.6	1.48 ± 0.03		
0.05	3.14±0.05	11.6±0.2	15.1±0.4	1.31±0.03		
0.06	3.07±0.09	11.3±0.7	13.4±0.4	1.15±0.01		
0.07	2.92±0.01	10.2±0.2	12.9±0.6	1.11±0.04		
0.08	2.71±0.08	10.2±0.7	12.0±0.3	0.91±0.02		
0.09	2.62±0.09	9.6±0.3	11.1±0.4	0.86±0.01		
0.10	2.33±0.05	9.8±0.6	11.2±0.2	0.83±0.01		

a. $\mu = 0.1$ M LiClO₄/HClO₄, T = 25 °C

 Table 1.4、維生素C還原Fe(CN)₅L²⁻之二級速率速率常數 k^{a} (pH=4.0-8.0)

	$k, \mathbf{M}^{-1}\mathbf{s}^{-1}$				
	Ligand				
pН	ру	isn	bpy	CN	
4.00	$(6.68\pm0.08)\times10^2$	$(2.19\pm0.03)\times10^3$	$(2.41\pm0.03)\times10^3$	$(4.83 \pm 0.07) \times 10^2$	
4.25	$(1.04\pm0.02)\times10^3$	$(3.01\pm0.01)\times10^3$	$(3.47\pm0.05)\times10^3$		
4.50	$(1.69\pm0.03)\times10^3$	$(4.45 \pm 0.08) \times 10^3$	$(3.99 \pm 0.04) \times 10^3$		
5.00	$(2.31\pm0.03)\times10^3$	$(5.35 \pm 0.07) \times 10^3$	$(4.60\pm0.05)\times10^3$		
5.25	$(2.68\pm0.03)\times10^3$	$(5.49\pm0.07)\times10^3$	$(4.90\pm0.06)\times10^3$		
5.49				$(1.41\pm0.03)\times10^3$	
7.52	$(9.90\pm0.05)\times10^4$	$(1.33\pm0.08)\times10^5$	$(1.19\pm0.05)\times10^5$		
8.02				$(1.72 \pm 0.07) \times 10^4$	

a. $\mu = 0.1$ M LiClO₄/HClO₄, T = 25 °C

根據動力學結果,得知k隨著[H⁺]濃度增高而遞減但呈非線性關係,如Fig. A1-A4所示。但當以k對1/[H⁺]作圖時兩者呈線性關係,如Fig. 1.18所示。

Figure 1.18、[Fe(CN)5L]²⁻錯合物還原之k與1/[H⁺]關係圖([H⁺]=0.01-0.10M) ◆py ▲isn ■bpy ●CN

1.3.5 陽離子效應

於pH=5.0,μ=0.1M的條件下,使用數種鹼金屬陽離子,還原 Fe(CN)sisn²⁻錯合物,其kobs對[H₂A]作圖呈線性關係,如Fig. 1.19所示, 所得之斜率為二級反應速率k,列於Table 1.5,結果發現,反應速率不 會因為陽離子不同而有明顯差異。

Table 1.5、不同 MCl 溶液下, $Fe(CN)_{5}isn^{2-}$ 之還原速率 k_{obs} , 及二級速率 k^{a}

M+	[H ₂ A], M	k_{obs} , s ⁻¹	$k, M^{-1}s^{-1}$
Li	5.10×10 ⁻³	1.55×10^{1}	
	1.00×10^{-2}	2.90×10^{1}	
	1.52×10^{-2}	5.20×10^2	$(6.9\pm0.1)\times10^3$
	2.09×10^{-2}	7.40×10^2	
	2.52×10^{-2}	9.05×10^{2}	
Na	5.10×10^{-3}	2.50×10^{1}	
	1.05×10^{-2}	6.30×10^{1}	
	1.52×10^{-2}	8.10×10^{1}	$(5.2\pm0.1)\times10^3$
	2.03×10^{-2}	9.80×10^{1}	$(3.2\pm0.1)\times10$
	2.63×10^{-2}	1.36×10^{2}	
	3.02×10^{-2}	1.59×10^{2}	
17	5 0 0. 10 ⁻³	2.40.10	
K	5.20×10 ⁻²	3.40×10^{-1}	
	1.53×10^{-2}	1.02×10^{2}	2
	2.06×10 ⁻²	1.25×10^{2}	$(6.1\pm0.1)\times10^{3}$
	2.64×10 ⁻²	1.63×10^{2}	
	3.22×10^{-2}	1.86×10^2	

a. $\mu = 0.1$ MCl, pH=5.00 (acetate)

Figure 1.19、不同MCl溶液下,還原[Fe(CN)₅isn]²⁻錯合物之[H₂A]與k_{obs}關係圖 ◆LiCl ▲NaCl ■KCl

1.4. 討論

1.4.1 還原反應動力學

維他命 C 為雙質子酸,隨溶液中 pH 的改變而以不同型式存在, 而且所有熱力學及動力學性質,也隨不同形式的酸而有顯著的差異, 維他命 C 在不同型式之熱力學及動力學參數列於 Table 1.6。

由於[Fe(CN)₅L]³⁻對取代反應為惰性之錯合物,也沒有額外可供 鍵結的位置,因此與維他命 C 的反應屬於外圈電子轉移反應,根據 所得動力學結果,我們推測反應機構為

$$H_2A \xrightarrow{Ka_1} H^+ + HA^-$$
(2)

$$HA^{-} \xrightarrow{Ka_{2}} H^{+} + A^{2-}$$
 (3)

$$Fe(CN)_5 L^{2-} + H_2 A \xrightarrow{k_0} Fe(CN)_5 L^{3-} + H_2 A^{+}$$
(4)

$$\operatorname{Fe}(\operatorname{CN})_{5}\operatorname{L}^{2^{-}} + \operatorname{HA}^{-} \xrightarrow{k_{1}} \operatorname{Fe}(\operatorname{CN})_{5}\operatorname{L}^{3^{-}} + \operatorname{HA}^{\cdot}$$
(5)

$$\operatorname{Fe}(\operatorname{CN})_{5}\operatorname{L}^{2^{-}} + \operatorname{A}^{2^{-}} \xrightarrow{k_{2}} \operatorname{Fe}(\operatorname{CN})_{5}\operatorname{L}^{3^{-}} + \operatorname{A}^{-^{-}}$$
(6)

$$\operatorname{Fe}(\operatorname{CN})_{5}\operatorname{L}^{2^{-}} + \operatorname{H}_{2}\operatorname{A}^{+} \xrightarrow{fast} \operatorname{Fe}(\operatorname{CN})_{5}\operatorname{L}^{3^{-}} + 2\operatorname{H}^{+} + \operatorname{A}$$
(7)

$$Fe(CN)_5L^{2-} + HA \xrightarrow{fast} Fe(CN)_5L^{3-} + H^+ + A$$
(8)

$$Fe(CN)_5 L^{2-} + A^{-} \xrightarrow{fast} Fe(CN)_5 L^{3-} + A$$
(9)

根據此反應機構,反應速率式為

$$-\frac{d[Fe(III)]}{dt} = k_{\rm obs}[Fe(III)]$$
(10)

$$k_{\rm obs} = 2k[{\rm H_2A}] \tag{11}$$

$$k = \frac{k_0 [\mathrm{H}^+]^2 + k_1 \mathrm{Ka}_1 [\mathrm{H}^+] + k_2 \mathrm{Ka}_1 \mathrm{Ka}_2}{[\mathrm{H}^+]^2 + \mathrm{Ka}_1 [\mathrm{H}^+] + \mathrm{Ka}_1 \mathrm{Ka}_2}$$
(12)

由 eq. (11) 中之 2 為統計因子(statistical factor),乃為考慮兩電子的還 原。

1. **[H⁺]=0.01 ~ 0.10 M**

從 Table 1.6 中之 Ka₁, Ka₂得,在此範圍[H⁺]»Ka₁、Ka₂, eq. (12)可簡 化為

$$k = \frac{k_0 [\mathrm{H}^+] + k_1 \mathrm{Ka}_1}{[\mathrm{H}^+]}$$
(13)

當以 *k*對 1/[H⁺]作圖可得良好的線性關係,如 Fig. 1.18 所示,與 eq. (13) 一致,利用非線性最小平方差根據 eq. (13)分析 *k* vs [H⁺],並帶入 Ka₁=8.32×10⁻⁵所得 *k*₀及 *k*₁ 值列於 Table 1.7。

2. pH 4.0~6.0

在此範圍下, k_o[H⁺]²+k₂Ka₁Ka₂«k₁Ka₁[H⁺], 且Ka₁Ka₂«[H⁺]²+Ka₁[H⁺], 因此 eq. (12)可簡化為

$$k = \frac{k_1 K a_1}{[H^+] + K a_1}$$
(14)

當以 k 對 1/[H⁺]作圖時兩者呈線性關係,且通過原點,如 Fig. 1.20 所 示,利用單參數最小平方差分析 k vs 1/[H⁺],從斜率我們得到 k₁ 值, 結果亦列於 Table 1.7。

3. pH 7.5-8.0

在此條件下, k₀[H⁺]² «k₁Ka₁[H⁺]+k₂Ka₁Ka₂, 且[H⁺]²+Ka₁Ka₂ «Ka₁[H⁺], 此時 eq. (12)可簡化為

$$k = k_1 + \frac{k_2 K a_2}{[H^+]}$$
(15)

從 Table 1.4 我們發現,在此條件下, k 較 k_1 值大上兩次幕以上,因此

eq. (15)中之 k1 可以忽略,如 eq. (16)表示

$$k = \frac{k_2 \operatorname{Ka}_2}{[\mathrm{H}^+]} \tag{16}$$

代入 Table 1.4 中 pH=7.52(L=py, isn, bpy)之 k 值和 pH=8.02(L=CN)之 k

值,求得 k_2 值結果亦列於 Table 1.7。

Table 1.6、Ascorbic acid 之熱力學及動力學參數

	рКа
$H_2A \implies HA^- + H^+$	4.08 ^a
$HA^- \implies A^{2-} + H^+$	11.34 ^b
	$E_{1/2}$, V ^c
$H_2A^{\dagger} + e \implies H_2A$	1.17
$HA \bullet + e \implies HA^-$	0.71
$A^{\bullet} + e \implies A^{2-}$	0.015
	$k_{ex}, M^{-1}s^{-1}d$

$H_2A + H_2A^{\dagger} \implies H_2A^{\dagger} + H_2A$	2.0×10^{3}
НА⁻+НА• 💳 НА•+ НА⁻	1.0×10^{6}
$A^{2-} + A^{-} \Longrightarrow A^{-} + A^{2-}$	2.0×10^5

a. ref [8] b. ref [3] c. ref [11] d. ref [13]

♦py ▲isn ∎bpy ●CN

Table 1.7 \sim Rate Constants for the Reductions of Fe(CN)₅L²⁻ Complexes by Ascorbic Acid^a

Fe(CN) ₅ L ²⁻	E ⁰ ,	$k_0, 1$	$M^{-1}s^{-1}$	$k_l, \mathbf{M}^{-1}\mathbf{s}^{-1}$	1	$k_2, \mathbf{M}^{-1}\mathbf{s}$	-1
L	(VvsNHE)	meas	calcd	meas	calcd	meas	calcd
ру	0.44	1.79±0.05	4.78×10 ^{-3b}	$(8.4\pm0.1)\times10^{2 d}$	1.88×10^{3}	(6.5±0.1)×10 ^{8 f}	3.06×10 ⁸
				$(2.4\pm0.2)\times10^{3}$ e			
isn	0.50	7.0±0.3	2.65×10 ^{-3b} (8.53) ^c	(3.1±0.1)×10 ^{3 d} (5.7±0.2)×10 ^{3 e}	7.57×10 ³	(8.8±0.1)×10 ^{8 f}	5.95×10 ⁸
bpyH⁺ bpy	0.54 0.49	4.4±0.3	3.34×10 ^{-2b} (8.42) ^c	(7.1±0.1)×10 ^{3 d} (5.3±0.1)×10 ^{3 e}	1.14×10 ⁴ 6.17×10 ³	(7.9±0.1)×10 ^{8 f}	5.42×10 ⁸
CN ^g	0.50	0.42±0.02	2.73×10 ^{-3b} (0.84) ^c	$(5.2\pm0.1)\times10^{2}$ d $(6.4\pm0.1)\times10^{2}$ e	1.95×10^{3} 1.72×10^{3}	(3.6+0.1)×10 ^{7 f}	2.29×10^7
2 // ·	-0.10M HC			(0.120.1)/(10	1.72×10	(3.020.1)/(10	2.27×10
b using $E^0(H, \Lambda)^+/H, \Lambda) = 1.17V$							
$\frac{1}{2} = \frac{1}{2} $							
c. usi	c. using $E(112A, 112A) = 0.555 V$ see text						
d. calculated according to eq.12							

e. calculated according to eq.14

f. calculated according to eq.15

g. $[Fe(CN)_6H]^{2-/3-}$

1.4.2 Marcus Theory

由於[Fe(CN)₅L]²⁻-H₂A 系統屬外圈電子轉移反應,而外圈電子 轉移反應的特色,便是結果可以 Marcus 理論加以印證或修正。根據 Marcus 理論[42, 43],外圈電子轉移反應 eq. (17),反應速率常數可以 eqs. (18)-(22)求得,

$$Ox_1 + Red_2 - Red_1 + Ox_2$$
(17)

$$k_{12} = \sqrt{k_{11}k_{22}\mathbf{K}_{12}f_{12}}W_{12} \tag{18}$$

$$\ln f_{12} = \frac{\left[\ln K_{12} + (w_{12} - w_{21})/RT\right]^2}{4\left[\ln(k_{11}k_{22})/10^{22} + (w_{11} + w_{22})/RT\right]}$$
(19)

$$W_{12} = exp\left[-\left(w_{12} + w_{21} - w_{11} - w_{22}\right)/2RT\right]$$
(20)

$$w_{ij} = \frac{z_i z_j e^2}{D_s a_{ij} \left(1 + \beta a_{ij} \mu^{\frac{1}{2}}\right)}$$
(21)

$$\beta = \left(\frac{8N\pi e^2}{1000D_s k_B T}\right)^{1/2} \tag{22}$$

 k_{11} 、 k_{22} 為氧化劑及還原劑之自身電子轉移(self-exchange)反應速率常 數, w_{11} 、 w_{22} 為相對的 work terms, w_{12} 、 w_{21} 為 eq. (21)反應物及生成 物之 work terms, K_{12} 為反應平衡常數, a_{ij} 為反應物的原子核間最近 距離(closes approach distance),通常為反應物的半徑和, z_i 、 z_j 為離子 電荷數, e 為電子的電荷, μ 為離子強度,N為亞佛加厥常數, D_s 則 為水的介電常數。 $[Fe(CN)_5L]^{2-l^3}$ 錯合物的自身電子轉移速率 $k_{11}=7\times10^5 \text{ M}^{-1}\text{s}^{-1}(L=py,$ isn, bpy)[44]、9.6×10³ M⁻¹s⁻¹(L=CN), ascorbic acid 的自身電子轉移速 率列於 Table 1.6,半徑 $\gamma_{H_2A}=3.5\times10^{-8}\text{cm}[45]$ 、 $\gamma_{Fe(III)}=5.0\times10^{-8}\text{cm}$ (L=py, isn, bpy)[46]、4.5×10⁻⁸cm(L=CN)[47],而K₁₂可由在不同 pH 條件下 H₂A(Table 1.6)及[Fe(CN)₅L]^{2-l3-}(Table 1.7)之還原電位依 Nerst 方程式 求得,在水溶液中 25°C 條件下,Nerst 方程式可以 eq. (23)表示

$$\Delta E = E_{1/2}^{Ox} - E_{1/2}^{red} = 0.0591 \times \log K_{12}$$
(23)

根據以上數據,我們可以 Marcus 理論分析 H₂A 還原反應 $k_0 \cdot k_1 Q k_2$ 值,所得理論計算結果列於 Table 1.7。由結果發現, $k_1 \cdot k_2 \ge$ Marcus 理論計算值與實驗值相近,但 k_0 則較實驗值至少小了二次冪。如此 大的差異我們認為可能是 H₂A·⁺/H₂A 還原電位差異所引起,Table 1.6 所列 H₂A·⁺/H₂A 還原電位乃以間接方法從 hydroquinone 的解離常數 [48] 推測而得的,可能不是很準確,Kimura 等[49]曾探討在酸性溶液 中 H₂A 還原 Fe(phen)₃³⁺之反應動力學得 k_0 =1.7×10⁵M⁻¹s⁻¹,但若以 E_{1/2}(H₂A·⁺/H₂A)=1.17V,則發現 Marcus 理論計算值為 2.0×10⁴M⁻¹s⁻¹, 相差一次冪之多,若以[Fe(CN)₅py]²⁻測得的 k_0 (1.79 M⁻¹s⁻¹)代入 Marcus 處理,則求得 H₂A·⁺/H₂A 之還原電位為 0.955V。將此還原電位值代入 計算 L=isn、bpy 和 CN 時,其 Marcus 理論計算值亦與實驗值接近, 所得結果列於 Table 1.7。再以此值嘗試 $Fe(phen)_3^{3+} - H_2A$ 系統之 Marcus 理論計算值,得 $k_0=4.8\times10^5 M^{-1}s^{-1}$,與實驗值頗為一致,因此 我們相信,以 $E_{1/2}=0.955V$ 較能代表 H_2A .⁺/ H_2A 還原電位實際值。

從 ascorbic acid 與 Fe(CN)₅L^{2-/3-}錯合物之電位求得反應 eq. (23)之 平衡常數 k₁,結果列於 Table 1.8,以 log k₁對 logK₁作圖,如 Fig. 1.21 所示,呈線性關係,斜率為 0.50±0.05 與外圈電子轉移反應的預測值 0.5[42,43]相符,符合 Marcus-Hush 的外圈電子轉移機構理論。

Fe(Cl	v b, c	
L	\mathbf{E}^{0} , V	\mathbf{K}_1
Ру	0.44	2.65×10 ⁻⁵
Isn	0.50	2.76×10^{-4}
bpy	0.49	1.87×10^{-4}
CN	0.37	1.73×10^{-6}
NO	0.39^{a}	3.77×10 ⁻⁶

