摘要

五 氰 釕 雙 錯 合 鐵 氨 核 物 四 *trans*-[(isn)(NH₃)₄Ru(4-NCpy)Fe(CN)₅] 藉 由 筲 當 量 trans-[Ru(NH₃)₄(isn)(4-NCpy)]²⁺ 與[Fe(CN)₅(NH₃)]³⁻在 pH5 水溶液中 直接混合而得。trans-[(isn)(NH₃)₄Ru(4-NCpy)Fe(CN)₅]混價雙核錯合 物則是將 trans-[(isn)(NH₃)₄Ru(4-NCpy)Fe(CN)₅] 溶液以一當量 S₂O₈²⁻ 氧化而得。我們從 UV-vis 光譜、紅外線光譜及電化學結果均 顯示混價分子屬定域性 Ru(II)、Fe(III)氧化狀態。動力學結果顯示 雙核分子 trans-[(isn)(NH3)4Ru(4-NCpy)Fe(CN)5] 氧化第一個電子時 氧化中心在 Ru(II),形成 Ru(III)、Fe(II)氧化態,再經由 inner-sphere electron transfer 形成穩定的 Ru(II)、Fe(III)狀態的混價分子。Hush 理論分析價間光譜(intervalence IT band)的結果進一步求得非定域 性參數 α²=2 x10⁻³ 證實本實驗混價分子屬於定域性結構。

Abstract

The binuclear complex *trans*- $[(isn)(NH_3)_4Ru(4-NCpy)Fe(CN)_5]^$ was prepared by mixing equimolar of *trans*- $[Ru(NH_3)_4(isn)(4-NCpy)]^{2+}$ and $[Fe(CN)_5NH_3]^{3-}$ at pH=5 aqueous solution. The mixed valence complex *trans*-[(isn)(NH₃)₄Ru(4-NCpy)Fe(CN)₅] was obtained by *trans*- $[(isn)(NH_3)_4Ru(4-NCpy)Fe(CN)_5]^{-}$ with oxidation of one equivalent of peroxy disulfate. The results of UV-vis, infrared and electrochemical studies all suggested that the mixed valence species featured valence-trapped localized system with Ru(II) · Fe(III) oxidation The cyclic voltammogram of binuclear complexes exhibited states. two electron reversible steps at $E_{1/2} = 0.519V$ and 0.847V (vs. NHE). $[III, II] + e^{-} \rightleftharpoons [II, II] \text{ and } [III, III] + e^{-} \rightleftharpoons$ Which correspond to [III, II], respectively. The mixed valence complex shows an intervalence band at $\lambda_{max} = 830 \text{ nm} (1.02 \times 10^3 \text{M}^{-1} \text{cm}^{-1})$. The properties of the IT band conform with Hush's theory.

總目錄

中文摘要	1
英文摘要	2
總目錄	3
圖目錄	5
表目錄	7
第一章、 序論	8
第二章、 實驗	18
一、 藥品	18
二、 溶液配製	20
三、 去氧處理	22
四、 錯合物的合成	23
五、 儀器及分析方法	30
第三章、 結果與討論	34
一、 UV 吸收光譜	34
二、 IR 吸收光譜	39
三、 電化學	41

	四、	氧化反應動力學	 44
	五、	價間電子轉移吸收峰	 51
第四章、	結論	·	 58
參考文獻			 59

圖目錄

Figure. 1 Ru(NH ₃) ₅ (py) ²⁺ 錯合物之分子軌域能階圖 11
Figure. 2 五氰鐵(II)金屬中心與五氨釘金屬中心的 MLCT 能量
關係圖17
Figure.3 去氧處理系統圖 23
Figure. 4 李可瓶(Zwickel flask)示意圖24
Figure. 5 環路伏安儀電池裝置圖 31
Figure. 6 trans-[(isn)(NH ₃) ₄ Ru(4-NCpy)Fe(CN) ₅] ⁻ 之氧化反應圖 - 33
Figure. 7 Ru、Fe 雙核分子 4-NCpy 橋基吸收光譜圖 37
Figure. 8 Ru、Fe 雙核分子 4,4'-bpy 橋基吸收光譜圖 38
Figure. 9 trans-[(isn)(NH ₃) ₄ Ru(4-NCpy)Fe(CN) ₅] 錯合物之 IR 光譜 40
Figure. 10 trans-[(isn)(NH ₃) ₄ Ru(4-NCpy)Fe(CN) ₅] ⁻ 錯合物之CV 圖 42
Figure. 11 <i>trans</i> - $[Ru(NH_3)_4(isn)(4-NCPy)]^{2+}k_{obs}$ 對 $[S_2O_8^{2-}]$ 作圖 - 46
Figure.12 <i>trans</i> -[(isn)(NH ₃) ₄ Ru(4-NCpy)Fe(CN) ₅] k_{obs} 對[S ₂ O ₈ ²⁻]
作圖 47

Figure.13 *trans*- [(isn)(NH₃)₄Ru(4-NCpy)Fe(CN)₅] k_{obs} 對[S₂O₈²⁻]

作圖		48	8
----	--	----	---

Figure. 14 非對稱混價化合物之位能 - 核座標圖------ 54

Figure. 15 trans-[(isn)(NH₃)₄Ru(4-NCpy)Fe(CN)₅] 價間電子轉移吸收

1			÷
化加坚	h	h	
兀碋回	J	J	J

表目錄

Table.1 Fe(II, III)及 Ru(II, III)錯合物之 UV-vis 吸收光譜	35
Table.2 Ru(II, III)及Fe(II, III)錯合物之IR 吸收光譜	39
Table.3 Ru(III)及 Fe(III)錯合物之還原電位	41
Table.4 Ru 單核及 Ru-Fe 雙核與 S2O82-反應速率	45
Table.5 Ru(II, III)及 Fe(II, III)錯合物之氧化反應速率	48

第一章 序論

過渡金屬之雙核混價化合物(mixed-valence compound),通常指 的是分子內的金屬離子,同時具有還原態及氧化態,亦即混合氧化 狀態,以鐵為例,當同為淡黃色的 Fe^{2+} 水溶液與 $Fe(CN)_6^{3-}$ 或 Fe^{3+} 水溶液與 $Fe(CN)_6^{4-}$ 混合後,溶液立刻轉變成深藍色,並且在可見光 有強烈吸收($\lambda_{max} = 720 \text{ nm}$][1],此即化學熟知的普魯士藍,但因普 魯士藍分離所得產物成團簇(cluster)型態[$Fe_4^{III}(Fe^{II}(CN)_6)$]₃·H₂O 太 過複雜,無法就其形成藍色原因做進一步探討。直到 60 年代初利 用分子軌域理論處理方得到解答[2],乃由於兩金屬中心形成 $Fe^{II}(C=N)Fe^{III}$ 鍵結,電子自 Fe(II)中心經 C=N 橋基躍遷至 Fe(III)中心的吸收所引起。

1960年代末期,Robin和 Day 依電子在金屬間的交流程度將雙 核混價分子分為三大類[3],第一類:中心金屬間距離很遠或沒有橋 基,金屬間完全沒有交互作用(coupling),金屬擁有各自的氧化態, 混價分子所有的性質,乃本身各組成單核分子之性質的加成,並無 新的特性產生。第二類:金屬中心間有微弱的交互作用,有新的光 學性質及電化學性質產生,亦即所觀測之物理性質主要除維持原組 成單核分子之性質外,另外又增加了一些新的物理性質。第三類: 中心金屬間交互作用力非常大,金屬原本的性質已經消失,產生新 的光學及電化學性質,所表現之性質與原來組成單核分子完全不同, 電子平均分配在兩金屬上,成非定域性(delocalized)。