Table 1.8、[Fe(CN)₅L²⁻]與ascorbic acid反應之平衡常數K

a. reference [51]

b. eq. (12)之平衡常數

c. 利用維生素C及Fe(III)錯合物還原電位,依Nerst equation求得

Figure 1.21、以ascorbic acid還原[Fe(CN)5L]²⁻錯合物之logk1對logK1作圖

Haim等人[30]亦曾探討[H⁺]=0.01~0.10M條件下,Ru(NH₃)₅L³⁺-H₂A系統的電子轉移反應,結果發現即使在酸性條件,仍然無法求得 k_0 值,換句話說,在酸性溶液中HA⁻仍主導整個還原反應,我們以Ru(NH₃)₅py³⁺為例,當E⁰(H₂A·⁺/H₂A)=0.955V,則Marcus理論計算值 k_0 為3.0×10⁻² M⁻¹s⁻¹, k_1 為2.7×10² M⁻¹s⁻¹, k_1/k_0 =9.0×10³,然而,Fe(CN)₅py²⁻的 k_1/k_0 =1.1×10³,比Ru(NH₃)₅py³⁺的值小了八倍,二者的差異主要為反應物的電荷效應所導致,根據外圈電子轉移機構,反應物在進行電荷轉移前首先形成離子對,如eq(1)所示,為極快速之步驟,屬於擴散控制(diffusion controlled),Q_{IP}受反應物之電荷影響,如式(24)表示

$$Q_{IP} = \frac{4\pi N a^3 3}{3} \exp(\frac{-w_{ij}}{RT})$$
(31)

在酸性的條件時,當維他命C以H₂A的中性型式存在時,不具有電子效應,因此不受Ru(NH₃)₅py³⁺錯合物的電荷影響,但當維他命C為HA⁻

的型式時,與Ru(NH₃)₅py³⁺錯合物所帶的電荷相反,由於吸引力的關 係容易形成離子對,形成常數的值也會增加,所以Q_P值大,而HA⁻ 與Fe(CN)₅py²⁻錯合物相同皆帶負電荷,由於排斥力的關係不容易形成 離子對,所以Q_P值小,所以根據式(31),求得Fe(CN)₅py²⁻-H₂A與 Ru(NH₃)₅py³⁺-H₂A系統的Q_P值分別為0.633及5.20 M⁻¹,兩者的Q_P值 也正好差了八倍,與 k_1/k_2 值相符合。經由修正 k_1 後二者Q_P值分別為 2.0×10³及2.5×10³,相當接近。

Elding[51,52] 曾探討 haloam(m)ine platinum(IV) 錯合物與 ascorbate(A²⁻)之還原反應,並發現 A²⁻之反應活性相較於 HA⁻大了近 七次冪,然而在本系統中, k₂/k₁之比值僅五次冪,我們認為此差異主 要來自反應機構的不同。

 $Fe(CN)_5L^{2-}$ 之還原反應過程,電子轉移步驟屬於外圈電子轉移機 制, A^{2-} 之反應速率較 HA⁻為快,主要原因可歸納為 A^{2-} 具有較大的反 應驅動力。由於 HA⁻與 A^{2-} 之 k_{ex} 值相近,顯示兩者之內在反應活性 (intrinsic reactivity)亦非常相似,因此根據 Marcus 理論(eq. (16)), k_2/k_1 之比值應與反應平衡常數 K 之比值的平方根成正比,計算後發現 HA⁻- Fe(III)與 A^{2-} -Fe(III)兩系統間之 \sqrt{K} 比值為 7×10⁵。

Pt(IV)錯合物之還原反應則屬於分子內電子轉移,如 Fig. 1.22 所示,還原劑與金屬上的氯離子配位形成雙核錯合物,在此系統中,

58

HA⁻之質子的強拉電子力,使得電子經由橋基轉移至金屬中心的困難 性超過 A²⁻的平衡能障因素,使得 Pt(IV)錯合物還原反應之 A²⁻反應活 性較 HA⁻大了近七次冪的原因。

Figure 1.22、*cis*-[PtCl₄(NH₃)₂] 錯合物與 A²⁻之還原反應之分子內電子轉移

Beckford[53] 曾探討雙核錯合物[Fe₂(CN)₁₀]⁴⁻與ascorbic acid之還 原反應,並發現反應受到陽離子效應的影響,由反應速率的快慢顯示 反應活性依序為K⁺ > Na⁺ > Li⁺, Beckford認為此效應乃溶液中形成離 子三聚體(Triplet) [Fe₂(CN)₁₀]⁴⁻·M⁺·A⁻所致,然而在我們的系統及條 件下,分別使用數種鹼金族陽離子,我們發現還原速率並沒有因為陽 離子不同而呈現明顯的差異,結果如Table 1.5所示。

我們認為兩系統間的差異主要來自於錯合物之電荷不同所致, [Fe2(CN)10]⁴⁻即使在與陽離子形成離子對後,依然具有強的負電荷, 因此在形成離子三聚體時仍將存在極強的靜電排斥力。由於鉀離子具 有較大的離子半徑,可與陰離子作有效的分隔,使得靜電排斥力則大 大的減弱,進而使離子三聚體穩定化,因此造成陽離子效應。

1.5. 結論

- 1、 維他命 C 對[Fe(CN)₅L]²⁻(L=py, isn, 4-4'-bpy, CN)還原反應隨溶液
 pH 的增加而有明顯的增快, k₀: k₁: k₂=1:10³:10⁸。
- 2、還原反應的差異主要導因於維他命C之 equilibrium barrier (K₁₂)
 及維他命C在不同型態中反應活性(k_{ex})。
- 3、 [Fe(CN)₅py]²⁻在酸性溶液中的反應速率常數 k₀,進一步推測 H₂A·⁺/H₂A 之還原電位為 0.955V。
- 4、維他命C對[Fe(CN)5L]²⁻還原反應,屬於外圈電子轉移機制。

6. 參考文獻

- 1. S. S. Zilva, Biochem. J., 18 (1924) 182
- 2. S. S. Zilva, Biochem. J., 18 (1924) 632
- 3. S. S. Zilva, Biochem. J., 23 (1929) 1199
- 4. C. G. King, Proc. Nutrit. Soc., 12 (1953) 219
- 5. H. L. Sipple and C. G. King, J. Am. Chem. Soc., 52 (1930) 470
- 6. D. P. Grettie and C. G. King, J. biol. Chem., 84 (1929) 771
- 7. J. L. Svirbely, and A. Szent-Györgyi, Biochem. J., 27 (1933) 279
- 8. A. Szent-Györgyi and W. N. Haworth, Nature, Lond., 24 (1933) 131
- W. N. Haworth, E. L. Hirst, J. K. N. Jones, and F. J. Smith, J. Chem. Soc., (1934) 1192
- 10.J. Hvoslef, Acta Chem. Scand., 18 (1964) 841
- 11.J. Hvoslef, Acta Crystallogr., Sect. B 24 (1968) 23
- 12.D. L. Sorby, J. Pharm. Sci., 58 (1966) 788
- 13.P. A. Seib and B. M. Tolbert, Ascorbic Acid : Chemistry, Metabolism,

and Uses ; American Chemical Society : Washington, D.C. 1982.

- 14.D. M. Bryan, S. D. Pell, R. Kumar, M. J. Clarke, V. Rodriguez, M. Sherban and J. Charkoudian, *J. Am. Chem. Soc.*, 110 (1988) 1498
- 15.L. Michaelis, J. Biol. Chem., 96 (1932) 703
- 16.K. M. Laeoff, R. W. Fessenden and R, H, Schuler, J. Am. Chem. Soc., 94 (1972) 9062
- 17.A. E. Martell, R. M. Smith, "Critical Stability Constants"; Plenum

Press : New York, 3 (1979) 264

- 18.J. Hovslef, Acta Crystallogr., Sect. B 28 (1972) 916
- 19.H. Albers, E. Müller, and H. Dietz, Hoppe-Seyler's Z. Physiol. Chem.,334 (1963) 243
- 20.J. Hvoslef and B. Pedersen, Acta Chem. Scand., Ser. B 33 (1979) 503

- 21.K. Pfielstucker, F. Marx and M. Bockisch, *Carbohydr. Res.*, 45 (1975)269
- 22.M. M. Taqui Khan and A. E. Martell, *J. Am. Chem. Soc.*, 89 (1967) 4176
- 23.A. O. Dekker and R. G. Dickinson, J. Am. Chem. Soc., 62 (1940) 2165
- 24.G. A. Hamilton, Adv. Enzymol. Delat. Subj. Biochem., 32 (1969) 55
- 25.U. S. Mehrotra, M. C. Agrawal and S. P. Mushran, *J. Phy. Chem.*, 75 (1969) 1996
- 26.E. Pelizzetti, E. Mentasti and E. Pramauro, *Inorg. Chem.*, 17 (1978) 1181
- 27.D. H. Macartney and N. Sutin, Inorg. Chim. Acta., 74 (1983) 221
- 28.E. Pelizzetti, E. Mentasti and E. Pramauro, *Inorg. Chem.*, 15 (1976) 1898
- 29.S. K. Saha, M. C. Ghosh and E. S. Gould, *Inorg. Chem.*, 31 (1992) 5439
- 30.M. J. Akhtar and A. Haim, Inorg. Chem., 27 (1988) 1608
- 31.P. C. Ford, De F. Rudd, G. Gaunder and H. Taube, *J. Am. Chem. Soc.*, 90 (1968) 1197
- 32.R. E. Shepherd and H. Taube, Inorg. Chem., 12 (1973) 1392
- 33.H. E. Toma and J. M. Malin, Inorg. Chem., 12 (1973) 1039
- 34.H. E. Toma and J. M. Malin, Inorg. Chem., 12 (1973) 2080
- 35.G. Brauer, "Handbook of prepartive Inorganic Chemistry" Vol. 2, and ed., Academic Press, New York, N. Y., 9 (1965) 1511
- 36.A. Yeh and A. Haim, J. Am. Chem. Soc., 107 (1985) 269
- 37.J. Phillips, A. Haim, Inorg. Chem., 19 (1980) 1616
- 38.D. A. Dows, W. K. Wilmarth, A. Haim, J. Inorg. Nucl. Chem., 21 (1961) 33.

- 39.G. W. Franco and H. Taube, Inorg. Chem. 17 (1978) 571.
- 40.M. L. Chen and A. Yeh, J. Chin. Chem. Soc., 48 (2001) 849
- 41.D. A. Dows, W. K. Wilmarth and A. Haim, *J. Inorg. Nucl. Chem.*, 21 (1961) 33
- 42.R. A. Marcus, Ann. Rev. Phys. Chem., 15 (1964) 155
- 43.R. A. Marcus and N. Sutin, Biochim. Biophy. Acta., 811 (1985) 265
- 44.H. E. Toma, J. M. Malin, Inorg. Chem. 12 (1973) 1039
- 45.H. Macartney, N. Sutin, Inorg. Chim. Acta., 74 (1983) 221
- 46.J. Phillips, A. Haim, Inorg. Chem. 19 (1980) 1616
- 47.A. Haim and N. Sutin, Inorg. Chem. 15 (1976) 476
- 48.E. Pelizzetti, E. Mentasti and E. Baiochi, J. Phys. Chem., 81 (1976) 2979
- 49.D. H. Macartney and N. Sutin, Inorg. Chim. Acta., 74 (1983) 221
- 50.A. Wanat, R. van Eldik, G. Stochel. J. Chem. Soc., Dalton Trans., (1998) 2497
- 51.K. Lemma, A. M. Sargeson, L. I. Elding, J. Chem. Soc, Dalton Trans., (2000) 1167
- 52.K. Lemma, D. A. House, N. Retta, L. I. Elding, *Inorg. Chim. Acta*, 331 (2002) 98
- 53.F. A. Beckford, T. P. Dasgupta, G. J. Stedman, J. Chem. Soc, Dalton Trans., (1995) 2561

Part II

Al(III)與 quercetin 及類黃酮衍生物形成螯合錯合物光 譜及動力學探討

2.1 序論

十六世紀末,當時的西方海軍及船員在值勤時,由於長期

生活在海上,所引起的壞血病,雖知此症狀可藉食用柑橘類的 食物治療,但一直無法確定究竟柑橘類中的何種成分具有此療 效,主要是由於化合物不穩定,加上分析儀密之故,直到1933 年 Szent-Györgyi [1] 從紅椒 (paprikas) 提煉大量此化合物的方 法, 並確定其成分, 命名此化合物為 ascorbic acid, 即眾所皆 知的維他命 C, 並因此獲得 1937 年諾貝爾醫學獎。後來 Szent-Györgyi [2]為了加強維他命 C 對壞血病的療效,合成出 高純度的維他命 C,但在治療壞血病的相關症狀(如毛細管容易 破裂而形成淤血)時,發現其效果不如來自天然食物的攝取, 由於這些高純度的合成維他命 C 是從柑橘類水果等植物中分 離出來,所以他認為這些柑橘類水果中應該還有其他重要成分 更為有效。果然後來在檸檬皮中成功分離出一種化合物,他稱 之為檸檬素(citrin),即聖草酚(Eriodictyol)[3],如Fig. 2.1所示, 屬於黃烷酮(flavonone)的結構。而研究後發現,這種物質有強化

Eriodictyol

Figure 2.1、Eriodictyol 之結構

血管壁的作用,效果比純維他命 C 更好,且可配合維他命 C 發 揮互補作用,相互強化彼此的功能[4]。Szent-Györgyi 認為這應該 也是人體不可缺乏的維他命,於是把 citrin 定名為維他命 P。 後來其它文獻中發現更多具有類似結構的活性物質,如 Higby[5]及 Majovski[6]在製配 hesperidin(桔皮苷)及 hesperetin(橙皮素)如 Fig. 2.2 所示,均與維它命 P 具有相同的功效,其結構亦與 eriodictyol 相似,最後並確定這類化合物均屬於類黃酮類,其結 構如 Fig. 2.4 所示。

Figure 2.2、hesperidin 及 hesperetin 之結構

類黃酮其名稱源自於拉丁語之"flavus"乃為黃色之意,為存在植物表皮的一種色素,具有遮斷紫外線功能。在1983年 Waiter de Gruyter 學者將類黃酮物質定義為"自然界中一群含有苯基之有色物質"。

近年來類黃酮的研究已引起科學家們的高度興趣,除了可維護人 體健康外,主要乃是因為許多醫學研究發現,攝取蔬菜及水果對人體 健康具有極大的幫助,例如:防癌、抗老化、促進新陳代謝及提高免 疫力等,這些功能都與蔬菜中所含類黃酮的生物活性(biological activity)有關[7-10]。類黃酮是多酚化合物(polyphenols)的一種,僅存 在於植物體內,含量僅次於纖維素、半纖維素和木質素,分布於植物 的皮、根、葉和果中,主要功能包括防禦紫外線、授粉期的誘蟲劑、 花粉管的出芽、對抗入侵的細菌以及抑制植物體的過氧化作用等等, 為植物在自體防禦、種籽保存及繁殖上的重要成份[11]。

類黃酮的基本結構包括兩個苯環(A、B 環)及含氧之 pyran 環(C 環) (2-phenyl-benzo-α-pyranes),為 C6-C3-C6 型式,如 Fig. 2.3 所示:

Figure 2.3、類黃酮的基本結構

由於每個環的碳上均可接上羥基、甲基等官能基,C 環上的變化更 多,例如在 C-2 或 C-3 的位置可接 phenyl 官能基,C-2 與 C-3 以雙鍵 鍵結,C-3 上連接醣基、C-4 上的酮基以及 C 環之開環形式,故類黃 酮種類十分繁多,目前已有超過 6000 種的天然類黃酮(bioflavonoid) 被分離及鑑定,且數目還在持續增加之中。其分類類型主要以結構上 的變化做區分,可分為:黃酮類(flavones)、黃烷酮類(flavanones)、黃 烷 醇 類 (flavanonols)、 異 黃 酮 類 (isoflavones) 以 及 花 青 素 類 (anthocyanine),如 Fig. 2.4 所示。

Isoflavone

Anthocyanine

Figure 2.4、類黃酮衍生物之結構

(1)黃酮類:為類黃酮最基本的結構,具有抗氧化效果的衍生物,如: 芹素(apigenin)、木犀草素(luteolin)、山茶酚(kaempherol)、芸香苷 (rutin)、槲皮素(quercetin)等等。

(2) 黃烷酮類: C 環之 C₂ 及 C₃ 位置為單鍵, 具有抗氧化效果的衍生物,

如:橘皮苷(hesperidin)、taxifolin 等等。

- (3)黃烷醇類:C環之C4位置之羰基以羟基取代,且C2及C3位置雙 鍵變為單鍵,如:兒茶素(catechin)、表兒茶素(epicatechin)、表沒 食子兒茶素沒食子酸(epigallocatechin gallate)、表沒食子兒茶素 (epigallocatechin)、表兒茶素沒食子酸(epicatechin gallate)等等。
- (4) 異黃酮類:苯環不是結合於 C 環的 C₂位置,而是 C₃位置,如:
 daidzein、daidzin 等等。
- (5)花青素類:C環之C1、C2及C3、C4位置為雙鍵,且C3位置有羥基取代,如:矢車菊色素配質(cyanidin)、花翠配質(delphinindin)等
 等。

由於類黃酮為多酚化合物,一般科學家認為其生物及醫藥活性主要來自化合物抗氧化 (antioxidation)能力,特別是清除自由基的功能,氧自由基為人體內細胞新陳代謝的必然產物,種類繁多如:O2⁻⁻、HO·、NO·、RO·及 ROO·,而其中以超氧自由基 O2⁻⁻為主,為老化及各種疾病的原兇[12],其他氧自由基皆由 O2⁻⁻所衍生出來的。生物體內生成之活性氧主要是經由 eq. (1)-(3)而形成:

$$O_2 + e^- \longrightarrow O_2 \cdot^-$$
 (1)