1960 年代末期, Taube 在探討內圈電子轉移反應, 為了希望能 觀測雙核中間產物,而嘗試以Ru(NH3)53+取代Co(NH3)53+金屬中心, Co(NH₃)₅³⁺ 雖為取代穩定中心,但當還原成 Co(II)時,由於 Co(II) 為 取代活潑金屬中心,因此立即解離,無法捕捉雙核中間產物;而 $Ru(NH_3)_5^{2+/3+}$ 金屬中心為低自旋 d^6/d^5 電子結構, 同為取代穩定中心 以 Ru(NH₃)₅³⁺與 Cr²⁺的內圈電子轉移反應為例,所形成雙核中間產 (NH₃)₅Ru^{II}N, C=OCr^{III}, 可穩定達數小時之久, 不見解離, 物 不僅如此,使中間雙核產物在 $\lambda_{max} = 530$ nm 處,有一強烈吸收(ε_{max} ~ 10⁴ M⁻¹ cm⁻¹), 後來進一步探討,發現 Ru(NH₂)₅²⁺與π酸配位所形 成之錯合物,具有金屬到配位之電荷轉移(MLCT)。如配位為含氮 芳香雜環(N-aromatic heterocycles),例如 isonicotinamide,此錯合物 的電荷轉移在可見光區有一極強的吸收,從 MOT 處理結果得知 [5], 為電子自 $a_2(d_{xx})$ 及 $b_2(d_{yz})$ 軌域躍遷至配位基上的 $b_1(\pi^*L)$ 軌域所 致,如圖1所示,此發現也打開了 Ru(NH3)5L2+/3+系統的研究領域 [5] •

從電化學結果得知,此MLCT亦增加了 $Ru(NH_3)_5L^{2+}$ 錯合物的 穩定性; $Ru(NH_3)_5py^{3+/2+}$ 及 $Ru(NH_3)_6^{3+/2+}$ 的還原電位,分別為0.305V及0.050V, $Ru(NH_3)_5py^{2+}$ 錯合物相較於 $Ru(NH_3)_6^{2+}$ 的電位,0.255V的額外穩定能即由MLCT及其回饋鍵結所引起。

Ru(NH₃)₅³⁺中心金屬是屬於低自旋 d⁵ 電子組態,dπ 軌域有一電 子洞,如果與一具有高電子密度的配位基鍵結時,則所形成的 Ru(NH₃)₅L³⁺錯合物將有配位基到金屬的電子傳遞(ligand to metal charge transfer,LMCT)。當 L= 4-aminopyridine(4-ampy) 時,除 Ru(NH₃)₅(4-ampy)²⁺錯合物在 $\lambda_{max} = 360$ nm ($\epsilon_{max} = 6.0 \times 10^3$ M⁻¹cm⁻¹) 具有 dπ→π* MLCT 的吸收外,當錯合物氧化成 Ru^{III} 時,錯合物溶 液立刻從黃色轉變成紫紅色,且在 $\lambda_{max} = 505$ nm ($\epsilon_{max} = 3.2 \times 10^3$ M⁻¹cm⁻¹)有明顯吸收。此吸收來自於配位基上 NH₂ 氮上的自由電子 對躍遷到金屬的 dπ 軌域所引起。

利用 Ru(NH₃)₅L^{2+/3+}之取代穩定性, Taube 決定設計單純的混價 分子模型,以對混價化學作有系統的研究[6],以 pyrazine 為橋基, Ru(NH₃)₅^{2+/3+} 為 金 屬 中 心 , Taube 學 生 Creutz 合 成 出 了 $[(NH_3)_5Ru(pz)Ru(NH_3)_5]^{n+}$ (n=4、5、6)雙核錯合物,即有名的 Creutz-Taube 離子[7-8],如 Scheme. 1 所示,也打開了混價化學的研 究領域。

Figure.1 Ru(NH₃)₅(py)²⁺錯合物之分子軌域能階圖

Scheme.1 Creutz-Taube 離子之結構

當 n=4 時,呈還原態(reduced form),金屬中心為 Ru(II)、Ru(II); 當 n=6 時,呈氧化態(oxidized form),金屬中心為 Ru(III)、Ru(III), 當 n=5 時,則是混價狀態(mixed valence),電子的分布有兩種可能 情形,第一種情形為電子主要停留在其中一個金屬中心,形成 Ru(II)、 Ru(III)定域性狀態;另一種情形則是平均分布在兩金屬中,而成 Ru(II₁₂)、Ru(II₁₂)不定域性狀態。

Creutz-Taube 離子發表後,立刻引起科學家們的激烈討論,短 短不到五年,就有超過5篇文章分別從不同角度探討此分子[9-14], 而主要的爭論焦點乃在於電子在兩金屬間的交流情況,究竟是屬於 定域性或非定域性。由於IR光譜之δ(NH₃)吸收僅出現一訊號在1295 cm⁻¹位置,剛好介於在 Ru(II)(1330 cm⁻¹)與 Ru(III)(1280 cm⁻¹)之間, 似乎傾向非定域性 Ru(II_{1/2})、 Ru(II_{1/2})之氧化狀態;而 UV-vis 光譜 之 MLCT 吸收卻在 $\lambda_{max} = 565$ nm,有一明顯屬於 Ru(II) → pz 之躍 遷,傾向於 Ru(II)、 Ru(III)定域性。直到 1970 年代末期此爭議才 有結論[15],之所以有此矛盾主要是儀器之時間尺度(time scale)不同 所導致,當電子在分子內轉移速率快過儀器的時間尺度,則對該儀 器而言,當觀測時,電子已在金屬間來回多次,儀器只能觀其平均 值,無法確定位置,因此屬於非定域性;如電子轉移速率小於儀器 的時間尺度時,當觀測時,電子彷彿靜止,停留在其中一個金屬中 心上,因此屬於定域性。IR 光譜時間尺度為 10⁻¹³ sec,而 UV-vis 光譜則為 10⁻¹⁵ sec,當混價分子內電子在金屬間轉移速率介於兩儀 器時間尺度之間,則以 IR 光譜儀偵測,分子屬於非定域性,而以 UV-vis 光譜儀觀察,則為定域性,一直以來,科學家們為此感到困 擾。

由於過去大家對定域性與非定域性的了解,一直停留在理論的 結果,特別是分子軌域理論的處理,若電子存在於一分子軌域,同 時具有兩金屬離子的性質,無法區分,則屬非定域性;若分子軌域 主要由其中一金屬提供則為定域性。但一直無法從實驗尺度了解其 物理意義。在一次的會議上,大家共同的結論乃是,與其爭論定域 性或非定域性,不如選用一儀器當作標準,電子轉移速率高於此儀 器時間尺度則為非定域性,比此儀器時間尺度慢則為定域性,最終 一致決議以 IR 光譜儀為標準[16],因為 IR 屬振動頻率(vibrational mode),與溶劑效應相同,因此比 IR 時間尺度快,則無溶劑效應;反

13

之則受溶劑效應影響,此乃 Creutz-Taube 離子除打開混價化學領域 外,在科學上的一大貢獻,根據此標準, Creutz-Taube 離子屬於非 定域化分子[8]。

繼 Creutz-Taube ion 之後, Taube 又以一系列 4, 4'-bipyridine 衍 生物及 pyrimidine、cyanopyridine、dicyanobenzene 為橋基(Scheme. 2) [12,17,18]的雙釘氨雙核錯合物,結果發現這些錯合物之混價分子均 屬於定域性 Ru(II)、Ru(III)氧化狀態。

4, 4'- bipyridine

4, 4'- dipyridylmethane

Ν

4, 4'- dipyridylamine

4, 4' - dipyridylethylene

4, 4'- dipyridylacetylene

pyrimidine

CN

NC CN

cyanopyridine

Scheme.2 橋基化合物之結構圖

在 Ru(NH₃)₅L^{2+/3+}系統發展之餘,1970 年代 Toma 和 Malin 合成 了一系列五氰鐵(II/III) (Fe(CN)₅L^{3-/2-}) 錯合物進行探討[19], Fe(CN)₅L^{3-/2-}與 Ru(NH₃)₅^{2+/3+}同屬低自旋 d^{6}/d^{5} 電子組態,與氮芳香雜 環皆可形成穩定錯合物。在可見光區有 $d\pi \rightarrow \pi_{L}$ *電荷轉移強吸收, 且兩者吸收能量成線性關係[19]如圖 2 所示。Fe(CN)₅L^{3-/2-}系統發展 出來後,Ludi [20] 合成了一系列五氰鐵雙核混價錯合物 (CN)₅Fe(L)Fe(CN)₅⁵⁻ (L = *trans*-1,2-bis-(4-pyridyl)-ethylene、pyrazine、 4,4'-bipyridine),包括 pyrazine 在內,所有混價分子均屬於定域性 Fe(II)、Fe(III)電子結構。

利用 Ru(NH₃)₅^{2+/3+}及 Fe(CN)₅^{3-/2-}金屬中心相似的電子結構,我們 實驗室亦曾建立(NH₃)₅Ru(L)Fe(CN)₅ⁿ (n = -1、0、1)雙核錯合物系統, 與同核(Ru(NH₃)₅L^{2+/3+}或 Fe(CN)_{5L}^{3-/2-})系統不同處,乃系統除非定 域性與定域性之探討外,如屬定域性,還可根據實驗結果進一步了 解究竟屬於 Ru(II)、Fe(III)或 Ru(III)、Fe(II)氧化狀態,我們曾先後 探 討 以 L = pyrazine、4,4'-bipyridine、4,4'-dipyridylamine、 pyrimidine、3-, 4-cyanopyridine) [21-24]的雙核錯合物,發現所有混 價分子的氧化狀態皆屬於定域性, Ru(III)、Fe(II)氧化狀態。

最近,我們嘗試以 isonicotinamide 取代釘氨中心中一個(NH₃)配 位基,並以 pyrazine 為橋基,探討[(isn)(NH₃)₄Ru(pz)Fe(CN)₅]ⁿ 雙 核錯合物,以其了解官能基對電子在金屬間交往的影響。結果卻發現,混價分子雖仍為定域性,但與以往不同,所有的實驗之結果皆指向穩定狀態,屬 Ru(II)、Fe(III),也因此引起我們濃厚的興趣, 可惜雙核分子無法分離沉澱,無法做固態的確認,我們乃決定以溶 解度較低的 4-cyanopyridine 代替 pyrazine 作為橋基,探討混價分子 性質,結果發現混價分子仍屬於 Ru(II)、Fe(III)定域性,但分子似 乎可以沉澱,本論文即就動力學及熱力學探討以得結果。

Figure. 2 五氰鐵(II)金屬中心與五氨釘金屬中心的 MLCT 能量關係圖 [19]

第二章 實驗部分

一、藥品

中文名稱	英文名稱	化學式	來 源
氯化六銨釘	Hexaammineruthenium (III) chloride	Ru(NH ₃) ₆ Cl ₃	Strem
過氯酸鋰	Lithium perchlorate trihydrate	$LiClO_4 \cdot 3H_2O$	Aldrich
醋酸鈉	Sodium acetate trihydrate	CH ₃ COONa • 3H ₂ O	Merck
過硫酸鈉	Sodium peroxydisulfate	$Na_2S_2O_8$	Merck
亞硝鐵氰化鈉	Sodium nitroprussiate dihydrate	Na ₂ [Fe(CN) ₅ NO] • 2H ₂ O	Merck
異菸鹼酸	Isonicotinamide	$C_6H_6N_2O$	Aldrich
叱嗪	Pyrazine	$C_4H_4N_2$	Aldrich
4-氰基吡啶	4-pyridinecarbonitrile	$C_6H_4N_2$	Aldrich
三氟醋酸	Trifluoroacetic acid	$C_2HF_3O_2$	Merck
六氟磷酸銨	Ammonium hexafluorophosphate	NH ₄ PF ₆	Acros
重亞硫酸鈉	Sodium disulfite	$Na_2S_2O_5$	Merck

中文名稱	英文名稱	化學式	來 源
黄血鹽鈉	Potassium hexacyanoferrate(II) trihydrate	$K_4[Fe(CN)_6] \cdot 3H_2O$	Merck
鹽酸	Hydrochloric acid	HC1	Aldrich
乙醇	Ethanol	C ₂ H ₅ OH	Merck
乙醚	Diethyl ether	$C_4H_{10}O$	Merck
丙酮	Acetone	C ₃ H ₆ O	Merck
硫酸	Sulfuric acid	H_2SO_4	Merck
過氧化氫	Hydrogen peroxide	H_2O_2	Merck
抗壞血酸	L-Ascorbic acid	$C_6H_8O_6$	Merck
鋅	Zinc, granular	Zn	Sigma- Aldrich
氯化鉻	Chromium(III) chloride hexahydrate	$CrCl_3 \cdot 6 H_2O$	Acros
氯化汞	Mercury(II) chloride	HgCl ₂	Merck
過氯酸	Perchloric acid	HClO ₄	Riedel- de Haen

二、溶液配製

純水系統(doubly distilled water)

先將自來水經過逆滲透裝置純化,再通入 Barnstead NANO pure Diamond 去離子超純水設備,純化後得二次去離子水,本實 驗的所有合成、緩衝溶液配製以及反應所需水溶液均採用二次去離 子水。

鋅汞齊(zinc/mercury amalgam, Zn/Hg)製備

取適量鋅粒以6M鹽酸(HCI)清洗數次去除表面氧化物,再以二 次去離子水反覆清洗鋅粒除去表面鹽酸殘留物。將鋅粒加入飽和氣 化汞溶液(於0.1M硫酸溶液)汞化,攪拌至其光亮後以二次去離子 水清洗表面擦乾,所得的鋅汞齊須立即使用以免被空氣氧化。

亞鉻溶液(chromous solution)製備

將40克三氯化鉻(CrCl₃·6H₂O)溶於500毫升的1M過氯酸水溶 液中,加入適量鋅汞齊後,再持續通入氫氣直到所有的三價鉻離子 完全還原成二價鉻溶液為止,此時水溶液顏色由綠色轉變成藍色澄 清溶液。

緩衝溶液(buffer solution)配製

使用 pH=5 醋酸根/醋酸緩衝溶液(acetate-acetic buffer):將4.1 克醋酸鈉溶於 400 毫升水中,以醋酸滴定此溶液達到 pH=5,在稀 釋此溶液至 500 毫升,即為 pH=5、0.01 M 之 OAc⁻/HOAc 緩衝溶 液。