 $O_2 \cdot - + 2H^+ \xrightarrow{SOD} H_2O_2$ (2)

$$2H_2O_2 \xrightarrow{catalase} 2H_2O + O_2 \tag{3}$$

eq. (1)表示,氧分子在經過單一電子之還原反應後生成超氧自由基, 主要生成於進行電子傳遞的粒腺體。細胞內之粒腺體主要的功能是將 小分子物質如 pyruvate,經由檸檬酸循環(citric acid cycle)及一連串之 電子傳遞轉化成能量並加以利用。而 O₂·-會導致脂質過氧化反應產生 並破壞粒腺體[13]。通常超氧自由基生成後,可藉體內超氧歧化酶 (superoxide dismutase, SOD)與氫離子作用形成過氧化氫(H₂O₂),如 eq. (2)所示。而 H₂O₂ 再進一步藉過氧化氫酶(catalase, CAT)加以清除,如 eq. (3)所示。如體內 SOD 不足或缺乏時,可藉蔬果等食物的補充來彌 補,因此蔬果對維護人體健康非常重要。如 O₂·-無法完全消除,累積

$$H_2O_2 + O_2 \cdot^- \xrightarrow{\& B \\ \longrightarrow} OH^- + \cdot OH + O_2$$
 (4)

至相當濃度時,有可能與 H₂O₂ 作用而生成·OH 離子,如 eq. (4) [14],·OH 更可藉一連串連鎖反應而生成各類的氧自由基。

近代由於科技發達,生活程度提高,因此飲食習慣也隨著改變, 常攝取過量肉類蛋白質,因此除蔬果外,仍需額外抗氧化食物的補 充,除各種維他命,如常見的維他命 C (ascorbic acid)、維他命 E (α-tocopherol)、胡蘿菠素(β-carotene)外,近年來各種含豐富類黃酮食 品或飲料也廣受重視,而食品科學家們更努力希望從植物中提煉出有 用的類黃酮,作為健康食品甚至應用於醫藥用途。 為了解類黃酮的抗氧化活性,本實驗室最近也開始探討類黃酮其 氧化還原反應,並已完成對 catechin 及 rutin 的探討,結果發現類黃 酮之內在活性(intrinsic reactivity)比維他命 C 大至少三次冪,顯示類黃 酮有比維他命 C 更強的抗氧化活性[15]。

類黃酮另外一個重要功能就是具有螯合金屬的能力,由於具有多 重酚基,類黃酮可與多種金屬離子形成螯合物,甚至可以透過與金屬 (例如 Fe(II),Fe(III)或 Cu(I))之間的相互作用,而發揮抗氧化活性 [16],其可能的原因是透過與金屬離子的螯合和阻止金屬離子的毒 性。Kostyuk[17]曾以 rutin、quercetin 和 epicatechin,與 Fe(II)、Fe(III)、 Cu(I)和 Zn(II)形成螯合錯合物,發現清除自由基的能力比單獨類黃酮 的能力強,這是由於增加體內除了超氧化歧酶(superoxide dismutase, SOD)以外的抗氧化錯合物,來消除自由基,因此這些螯合錯合物有 效的保護因氧化導致紅血球的纖維化。

另外亦有文獻也報導,類黃酮特別是 quercetin 與 Fe²⁺反應形成螯 合錯合物,可抑制 Fenton reaction[18-20]發生 fenton reaction,如 eq. (5) 所示,這是因為 H₂O₂ 雖然不具有未成對電子,不致於立刻與生物分 子作用,但它會通過細胞膜,若與游離的 Fe²⁺離子結合時產生羥基自 由基。

$$Fe^{2+} + H_2O_2 \longrightarrow Fe^{3+} + HO_2 + OH^-$$
 (5)

Cu²⁺離子在人體內會引起低密度脂蛋白(low density lipoprotein, LDL)的氧化[18],由於 LDL 富含膽固醇及不飽和脂肪酸,如亞麻油 酸(linoleic acid)、花生四烯酸(arachidonic acid)及二十二碳六烯酸 (docosahexaenoic acid, DHA),容易受到活性氧物質(reactive oxygen species, ROS)及金屬離子的催化而氧化,形成氧化態的 LDL,巨噬細 胞會將氧化態的 LDL 吞噬,但又無法將其分解,因而形成泡沫細胞 (foam cell)[21],堆積在動脈壁上形成脂質斑塊,使血管內皮細胞受 損,受損的內皮細胞會促進平滑細胞的增生以及膠原蛋白的堆積,進 而阻礙血流,造成血栓,導致動脈硬化及心肌梗塞的發生,因此 LDL 的氧化目前被認為是導致心血管疾病及腦血管疾病的主因之一 [22],Cu²⁺與類黃酮之錯合物可預防,甚至阻止 Cu²⁺對 LDL 的氧化, 進而防止因而所引起的各類疾病。

Al³⁺可與多種類黃酮進行螯合形成錯合物,可減低體內 Al³⁺自由 離子,因此我們可以從飲食中攝取類黃酮,來消除體內多餘的 Al³⁺ 自由離子[23],由於 Al³⁺被懷疑在人體中會造成腦神經及骨質系統亂 序,繼而引起帕金森氏症(Parkinson's disease)及老人癡呆症 (Alzheimer's disease)等疾病[24,25],而這種 Al³⁺與類黃酮螯合之錯合 物已證實為體內金屬很好的解毒劑[26]。

為了更了解金屬與類黃酮螯合錯合物的特性,本論文將探討 Al³⁺

72
與 quercetin 之螯合反應,從光譜及動力學探討錯合物的螯合位置、 反應活性以及穩定性。quercetin 結構包括兩個苯環(A、B 環)及含氧 之 pyran 環(C 環)所組成,是一種普遍常見的天然類黃酮,存在於蘋 果、洋葱、葡萄柚、莓果、茶和紅葡萄酒中,在生物及醫藥活性方面 常起科學家的注意[27,28],具有很強的抗氧化能力[29]、抗癌[30]、 抗發炎[31]、抗過敏[32]和幫助血管擴張作用[33]等性質,且另外 quercetin 已被證明具有預防老人癡呆症的功能,雖然詳細機制仍不能 確定,但一般都認為與 quercetin 螯合 Al³⁺離子形成錯合物有關[24]。

由於 quercetin 有多重螯合位置,為了確定 Al(III)螯合位置,我們 同時探討 fisetin、luteolin、3- hydroxyflavon、5-hydroxyflavone、chrysin 和 rutin 等具單一螯合位置的類黃酮, quercetin 及其他類黃酮的結構 式如 scheme 1 所示,由於類黃酮的水溶性很低,因此所有反應均在 9: 1(CH₃OH/H₂O)混合溶劑下進行,另外,Al(III)在 pH≥4 條件下,會因 錯合現象造成困擾,因此反應均維持在酸性溶液中。

Quercetin

3-hydroxyflavone

0

-OH

OH

-ОН

5-hydroxyflavone

chrysin

scheme 1

2.2 實驗部分

2.2.1 [Al(quercetin)(CH₃OH)(ClO₄)]ClO₄·2C₂H₅OC₂H₅之合成

將 2.0 克 Al(ClO₄)₃ (4 mmoles)和 0.1 克 quercetin (0.2 mmole)於 10mL CH₃OH/H₂O(9:1), [HClO₄]=0.01M 溶液中反應,避光下持續反應 11 小時,且不停攪拌。逐次加入固體 LiClO₄ 約 1.0 克,持續攪拌直 到溶液呈混濁後冰浴三小時,過濾收集沉澱物用乙醚清洗,置於真空 乾燥器中乾燥,產量:80 毫克(55%)。元素分析 AlC₂₄H₃₃O₁₈Cl₂計算值 C:40.75%、H:4.70%。實驗值 C:40.81%、H:4.67%。

2.2.2 儀器

元素分析

所有化合物均送往中興大學或交通大學貴重儀器中心,以 Heraeus CHN-O Rapid 元素分析儀,偵測樣品之N、C、H元素的含 量百分比。

質譜儀

委託龍鳳娣老師實驗室,以 Brunker Esquire 6000,離子源為電灑 離子化法(electrospray ionization, ESI)測量。

核磁共振光譜

類黃酮及其螯合錯合物之¹H-NMR 和¹³C-NMR 光譜,皆委託中興大學貴重儀器中心,以高磁場核磁共振儀(Varian Unity Inova-600) 測量。

密度函數理論(Density Functional Theory, DFT)

委託劉光華老師,選用 Gaussian 03 的 B3LYP/6-31G^{*} level 和 Jaguar 7.5,分析計算 Al-quercetin 的錯合物不同螯合位置之相對自由 $\pounds(\Delta G^o)$ 。

2.3 結果與討論

2.3.1 光譜鑑定

本論文中所探討之類黃酮及其 Al(III)錯合物之吸收光譜皆列於 Table 2.1,從表中看出所有類黃酮的吸收均在紫外區,主要有兩個發 光團 resorcinol(A 環)及 catechol(B 環)所引起,屬於 π→π*電子躍遷, 其中波長在 255~270 nm 屬於 A 環之吸收,而波長範圍在 314~372 nm 屬於 B 環的吸收[34]。

當 Al(III)金屬離子與類黃酮螯合,相對於自由配位基,吸收光譜 均有明顯紅位移現象($\Delta\lambda \ge 34$ nm),主要乃因 Al(III)為典型路易士酸, 當與類黃酮鍵結時,強拉電子能力會降低 π *能量之故,Fig. 2.5 為 quercetin 及其 Al(III)錯合物光譜圖,其餘 flavonoids 之光譜列於 Fig. A5-A11。

Figure 2.5、quercetin 與 Al-quercetin 錯合物吸收光譜圖 (a) free HF, (b) AlF²⁺

			$\lambda_{max}(10^{\text{-4}}\epsilon_{max})$		
Flavonoid	Free	Complex([Al]/[F]=50)	Flavonoid	Free	Complex([Al]/[F]=50)
Quercetin	207 (3.79)	207 (3.78)	3-Hydroxyflavone	202 (2.28)	248 (2.23)
	256 (2.24)	269 (2.23)		212 (1.60)	328 (0.746)
	303 (0.700)	298 (0.710)		241 (1.94)	404 (2.20)
	372 (2.29)	366 (1.05)		309 (1.26)	
		425 (2.27)		345 (1.78)	
Fisetin	249 (1.62)	222 (2.35)	5-Hydroxyflavone	202 (2.63)	204 (2.82)
	319 (1.16)	265 (1.67)		271 (2.81)	215 (2.00)
	363 (2.31)	320 (0.674)		299 (1.34)	291 (2.83)
		423 (2.87)		337 (0.718)	313 (1.44)
					396 (0.556)
Luteolin	254 (1.79)	265 (1.65)			
	267 (1.64)	276 (1.74)			
	294 (0.959)	295 (1.20)	Rutin	258 (2.27)	270 (2.34)
	351 (2.14)	357 (1.67)		359 (1.89)	400 (1.72)
		385 (1.73)			
			Chrysin	269 (2.75)	281 (2.72)
Morin	255(1.59)	267(2.23)		314 (1.18)	326 (1.21)
	300(0.690)	2.98(6.89)			382 (0.659)
	357(1.69)	420(2.25)			

Table 2.1、類黃酮(F)與螯合錯合物(AlF)之 UV-vis 光譜^a

a. MeOH:H₂O=9:1, [H⁺]=0.01M HClO₄, μ =0.10 LiClO₄, [Flavonoid]=5.00×10⁻⁵ M

2.3.2 螯合物的鑑定

反應計量

有關 Al(III)-flavonoids 錯合物的反應之 Al(III)/flavonoid 計量比的 文獻報導,隨不同的溶劑而有很大差異,分別有 1:1、1:2、2:1 和 2:3[20,34,45-47]。在探討 Al(III)-flavonoid 錯合物性質之前,我 們 必 須 先 確 定 在 我 們 的 實 驗 條 件 下 ,即 (CH₃OH/H₂O)=9:1, [H⁺]=0.005-0.05M 下,Al(III)與 flavonoid 的反應計量,在這方面探討 我們使用光譜法偵測,將 flavonoids 濃度固定,分別與不同濃度之 Al(III)進行螯合,藉觀測 Al(III)錯合物最低能量(或最大波長)之吸收 而獲得,結果發現所有類黃酮與 Al(III)的計量比皆為 1:1, Al(III)-quercetin之反應計量圖如 Fig. 2.6 所示,其餘 flavonoids 與 Al(III) 之計量圖如 Fig. Al2-Al8。

Figure 2.6、Al-quercetin 計量化學關係圖

為了確定 Al(III)/quercetin 之反應計量比為 1:1,我們同時探討反 應產物的質譜光譜,反應於(CH₃OH/H₂O)=9:1,[H⁺]=0.01M LiClO₄ 下,將類黃酮濃度控制在 5.0×10⁻⁵M,[Al(III)]過量 20 倍的條件下進 行反應,待反應達平衡後,再以質譜儀分析。Fig. 2.7 為 quercetin(a)、 Al(III)(b)及其 Al(III)錯合物(c)之質譜圖,單獨 quercetin 的 m/z 在 303 出現一特徵吸收峰,如 Fig. 2.7(a)所示,當加入過量[Al(III)]後, m/z=303 訊號消失,相對地在 m/z=459 處出現一個新的峰,如圖 Fig. 2.7(c)所示,明顯 quercetin 完全與 Al(III)鍵結形成錯合物,分子量 459 顯示 Al 與 quercetin 為 1:1 結合,且錯合物為四配位,其中一個配位 為 ClO₄,與產物元素分析結果一致,Fig. 2.7(c)其餘的 m/z 峰皆屬 Al(III)離子,其他 Al-flavonoids 之質譜圖 列於 Fig. A19-A22, Al-flavonoids 的質譜分析結果列於 Table 2.2。

	m/z					
Flavonoid	Free FH ⁺	$AlF(ClO_4)(CH_3OH)^+$				
Quercetin	303	459				
Fisetin	287	443				
Luteolin	287	443				
3-Hydroxyflavone	239	395				
5-Hydroxyflavone	239	395				

Table 2.2、Flavonoids 及其 Al(III) 錯合物質譜結果^a

a. [F]=5.0×10⁻⁵M, [A1]=1.0×10⁻³M, in (CH₃OH/H₂O)=9:1 [H⁺]=0.01M

Figure 2.7、Al-quercetin 錯合物質譜圖 (a) Quercetin (b)Al(ClO₄)₃ (c)Al-quercetin complex

2.3.3 螯合位置鑑定

¹H-NMR 光譜探討

在金屬離子與類黃酮的螯合反應探討上,最困難的部分就是在鑑 定金屬鍵結的位置,quercetin 有三組可能位置可供螯合,分別是在 C₃-OH和C₄=O、C₄=O和C₅-OH以及C₃-OH和C₄-OH位置,

就如下一節所要討論的,由於類黃酮與 Al(III)螯合前,羥基必須要先 去質子化,而 quercetin 之 B 環上的酚基 pKa 相當高(>9)[15],因此在 酸性條件下 C₃-OH 及 C₄-OH 不可能與 Al(III)螯合,所以 quercetin 可能的螯合位置只可能在 C₃-OH 和 C₄=O 或 C₄=O 和 C₅-OH 位置。 為了確定螯合位置,我們探討 flavonoids 及其螯合物的 ¹H-NMR 光 譜,反應在 [H⁺]=0.01M, [Al(III)]= 2.0×10^{-1} - 8.0×10^{-1} M, [flavonoids]= 1.0×10^{-2} - 4.0×10^{-2} M 條件下進行,所有 flavonoids 及其 Al(III)錯合物之 結果列於 Table 2.3, quercetin 及其 Al(III)錯合物之 ¹H-NMR 光譜如 Fig. 2.8 所示,其餘 flavonoids 錯合物光譜圖則列於 Fig. A23-A32。 對 fisetin 及 3-hydroxyflavone 而言,可鍵結位置只有在 C₃-OH 和 C₄=O 位置,比較 fisetin 及 3-hydroxyflavone 其 Al(III)錯合物之 H-2' 和 H-6'位置,錯合物化學位移皆往 downfield 方向位移($\Delta\delta \ge 0.36$ ppm),由於 Al(III)為拉電子基,當形成螯合後,使得 B 環的 H-2'和 H-6'位置的電子密度減少,因此造成訊號往 downfield 位移的現象。而其他氫之訊號,H-5、H-6、H-8 和 H-5'則無太大的改變($|\Delta\delta| \le 0.14$ ppm),如 Table 2.3 所示。

對 luteolin 及 5-hydroxyflavone 而言,其可供鍵結的位置只有在 C₄=O 和 C₅-OH 位置,在這種情況下,就如所預期,相對於自由配位 基,Al(III)錯合物在 H-2'、H-6'、H-5'和 H-8 的化學位移沒有太大 的改變($\Delta\delta$ <0.08 ppm),而 H-6 及 H-3 則有明顯改變,H-6 往 downfield 方向位移($\Delta\delta$ =0.59 ppm),H-3 往 upfield 方向位移($\Delta\delta$ =0.38 ppm),H-3 會往 upfield 位移顯示 C=O 基的拉電子能力遠比 Al(III)-O 基強,使 得 H-3 的電子密度相對增加。 根據以上結果,如果 Al(III)錯合物鍵結位置在 C₃-OH 及 C₄=O, 則¹H-NMR 的光譜應只有在 H-2'及 H-6'有明顯的位移,其餘位置的 氫的化學位移不會有太大變化,而如果鍵結位置在 C₄=O 及 C₅-OH, 則應只有 H-6 有明顯位移,但¹H-NMR 的光譜顯示,Al-quercetin 錯 合物每一個氫位置皆有兩組化學位移,如 Fig. 2.8 所示,顯示 Al(III) 同時與 C₃-OH、C₄=O 及 C₄=O、C₅-OH 同時螯合形成兩種錯合物。 從¹H-NMR 光譜上 H-6、H-2'和 H-6'的積分比分別為 1.6、0.6、 $0.6(C_3$ -OH、C₄=O/C₄=O、C₅-OH),似乎表示此兩種異構物有相同的 穩定度。