三、去氧處理

隔氧處理系統

所有反應以及溶液配置過程為了防止空氣中氧氣滲入干擾,均 需在飽和氫氣下或手套箱內進行,去氧系統如圖 3,鋼瓶內的氫氣, 先經過裝有鋅汞齊的亞鉻溶液洗滌瓶,以除去氫氣中所含少量的氧 氣。再經過裝有二度去離子水的洗滌瓶,以防止鉻(Cr(II))與鋅汞 齊溶液直接與空氣接觸而被氧化,並平衡反應瓶內之水氣含量。 對空氣敏感之化合物的合成可在氮氣手套箱中進行或使用李可瓶 (Zwickel Flask),如圖 4,利用中心旋鈕可控制氫氣的流道路線。

錯合物溶液轉移

整組玻璃導管製成的隔氧系統,可以針筒及不鏽鋼針 (stainless-steel needle)連結反應物溶液,並且將氫氣或氮氣通入 錯合物配置瓶及石英液槽(quartz cell),以隔絕氧氣干擾。先將溶 液置於血清瓶中,瓶口以血清塞塞住,再插入一長一短注射鋼針, 其中長針沒入溶液中,為氫氣入口,短針則懸於液面之上為出口, 連續通入氫氣至少五分鐘,以完全去除溶液中的溶氧,再加入錯合 物。另外空的石英槽,同樣蓋以小的血清塞及插入長短針各一,同 時通以氫氣至少五分鐘,以除去黏附管壁之空氣,然後以注射針筒 吸取血清瓶內之錯合物溶液注入石英槽。

Figure.3 去氧處理系統圖

Figure. 4 李可瓶(Zwickel flask)示意圖

四、錯合物的合成

由於釘氨錯合物對光及空氣敏感,所有合成必須在避光及絕氧條件下進行、並且使用李可瓶以降低與空氣接觸的機會。 trans-[Ru(NH₃)₄(isn)(4-NCpy)](PF₆)₂ 合成的流程如 Scheme. 3 所示。

$[Ru(NH_3)_6] Cl_3$ $\downarrow (1)$ $[Ru(NH_3)_5Cl]Cl_2$ $\downarrow (2)$ $trans-[Ru(NH_3)_4(HSO_3)_2]$ $\downarrow (3)$ $trans-[Ru(NH_3)_4(SO_2)Cl]Cl$ $\downarrow (4)$ $trans-[Ru(NH_3)_4(isn)(SO_2)]Cl_2$ (isn=isonicotinamide) $\downarrow (5)$ $trans-[Ru(NH_3)_4(isn)(SO_4)]Cl$

↓ (6)

trans-[Ru(NH₃)₄(isn)(4-NCpy)](PF₆)₂

(4-NCpy=4-cyanopyridine)

Scheme.3 Ru 錯合物合成步驟

(1) $[Ru(NH_3)_5Cl]Cl_2$ [25]

將 3.5 克[Ru(NH₃)₆]Cl₃ 加 75 毫升 6 M 鹽酸,磁石攪拌下加熱 至 110℃迴流 4 小時,移除熱源後冷卻至室溫,將黃色固體過濾, 以 6 M 鹽酸、乙醇、乙醚清洗,置於真空乾燥器中乾燥,得粗產 物。產率:3.19 克,96%。將粗產物溶於 500mL 40℃ 0.1 M 鹽酸 中加熱至 80℃,趁熱過濾,濾液冷卻至室溫後,再移入冰箱靜置 24 小時,橘黃色晶體析出。低溫下快速過濾產物,依序以冰的 0.1 M 鹽酸、乙醇、乙醚清洗,置於真空乾燥器中乾燥,得[Ru(NH₃)₅Cl]Cl₂ 產物。產率:2.43 克,74 % (分子量:292.58)。再將濾液加入等體 積 12 M 鹽酸後移入冰箱(24 小時),黃色固體析出(起始物回收)。

(2) trans-[Ru(NH₃)₄(HSO₃)₂] [25]

將 1.42 克 Na₂S₂O₅ 溶於 25 毫升二次去離子水,加熱至 80~90 ℃,加入 1 克[Ru(NH₃)₅Cl]Cl₂,緩緩通入 SO₂ 氣體,反應一小時(溫 度維持在 80~90°C),移除熱源後冷卻至室溫(維持 SO₂ 氣體之通入), 將白黃色固體過濾,依序以少量乙醇、乙醚清洗,置於真空乾燥器 中乾燥。產率:1.05 克,92%(分子量:331.32)

(3) trans-[$Ru(NH_3)_4(SO_2)Cl$]Cl [25]

將1克 trans-[Ru(NH₃)₄(HSO₃)₂]溶於100毫升6M鹽酸水溶液 中加熱至沸騰(約120~130°C),迴流20分鐘。溶液趁熱過濾,濾 液先靜置回復室溫後再移入冰箱(24小時),暗紅色針狀晶體產物析 出。低溫下快速將產物過濾,固體依序以少量6M鹽酸、乙醇及乙 醚清洗後減壓抽乾。產率:0.6 克, 68%(分子量:304.16)。

(4) trans-[$Ru(NH_3)_4(SO_2)(isn)$]Cl₂ [34]

將 250 毫克 isonicotinamide 溶於 7 毫升水中,通入氫氣 5 分鐘 後加入 100 毫克 trans-[Ru(NH₃)₄(SO₂)Cl]Cl,反應 5 分鐘。再加入 等體積 6 M 鹽酸水溶液,冰浴並持續通入氫氣。低溫下快速將橋 黃色產物過濾,固體依序以少量乙醇及乙醚清洗後減壓抽乾。產率: 130 毫克,88% (分子量:426.28)

(5) trans-[$Ru(NH_3)_4(SO_4)(isn)$]Cl [34]

將 100 毫克 trans-[Ru(NH₃)₄(SO₂)(isn)]Cl₂ 溶於 5 毫升 1 M 鹽酸 水溶液中(溶液呈橘黃色),磁石快速攪拌下逐滴加入 1~2 毫升 30 % H₂O₂ 直到溶液顏色消失,立即加入等體積 12 M 鹽酸,再加入 15 毫升丙酮(淡黃色固體析出)並移入冰箱。維持低溫下快速將產物過 濾,固體依序以少量乙醇及乙醚清洗後減壓抽乾。產率:81 毫克, 75 % (分子量:458.86)。 (6) *trans*-[Ru(NH₃)₄(isn)(4-NCpy)](PF₆)₂ [22]

將 100 毫克 *trans*-[Ru(NH₃)₄(SO₄)(isn)]Cl 溶於 5 毫升 pH=2 的 TFA (trifluoracetic acid)中,加熱至 50℃ 溶解後冷卻至室溫,加 入鋅汞齊還原 1 小時,再加入已溶於 3 毫升 TFA 中 144 毫克 4-cyanopyridine 反應 2 小時。加入 0.5 克 NH₄PF₆ 30 分鐘後過濾得 初產物。初產物溶於水中加熱至 70℃ 溶解,冷卻至室溫並且冰浴 1 小時後快速過濾,固體以少量乙醇及乙醚清洗後減壓抽乾。產率: 136 毫克,83% (分子量:685.35)。

元素分析結果:理論值 N:16.35%,C:21.03%,H:3.24%, 實驗值 N:16.19%,C:20.90%,H:3.46%。

(7) $Na_3[Fe(CN)_5(NH_3)] \cdot 5 H_2O$ [26]