			4,5 binding							3,4	binding	
	Que	ercetin	Lu	teolin	chr	ysin	5-Hydrox	cyflavone	Fis	etin	3-Hydro	xyflavone
Proton	Free	Al(III)-F	Free	Al(III)-F	Free	Al(III)-F	Free	Al(III)-F	Free	Al(III)-F	Free	Al(III)-F
Н-3	—	_	6.57 (s) (6.66 ^f)	6.19 (s)	6.78 (d) (6.98 ⁱ)	6.22 (s)	6.91 (s) (7.10 ^h)	6.79 (d)		—	—	—
Н-5	-	—	—	—	—	-	—	—	7.98 (d) (8.00 ^e)	8.13 (d)	8.19 (dd) (8.10 ^g)	8.25 (d)
H-6	6.21 (d) (6.24 ^d)	$6.19 (s)^{b}$ $6.64 (s)^{c}$	6.23 (d) (6.18 ^f)	6.82 (s)	6.27 (d) (6.22 ⁱ)	6.92 (s)	6.84 (d) (6.81 ^h)	7.05 (d)	6.92 (s) (6.91 ^e)	7.09 (s)	7.50 (m) (7.42 ^g)	7.50 (m)
H-7	-	—	—	—	—	—	7.69 (dd) (7.68 ^h)	7.72 (dd)	—	—	7.81 (dd) (7.76 ^g)	7.91 (s)
H-8	6.43 (d) (6.47 ^d)	$6.40 (s)^{b}$ $6.37 (s)^{c}$	6.48 (d) (6.42 ^f)	6.42 (s)	6.55 (d) (6.53 ⁱ)	6.48 (s)	7.17 (d) (7.19 ^h)	7.18 (s)	6.94 (d) (6.92 ^e)	6.93 (d)	7.73 (d) (7.71 ^g)	7.59 (m)
Н-2'	7.73 (d) (7.62 ^d)	7.79 (d) ^c 7.95 (d) ^b	7.39 (d) (7.37 ^f)	7.50 (dd)	8.01 (d) (7.90 ⁱ)	8.05 (d)	8.06 (d) (8.11 ^h)	8.13 (d)	7.77 (d) (7.78 ^e)	7.99 (d)	8.29 (dd) (8.20 ^g)	8.65 (dd)
Н-3'	-	—	—	—	7.58 (m) (7.42 ⁱ)	7.59 (m)	7.60 (m) (7.59 ^h)	7.62 (m)	—	—	7.56 (m) (7.54 ^g)	7.56 (m)
Н-4'	-	—	—	—	7.58 (m) (7.42 ⁱ)	7.59 (m)	7.60 (m) (7.61 ^h)	7.62 (m)	—	—	7.50 (m) (7.42 ^g)	7.50 (m)
Н-5'	6.91 (d) (7.00 ^d)	$6.94 (d)^{b}$ $6.92 (d)^{c}$	6.93 (m) (6.86 ^f)	6.95 (d)	7.58 (m) (7.42 ⁱ)	7.59 (m)	7.60 (m) (7.59 ^h)	7.62 (m)	6.95 (d) (6.93 ^e)	7.06 (d)	7.56 (m) (7.54 ^g)	7.56 (m)
Н-6'	7.63 (dd) (7.69 ^d)	7.73 (dd) ^c 8.08 (dd) ^b	7.39 (d) (7.39 ^f)	7.47 (dd)	8.01 (d) (7.90 ⁱ)	8.05 (d)	8.06 (d) (8.11 ^h)	8.13 (d)	7.66 (d) (7.68 ^e)	8.07 (d)	8.29 (dd) (8.20 ^g)	8.65 (dd)

Table 2.3 •	¹ H-NMR	Chemical	shifts	Flavonoids ^a

a. in CD₃OD:D₂O=9:1, [DCl]=0.01M, δ in ppm. c. chelated site at C₅-OH and C₄=O. e. ref 36 g. ref 38 i. ref 40 b. chelated site at C₃–OH and C₄=O. d. ref 35 f. ref 37 h. ref 39

Figure 2.8、Quercetin 之¹H-NMR 光譜圖

Figure 2.8、Al-quercetin 錯合物之¹H-NMR 光譜圖

2.3.4 動力學

2.3.4.1 類黃酮在酸性條件下的穩定性

類黃酮與 Al(III)錯合物的穩定性乃藉觀測 Al(III)-flavonoid 錯合 物 的 形 成 而 獲 得 , 於 (CH₃OH/H₂O)=9:1, [H⁺]=0.01M, [Flavonoid]=5.0×10⁻⁵M, [Al(III)]=1.0×10⁻³M 下偵測其光譜變化。Fig. 2.9 為 Al(III)-quercetin 錯合物之光譜,隨時間的改變下,在 372nm 吸 收峰逐漸降低,相對在 425nm 吸收峰生成,且在 291nm 與 394nm 有 isosbestic point 的產生,表示 Al(III)與 quercetin 在酸性條件下之螯合 反應,沒有 side reaction 發生,屬於單純的取代反應。其餘 Al(III)-flavonoids 錯合物皆有等吸收點(isosbestic point)出現。光譜列 於 Fig. A33-A37。

Figure 2.9、Al-quercetin 錯合物於[H⁺]=0.01M 之形成光譜圖

2.3.4.2 形成反應動力學

類 黃 酮 與 Al(III) 錯 合 物 的 形 成 反 應 動 力 學 乃 藉 觀 測 Al(III)-quercetin 錯 合 物 的 形 成 而 獲 得 , 於 (CH₃OH/H₂O)=9:1, [H⁺]=0.005-0.05M, μ =0.10M HCIO₄/LiCIO₄ 條件下,偵測其光譜變化。 以[Al(III)]為過量試劑,([Al(III)]≥10[Flavonoids]),維持反應在偽一級 情況下進行,所得的反應速率(k_{obs})列於 Table A11-A16。 k_{obs} 與[Al(III)] 濃度呈線性關係,如 Fig. 2.10-2.15 所示。以線性最小平方差(linear least-square fit)法分析 k_{obs} 與[Al(III)]圖,從斜率求得不同酸性條件下 之二級反應速率常數 k 值,結果列於 Table 2.4。k 值隨著[H⁺]增加而 遞減但呈非線性關係,如 Fig. 2.16-2.21 所示,因此我們可確定形成螯 合錯合物時羥基必須先去質子化,如 eq.(1)所示。

$$Al^{3+} + HF \implies Al(F)^{2+} + H^{+}$$
 (1)
F:Flavonoids

又因反應計量結果顯示類黃酮與[Al(III)]比值為 1:1,當我們以 $\frac{1}{k}$ 對 [H⁺]作圖,兩者呈線性關係,如 Fig. 2.22 所示。根據動力學結果,我 們推測反應機構可以 eq. (2)-(3)表示,

$$HF \stackrel{Ka}{\longrightarrow} H^+ + F^- \qquad (2)$$

$$Al^{3+} + F^{-} \xrightarrow{k_{f}} AlF^{2+}$$
(3)

根據此反應機構, k 值可以 eq. (4)表示

$$k = \frac{k_f K_a}{[H^+] + K_a} \tag{4}$$

利用非線性最小平方差(non-linear least square fits)根據 eq. (4)分析 k vs $[H^+]$ 可以得到 k_f 和 Ka 值,結果列於 Table 2.5。從 Table 2.5 中我 們發現,fisetin 及 3-hydroxyflavone 之 k_f 和 Ka 僅比 luteolin 及 5-hydroxyflavone 略為大些,顯示 C₃-OH 及 C₄=O 之螯合活性與 C₄=O 和 C₅-OH 之螯合活性相當接近,此結果表示 Al(III)與 quercetin 之反 應將同時形成 C₃-OH、C₄=O 及 C₄=O、C₅-OH 螯合之兩種錯合物, 印證 ¹H-NMR 光譜結果。

Figure 2.10 \sim k_{obs} vs [quercetin] plots at various acid concentrations $\diamond 0.005M \ \triangle 0.0075M \ -0.010M \ \blacksquare 0.0125M \ \diamondsuit 0.0150M \ \square 0.0175M \ \bigtriangleup 0.020M \ \circlearrowright 0.030M \ \times 0.040M \ + 0.050M$

Figure 2.11 • k_{obs} vs [Fisetin] plots at various acid concentrations $0.005M \triangleq 0.0075M = 0.010M \equiv 0.0125M \diamondsuit 0.0150M \equiv 0.0175M \bigtriangleup 0.020M \circlearrowright 0.030M \times 0.040M + 0.050M$

Figure 2.12 • *k*_{obs} vs [Luteolin] plots at various acid concentrations ♦0.005M ▲0.0075M —0.010M ■0.0125M ◇0.0150M □0.0175M △0.020M ○0.030M ×0.040M +0.050M

Figure 2.13 • k_{obs} vs [3-Hydroxyflavone] plots at various acid concentrations

♦0.005M ▲0.0075M —0.010M ■0.0125M ◇0.0150M □0.0175M △0.020M ○0.030M X0.040M +0.050M

Figure 2.14 • k_{obs} vs [5-Hydroxyflavone] plots at various acid concentrations

♦0.005M ▲0.0075M —0.010M ■0.0125M ◊0.0150M □0.0175M △0.020M ○0.030M X0.040M +0.050M

Figure 2.15 • k_{obs} vs [Chrysin] plots at various acid concentrations $0.005M = 0.010M = 0.0125M \bigcirc 0.0150M = 0.0175M \bigcirc 0.020M \bigcirc 0.030M \times 0.040M + 0.050M$

[H ⁺], M	Quercetin	Fisetin	Luteolin	3-HF	5-HF	Chrysin
0.0050	$(1.84\pm0.02)\times10^{-1}$	$(1.01\pm0.03)\times10^{0}$	$(1.20\pm0.03)\times10^{-1}$	$(2.00\pm0.04)\times10^{-1}$	$(1.33\pm0.02)\times10^{-1}$	$(1.08\pm0.02)\times10^{-1}$
0.0075	$(1.27\pm0.01)\times10^{-1}$	$(7.53\pm0.09)\times10^{-1}$	$(8.39\pm0.09)\times10^{-2}$	$(1.42\pm0.01)\times10^{-1}$	$(9.24\pm0.09)\times10^{-2}$	$(7.48\pm0.09)\times10^{-2}$
0.0100	$(1.00\pm0.02)\times10^{-1}$	$(6.64 \pm 0.09) \times 10^{-1}$	$(7.17\pm0.09)\times10^{-2}$	$(1.09\pm0.01)\times10^{-1}$	$(7.03\pm0.09)\times10^{-2}$	$(5.90\pm0.07)\times10^{-2}$
0.0125	$(8.21\pm0.09)\times10^{-2}$	$(4.95\pm0.09)\times10^{-1}$	$(6.01\pm0.03)\times10^{-2}$	$(8.90\pm0.05)\times10^{-2}$	$(5.83\pm0.07)\times10^{-2}$	$(4.87\pm0.09)\times10^{-2}$
0.0150	$(6.92 \pm 0.09) \times 10^{-2}$	$(4.37\pm0.09)\times10^{-1}$	$(4.58\pm0.09)\times10^{-2}$	$(7.67\pm0.09)\times10^{-2}$	$(4.90\pm0.09)\times10^{-2}$	$(4.12\pm0.02)\times10^{-2}$
0.0175	$(6.38\pm0.09)\times10^{-2}$	$(4.03\pm0.09)\times10^{-1}$	$(4.12\pm0.09)\times10^{-2}$	$(6.77\pm0.06)\times10^{-2}$	$(4.25\pm0.09)\times10^{-2}$	$(3.69\pm0.09)\times10^{-2}$
0.0200	$(5.47\pm0.04)\times10^{-2}$	$(3.62\pm0.09)\times10^{-1}$	$(3.62\pm0.09)\times10^{-2}$	$(6.05\pm0.07)\times10^{-2}$	$(3.65\pm0.05)\times10^{-2}$	$(2.97\pm0.06)\times10^{-2}$
0.0300	$(3.59\pm0.09)\times10^{-2}$	$(2.58\pm0.08)\times10^{-1}$	$(2.55\pm0.05)\times10^{-2}$	$(4.04\pm0.09)\times10^{-2}$	$(2.41\pm0.07)\times10^{-2}$	$(1.89\pm0.07)\times10^{-2}$
0.0400	$(2.79\pm0.09)\times10^{-2}$	$(1.94\pm0.06)\times10^{-1}$	$(2.09\pm0.03)\times10^{-2}$	$(2.94\pm0.09)\times10^{-2}$	$(1.73\pm0.03)\times10^{-2}$	$(1.46\pm0.04)\times10^{-2}$
0.0500	$(2.51\pm0.04)\times10^{-2}$	$(1.46\pm0.04)\times10^{-1}$	$(1.72\pm0.05)\times10^{-2}$	$(2.16\pm0.09)\times10^{-2}$	$(1.51\pm0.03)\times10^{-2}$	$(1.19\pm0.05)\times10^{-2}$

Table 2.4 • The values of k at various acid concentrations^a

a. μ =0.1M HClO₄/LiClO₄, T=25°C

Figure 2.16、Al(III)與 quercetin 螯合反應之 k 與[H⁺]關係圖

Figure 2.17、Al(III)與 fisetin 螯合反應之 k 與[H⁺]關係圖

Figure 2.18、Al(III)與 luteolin 螯合反應之 k 與[H⁺]關係圖

Figure 2.19、Al(III)與 3-hydroxyflavone 螯合反應之 k 與[H⁺]關係圖

Figure 2.20、Al(III)與 5-hydroxyflavone 螯合反應之 k 與[H⁺]關係圖

Figure 2.21、Al(III)與 chrysin 螯合反應之 k 與[H⁺]關係圖

 Table 2.5 • Rate constants of formation^a

Flavonoid	$k_f, M^{-1}s^{-1}$	$K_a (pK_a)$
Quercetin	0.93 ± 0.02	$(1.2\pm0.2)\times10^{-3}$ (2.92)
Fisetin	2.64 ± 0.08	$(3.1\pm0.3)\times10^{-3}$ (2.51)
3-Hydroxyflavone	1.57 ± 0.03	$(7.6\pm1.4)\times10^{-4}$ (3.12)
Luteolin	0.69 ± 0.02	$(1.1\pm0.2)\times10^{-3}$ (2.96)
5-Hydroxyflavone	1.06 ± 0.01	$(7.2\pm0.8)\times10^{-4}$ (3.14)
chrysin	0.64 ± 0.01	$(1.0\pm0.2)\times10^{-3}$ (3.00)
	010	

a. µ=0.10 HClO₄/LiClO₄

2.3.5 Al(III)-flavonoids 錯合物之 affinity

Al(III)-flavonoids 錯合物的穩定性可藉 eq. (1)之平衡常數的探討 來了解, eq. (1)之平衡常數乃以光譜法偵測, 由於未鍵結類黃酮的吸 收光譜,與所形成Al(III)錯合物的吸收波長相距甚遠,在錯合物的吸 收位置類黃酮的吸收可以忽略,如Fig. 2.5 所示。所以我們直接以觀 察錯合物的吸收求得 eq. (1)的平衡常數。於[H⁺]=0.01 和 0.02M 條件 下, [F]=5.0×10⁻⁵M和[Al(III)]=1-2×10⁻⁴M時所測得之平衡常數, 列於 Table 2.6。從表中我們得知 fisetin 及 3-hydroxyflavone 和 luteolin 及 5-hydroxyflavone 的平衡常數值相當接近,表示在 Al-quercetin 的螯合 反應在 C_3 -OH、 C_4 =O 及 C_4 =O、 C_5 -OH 錯合物應同時形成,兩者的 穩定性沒有太大的差異,為了印證 C₃-OH、C₄=O 與 Al(III)之螯合穩 定性與 C4=O、C5-OH 位置相近,我們同時利用 DFT 理論計算螯合在 C_3 -OH、C₄=O 或 C₄=O、C₅-OH 的相對自由能(ΔG°),利用 Gaussian 03 的 B3LYP/6-31G^{*} level 和 Jaguar 7.5[41, 42] 方法, 根據元素分析及 mass 光譜結果設定 Al(III)-quercetin 錯合物屬於四配位,計算其兩種幾何 異構物分別於氣相、甲醇和水溶液下的自由能(ΔG^0)結果列於 Table 2.7。計算所得兩種異構物最穩定的結構,如 Fig. 2.23 所示。在氣相 中分子間的作用可被忽略,所得螯合在 C₄=O、C₅-OH 位置的錯合物 能量比螯合在 C₃-OH、C₄=O 低 5.0kcal mol⁻¹,與 Toscano 計算

Flavonol	[H ⁺], M	[F], M	[Al ³⁺], M	[AlF], M	K	K _{av.}		
			9.98×10 ⁻⁵	3.09×10^{-5}	2.3×10^{2}			
	0.01	5.01×10 ⁻⁵	1.50×10^{-4}	3.45×10 ⁻⁵	1.9×10^{2}			
Quercetin			2.00×10^{-4}	3.81×10 ⁻⁵	2.0×10^{2}	$(2,1,0,1),10^2$		
			2.01×10^{-4}	3.09×10 ⁻⁵	1.9×10^2	$(2.1\pm0.1)\times10$		
	0.02	4.98×10 ⁻⁵	2.51×10 ⁻⁴	3.30×10 ⁻⁵	1.8×10^{2}			
			3.01×10 ⁻⁴	3.72×10 ⁻⁵	2.2×10^{2}			
			1.00×10^{-4}	3.48×10 ⁻⁵	3.5×10^2			
	0.01	5.00×10 ⁻⁵	1.50×10^{-4}	3.99×10 ⁻⁵	3.6×10^2			
			2.00×10^{-4}	4.30×10 ⁻⁵	3.9×10^2			
Luteolin			2.00×10 ⁻⁴	3.53×10 ⁻⁵	2.9×10^2	$(3.4\pm0.2)\times10^{2}$		
	0.02	5.00×10 ⁻⁵	2.50×10 ⁻⁴	3.82×10 ⁻⁵	3.1×10^{2}			
			3.00×10 ⁻⁴	4.07×10 ⁻⁵	3.4×10^{2}			
			5.00×10 ⁻⁵	3.85×10 ⁻⁵	5.4×10^2			
	0.01	5.01×10 ⁻⁵	1.00×10^{-4}	4.12×10 ⁻⁵	4.3×10^{2}			
			1.50×10^{-4}	4.19×10 ⁻⁵	3.2×10^{2}	2		
Fisetin		5.00×10 ⁻⁵	5.00×10 ⁻⁵	3.24×10 ⁻⁵	5.5×10^2	$(4.7\pm0.9)\times10^{2}$		
	0.02		1.00×10^{-4}	3.67×10 ⁻⁵	4.9×10^{2}			
			1.50×10^{-4}	3.98×10 ⁻⁵	4.9×10^{2}			
			1.00×10^{-4}	3.20×10 ⁻⁵	2.6×10^2			
	0.01	5.00×10 ⁻⁵	1.50×10^{-4}	3.68×10 ⁻⁵	2.5×10^{2}			
			2.00×10 ⁻⁴	3.98×10 ⁻⁵	2.4×10^{2}	(2.3±0.1)×10 ²		
chrysin		5.00×10 ⁻⁵	3.00×10 ⁻⁴	3.55×10 ⁻⁵	1.9×10^2			
	0.02		3.50×10 ⁻⁴	3.78×10 ⁻⁵	2.0×10^{2}			
			4.00×10^{-4}	3.92×10 ⁻⁵	2.0×10^{2}			
			1.00×10^{-4}	3.50×10 ⁻⁵	3.5×10^2			
3HF ·	0.01	5.02×10 ⁻⁵	1.50×10^{-4}	3.97×10 ⁻⁵	3.4×10^{2}			
			2.00×10^{-4}	4.23×10 ⁻⁵	3.4×10^{2}	2		
			2.00×10 ⁻⁴	3.41×10 ⁻⁵	2.5×10^2	$(3.0\pm0.5)\times10^2$		
	0.02	5.02×10 ⁻⁵	2.50×10 ⁻⁴	3.63×10 ⁻⁵	2.4×10^{2}			
			3.00×10 ⁻⁴	3.85×10 ⁻⁵	2.5×10^{2}			
			8.00×10 ⁻⁴	1.67×10 ⁻⁴	7.8×10 ¹			
	0.01	2.01×10 ⁻⁴	1.00×10^{-3}	1.73×10^{-4}	7.5×10 ¹			
			1.20×10^{-3}	1.77×10^{-4}	7.2×10 ¹			
5HF			1.60×10^{-3}	1.72×10 ⁻⁵	7.8×10 ¹	$(7.8\pm0.3)\times10^{10}$		
	0.02	2.03×10 ⁻⁴	1.80×10 ⁻³	1.76×10 ⁻⁵	8.0×10 ¹			
	0.02	2.03/10	2.00×10 ⁻³	1.79×10 ⁻⁵	8.2×10 ¹			