10 克的 Na₂[Fe(CN)₅NO]·2 H₂O 溶於 40 毫升水中,置於冰浴 中冷卻,待溫度降至 5℃時開始通入氨氣。控制氨氣流速並使溫度 控制維持在~10℃,不可超過 20℃。反應約四小時直到氨氣開始溢 出且反應溫度明顯下降,過濾以乙醇及乙醚清洗數次,置於真空乾 燥器中乾燥,得黃色結晶粗產物。 將粗產物溶於 100 毫升之 25% 氨水中,過濾取濾液,將乙醇逐滴加入濾液中,直到濾液呈現混濁 狀,冰浴兩小時後過濾,以乙醇和乙醚清洗數次,得淡黃色針狀結 晶,置於真空乾燥器中乾燥。產率: 5.6 克 (45%)

28

(8) trans-[(isn)(NH₃)₄Ru(4-NCpy)Fe(CN)₅]⁻¹ 溶液製備

將 pH=5 (acetate buffer)溶液置於血清瓶中通入氫氣 15 分鐘除 氧,加入等 mole 數之 *trans*-[Ru(NH₃)₄(isn)(4-NCpy)] (PF₆)₂ 和 Na₃[Fe(CN)₅(NH₃)] • 5 H₂O 至溶液中使其混合,持續通入氫氣至少 10 分鐘即可形成 *trans*-[(isn)(NH₃)₄Ru(4-NCpy)Fe(CN)₅] ⁻¹ 雙核錯 合物溶液。

(9) trans-[(isn)(NH₃)₄Ru(4-NCpy)Fe(CN)₅] \cdot 2 H₂O

將 trans-[(isn)(NH₃)₄Ru(4-NCpy)Fe(CN)₅]⁻¹配製成 1×10⁻³M,加 入一當量 S₂O₈²⁻氧化 15 分鐘後,冰浴 30 分鐘使其沉澱,過濾並以 乙醚清洗,真空抽乾後得到產物。

元素分析結果:理論值 N:29.49%,C:33.07%,H:4.24%, 實驗值 N:29.61%,C:33.32%,H:4.25%。

五、儀器及分析方法

酸鹼度測量

使用 Orion 420A 酸鹼度儀,配製緩衝溶液及測量反應狀態之 pH 值,使用前需以標準溶液進行兩點校正(pH = 7.0、 4.0)。

紫外-可見光吸收光譜

使用 Hitachi U-2000或 Hewlett-Packard HP 8453紫外-可見光光 譜儀,樣品槽(cell)光徑 1.0公分,為石英材質。消光係數(extinction coefficient, ɛ)可由吸收波之吸收度(absorbance)依 Beer's law 求得。

近紅外光吸收光譜

使用輔仁大學化學系 Shimadzu 3101PC 近紅外光光譜儀(190-3000 nm),樣品槽光徑 1.0 公分,為石英材質。以 D₂O 代替水作為溶劑可避免溶劑吸收干擾。

紅外光吸收光譜

使用 Perkin-Elmer 1725X FT-IR 紅外光光譜儀,將樣品壓製成 KBr 薄片後測量。 使用 Princeton Applied Research (PAR) Model 273A Potentiostat/ Galvanostat 測量錯合物之還原電位。圖 5 為本實驗室所使用之循環 伏安電池裝置(cyclic volammetry),以飽和甘汞電極(Saturated calomel electrode, SCE)作為參考電極(reference electrode),銷金屬絲 (Platinum wire)作為輔助電極(auxiliary electrode),金電極(gold electrode)做工作電極(working electrode)。電化電池一端接氮氣系統 在每次測試前反應溶液必先通以氮氣,以清除電極表面附著物,並 重新將溶液混合均匀。

Top View

Side View

Figure.5 環路伏安儀電池裝置圖

(a)工作電極(b)參考電極(c)輔助電極(d)氮氣通入

氧化反應動力學按照反應速率,分別以 Hi-Tech CU61 截止流 儀(stopped-flow apparatus)或 Hewlett-Packard HP 8453 紫外-可見光 光譜儀測量,並以恆溫循環裝置控制反應溫度。反應在偽一級條件 (pseudo-first order)下進行,以氧化劑($S_2O_8^2$)為過量,觀測反應物的 消失而獲得,反應變化隨時間改變成單指數曲線,且 $ln | A_i - A_t |$ 對 時間變化呈線性關係,如圖 6。 k_{obs} 可利用線性最小平方差(linear least-square fit)分析 $ln | A_{\infty} - A_t |$ vs. time 之關係圖,從斜率求得。

元素分析

委託中興大學貴重儀器中心,以 Heraeus CHN-OS Rapid 元素分析儀偵測樣品之 N、C、H 元素的含量百分比。

(a)吸收度對時間作圖 (b) $ln | A_{\infty} - A_t | vs. time 作圖$ [(isn)(NH₃)₄Ru(4-NCpy)Fe(CN)₅⁻] = 1 × 10⁻⁴ M [S₂O₈] = 1 × 10⁻³ M pH=5、 μ = 1.0 M、T = 25 °C

第三章 结果與討論

一、UV-vis 吸收光譜

所有 Ru(II)及 Fe(II)單核及雙核錯合物均呈現明顯的金屬至配位 電荷轉移吸收,如表 1 所列。單核 Ru(NH₃)₄(isn)(4-NCpy)²⁺錯合物 吸收位置在 λ=434nm,與 Ru(NH₃)₅(4-NCpy)²⁺ (λ_{max} =424nm)及 Ru(NH₃)₅(isn)²⁺ (λ_{max} =478nm) 錯 合 物 比 較 ,明 顯 較 接 近 Ru(NH₃)₅(4-NCPy)²⁺ 之 吸 收 ,可見 此 吸 收 主 要 來 自 於 $d\pi_{Ru(II)} \rightarrow \pi^{*}_{4NCpy}$ 之電荷轉移。而 isonicotinamide 因屬拉電子官能基, 僅使單核錯合物吸收產生些微紅位移,由於 isonicotinamide 亦為 π 酸配位,因此 ε_{max} 較 Ru(NH₃)₅(4-NCPy)²⁺錯合物為高。

當 Ru(NH₃)₄(isn)(4-NCpy)²⁺與等當量 Fe(CN)₅(NH₃)³⁻反應形成 (isn)(NH₃)₄Ru(4-NCpy)Fe(CN)₅⁻ 雙核錯合物時,分別在 λ_{max} =440、 490nm 位置有強烈吸收,如圖 7 (a),由於 λ_{max} =490nm 吸收較為接 近 Fe(CN)₅(pyCN)³⁻錯合物之吸收峰(476nm),因此主要應屬於 d_{Fe(II)} $\rightarrow \pi^*_{pyCN}$ 之電荷轉移,Ru(II)金屬中心主要功能為拉電子的酸 中心,使得 π^*_{pyCN} 能量降低,而 Ru(II) $\rightarrow \pi^*_{pyCN}$ 之吸收主要貢獻在 λ_{max} =490nm 之吸收度(ϵ_{max})上,另一吸收 λ_{max} =440nm 主要乃 d $\pi_{Ru(II)}$ $\rightarrow \pi^*_{isn}$ 之電荷轉移所引起。