Table	e 2. 6	•	Eq	uil	ib	riu	m	constant
-------	---------------	---	----	-----	----	-----	---	----------

Fe(II)-quercetin 錯合物的結果相近(5.6kcal mol⁻¹)[43], 稍有利於 C₄=O、C₅-OH之螯合。而在甲醇和水溶液中,考慮分子內的作用力, 計算結果發現,螯合 C₃-OH、C₄=O 位置錯合物的略比螯合在 C₄=O、 C₅-OH 位置錯合物穩定,但自由能的差異幾可忽略,由 Table 2.7 所 示。再次印證 Al(III)與 quercetin 同時在 C₃-OH、C₄=O 及 C₄=O、C₅-OH 螯合形成兩種錯合物。

Table 2.7 • The relative standard Gibbs molar free energies of Al(III)-quercetin complexes at $T=25^{\circ}C$

	ΔG^{0} (kcal mol ⁻¹)						
Chelation site		solution					
	Gas phase	methanol	water				
C_3 -OH $\cdot C_4$ =O	0.00	0.00	0.00				
С₄=О、С₅-ОН	-5.0	3.0	0.42				

Figure 2.23 • Optimized geometries of Al(III)-quercetin complexes. (a) O₃, O₄ chelation (b) O₄, O₅ chelation green–C, white–H, red–oxygen, black–Al, purple-Cl

2.4 結論

- 由合成產物、反應計量與質譜結果發現,(Al/quercetin)螯合屬於
 1:1,且Al(III)屬於四配位鍵結,其中兩個配位與 quercetin 形成螯
 合錯合物,另外兩個配位分別與一個 CH₃OH 和一個 ClO₄-鍵結。
- 2. 由¹H-NMR 結果顯示, Al-quercetin 錯合物有兩種異構物,分別螯合在 C₃-OH、C₄=O和 C₄=O、C₅-OH 位置,兩種異構物為同時發生,¹H-NMR、反應平衡常數及 DFT 理論計算均顯示,此兩種異構物的穩定性大致相同。
- 形成反應速率動力學的結果顯示 C₃-OH、C₄=O 和 C₄=O、C₅-OH 的螯合活性亦相當一致。

2.5 参考文獻

- 1. J. L. Svirbely, A. Szent-Györgyi, Biochem. J. 27 (1933) 279.
- 2. S. Rusznyak, A. Szent-Györgyi, Nature 138 (1936) 798.
- 3. S. Fried, R. D. Kleene, Notes 62 (1940) 3258.
- 4. A. Szent-Györgyi, Physiol. Chem. 225 (1938) 126.
- 5. R. H. Higby, J. Am. Pharm. Assn. 32 (1943) 74.
- G. J. Majovski, A. J. Lesser, H. C. Lawson, H. O. Carne and C. H. Thienes, *J. Pharmacol. and Exp. Therap.* 80 (1944) 1.
- 7. I. Erlund, Nutr. Res. 24 (2004) 851.
- 8. C. Cabrera, R. Artacho, R. Gimenez, J. Am. Coll. Nutr. 25 (2006) 79.
- M. R. Sowers, S. Crawford, D. S. McConnell, J. F. Randolph, E. B. Gold, M. K. Wilkin, B. Lasley, J. Nutr. 136 (2006) 1588.
- 10.G. J. Soleas, L. Grass, P. D. Josephy, D. M. Goldberg, E. P. Diamandis, *Clin. Biochem.* 39 (2006) 492.
- 11.J. B. Harborne, C. A. Williams, *Phytochemistry* 55 (2000) 481.
- 12.A. I. Potapovich, V. A. Kostyuk, Biochemistry, 68 (2003) 514.
- 13.G. W. Winston, Stress Responses Plants (1990) 57.
- 14.C. H. Foyer, P. Descourvieres, K. J. Kunert, *J. plant Cell Environ*. 17 (1994) 507.
- 15.J. Sung, K. S. Huang, T. J. Lai, Y. Y. Chen, C. Y. Lin, A. Yeh, D. C. Wu, *Inorg. Chem.* 47 (2008) 11361.
- 16.H. J. H. Fenton, J. Chem. Soc. 65 (1894) 889.
- 17.V. A. Kostyuk. A. I. Potapovich, E. N. Vladykovskaya, L. G. Korkina, I. B. Afanas'ev, *Arch. Biochem. Biophys.* 385 (2001) 129.
- 18.J. E. Brown, H. Khodr, R. C. Hider, C. A. Rice-Evans, *Biochem, J.* 330 (1998) 1173.
- 19.N. L. Jones, J. W. Reagan, M. C. Willingham, Arterioscler. Thromb. Vasc. Biol. 20 (2000) 773.
- 20.J. L. Witztum, D. J. Steinberg, J. Clin. Invest. 88 (1991) 1785.
- 21.N. L. Jones, J. W. Reagan, M. C. Willingham, Arterioscler. Thromb. Vasc. Biol. 20 (2000) 773.

- 22.J. L. Witztum, D. J. Steinberg, J. Clin. Invest. 88 (1991) 1785.
- 23.Z. Deng, C. Coudray, L. Gouzoux, A. Mazur, Y. Rayssiguier, D. Pepin, *Biol. Trace Elem. Res.* 76 (2000) 245.
- 24.J. P. Cornard, J. C. Merlin, J. Inorg. Biochem. 92 (2002) 19.
- 25.M. Bishnoi, K. Chopra, S. K. Kulkarni, *Fundam. Clin. Pharmacol.* 21 (2007) 521.
- 26.S. X. Wang, F. J. Zhang, Q. P. Feng, Y. L. Li, *J. Inorg. Biochem.* 46 (1992) 251.
- 27.P. Hollmam, M. Hertog. M. Katan, Food Chem. 57 (1996) 43.
- 28.B. Havsteen, Biochem. Pharmacol. 32 (1983) 1141.
- 29.M. Chopra, P. E. Fitzsimons, J. J. Strain, D. I. Thurnham, A. N. Howard, *Clin. Chem.* 46 (2000) 1162.
- 30.M. A. Pereira, C. J. Grubbs, L. H. Barnes, H. Li, G. R. Olson, I. Eto, *Carcinogenesis* 17 (1996) 1305.
- 31.D. R. Ferry, A. Smith, J. Malkhandi, D. W. Fyfe, P. G. de Takats, D. Anderson, *Clin. Cancer Res.* 2 (1996) 659.
- 32.G. Di Carlo, N. Mascolo, A. A. Izzo, F. Capasso, *Life Sci.* 65 (1999) 337.
- 33.F. Perez-Vizcaino, M. Ibarra, A. L. Cogolludo, J. Duarte, F. Zaragoza-Arnaez, L. Moreno, J. Pharmacol. Exp. Ther. 302 (2002) 66.
- 34.H. Lian, Y. Kang, S. Bi, Y. Arkin, D. Shao, D. Li, Y. Cheu, L. Dai, N. Gan, L. Tian, *Talanta* 62 (2004) 43.
- 35.M. Guo, C. Perez, Y. Wei, E. Rapoza, G. Su, F. Bou-Abdallah, N. P. Chasteen, *Dalton Trans.* (2007) 4951.
- 36.H. F. Hsu, J. Y. Houng, C. L. Chang, C. C. Wu, F. R. Chang, Y. C. Wu, J. Agric. Food Chem. 53 (2005) 6117.
- 37.H. M. Awad, M. G. Boersma, S. Boeren, P. J. van Bladeren, J. Vervoort,I. M. C. M. Rietjens, *Chem. Res. Toxicol.* 14 (2001) 398.
- 38.B. H. Moon, Y. Lee, J. H. Ahn, Y. Lim, Magn. Reson. Chem. 43 (2005) 858.

- 39.Y. Park, B. H. Moon, E. Lee, Y. Lee, Y. Yoon, J. H. Ahn, Y. Lim, *Magn. Reson. Chem.* 45 (2007) 674.
- 40.H. A. Scheidt, A. Pampel, L. Nissler, R. Gebhardt, D. Huster, *Biochimica et Biophysica Acta* 1663 (2004) 97.
- 41.D. J. Tannor, B. Marten, R. Murphy, R. A. Friesner, D. Sitkoff, A. Nicholls, M. Ringnalda, W. A. Goddard III, B. Honig, *J. Am. Chem. Soc.* 116 (1994) 11875.
- 42.B. Marten, K. Kim, C. Cortis, R. A. Friesner, R. B. Murphy, M. N. Ringnalda, D. Sitkoff, B. Honig, *J. Phys. Chem.* 100 (1996) 11775.
- 43.H. Leopoldini, N. Russo, S. Chiodo, M. Toscano, J. Agric. Food Chem. 54 (2006) 6343.

Part III

Quercetin、rutin 和 taxifolin 在鹼性條件與 O₂之反應探 討

由於大部份類黃酮水溶性都很低,為了解決此問題,我們試圖在 鹼性條件下探討類黃酮的氧化反應,結果發現 quercetin 在鹼性條件 下非常不穩定,具體顯示於光譜的迅速變化,此現象為同時探討的其 他類黃酮所沒有的,也引起我們的興趣,在本章裡我們將就光譜及動 力學探討 quercetin 與 O₂在鹼性條件下的反應,為幫助了解,我們將 同時探討 rutin 及 taxifolin(Fig. 3.1)在相同條件下與 O₂的反應。

Figure 3.1 taxifolin 結構圖
3.2 結果與討論

3.2.1 光譜分析

Quercetin、rutin 與 taxifolin 之吸收光譜列於 Table 3.1。如表所示, 不管在甲醇或鹼性溶液下,flavonoids 均有兩個吸收,分別由 A、B 環個別發光團所造成,其中較低波長之吸收屬於 A 環(resorcinol)之吸 收,而高波長之吸收則屬於 B 環(catechol)的吸收[1]。相對於甲醇溶 液,在鹼性溶液中([NaOH]=0.01M),flavonoids 之吸收均呈紅位移現 象,主要乃因此鹼性條件下,所有酚基均以去氫化(deprotonate)所引 起的。

Compound MeOH		[OH ⁻]=0.01M		
Compound	λ_{max} (nm)	$10^{-4} \epsilon_{max} (M^{-1} cm^{-1})$	$\lambda_{max} (nm)$	$10^{-4} \epsilon_{max} (M^{-1} cm^{-1})$
Quercetin	256	2.63	279	2.34
-	373	2.68	427	2.60
Rutin	257	2.26	276	2.35
	358	1.92	401	1.84
Taxifolin	290	2.05	317	2.44
	332	0.77	400	0.80

Table 3.1 Quercetin, rutin 及 taxifolin 之吸收光譜

在絕氧條件下當 quercetin 溶於 0.01M 的 NaOH 中,在 24 小時內 吸收光譜維持不變,顯示在絕氧狀態中,相當穩定,但將溶液暴露於 空氣中時,quercetin 之 279nm 及 427nm 吸收迅速消失,相對地,在 314nm 和 349nm 另有新的吸收跟著生成,同時在 λ=294 及 382 nm 處 有 isosbestic points,如 Fig. 3.2 所示,明顯地,此光譜變化乃是 quercetin 空氣氧化所導致, isosbestic point 的出現顯示此光譜變化乃為單純的 氧化反應,並無其他 side reaction 的干擾。rutin 和 taxifolin 溶液在空 氣中時,光譜均維持不變,僅在飽和氧氣下才開始有變化,但非常的 緩慢,顯示 rutin 和 taxifolin 在鹼性溶液中,仍可維持相當的穩定性。 當 quercetin 溶液以等濃度 O2氧化時,quercetin 及吸收完全消失,而 再加過量之 O2時,光譜並未有進一步變化,因此可以確定反應為雙 電子氧化。

Figure 3.2、quercetin 光譜變化圖, [NaOH]=0.01M

3.2.2 ¹H-NMR 光譜

Quercetin 氧化產物的鑑定,可利用 ¹H-NMR 光譜分析 quercetin 及其氧化產物,quercetin 及其氧化產物在 0.01M NaOD 溶液之化學位 移列於 Table 3.2,從表中得知,quercetin 氧化後, C_2 ·和 C_5 ·化學位移 分別從 7.64 和 6.73ppm upfield 位移至 7.42 和 6.53ppm,其餘在 A 環 及 C 環上之氫訊號則無太大的改變,因此,顯示 quercetin 的氧化是 在 catechol 環(B 環),而形成 quinone 氧化產物[2],quercetin 及其氧 化產物之 ¹H-NMR 光譜如 Fig. 3.3 所示,由圖中 quercetin (Fig. 3.3-a) 的訊號在氧化產物(Fig. 3.3-b)光譜圖中也同時存在,即使加入過量氧 化劑亦無法消失,表示 quercetin 和其氧化產物各有兩種穩定的 mesomers,而其中一種 cannonical form 在 B 環上的結構兩者相似[3, 4],而根據反應計量及 ¹H-NMR 光譜,flavonoids 與 O_2 之反應可以 eq. 1 表示

 $Q^{5-} + O_2 \xrightarrow{k} Q^{5-} + O_2^{2-}$ (1)

其中 Q^{5-} 及 Q^{3-} 分別為 0.01M NaOH 下, quercetin 及其 quinone 氧化產物, 使得 B 環上所測得的氫訊號相似, 如 scheme 1(b 和 d)所示[5, 6]。

		、 儿間 儿子 և 沙 !	
	Que	rcetin	5'
proton	Na ₅ Q	Na ₃ Q	- 6'
H-2'	7.64	7.63	8
		7.42	
H-5'	6.73	6.76	
		6.53	
H-6'	7.56	7.56	
		7.55	0 0
H-6	5.93	5.95	Quetcetin
H-8	6.13	6.15	Queteetiii
			_

Table 3.2 Quercetin 之¹H-NMR 光譜化學位移值(δ)^a

a. in NaOD=0.01M, δ in ppm.

scheme 1

3.2.3 反應動力學

動力學的測量是在 T=25°C, [NaOH]=0.01M,以µ=0.1M LiClO₄, 偽一級(pseudo first order)條件下進行,以 O₂ 過量([O₂]≥10[Flav])且在 飽和氧條件下量測,以避免所形成 H₂O₂ 後續反應之干擾[5], O₂ 在 水溶液中之飽和濃度為 1.0×10^{-3} M[6],其中 taxifolin,由於反應相當 的緩慢,我們僅分析 initial rate 的數據,並且以 Guggenheim's 方法[7] 分析結果,所得之觀測反應速率常數 k_{obs} 列於 Table 3.3,所得之 $ln(A_i-A_i)$ vs. 時間線性關係圖,列於 Fig. 3.4。

Table 3.3. Rate constants for the oxidation of flavonoids by O_2^{a}

Flavonoids	$k, M^{-1}s^{-1}$
Quercetin	$(4.50\pm0.09)\times10^{1}$
Rutin	$(6.64 \pm 0.09) \times 10^{-2}$
Taxifolin	$(3.09\pm0.09)\times10^{-3}$

a. μ =0.10M LiClO₄, [OH⁻]=0.01M, [flavonoid]=(2-5)×10⁻⁵M,

b.
$$k = \frac{k_{obs}}{[O_2]}, [O_2] = 1.1 \times 10^{-3} M$$

Figure 3.4、ln(A_i-A_t) vs. 時間, [NaOH]=0.01M

由 Table 3.3 中結果可知 quercetin 的氧化反應速率較其他 flavinoids 快 3次冪以上,過去文獻報導[2],類黃酮反應活性隨著 pH 增加,由於 catechol 環(B 環)上羥基去質子化(deproton),而有增強趨勢。然而, 由於 quercetin 及其它 flavonoids 均在相同條件下偵測,因此如此大的 差異顯然非因 pH 所引起,至少絕非主要因素。由於在本條件下, quercetin 所有酚基均已去質子化,此時 C_3 上氧之未配位電子對得以 藉 C₂-C₃ 之雙鍵與 B 環所形成的共振效應而 delocalize 至 catechol 環, 增加 catechol 環上的電子密度, 使得 B 環容易被氧化之故。另外 氧化產物可藉 tautomerization (scheme 2)而增加穩定性,趨使反應進 行。比較 ¹H-NMR 氧化產物(c 及 d)的 $C_{2'}$ 、 $C_{5'}$ 位置之積分比分別為 1.67 和 1.63,表示兩者穩定性相似。Taxifolin 則由於 C₂-C₃為單鍵, 使得 C 環與 B 環無法溝通而使 C₃上氧的自由電子對完全定域在 C₃ 上,無法影響B環。另外,Rutin 雖然C2及C3有雙鍵可溝通B環與 C環,但由於接上 rutinose,而相對減弱了 C_3 上氧的電子密度,因此 也減少了對 catechol 環上電子密度的影響,不僅如此, rutin 之 quinone 產物不可能有 tautomerization 之穩定性,因此對 rutin 的氧化反應速率 影響不大。比較 taxifolin 和 rutin 的反應速率,彼此相差了一次冪, 這意味著 pyrone 和 catechol 之間的共振效應對 flavonoid 的反應性扮 演重要的角色。

- 在鹼性溶液中, quercetin 的反應速率較其他 flavonoids 大 3 次冪以 上,表示 quercetin 對空氣極為敏感,主要乃因 C₂-C₃ 雙鍵造成 C 環與 B 環的共振效應所引起。
- taxifolin 和 rutin 的反應速率,彼此相差了一次冪,這意味著 pyrone
 和 catechol 之間的共振效應對 flavonoid 的反應性扮演重要的角色。

3.4 參考文獻

- L. Mira, T. Fernansez, M. Santos, R. Rocha, H. Florêncio, K. ennings, Free Radic. Res. 36 (2002) 1199.
- J. Sung, K. S. Huang, T. J. Lai, Y. Y. Chen, C. Y. Lin, A. Yeh, D. C. Wu, *Inorg. Chem.* 47 (2008) 11361.
- 3. O. Dangles, G. Fargeix, C. Dufour, J. Chem. Soc., Perkin Trans. 2 (1999) 1387.
- 4. A. K. Timbola, C. D. de Souza, C. Giacomelli, A. Spinelli, J. Braz. Chem. Soc. 17 (2006) 139.
- 5. D. M. Stanbury, O. Haas, H. Taube, Inorg. Chem., 19 (1980) 518.
- 6. A. Seidell, W. F. Linke, "Solubilities of Inorganic Compounds", 4th., van Nostrand, Princeton, N. J. (1964) 1228.
- 7. E. L. King, J. Am. Chem. Soc., 74 (1952) 563.