Complex	$\lambda_{max}(nm)$	$10^{-3}\epsilon_{max}(M^{-1}cm^{-1})$
$Ru(NH_3)_4(isn)(4-NCpy)^{2+}$	434	19.5
Ru(NH ₃) ₄ (isn)(4-NCpyH) ^{3+b}	508	18.1
	388	5.6
$Fe(CN)_5(4-pyCN)^{3-}$	476	5.12
(isn)(NH ₃) ₄ Ru(4-NCpy)Fe(CN) ₅	490	21.5
	440	19.4
(isn)(NH ₃) ₄ Ru(4-NCpy)Fe(CN) ₅	457	21.1
$\operatorname{Ru}(\operatorname{NH}_3)_5(4\operatorname{-NCpy})^{2+c}$	424	10.2
$Ru(NH_3)_5(4-NCpyH)^{3+c}$	534	13.9
$Ru(NH_3)_5(isn)^{2+d}$	478	11.9
$(NH_3)_5Ru(4-NCpy)Fe(CN)_5^{-c}$	480	15.9
	430	
Ru(NH ₃) ₄ (isn)(4,4'-bpy) ²⁺	497	13.9
Ru(NH ₃) ₄ (isn)(4,4'-bpyH) ^{3+b}	539	10.8
$Fe(CN)_5(4,4'-bpy)^{3-}$	438	5.48
$Fe(CN)_{5}(4,4'-bpyH)^{2-e}$	505	
$Ru(NH_3)_4(isn)(4,4'-bpy)Fe(CN)_5^-$	506	16.3
Ru(NH ₃) ₄ (isn)(4,4'-bpy)Fe(CN) ₅	506	10.1
$Ru(NH_3)_5(4,4'-bpy)Fe(CN)_5^{-e}$	497	18.2
Ru(NH ₃) ₅ (4,4'-bpy)Fe(CN) ₅ ^e	505	

Table.1 Ru(II, III)及 Fe(II, III)錯合物之 UV-vis 吸收光譜^a

a. pH=5 (0.01M acetate buffer) $T=25^{\circ}C \mu=0.1M \text{ LiClO}_4$

b. Measured in 0.1M HClO₄. c. Reference 22.

d. Reference 27. e. Reference 28.

當雙核錯合物 trans-(isn)(NH₃)₄Ru(4-NCpy)Fe(CN)₅ 以一當量 S₂O₈²⁻ 氧化時,光譜迅速變化直至雙核混價錯合物 (isn)(NH₃)₄Ru(4-NCpy)Fe(CN)₅形成,此時光譜吸收在 λ_{max} =457nm, ε_{max} = 2.1×10⁴M⁻¹cm⁻¹如圖7 (b)。究竟此吸收屬於Ru(III)、Fe(II)抑 或 Ru(II)、Fe(III)? 由於 Fe(CN)₅(pyCN)³⁻ 錯合物吸收位置在 λ_{max} =476nm,如混價分子氧化狀態為Ru(III)、Fe(II),則 Ru(III)錯 合物作為 σ-酸中心,將可穩定 d_{Fe(II}) → π^*_{pyCN} 吸收而導致 λ_{max} 有明 顯紅位移現象,而光譜結果卻出現藍位移,與預期結果相反,因此 明顯不是 Ru(III)、Fe(II);而如為 Ru(II)、Fe(III),則相對於單核 Ru(II) 錯合物,混價分子有明顯的紅位移現象(434→457nm)。此光譜吸收 傾向於支持混價分子屬於 Ru(II)、Fe(III)氧化狀態,另外混價分子 光譜吸收之 ε_{max} 也支持此論點。

Fe(CN)₅(pyCN)³⁻錯合物 MLCT 吸收之 ε_{max} =5.12×10³M⁻¹cm⁻¹,但 如為 Ru(III)、Fe(II),則應與 Fe(II)錯合物之 MLCT 之 ε_{max} 相似,至 少不會超過 1×10⁴M⁻¹cm⁻¹ [21, 22];如為 Ru(II)、Fe(III)氧化態,則 ε_{max} 與 Ru(II)單核錯合物相似(1.95×10⁴M⁻¹cm⁻¹),混價錯合物 (isn)(NH₃)₄Ru(4-NCpy)Fe(CN)₅ 吸收為 2.1×10⁴M⁻¹cm⁻¹,明顯屬於 Ru(II)、Fe(III)狀態。

Figure.7 Ru、Fe 雙核分子 4-NCpy 橋基吸收光譜圖

(a) $[(isn)(NH_3)_4Ru(4-NCpy)Fe(CN)_5]^- = 5.7 \times 10^{-5} M$ (b) $[(isn)(NH_3)_4Ru(4-NCpy)Fe(CN)_5] = 5.4 \times 10^{-5} M$

以 4,4'-bipyridine 作為橋基之雙核混價,可進一步支持此論點, Ru(NH₃)₄(isn)(4,4'-bpy)²⁺單核錯合物吸收位置在 λ =497nm, Fe(CN)₅(4,4'-bpy)³⁻ 吸收位置在 λ =438nm處,如表1所示。雙核錯 合物 trans-Ru(NH₃)₄(isn)(4,4'-bpy)Fe(CN)₅⁻及混價分子 trans-Ru(NH₃)₄(isn)(4,4'-bpy)Fe(CN)₅⁻及混價分子比較 (λ_{max} =505nm),顯示金屬離子氧化狀態亦為Ru(III)、Fe(II),不僅如 此 ϵ_{max} =1.01×10⁴M⁻¹cm⁻¹亦較接近 $d\pi_{Fe(II)} \rightarrow \pi^{*}_{4,4'-bpy}$ 之吸收。

Figure.8 Ru、Fe 雙核分子 4,4'-bpy 橋基吸收光譜圖

(a) $[(isn)(NH_3)_4Ru(4,4'-bpy)Fe(CN)_5] = 9.94 \times 10^{-5} M$ (b) $[(isn)(NH_3)_4Ru(4,4'-bpy)Fe(CN)_5] = 9.24 \times 10^{-5} M$

二、 IR 吸收光譜

混價分子的 IR 光譜如圖 9 所示,鐵氰之 v_{CN} 伸縮波及釘氨中心 $\delta(NH_3)_{sym}$,特性吸收列於表 2,為了方便鑑定,Fe(CN)₆^{4-/3-}及 Ru(NH₃)₆^{3+/2+}的 IR 光譜亦列在表中,從表中我們得知,如鐵氰錯合 物金屬 中心為 Fe(II),則 v_{CN} 吸收應在 2040cm⁻¹ 左右,如為 Fe(III), 則在 2070-2120 cm⁻¹之間,而釘氨錯合物金屬 中心如為 Ru(II),則 $\delta(NH_3)_{sym}$ 吸收應在 1280cm⁻¹ 左右,如為 Ru(III)則在 1330cm⁻¹ 左右, (isn)(NH₃)₄Ru(4-PyCN)Fe(CN)₅ 雙核錯合物之 IR 光譜 v_{CN} =2069、 2118 cm⁻¹, $\delta(NH_3)_{sym}$ =1287 cm⁻¹,即證明混價分子確為 Ru(II)、Fe(III) 氧化狀態,與 UV-vis 光譜所得結果一致。

Complex	$v_{CN}(cm^{-1})$	$\delta(\mathrm{NH}_3)_{\mathrm{sym}}~(\mathrm{cm}^{-1})$
$Ru(NH_3)_6^{2+b}$		1280
$Ru(NH_3)_6^{3+b}$		1338
$\operatorname{Fe}(\operatorname{CN})_5^{3-}$	2040	
$\operatorname{Fe}(\operatorname{CN})_{6}^{3}$	2117	
	2075	
$Ru(NH_3)_4(isn)(4-NCpy)^{2+}$		1284
(isn)(NH ₃) ₄ Ru(4-NCpy)Fe(CN) ₅	2050	1290
(isn)(NH ₃) ₄ Ru(4-NCpy)Fe(CN) ₅	2118	1290
	2069	

Table. 2 Ru(II, III)及 Fe(II, III) 錯合物之 IR 吸收光譜^a

a. pH = 5.0, in KBr pellets

b. reference 29.