Part IV

兒茶酚及類黃酮在甲醇溶劑中與 dpph·之氧化還原反應

4.1 序論

如前所述,大部份的 flavonoids 水溶性均很低,因此有關 flavonoids 的研究,多在有機溶劑為主,不僅如此,且絕大部份研究, 均從有機化學角度出發,著重在熱力學性質的探討,絕少對反應活性 有所著墨[1],另外,以往的研究結果,幾乎都一致認為類黃酮的抗 氧化性與其上之 catechol 環有關[2,3],最近我們的研究結果亦證實此 點[6],為了了解 flavonoids 在有機溶劑中的反應活性以及 A 及 C 環 對 catechol 環氧化的影響,在本章中我們將探討一系列含不同取代基 之 catechols 在甲醇溶劑的氧化反應,由於大部份過渡金屬錯合物均 無法溶於有機溶劑中,因此我們選用 dpph·作為氧化劑, dpph· (2,2'-diphenyl-1-picryl-hydrazyl)為穩定有機自由基,在有機溶劑,特 別是甲醇溶劑中,被廣泛使用為氧化劑,用以探討苯酚類化合物之抗 氧化性,為了方便比較,我們同時探討對 taxifolin 及 rutin 的反應, 本研究所使用之 catechols 及 dpph, , 結構如 scheme 1 所示。

119

scheme 1

4.2 結果與討論

4.2.1 吸收光譜與計量分析

本實驗使用之 catechols 和 flavonoids 的吸收光譜皆列於 Table 4.1,所有 catechols 和 flavonoids 在紫外區有很強的吸收峰,屬於 $\pi \rightarrow \pi^*$ 的電子躍遷[5]。其中 rutin 與 taxifolin 的則由兩組吸收光譜所組成, 如上一章所述,分別屬於 catechol ring 及 resorcinal ring (A 環)的吸收。 dpph·在可見光區亦有明顯的吸收,主要是由於 dpph·有很好的共軛 性,導致自由基電子容易不定域化(delocalize)在整個分子上,此 delocalization 降低了 π 與 π^* 之能階差,而使 dpph·呈深紫色溶液,當 dpph·的還原產物,dpphH,氦上的未配位電子對因質子化(protonation) 而被固定在氦上,而使溶液變為清澈澄淡黃色,因此可藉由明顯的顏 色變化,來探討有機溶液中之氧化還原反應,特別是抗氧化劑清除自 由基的能力,由於 dpph·之 $\lambda_{max}=515$ nm 吸收與類黃酮沒有重疊,因 此反應藉以觀察 dpph·的消失探討。

為了確認 catechols 和 flavonoids(H₂X)與 dpph·之反應計量比,在 $\mu=0.1M$ [(n-Bu)₄N]ClO₄, T=25°C, 甲醇溶液條件下,固定 H₂X 濃度, 以 dpph·滴定,觀測 dpph·在 $\lambda=515$ nm 吸收的變化,結果如 Fig. 4.2 所示,從圖中我們發現,直至所有[dpph·]: [H₂X]為 2:1時,dpph· 之吸收皆完全消失,此時如再加入 dpph·時,515nm 吸收則開始出現,

121

Compound	$\lambda_{max}(nm)$	$10^{-3} \epsilon_{max} (M^{-1} cm^{-1})$
pyrocatechol	278	2.75
4-methylcatechol	284	3.05
3,5-di-tert-butylcatechol	281	2.47
3,4-dihydroxybenzoic acid	295	5.49
4-nitrocatechol	344	7.46
rutin	257	22.5
	358	18.8
taxifolin	290	36.4
	332	7.72
dpph∙	327	16.4
	515	11.6

Table 4.1 UV-vis 吸收光譜^a

a. measured in methanol.

Figure 4.2 H₂X 與 dpph·之反應計量圖
(a) pyrocatehol (b)rutin, [H₂X]=5.00×10⁻⁵M, μ=0.1M [(n-Bu)₄N]ClO₄

4.2.2 ¹H-NMR 光譜

我們利用¹H-NMR 光譜分析 H₂X 及雙電子氧化後之產物,所測 得 catecol 與 flavonoid 和其氧化產物的化學位移結果列於 Table 4.2。 由表中可發現 catechols 和 flavonoids 氧化後,3-H及 6-H(2'-H及 5'-H for flavonoids)往 upfield(>0.16 ppm)移動,而 4-H及 5-H(6'-H for flavonoids)往 downfield(>0.14 ppm)移動,與文獻[6]觀測 pyrocatechol 的結果相符,顯示氧化產物皆為 quinone 化合物,flavonoids 的 A、C 環之氫訊號則僅有輕微的變化。Fig. 4.3 為 rutin 及其氧化產物之 ¹H-NMR 光譜圖,其中於氧化產物之 7.1-7.4 ppm 屬於 dpphH 的訊號。 由反應計量與¹H-NMR 光譜結果顯示,反應式可以 eq. (1)所示

$$H_2X + 2 \operatorname{dpph} \xrightarrow{k} X + 2 \operatorname{dpph} H \tag{1}$$

其中 H₂X 表示 catechols 或 flavonoids, X 表示氧化後之相對 quinone 產物。

	Pyrocate	chol	3,5-di-	tert-	3,4-dił	nydroxy	4-meth	nylcatechol	4-nitro	catechol
			butyle	atechol	benzoi	c acid				
Proton	H_2X	Х	H_2X	Х	H_2X	Х	H_2X	Х	H_2X	Х
H-3	6.65	6.35(6.43) ^b			7.41	6.38	6.58	6.33	7.64	7.24
H-4	6.74	7.16(7.06) ^b	6.75	7.06						
H-5	6.74	7.16			7.43	7.57	6.62	7.03	7.68	8.17
H-6	6.65	6.35	6.73	6.21	6.78	6.10	6.46	6.30	6.85	6.59

Table 4.2 ¹H-NMR chemical shifts of catechols and flavonoids and the corresponding oxidation products^a

(b)

(a)

	rutin		(±)-taxif	olin
Proton	H_2X	Х	H_2X	Х
H-2'	7.67	5.50(5.48) ^b	6.96	5.33
H-5'	6.87	6.49(6.48) ^b	6.80	5.93
H-6'	7.63	7.83(7.81) ^b	6.84	7.12
H-2				
H-3				
H-4				
H-6	6.21	6.25(6.24) ^b	5.90	5.91
H-8	6.41	6.40(6.40) ^b	5.87	5.86

a. In CD₃OD, in ppm b. Ref. 6

Fig. 4.3 ¹H-NMR spectrum of rutin (a) and the corresponding quinone (b) in CD_3OD .

4.2.3 反應動力學

動力學量測乃在偽一級條件下進行探討,而以 catechols 或 flavonoids 過量([H₂X]≥10[dpph·]),藉觀測 dpph·λ_{max}=515 nm 吸收之 變化獲得,過去文獻[6,7]中已確定 flavonoid 反應速率決定步驟為第 一個電子氧化,當第一個電子氧化後,形成 semiquinone radical,隨 即與另一個 dpph·迅速反應形成 quinone。反應機構可以 eq.(2)~(4)所 示

$$H_2X + dpph \longrightarrow H_2X^{+} + dpph^{-}$$
 (2)

$$H_2X^+ + dpph^- \xrightarrow{fast} X + dpph^- + 2H^+$$
 (3)

$$2H^+ + 2 \text{ dpph}^- \xrightarrow{fast} 2 \text{ dpph} H$$
 (4)

$$-\frac{d[dpph]}{dt} = k_{obs}[dpph]$$
(5)

$$k_{obs} = 2k[H_2X] \tag{6}$$

由 eq. (6)中之 2 為統計因子(statistical factor),乃為考慮兩電子的氧 化。k_{obs}結果列於 Table 4.3,k_{obs}與[H₂A]成良好線性關係,如 Fig. 4.4 所示,二級反應速率常數 k 可藉由單參數線性最小平方差 (one-parameter linearly least square fits)方法分析 k_{obs} vs [H₂A]圖,從斜 率獲得,結果列於 Table 4.4。

Fig. 4.4 k_{obs} vs [H₂X] plots for catechols and flavonoids pyrocatechol(■), taxifolin(○), 4-methylcatechol(▲), rutin(△), 3,5-di-tert-butylcatechol(X), 4-nitrocatechol(●), 3,4-dihydroxybenzoic(□).

Table 4.3 \cdot dpph	與[H ₂ X]氧化還	原反應之kot	a DS
------------------------	------------------------	---------	---------

cate	chol	4-methy	catechol
$\left[H_{2}X\right]\left(M\right)$	$k_{\rm obs}~({\rm s}^{-1})$	$[H_2X](M)$	$k_{\rm obs}({\rm s}^{-1})$
5.00×10^{-4}	4.90×10^{-1}	5.07×10^{-4}	4.88×10^{-1}
1.00×10^{-3}	9.51×10^{-1}	1.03×10^{-3}	1.01
1.50×10^{-3}	1.58	1.58×10^{-3}	1.63
2.00×10^{-3}	2.05	2.07×10^{-3}	2.17

3,5-di-tert-butylcatechol

$[H_2X](M)$	$k_{\rm obs}~({\rm s}^{-1})$
5.13×10^{-4}	2.31×10^{-2}
1.02×10^{-3}	3.36×10^{-2}
1.51×10^{-3}	5.18×10^{-2}
2.01×10^{-3}	6.56×10^{-2}

4-nitrocatechol

$\left[H_{2}X\right]\left(M\right)$	$k_{\rm obs}({\rm s}^{-1})$
5.06×10^{-4}	2.26×10^{-2}
1.04×10^{-3}	4.30×10^{-2}
1.54×10^{-3}	6.33×10^{-2}
2.04×10^{-3}	7.82×10^{-2}

3,4-dihydroxybenzoic acid

$\left[H_{2}X\right]\left(M\right)$	$k_{\rm obs}~({\rm s}^{-1})$
5.03×10^{-4}	2.19×10^{-1}
1.00×10^{-3}	4.03×10^{-1}
1.53×10^{-3}	6.54×10^{-1}
2.01×10^{-3}	8.63×10^{-1}

(±)-taxfolin

$\left[H_{2}X\right]\left(M\right)$	$k_{\rm obs}~({\rm s}^{-1})$
5.02×10^{-4}	1.30×10^{-1}
1.00×10^{-3}	2.51×10^{-1}
1.51×10^{-3}	3.33×10^{-1}
2.00×10^{-3}	5.00×10^{-1}

rutin

$[H_2X](M)$	$k_{\rm obs} ({\rm s}^{-1})$
5.00×10^{-4}	5.09×10^{-1}
1.00×10^{-3}	8.39×10^{-1}
1.50×10^{-3}	1.09×10^{0}
2.00×10^{-3}	1.28×10^{0}
	0

 $\overline{a. \ \mu = 0.10 \ M \ [(C_4H_9)_4N]ClO_4}, \ T = 25^{\circ}C$

$[H_2X]$	$k (\mathbf{M}^{-1}\mathbf{s}^{-1})$
pyrocatechol	$(1.47 \pm 0.07) \times 10^2$
4-methylcatechol	$(5.15 \pm 0.01) \times 10^2$
3,5-di-tert-butylcatechol	$(1.68 \pm 0.01) \times 10^{1}$
3,4-dihydroxybenzoic acid	$(2.71 \pm 0.09) \times 10^{1}$
4-nitrocatechol	$(1.83 \pm 0.09) \times 10^{1}$
(±)-taxfolin	$(1.21 \pm 0.03) \times 10^2$
rutin	$(6.23 \pm 0.09) \times 10^2$

Table 4.4 Second Order Rate Constants for the oxidation of catechols and flavonoids by dpph.^a

a. in methanol solvent, $\mu = 0.10$ M [(n-Bu)₄N]ClO₄, T = 25°C

表中顯示,flavonoids 的氧化速率常數在 catechols $(10^{1} - 10^{2} \text{ M}^{-1} \text{s}^{-1})$ 範圍 內,我們也發現相對於 pyrocatechol 氧化反應有一個趨向,當取代基 為推電子基時反應速率將會增快,而當取代基為拉電子基時,則反應 速率明顯變慢。當取代基為推電子基時,如-CH₃,將有促使酚基上 的電子對固定在氧上的傾向,而使 catechol 容易被氧化,當取代基為 拉電子基時,如-NO₂或-COOH,會讓氧上電子對有 deocalized 到苯 環的傾向,增加 catechol 的穩定性且滅弱酚基氧上的電子密度,而不 易 被 氧 化 。 pyrocatechol (9.23)[8]、 methylcatecol (9.56)[9]、 dihydroxybenzoic acid (8.83)[8]和 nitrocatechol (6.69)[8]之 pKa 值差異 進一步支持這個論點。值得一提的是-CH₃及-t-butyl 同為推電子基, 且 t-butyl 推電子能力比-CH₃為強,但 3,5-di-tert-butylcatechol 反應速 率常數甚至小於 pyrocatechol 一次冪,主要原因乃兩個-t-butyl 基在 catechol 環上所造成的立體效應,使得 dpph·不易接近,導致醇基難以 氧化所致。Table 4.4 中顯示 rutin 的氧化速率較 taxifolin 大了五倍, 再次印證 C_2 - C_3 雙鍵所引起 pyrone 及 catechol 環的共振效應對 flavonoid 氧化活性影響的重要性。比較 taxifolin 與 pyrocatechol 的反 應速率也確實沒有太大的差異。因此 rutin 和 taxifolin 的反應速率常 數可知,當 C_2 - C_3 為單鍵時 pyrone 環對 catechol 環的影響幾可忽略。

- dpph·與一系列 catechols 在甲醇溶液中的反應動力學結果顯示,反應速率受取代基影響。
- rutin 的氧化速率較 taxifolin 大了五倍,表示 C₂-C₃ 雙鍵所引起 pyrone 及 catechol 環的共振效應對 flavonoid 氧化活性影響的重要 性。
- taxifolin 由於 C₂-C₃為單鍵,受共振效應的影響甚微,比較氧化速 率結果與 pyrocatechol 相近。

4.4 參考文獻

- 1. I. Erlund, Nutr. Res. 24 (2004) 851.
- 2. Z. W. Li, A. Yeh, H. Taube, Inorg. Chem. 33 (1994) 2874.
- 3. O. Dangles, G. Fargeix, C. Dufour, *J. Chem. Soc.*, *Perkin Trans.*, 2 (1999) 1387.
- 4. A. K. Timbola, C. D. de Souza, C. Giacomelli, A. Spinelli, *J. Braz. Chem. Soc.*, 17 (2006) 139.
- L. Mira, T. Fernansez, M. Santos, R. Rocha, H. Florêncio, K. ennings, Free Radic. Res. 36 (2002) 1199.
- J. Sung, K. S. Huang, T. J. Lai, Y. Y. Chen, C. Y. Lin, A. Yeh, D. C. Wu, *Inorg. Chem.* 47 (2008) 11361.
- 7. J. Xu, R. B. Jordan, Inorg. Chem. 29 (1990) 4180.
- 8. A. E. Martell, R. M. Smith, Critical Stability Constants. *Plenum Press, New York*, 1982, vol. 5.
- 9. N. P. Slabbert, Tetrahedron, 33 (1977) 821.

附 錄(圖)

Figure A1. Fe(CN)₅py²⁻錯合物還原之k與[H⁺]關係圖

Figure A2. Fe(CN)₅isn²⁻錯合物還原之k與[H⁺]關係圖

Figure A3. Fe(CN)5bpy2- 錯合物還原之 k 與[H+]關係圖

Figure A4. Fe(CN)₆³⁻錯合物還原之k與[H⁺]關係圖

Figure A5、fisetin 與 Al-fisetin 錯合物吸收光譜圖
(a) free HF (b) AlF²⁺

Figure A6、luteolin 與 Al-luteolin 錯合物吸收光譜圖
(a) free HF (b) AlF²⁺

Figure A7、3-hydroxyflavon 與 Al-3-hydroxyflavone 錯合物吸收光譜圖 (a) free HF (b) AlF²⁺

Figure A8、5-hydroxyflavone 與 Al-5-hydroxyflavone 錯合物吸收光譜圖 (a) free HF (b) AlF²⁺

Figure A9、chrysin 與 Al-chrysin 錯合物吸收光譜圖

(a) free HF (b) AlF^{2+}

Figure A10、morin 與 Al-morin 錯合物吸收光譜圖

(a) free HF (b) AlF^{2+}

Figure A11、rutin 與 Al-rutin 錯合物吸收光譜圖

(a) free HF (b) AlF^{2+}

Figure A12、Al-fisetin 計量化學關係

Figure A13、Al-luteolin 計量化學關係

Figure A14、Al-3-hydroxyflavone 計量化學關係

Figure A15、Al-5-Hydroxyflavone 計量化學關係

Figure A16、Al-morin 計量化學關係

Figure A17、Al-chrysin 計量化學關係

Figure A18、Al-rutin 計量化學關係

Figure A19、Al-fisetin 錯合物質譜圖

(a) Al-fisetin complex (b)Al(III) (c) Fisetin

Figure A20、Al-luteolin 錯合物質譜圖

(a) Al-luteolin complex (b)Al(III) (c) Luteolin

Figure A21、Al-3-hydroxyflavone 錯合物質譜圖

Figure A22、Al-5-hydroxyflavone 錯合物質譜圖

(a) Al-5-hydroxyflavone complex (b)Al(III) (c) 5-hydroxyflavone

Figure A23、Luteolin 之¹H-NMR 光譜圖

Figure A24、Al-luteolin 錯合物之¹H-NMR 光譜圖

Figure A25、5-hydroxyflavone 之¹H-NMR 光譜圖

Figure A26、Al-5-hydroxyflavone 錯合物之¹H-NMR 光譜圖

Figure A27、Chrysin 之¹H-NMR 光譜圖

Figure A28、Al-chrysin 錯合物之¹H-NMR 光譜圖

Figure A29、Fisetin 之¹H-NMR 光譜圖

Figure A30、Al-fisetin 錯合物之¹H-NMR 光譜圖

Figure A31、3-hydroxyflavone 之 ¹H-NMR 光譜圖

Figure A32、Al-3-hydroxyflavone 錯合物之¹H-NMR 光譜圖

Figure A33、Al-fisetin 錯合物於[H⁺]=0.01M 之形成光譜圖

Figure A34、Al-3-hydroxyflavone 錯合物於[H⁺]=0.01M 之形成光譜圖

Figure A35、Al-luteolin 錯合物於[H⁺]=0.01M 之形成光譜圖

Figure A36、Al-5-hydroxyflavone 錯合物於[H⁺]=0.01M 之形成光譜圖

Figure A37、Al-chrysin 錯合物於[H⁺]=0.01M 之形成光譜圖

附 錄(表)

[H ⁺], M	$10^{2}[H_{2}A], M$	$k_{\rm obs},{\rm s}^{-1}$	[H ⁺], M	$10^{2}[H_{2}A], M$	$k_{\rm obs},{\rm s}^{-1}$
0.01	0.51	1.00×10^{-1}	0.06	0.52	4.48×10^{-2}
	1.01	1.95×10^{-1}		1.03	7.02×10^{-2}
	1.53	2.83×10 ⁻¹		1.62	1.14×10^{-1}
	2.05	3.63×10 ⁻¹		2.05	1.35×10^{-1}
	2.57	4.52×10^{-1}		2.52	1.46×10^{-1}
				3.01	1.72×10^{-1}
	0.51	$(20, 10^{-2})$	0.0 -	1.01	(5 4 10 ⁻²
0.02	0.51	6.36×10 ⁻¹	0.07	1.01	6.54×10^{-2}
	1.00	1.13×10 ⁻¹		1.51	9.81×10 ⁻²
	1.53	1.64×10 ⁻¹		2.02	1.25×10^{-1}
	2.02	2.13×10^{-1}		2.53	1.47×10^{-1}
	2.53	2.63×10 ⁻¹		3.08	1.66×10^{-1}
0.03	0.54	5.65×10 ⁻²	0.08	1.53	9.24×10 ⁻²
	1.02	9.36×10 ⁻²		2.05	1.14×10^{-1}
	1.51	1.25×10^{-1}		2.52	1.36×10^{-1}
	2.00	1.61×10^{-1}		3.03	1.59×10^{-1}
	2.54	1.83×10 ⁻¹			
0.04	0.59	5.00×10^{-2}	0.00	0.51	4.65 × 10 ⁻²
0.04	0.38	3.00×10^{-2}	0.09	1.06	4.03×10^{-2}
	1.12	8.03×10^{-1}		1.00	0.30×10^{-2}
	1.31	$1.1/\times10$		1.30	9.77×10^{-1}
	2.04	1.48×10		2.02	1.12×10^{-1}
	2.56	$1./9 \times 10^{-1}$		2.53	1.33×10^{-1}
	5.05	2.05×10		3.00	1.43×10
0.05	0.51	3.49×10 ⁻²	0.10	0.52	4.35×10 ⁻²
	1.01	6.29×10 ⁻²		1.52	6.71×10 ⁻²
	1.54	1.16×10 ⁻¹		2.04	1.01×10^{-1}
	2.02	1.23×10 ⁻¹		2.59	1.14×10^{-1}
	2.52	1.49×10^{-1}			

Table A1、酸性條件下, $[Fe(CN)_5py]^2$ - 錯合物還原反應之 k_{obs}^a

a. [Fe(CN)₅py²⁻] \cong 5×10⁻⁴M , μ =0.1M(LiClO₄) , T=25°C

[H ⁺], M	$10^{3}[H_{2}A], M$	$k_{\rm obs},{\rm s}^{-1}$	[H ⁺], M	10 ³ [H ₂ A], M	$k_{\rm obs},{\rm s}^{-1}$
0.01	1.14	8.50×10 ⁻²	0.06	1.06	3.01×10^{-2}
	3.31	2.21×10^{-1}		2.00	5.87×10^{-2}
	4.16	2.74×10^{-1}		3.18	6.95×10^{-2}
	5.04	3.20×10^{-1}		4.01	8.45×10^{-2}
	6.11	3.98×10^{-1}		5.32	1.16×10^{-1}
				6.09	1.38×10^{-1}
0.02	1.10	5.68×10^{-2}	0.07	1.10	3.45×10^{-2}
	2.08	8.67×10^{-2}		2.10	4.83×10 ⁻²
	3.08	1.23×10^{-1}		3.17	7.82×10^{-2}
	4.05	1.61×10^{-1}		4.10	8.09×10^{-2}
	4.94	2.00×10^{-1}		5.20	1.14×10^{-1}
				6.34	1.15×10^{-1}
0.03	1.22	4.47×10^{-2}	0.08	1.05	3.12×10^{-2}
	2.04	6.69×10^{-2}		3.09	6.53×10^{-2}
	3.13	1.03×10^{-1}		4.17	7.92×10^{-2}
	4.23	1.37×10^{-1}		6.67	1.36×10^{-1}
0.04	1.05	4.44×10^{-2}	0.09	1.12	2.59×10^{-2}
	2.11	6.71×10^{-2}		2.03	4.48×10^{-2}
	3.33	9.46×10 ⁻²		3.03	6.56×10^{-2}
	4.24	1.17×10^{-1}		4.93	9.08×10^{-2}
	5.15	1.35×10^{-1}		6.21	1.17×10^{-1}
0.05	2.33	5.67×10^{-2}	0.10	2.27	4.82×10^{-2}
	3.04	7.06×10^{-2}		3.11	6.96×10^{-2}
	4.03	8.66×10 ⁻²		5.24	1.02×10^{-1}
	5.12	1.29×10^{-1}		6.64	1.25×10^{-1}
	6.28	1.40×10^{-1}			

Table A2、酸性條件下, $[Fe(CN)_5 isn]^2$ -錯合物還原反應之 k_{obs}^a

a. $[Fe(CN)_5 isn^2] \cong 1 \times 10^{-4} M$, $\mu = 0.1 \text{ M}(LiClO_4)$, $T=25^{\circ}C$

[H ⁺], M	$10^{3}[H_{2}A], M$	k_{obs} , s ⁻¹	[H ⁺], M	10 ³ [H ₂ A], M	k_{obs} , s ⁻¹
0.01	1.06	1.32×10^{-1}	0.06	1.05	3.27×10^{-2}
	2.11	2.68×10^{-1}		2.01	5.93×10 ⁻²
	3.11	3.97×10^{-1}		2.98	8.70×10^{-2}
	4.10	5.16×10^{-1}		4.02	1.09×10^{-1}
	5.14	6.29×10^{-1}		5.06	1.28×10^{-1}
0.02	1.03	7.82×10^{-2}	0.07	2.10	6.63×10^{-2}
	2.05	1.54×10^{-1}		3.07	8.70×10^{-2}
	3.02	1.99×10 ⁻¹		4.05	9.81×10 ⁻²
	3.99	2.63×10^{-1}		5.08	1.25×10^{-1}
	5.02	3.35×10 ⁻¹			
0.03	1.03	5.62×10^{-2}	0.08	2.14	5.27×10^{-2}
	2.01	1.03×10^{-1}		3.06	6.95×10^{-2}
	3.03	1.54×10^{-1}		4.19	9.38×10 ⁻²
	3.99	1.88×10^{-1}		4.99	1.26×10^{-1}
	5.06	2.34×10^{-1}			
0.04	1.02	4.83×10^{-2}	0.09	2.01	5.08×10 ⁻²
	2.00	8.06×10^{-2}		3.05	7.50×10^{-2}
	3.05	1.07×10^{-1}		4.02	8.94×10 ⁻²
	4.00	1.50×10^{-1}		5.00	1.03×10^{-1}
	5.00	1.82×10^{-1}			
		2			2
0.05	1.08	4.02×10^{-2}	0.10	1.09	2.66×10 ⁻²
	2.08	6.94×10 ⁻²		2.13	4.99×10 ⁻²
	3.05	1.01×10^{-1}		3.15	6.78×10^{-2}
	4.09	1.20×10^{-1}		4.12	9.22×10^{-2}
	5.08	1.48×10^{-1}			

TableA3、酸性條件下, $[Fe(CN)_5bpy]^{2-3}$ 錯合物還原反應之 k_{obs}^{a}

a. [Fe(CN)₅bpy²⁻] \cong 1×10⁻⁴M , μ =0.1 M(LiClO₄) , T=25°C

[H⁺], M	10 ³ [AA], M	k_{obs}, s^{-1}	[H⁺], M	10 ³ [AA], M	$k_{obs}, \mathrm{s}^{\text{-}1}$
0.01	0.50	4.79×10^{-2}	0.06	0.55	1.30×10^{-2}
	1.05	1.01×10^{-1}		1.01	2.38×10 ⁻²
	1.53	1.48×10^{-1}		1.53	3.56×10 ⁻²
	2.03	1.89×10 ⁻¹		2.04	4.72×10 ⁻²
	2.55	2.38×10 ⁻¹		2.54	5.89×10 ⁻²
				3.00	6.81×10 ⁻²
0.02	0.54	2.99×10 ⁻²	0.07	0.53	1.29×10 ⁻²
	1.02	5.22×10 ⁻²		1.01	2.34×10 ⁻²
	1.56	8.07×10 ⁻²		1.50	3.26×10 ⁻²
	1.99	9.88×10 ⁻²		2.01	4.38×10 ⁻²
	2.58	1.37×10^{-1}		2.51	5.87×10 ⁻²
	3.02	1.60×10^{-1}		3.03	6.49×10 ⁻²
0.03	0.52	2.13×10 ⁻²	0.08	0.51	9.55×10 ⁻³
	1.02	4.08×10^{-2}		1.01	1.95×10^{-2}
	1.53	5.83×10 ⁻²		1.51	2.77×10 ⁻²
	2.03	7.66×10^{-2}		2.01	3.68×10 ⁻²
	2.53	9.61×10 ⁻²		2.53	4.61×10 ⁻²
	3.00	1.13×10 ⁻¹		3.01	5.33×10 ⁻²
0.04	0.54	1.70×10^{-2}	0.09	0.51	9.47×10 ⁻³
	1.08	3.31×10 ⁻²		1.02	1.73×10 ⁻²
	1.53	4.62×10 ⁻²		1.50	2.59×10 ⁻²
	2.13	6.18×10 ⁻²		2.05	3.52×10 ⁻²
	2.50	7.62×10^{-2}		2.53	4.40×10 ⁻²
	3.03	8.73×10 ⁻²		3.03	5.10×10 ⁻²
0.05	0.50	1.45×10^{-2}	0.10	0.53	9.02×10 ⁻³
	1.00	2.80×10^{-2}		1.01	1.67×10^{-2}
	1.59	4.29×10^{-2}		1.51	2.55×10 ⁻²
	2.03	5.39×10 ⁻²		2.01	3.33×10 ⁻²
	2.51	6.60×10^{-2}		2.52	4.12×10 ⁻²
	3.01	7.66×10^{-2}		3.04	4.98×10 ⁻²

Table A4、酸性條件下, $Fe(CN)_6^{3-}$ 錯合物還原反應之 k_{obs}^{a}

a. $[Fe(CN)_6^{3-}] \cong 5 \times 10^{-4} M$, $\mu = 0.5 M(LiClO_4)$, $T = 25^{\circ}C$

рН	$10^{2}[H_{2}A], M$	$k_{\rm obs},{\rm s}^{-1}$
4.00	0.51	5.40
	1.02	1.12×10^{1}
	1.57	1.88×10^{1}
	2.13	2.45×10^{1}
	2.55	3.02×10^{1}
4.25	0.54	9.34
	1.02	1.78×10^{1}
	2.05	4.02×10^{1}
	2.54	5.21×10^{1}
4.50	0.50	1.08×10^{1}
	1.02	2.49×10^{1}
	2.52	5.37×10^{1}
	3.02	6.57×10^{1}
5.00	0.54	2.14×10^{1}
	1.11	5.02×10^{1}
	1.51	6.98×10^{1}
	2.03	9.32×10^{1}
	2.53	1.10×10^{2}
5.25	0.51	2.72×10^{1}
	1.04	5.92×10^{1}
	1.66	9.01×10^{1}
	2.54	1.33×10^{2}

Table A5、於 pH 下,不同 ascorbic acid 濃度下之[Fe(CN)₅py]²⁻還原反應觀測速率 常數 k_{obs}^a

a. [Fe(CN)₅py²⁻] \cong 5×10⁻⁴M , μ =0.1M(LiClO₄) , T=25°C

рН	$10^{2}[H_{2}A], M$	k_{obs}, s^{-1}
4.00	0.51	2.09×10^{1}
	1.12	4.51×10^{1}
	1.66	7.36×10^{1}
	2.01	9.10×10^{1}
	3.02	1.35×10^{2}
4.25	0.51	2.88×10^{1}
	1.03	5.89×10^{1}
	1.52	8.90×10^{1}
	3.02	1.67×10^2
4.50	0.51	3.83×10^{1}
	1.01	7.68×10^{1}
	1.63	1.51×10^{2}
	2.03	1.75×10^{2}
	3.17	2.78×10^{2}
5.00	0.56	5.57×10^{1}
	1.06	1.12×10^{2}
	1.59	1.76×10^{2}
	2.59	2.71×10^{2}
	3.06	3.06×10^2
5.25	0.51	4.98×10^{1}
	1.06	1.17×10^{2}
	1.60	1.70×10^2
	2.54	2.54×10^{2}
	3.02	3.18×10^2

Table A6、於 pH 下,不同維他命 C 濃度下 $[Fe(CN)_5 isn]^2$ 之還原反應觀測速率常 數 k_{obs}^a

a. $[Fe(CN)_5 isn^{2-}] \cong 5 \times 10^{-4} M$, $\mu = 0.1 M(LiClO_4)$, $T = 25^{\circ}C$

рН	$10^{2}[H_{2}A], M$	k_{obs}, s^{-1}
4.00	0.10	5.84
	0.22	1.09×10^{1}
	0.31	1.57×10^{1}
	0.42	2.19×10^{1}
	0.51	2.43×10^{1}
4.25	0.10	7.38
	0.20	1.49×10^{1}
	0.31	2.10×10^{1}
	0.40	2.88×10^{1}
	0.50	3.91×10^{1}
4.50	0.11	8.57
	0.21	1.71×10^{1}
	0.30	2.32×10^{1}
	0.41	3.26×10^{1}
	0.52	4.17×10^{1}
5.00	0.12	1.06×10^{1}
	0.21	1.82×10^{1}
	0.31	2.74×10^{1}
	0.41	3.79×10^{1}
	0.50	4.63×10^{1}
5.25	0.10	9.18
	0.22	2.01×10^{1}
	0.30	2.84×10^{1}
	0.40	3.53×10^{1}
	0.52	4.76×10^{1}

Table A7、於 pH 下,不同維他命 C 濃度下[Fe(CN)₅bpy]²⁻之還原反應觀測速率常 數 k_{obs}^{a}

a. [Fe(CN)₅bpy²⁻] \cong 1×10⁻⁴M , μ =0.1 M(LiClO₄) , T=25°C

	[AA], M	k_{obs} , s ⁻¹
pH= 3.99	2.17×10^{-3}	1.17±0.01
	3.11×10 ⁻³	1.56±0.01
	4.04×10^{-3}	1.91±0.01
	5.00×10^{-3}	2.39±0.01
	6.01×10 ⁻³	2.89±0.01
pH= 5.49	2.05×10^{-3}	3.18±0.03
	3.01×10^{-3}	4.21±0.02
	4.00×10^{-3}	6.11±0.04
	5.01×10^{-3}	7.16±0.05
	6.12×10 ⁻³	8.14±0.02

 Table A8、於 pH 下,不同維他命 C 濃度下 $[Fe(CN)_6]^2$ 之還原反應觀測速率常數

 k_{obs}^a

a. $[Fe(CN)_6^{3-}] \cong 5 \times 10^{-4} M$, $\mu = 0.5 M(LiClO_4)$, $T = 25^{\circ}C$

Table A9、於 pH=7.52 下, $[Fe(CN)_5L]^2$ 之還原反應觀測速率常數 k_{obs}^{a}

Ligand	$10^{2}[H_{2}A], M$	k_{obs} , s ⁻¹		
ру	1.1×10^{-3}	2.34×10^{2}		
	2.2×10^{-3}	4.20×10^2		
	3.1×10 ⁻³	5.67×10^2		
	6.1×10 ⁻³	1.29×10^{3}		
	7.2×10^{-3}	1.36×10^{3}		
isn	1.1×10^{-3}	3.40×10^2		
	2.0×10^{-3}	6.19×10^2		
	3.1×10 ⁻³	9.19×10^2		
	4.1×10^{-3}	1.16×10^{3}		
	5.0×10 ⁻³	1.27×10^{3}		
	6.1×10 ⁻³	1.54×10^{3}		
bpy	0.6×10^{-3}	1.18×10^{2}		
	1.0×10^{-3}	2.56×10^2		
	1.5×10^{-3}	4.33×10^{2}		
a. $[Fe(CN)_5L^{2-}] \cong 1-5 \times 10^{-4} M$, $\mu = 0.1 M(LiClO_4)$, $T=25^{\circ}C$				