Figure.9 *trans*-[(isn)(NH₃)₄Ru(4-NCpy)Fe(CN)₅] 錯合物之 IR 光譜 (in KBr pellets)

三、 電化學

所有單核及雙核錯合物之還原電位均列於表3。

Table .3 Ru(III)及 Fe(III) 錯合物之還原電位^a

Complex	E _{1/2} (V vs.NHE)
$Ru(NH_3)_4(isn)(4-NCpy)^{3+/2+}$	0.817
Ru(NH ₃) ₄ (isn)(4-NCpyH) ^{4+/3+}	0.872
$Fe(CN_5)(4-pyCN)^{2-/3-}$	0.543
$(isn)(NH_3)_4Ru(4-NCpy)Fe(CN)_5^{0/-1}$	0.519
$(isn)(NH_3)_4Ru(4-NCpy)Fe(CN)_5^{1+/0}$	0.847
Ru(NH ₃) ₅ (4-NCpy) ^{3+/2+ c}	0.592
Ru(NH ₃) ₅ (4-NCpyH) ^{4+/3+ c}	0.637
$(NH_3)_5 Ru(4-NCpy)Fe(CN)_5^{0/-1 c}$	0.512

a. pH=5 (acetate buffer), T=25°C, µ=0.1M LiClO₄

b. Measured in 0.1M HClO₄.

c. Reference 22.

單核分子 Ru(NH₃)₄(isn)(4-NCpy)^{3+/2+}的氧化電位為 0.817V(vs. NHE),較 Ru(NH₃)₅(4-NCPy)^{3+/2+}(0.592V)多出 0.225V,此額外穩定 能 乃 由 π^*_{isn} 電 荷 轉 移所引 $d\pi$ 起 \rightarrow , trans-[(isn)(NH₃)₄Ru(4-NCpy)Fe(CN)₅] 溶液之循環伏安圖呈現兩組 單電子氧化還原可逆波,如圖 10 所示。此兩組電位屬兩步驟的氧 化過程,

Figure. 10 *trans*-[(isn)(NH₃)₄Ru(4-NCpy)Fe(CN)₅] 錯合物之 CV 圖 [binuclear] = 5×10^{-4} M, $\mu = 0.10$ M LiClO₄, pH = 5.0

從雙核錯合物的還原電位,我們可進一步求得 comproportionation constant(eq. 1),平衡常數 K_c 根據 Nernst equation (eq. 2)求得,利用雙核錯合物兩金屬中心的還原電位差(ΔE , mV), 求得 $K_c = 3.5 \times 10^5$ 。 $[Ru(II),Fe(II)]+[Ru(III),Fe(III)] \xrightarrow{K_c} 2[Ru(II),Fe(III)]$ (1)

$$\Delta E = 0.847 - 0.519 = 0.0592 \log K_c$$
 (2)

 \implies K_c=3.5×10⁵

此相當於混價分子相對於其 isoelectronic isomers 有 3.8 kcal mol⁻¹ $(-\frac{1}{2} \operatorname{RTlnK}_{c})$ 額外穩定能。

四、 氧化反應動力學

本系統中的所有動力學實驗,皆以過氧二硫酸鈉(S₂O₈²⁻)為氧化劑,由於反應屬外圈電子轉移,反應機構可以 eq. 3~5 表示[30.31],

$$Ru(II) + S_2 O_8^{2-} \implies Ru(II) | S_2 O_8^{2-} \qquad Q_{IP}$$
 (3)

 $\operatorname{Ru}(\operatorname{II}) \mid S_2 O_8^2 \longrightarrow \operatorname{Ru}(\operatorname{III}) + SO_4^{2-} + SO_4^{--} \qquad k_{et} \qquad (4)$

 $\operatorname{Ru}(\operatorname{II}) + \operatorname{SO}_4^{--} \longrightarrow \operatorname{Ru}(\operatorname{III}) + \operatorname{SO}_4^{2-}$ rapid (5)

Ru(II)與S₂O₈²⁻反應首先快速形成離子對,然後進行第一個電子 轉移,為反應速率決定步驟,由於SO₄^{*} radical 相當不穩定,會快 速再與Ru(II)反應而形成最後Ru(III)產物。第一個電子轉移過程中, 除氧化反應外,尚包含S₂O₈²⁻之O—O 斷鍵。 根據此機構,反應速率式為:

$$\frac{-d[Ru(II)]}{dt} = \frac{2k_{et}Q_{IP}[S_2O_8^{2-}]}{1+Q_{IP}[S_2O_8^{2-}]} [Ru(II)]$$
(6)

$$k_{\rm obs} = \frac{2k_{\rm et} Q_{\rm IP}[S_2 O_8^{2-}]}{1 + Q_{\rm IP}[S_2 O_8^{2-}]}$$
(7)

*k*_{obs}中的2乃考慮S₂O₈²⁻為雙電子氧化所致,當1>>Q_{IP}[S₂O₈²⁻],則
 *k*_{obs}進一步簡化為:

 $k_{\rm obs} = 2k_{\rm et} Q_{\rm IP} [S_2 O_8^{2^-}]$ (8)

 $k_{\rm ox} = k_{\rm et} \mathbf{Q}_{\rm IP} \tag{9}$

我們的反應動力學實驗均在偽一級條件下進行,並以 S₂O₈²⁻為 過量(>10[Ru(II)]),所得的觀測反應速率常數(k_{obs})列於表 4。

ligand	$10^{3}[S_{2}O_{8}^{2}]$	$10^2 k_{\rm obs}, {\rm s}^{-1}$
$Ru(NH_3)_4(isn)(4-NCpy)^{2+}$	1.03	16.9
	2.07	34.7
	2.98	49.7
	4.00	67.4
	5.10	84.1
(isn)(NH ₃) ₄ Ru(4-NCpy)Fe(CN) ₅ ⁻	1.08	1.72
	2.06	3.19
	3.01	4.74
	4.06	6.22
	5.04	7.75
(isn)(NH ₃) ₄ Ru(4-NCpy)Fe (CN) ₅	1.00	1.96
	2.03	2.89
	3.08	3.92
	4.01	4.64
	5.01	5.37

Table.4 Ru 單核及 Ru-Fe 雙核與 S₂O₈²⁻反應速率^a

ligand	$10^{3}[S_{2}O_{8}^{2}]$	$10^3 k_{\rm obs}, {\rm s}^{-1}$
$Ru(NH_3)_4(isn)(4,4'-bpy)^{2+}$	1.08	3.25
	2.00	5.68
	3.04	9.01
	4.02	12.7
	5.03	15.3
(isn)(NH ₃) ₄ Ru(4,4'-bpy)Fe(CN) ₅ ⁻	1.09	3.50
	2.01	6.44
	3.00	10.1
	4.03	13.5
	5.03	16.7

a. pH=5 (acetate buffer), T=25 $^{\circ}$ C, μ =0.1M LiClO₄

 $[Ru(NH_3)_4(isn)(4-NCPy)^{2+}]=1.00\times10^{-4}M$

 $[(isn)(NH_3)_4Ru(4-NCpy)Fe(CN)_5]=1.03\times10^{-4}M$

 $[(isn)(NH_3)_4Ru(4-NCpy)Fe(CN)_5] = 1.02 \times 10^{-4}M$

 $[Ru(NH_3)_4(isn)(4,4'-bpy)^{2+}]=1.01\times10^{-4}M$

 $[(isn)(NH_3)_4Ru(4,4'-bpy)Fe(CN)_5]=1.01\times10^{-4}M$

Figure. 11 *trans*-[Ru(NH₃)₄(isn)(4-NCPy)]²⁺ k_{obs} 對[S₂O₈²⁻]作圖

```
pH=5 ( acetate buffer ) , \mu{=}0.1 M LiClO<sub>4</sub> , T=25°C \lambda{=}434 nm , Slope=1.66{\times}10^2
```