Table A10、於 pH=8.02 下, [Fe(CN)₅L]²⁻之還原反應觀測速率常數 k_{obs}^a

Ligand	[H ₂ A], M	$k_{obs}, \mathrm{s}^{\text{-1}}$
CN	1.02×10^{-3}	2.15×10^{1}
	1.54×10^{-3}	3.08×10^{1}
	2.00×10^{-3}	3.67×10^{1}
	2.58×10^{-3}	4.34×10^{1}
	3.01×10 ⁻³	4.86×10^{1}

a. $[Fe(CN)_5L^{2-}] \cong 1 \times 10^{-4}M$, $\mu = 0.1M(LiClO_4)$, $T=25^{\circ}C$

$[H^+]$	$[Al^{3+}]$	k_{obs} , s ⁻¹	$[\mathrm{H}^{+}]$	$[Al^{3+}]$	$k_{obs} \mathrm{s}^{-1}$
	1.01×10^{-3}	1.75×10^{-4}		2.12×10 ⁻³	1.41×10^{-4}
	1.99×10^{-3}	3.61×10 ⁻⁴		2.95×10 ⁻³	1.92×10^{-4}
0.0050	3.00×10^{-3}	5.76×10 ⁻⁴	0.0175	4.06×10^{-3}	2.78×10^{-4}
	4.02×10^{-3}	7.39×10^{-4}		5.00×10^{-3}	3.09×10^{-4}
	4.94×10^{-3}	9.01×10 ⁻⁴		5.98×10 ⁻³	3.73×10^{-4}
	2.07×10^{-3}	2.64×10^{-4}		1.98×10^{-3}	1.07×10^{-4}
	3.01×10 ⁻³	3.79×10 ⁻⁴		3.00×10^{-3}	1.64×10^{-4}
0.0075	4.02×10^{-3}	5.12×10 ⁻⁴	0.0200	4.12×10^{-3}	2.30×10^{-4}
	4.95×10^{-3}	6.29×10^{-4}		4.99×10^{-3}	2.70×10^{-4}
	6.01×10 ⁻³	7.61×10^{-4}			
	1.97×10^{-3}	1.87×10^{-4}		3.10×10 ⁻³	1.12×10^{-4}
	3.12×10^{-3}	3.37×10^{-4}		4.09×10^{-3}	1.61×10^{-4}
0.0100	4.01×10^{-3}	4.22×10^{-4}	0.0300	5.95×10 ⁻³	2.04×10^{-4}
	5.04×10^{-3}	5.20×10 ⁻⁴			
	5.97×10^{-3}	5.60×10^{-4}			
	1.92×10^{-3}	1.53×10^{-4}		3.06×10^{-3}	8.04×10^{-5}
	2.90×10^{-3}	2.55×10^{-4}		4.00×10^{-3}	1.11×10^{-4}
0.0125	3.96×10 ⁻³	3.24×10^{-4}	0.0400	5.08×10^{-3}	1.30×10^{-4}
	4.96×10^{-3}	4.13×10^{-4}		6.01×10^{-3}	1.81×10^{-4}
	5.97×10^{-3}	4.79×10^{-4}			
	1.93×10^{-3}	1.38×10^{-4}		4.09×10^{-3}	9.94×10 ⁻⁵
	2.87×10^{-3}	2.07×10^{-4}		5.08×10^{-3}	1.25×10^{-4}
0.0150	3.99×10^{-3}	2.94×10^{-4}	0.0500	6.03×10^{-3}	1.56×10^{-4}
	5.00×10^{-3}	3.46×10 ⁻⁴			
	5.98×10^{-3}	3.97×10^{-4}			

Table A11、酸性條件下, Al(III)與 quercetin 螯合反應之 k_{obs}^a

a. [quercetin]=5.00×10⁻⁵M,反應條件於 25°C, MeOH:H₂O=9:1

 $k_{obs} \overline{s}^{-1}$ $[A1^{3+}]$ $k_{obs} \mathrm{s}^{-1}$ $[A1^{3+}]$ $[H^+]$ $[H^+]$ 3.71×10^{-4} 1.01×10^{-3} 1.01×10^{-3} 8.93×10^{-4} 8.36×10⁻⁴ 1.97×10^{-3} 2.09×10^{-3} 1.96×10^{-3} 1.29×10^{-3} 2.98×10^{-3} 3.19×10^{-3} 3.00×10^{-3} 0.0050 0.0175 3.98×10^{-3} 3.88×10^{-3} 4.07×10^{-3} 1.57×10^{-3} 9.69×10⁻⁴ 4.16×10⁻⁴ 8.56×10⁻⁴ 1.10×10^{-3} 6.58×10⁻⁴ 1.93×10^{-3} 1.49×10^{-3} 2.03×10^{-3} 2.96×10^{-3} 2.21×10^{-3} 2.96×10^{-3} 1.03×10^{-3} 0.0075 0.0200 3.00×10^{-3} 4.23×10^{-3} 1.59×10^{-3} 4.03×10^{-3} 8.03×10⁻⁴ 2.45×10^{-4} 1.05×10^{-3} 1.03×10^{-3} 4.88×10⁻⁴ 2.05×10^{-3} 1.45×10^{-3} 2.00×10^{-3} 7.19×10⁻⁴ 2.98×10^{-3} 1.88×10^{-3} 3.01×10^{-3} 0.0100 0.0300 1.10×10^{-3} 4.10×10^{-3} 2.59×10^{-3} 4.03×10^{-3} 1.52×10^{-4} 5.13×10^{-4} 1.02×10^{-3} 9.76×10⁻³ 2.08×10^{-3} 1.10×10^{-3} 2.07×10^{-3} 4.29×10^{-4} 2.96×10^{-3} 1.40×10^{-3} 3.11×10^{-3} 6.30×10^{-4} 0.0125 0.0400 4.05×10^{-3} 2.01×10^{-3} 3.97×10^{-3} 7.46×10^{-4} 1.19×10^{-4} 1.04×10^{-3} 1.02×10^{-3} 5.20×10^{-4} 1.96×10^{-3} 7.81×10^{-4} 2.01×10^{-3} 2.70×10^{-4} 4.35×10^{-4} 2.90×10^{-3} 1.21×10^{-3} 3.07×10^{-3} 0.0150 0.0500 4.08×10^{-3} 1.84×10^{-3} 6.22×10^{-4} 4.08×10^{-3}

Table A12、酸性條件下, Al(III)與 fisetin 螯合反應之 kobs^a

a. [fisetin]=5.00×10⁻⁵M,反應條件於 25°C, MeOH:H₂O=9:1

$[\mathrm{H}^{+}]$	[Al ³⁺]	$k_{obs} \mathrm{s}^{-1}$	$[H^+]$	$[Al^{3+}]$	$k_{obs} \mathrm{s}^{-1}$
	1.93×10^{-3}	2.16×10 ⁻⁴		2.01×10^{-3}	8.22×10 ⁻⁵
	3.04×10^{-3}	3.95×10 ⁻⁴		3.07×10^{-3}	1.23×10^{-4}
0.0050	3.92×10^{-3}	4.52×10^{-4}	0.0175	3.92×10^{-3}	1.73×10^{-4}
	5.07×10 ⁻³	6.10×10 ⁻⁴		4.89×10^{-3}	1.95×10^{-4}
	1.95×10^{-3}	1.63×10^{-4}		1.96×10^{-3}	8.17×10^{-4}
	3.00×10^{-3}	2.76×10^{-4}		3.06×10^{-3}	1.17×10^{-4}
0.0075	4.01×10^{-3}	3.44×10^{-4}	0.0200	3.97×10^{-3}	1.39×10^{-4}
	5.21×10^{-3}	4.18×10^{-4}		5.02×10^{-3}	1.77×10^{-4}
	1.85×10 ⁻³	1.19×10^{-4}		2.93×10^{-3}	7.02×10^{-5}
	3.00×10^{-3}	2.14×10^{-4}		4.02×10^{-3}	1.00×10^{-4}
0.0100	4.02×10^{-3}	2.88×10^{-4}	0.0300	4.97×10^{-3}	1.31×10^{-4}
	5.02×10^{-3}	3.66×10^{-4}			
	2			2	5
	2.12×10^{-3}	1.30×10^{-4}		3.06×10^{-3}	6.47×10^{-5}
	2.98×10 ⁻³	1.81×10^{-4}		4.10×10^{-3}	8.84×10 ⁻⁵
0.0125	3.96×10^{-3}	2.36×10^{-4}	0.0400	6.00×10^{-3}	1.23×10^{-4}
	5.11×10^{-3}	3.07×10^{-4}			
	2	5		2	5
	2.06×10^{-3}	9.82×10^{-3}		1.92×10^{-3}	3.36×10 ⁻⁵
	3.03×10^{-3}	1.51×10^{-4}		3.01×10^{-3}	4.80×10^{-5}
0.0150	4.06×10^{-3}	1.86×10^{-4}	0.0500	3.99×10^{-3}	7.17×10 ⁻⁵
	5.02×10^{-3}	2.21×10^{-4}			

Table A13、酸性條件下, Al(III)與 luteolin 螯合反應之 k_{obs} ^a

a. [luteolin]=5.00×10⁻⁵M,反應條件於 25℃, MeOH:H₂O=9:1

$[\mathrm{H}^{+}]$	$[Al^{3+}]$	k_{obs} s ⁻¹	$[\mathrm{H}^{+}]$	$[Al^{3+}]$	k_{obs} s ⁻¹
	1.88×10^{-3}	3.93×10 ⁻⁴		2.09×10^{-3}	1.38×10^{-4}
	2.92×10^{-3}	6.08×10^{-4}		3.02×10^{-3}	2.06×10 ⁻⁴
0.0050	3.92×10^{-3}	8.10×10 ⁻⁴	0.0175	4.08×10^{-3}	2.86×10 ⁻⁴
	5.22×10 ⁻³	1.01×10^{-3}		5.02×10^{-3}	3.41×10 ⁻⁴
				5.9×10 ⁻³	3.98×10 ⁻⁴
	1.96×10 ⁻³	2.85×10^{-4}		2.06×10^{-3}	1.33×10^{-4}
	3.12×10^{-3}	4.52×10^{-4}		3.05×10^{-3}	1.88×10^{-4}
0.0075	4.09×10^{-3}	5.64×10^{-4}	0.0200	4.00×10^{-3}	2.40×10^{-4}
	5.01×10^{-3}	7.18×10^{-4}		5.07×10^{-3}	3.13×10 ⁻⁴
	6.00×10^{-3}	8.58×10^{-4}		6.09×10^{-3}	3.60×10 ⁻⁴
	2.03×10^{-3}	2.30×10^{-4}		3.84×10 ⁻³	1.53×10 ⁻⁴
	3.11×10 ⁻³	3.42×10^{-4}		4.84×10^{-3}	2.06×10^{-4}
0.0100	4.02×10^{-3}	4.51×10^{-4}	0.0300	5.94×10 ⁻³	2.33×10 ⁻⁴
	5.00×10^{-3}	5.48×10^{-4}			
	6.12×10^{-3}	6.57×10^{-4}			
	1.99×10^{-3}	1.80×10^{-4}		4.01×10^{-3}	1.06×10^{-4}
	3.03×10^{-3}	2.77×10^{-4}		5.00×10^{-3}	1.57×10^{-4}
0.0125	4.05×10^{-3}	3.65×10^{-4}	0.0400	5.98×10 ⁻³	1.75×10^{-4}
	4.94×10^{-3}	4.36×10^{-4}			
	6.16×10 ⁻³	5.44×10^{-4}			
	2.03×10^{-3}	1.60×10^{-4}		3.93×10 ⁻³	7.30×10^{-5}
	3.06×10^{-3}	2.50×10^{-4}		4.90×10^{-3}	1.03×10^{-4}
0.0150	3.94×10^{-3}	3.15×10 ⁻⁴	0.0500	6.18×10 ⁻³	1.43×10^{-4}
	5.06×10^{-3}	3.79×10 ⁻⁴			
	6.00×10^{-3}	4.50×10^{-4}			

Table A14、酸性條件下, Al(III)與 3-hydroxyflavone 螯合反應之 k_{obs}^a

a. [3-hydroxyflavone]=5.00×10⁻⁵M,反應條件於 25°C, MeOH:H₂O=9:1 µ=0.1M HClO₄/LiClO₄

$[\mathrm{H}^{+}]$	$[Al^{3+}]$	k_{obs} s ⁻¹	$[\mathrm{H}^{+}]$	$[Al^{3+}]$	$k_{obs} \mathrm{s}^{-1}$
	2.03×10 ⁻³	2.83×10 ⁻⁴		2.01×10^{-3}	1.01×10^{-4}
	3.02×10^{-3}	4.27×10^{-4}		3.04×10^{-3}	1.23×10^{-4}
0.0050	4.10×10^{-3}	5.79×10 ⁻⁴	0.0175	4.05×10^{-3}	1.60×10^{-4}
	5.04×10^{-3}	6.54×10^{-4}		4.97×10^{-3}	2.12×10^{-4}
	6.06×10^{-3}	7.84×10^{-4}		6.04×10^{-3}	2.68×10^{-4}
	2.03×10^{-3}	1.94×10^{-4}		1.98×10^{-3}	7.29×10^{-4}
	3.13×10 ⁻³	2.91×10 ⁻⁴		3.07×10^{-3}	1.10×10^{-4}
0.0075	4.11×10^{-3}	4.03×10^{-4}	0.0200	4.05×10^{-3}	1.50×10^{-4}
	5.09×10^{-3}	4.57×10^{-4}		5.08×10^{-3}	1.93×10^{-4}
	6.10×10^{-3}	5.56×10^{-4}		6.01×10^{-3}	2.13×10 ⁻⁴
	2.02×10^{-3}	1.43×10^{-4}		4.06×10^{-3}	9.11×10 ⁻⁵
	3.02×10^{-3}	1.95×10^{-4}		5.08×10^{-3}	1.30×10^{-4}
0.0100	4.05×10^{-3}	2.77×10^{-4}	0.0300	6.00×10^{-3}	1.43×10^{-4}
	5.08×10^{-3}	3.64×10^{-4}			
	6.07×10^{-3}	4.34×10^{-4}			
	1.99×10 ⁻³	1.13×10^{-4}		4.90×10^{-3}	8.87×10 ⁻⁵
	3.08×10^{-3}	1.67×10^{-4}		6.02×10^{-3}	1.01×10^{-4}
0.0125	4.03×10^{-3}	2.41×10^{-4}	0.0400	7.03×10^{-3}	1.22×10^{-4}
	5.07×10^{-3}	2.98×10^{-4}			
	6.02×10^{-3}	3.53×10 ⁻⁴			
	2.10×10^{-3}	1.19×10^{-4}		5.09×10^{-3}	7.29×10^{-5}
	3.01×10^{-3}	1.35×10^{-4}		5.95×10^{-3}	8.85×10 ⁻⁵
0.0150	4.01×10^{-3}	1.99×10^{-4}	0.0500	7.05×10^{-3}	1.11×10^{-4}
	5.00×10^{-3}	2.43×10^{-4}			
	5.98×10^{-3}	2.93×10^{-3}			

Table A15、酸性條件下, Al(III)與 5-hydroxyflavone 螯合反應之 kobs^a

a. [5-hydroxyflavone]=5.00×10⁻⁵M,反應條件於 25℃, MeOH:H₂O=9:1

<u>гтт+</u> 1	г л 1 ³ +т	1 -1	г т т +л	г д 13+л	1 -1
		K_{obs} S	[H]		K_{obs} S
	2.03×10^{-3}	2.01×10^{-4}		2.00×10^{-3}	6.84×10 ⁻⁵
	3.08×10^{-3}	3.05×10^{-4}		3.08×10^{-3}	1.24×10^{-4}
0.0050	4.07×10^{-3}	4.32×10^{-4}	0.0175	4.02×10^{-3}	1.34×10^{-4}
	5.04×10^{-3}	5.32×10^{-4}		5.10×10^{-3}	1.92×10^{-4}
	5.98×10 ⁻³	6.85×10 ⁻⁴		5.98×10 ⁻³	2.23×10^{-4}
	2.07×10^{-3}	1.41×10^{-4}		3.03×10^{-3}	8.67×10 ⁻⁵
	3.05×10^{-3}	2.42×10^{-4}		4.05×10^{-3}	1.25×10^{-4}
0.0075	4.04×10^{-3}	3.15×10 ⁻⁴	0.0200	5.02×10^{-3}	1.40×10^{-4}
	5.03×10^{-3}	3.78×10^{-4}		5.98×10 ⁻³	1.83×10^{-4}
	6.01×10 ⁻³	4.37×10^{-4}			
	2.02×10^{-3}	1.26×10^{-4}		4.92×10^{-3}	8.48×10 ⁻⁵
	3.02×10^{-3}	1.75×10^{-4}		5.97×10^{-3}	1.09×10^{-4}
0.0100	3.98×10 ⁻³	2.34×10^{-4}	0.0300	7.23×10^{-3}	1.45×10^{-4}
	5.00×10^{-3}	2.85×10^{-4}			
	5.97×10 ⁻³	3.61×10 ⁻⁴			
	2.16×10 ⁻³	1.01×10^{-4}		5.05×10 ⁻³	6.71×10 ⁻⁵
	3.05×10^{-3}	1.45×10^{-4}		5.89×10^{-3}	8.89×10^{-5}
0.0125	4.05×10^{-3}	2.03×10 ⁻⁴	0.0400	7.06×10^{-3}	1.06×10^{-4}
	5.05×10^{-3}	2.58×10^{-4}			
	6.00×10^{-3}	2.81×10^{-4}			
	2.13×10^{-3}	8.90×10^{-5}		4.93×10^{-3}	5.55×10 ⁻⁵
	3.07×10^{-3}	1.26×10^{-4}		5.90×10^{-3}	7.72×10^{-5}
0.0150	3.96×10^{-3}	1.68×10^{-4}	0.0500	6.99×10 ⁻³	7.92×10^{-5}
	4.97×10^{-3}	2.01×10 ⁻⁴			
	5.94×10^{-3}	2.45×10^{-4}			

Table A16、酸性條件下, Al(III)與 chrysin 螯合反應之 k_{obs}^a

a. [chrysin]=5.00×10⁻⁵M,反應條件於 25°C, MeOH:H₂O=9:1