Figure. 12 *trans*-[(isn)(NH₃)₄Ru(4-NCpy)Fe(CN)₅]⁻ k_{obs} 對[S₂O₈²⁻]作圖 pH=5 (acetate buffer) , μ =0.1 M LiClO₄ , T=25°C λ =490 nm , Slope=1.55×10¹

Figure. 13 *trans*-[(isn)(NH₃)₄Ru(4-NCpy)Fe(CN)₅] k_{obs} 對[S₂O₈²⁻]作圖 pH=5 (acetate buffer), μ =0.1 M LiClO₄, T=25°C, λ =490 nm, Slope=8.58, Intercept=1.16×10⁻²

以 kobs 與[S2O8²⁻]作圖,成良好線性關係,如圖 11~13 所示。 利用單參數線性最小平方差方法,以 kobs 對[S2O8²⁻]作圖中之斜率, 進一步求得氧化反應二級速率常數 kox,結果列於表 5。

 $k_{\rm ox}({\rm M}^{-1}{\rm s}^{-1})$ Complex $(1.66 \pm 0.01) \times 10^2$ $Ru(NH_3)_4(isn)(4-NCpy)^{2+}$ $Ru(NH_3)_4(isn)(4-NCpyH)^{3+}$ $(1.04 \pm 0.01) \times 10^{1}$ Fe(CN)₅(pyCN)³⁻ $(2.89 \pm 0.01) \times 10^{-2}$ $(isn)(NH_3)_4Ru(4-NCpy)Fe(CN)_5$ $(1.54 \pm 0.01) \times 10^{1}$ (isn)(NH₃)₄Ru(4-NCpy)Fe(CN)₅ (8.58 ± 0.01) $Ru(NH_3)_5(4-NCpy)^{3+b}$ $(2.85 \pm 0.02) \times 10^3$ $Ru(NH_3)_5(4-NCpyH)^{4+b}$ $(1.04 \pm 0.01) \times 10^4$ $(NH_3)_5Ru(4-NCpy)Fe(CN)_5^{-b}$ $(1.31 \pm 0.01) \times 10^4$ $Ru(NH_3)_4(isn)(4,4'-bpy)^{2+}$ $(3.33 \pm 0.01) \times 10^3$ $Fe(CN)_{5}(4,4'-bpy)^{3-}$ $(5.60 \pm 0.01) \times 10^{-2}$ $(3.05 \pm 0.01) \times 10^3$ $(isn)(NH_3)_4Ru(4,4'-bpy)Fe(CN)_5$

Table.5 Ru(II,III)、Fe(II,III)錯合物之氧化反應速率^a

- a. pH=5 (acetate buffer), T=25 $^{\circ}$ C, μ =0.1M LiClO₄
- b. Reference 22.
- c. Reference 31

為了方便比較 Fe(CN)5L3-氧化之 kox 將列於表中。從表 5 我們得 知 Ru(II)氧化之 k_{ox} 隨還原電位不同,多在 $10^{1} \sim 10^{3} M^{-1} s^{-1}$ 之間,而 Fe(II) 錯 合 物 之 k_{ox} 則 在 $\sim 10^{-2} M^{-1} s^{-1}$, 針 對 trans-[(isn)(NH3)4Ru(L)Fe(CN)5] (L=4-pyCN, 4,4'-bpy)之氧化,問題 隨之產生,到底氧化中心為 Ru(II)抑或 Fe(II),對 L=pyCN 而言, 我們知道熱力學上混價分子的穩定狀態為 Ru(II)、Fe(III),動力學 上穩定的 isomer 是否亦是 Ru(II)、Fe(III),亦即 S₂O₈²⁻直接氧化 Fe(II) 金屬中心形成穩定的混價分子?或者先氧化 Ru(II)形成 Ru(III)、 Fe(II)的穩定動力學 isomer, 然後再經 inner-sphere electron transfer 形成穩定的 Ru(II)、Fe(III)狀態的混價分子,從表 5 我們得知 trans-[(isn)(NH3)4Ru(4-NCpy)Fe(CN)5]⁻ 雙核錯合物第一個電子氧化 的 $k_{ox}=1.54 \times 10^1$,明顯氧化中心為 Ru(II),因此氧化過程應可以 eq. 10~11 表示。

 $(isn)(NH_3)_4 Ru^{II}(PyCN)Fe^{II}(CN)_5^{-} + \frac{1}{2}S_2O_8^{2-} \xrightarrow{k_{ox}} (isn)(NH_3)_4 Ru^{III}(PyCN)Fe^{II}(CN)_5$ (10)

 $(isn)(NH_3)_4Ru^{III}(PyCN)Fe^{II}(CN)_5 \xrightarrow{fast} (isn)(NH_3)_4Ru^{II}(PyCN)Fe^{III}(CN)_5$ (11)

與其他錯合物不同,當 L=4,4'-bpy 時,第一個電子氧化之 k_{ox}=3.05×10³,明顯為 Ru(II)之氧化,因此雙核混價分子動力學及熱 力學穩定狀態同為 Ru(III)、Fe(II)。

trans-[(isn)(NH₃)₄Ru(4-NCpy)Fe(CN)₅]氧化時 k_{obs} vs. [S₂O₈²⁻]關 係(圖 13)出現截距,沒有通過原點,代表反應過程中另有一途徑平 行進行,與 S₂O₈²⁻濃度無關,亦即非氧化途徑。我們認為最可能的 原因為雙核錯合物的解離反應速率常數,事實上,根據混價分子的 吸收光譜觀察其氧化後會隨著時間下降並且產生藍位移,最後形成 $\lambda_{max} = 436nm$ 的吸收,表示已解離只觀測到 Ru(NH₃)₄(isn)(4-NCpy)²⁺ 的吸收而已。

五、 價間電子轉移吸收峰(IT band)

混價錯合物具有一特定吸收,為單核、還原態及氧化態的雙核 錯合物所沒有的,即為價間電子轉移吸收峰(intervalence transition band, IT band),此吸收乃光激發導致電子轉移所引起,如 eq. 12 所 示:

$$\mathbf{M}^{\mathrm{II}} - \mathbf{L} - \mathbf{M}^{\mathrm{III}} \xrightarrow{h\nu} (\mathbf{M}^{\mathrm{III}} - \mathbf{L} - \mathbf{M}^{\mathrm{II}})^{*} \quad (12)$$

IT band 的進一步了解可以圖 14 位能圖說明,如果混價分子屬 於對稱性結構,則價間電子轉移之能量(E_{op})與 Frank-Condon 躍遷 之能量(E_{FC})相等,圖中 ΔE 為混價分子及其 isoelectronic isomer 位能 作用能,其中

$$H_{\rm RP} = \int_t \varphi_R \widehat{H} \varphi_P d\tau \qquad (13)$$

Hush[4]根據理論處理認為價間電子轉移具有以下性質:

1. 對定域性混價分子而言,IT 吸收受溶劑效應影響,而與 $(1/_{n^2} - 1/_{D_s})$ 有如下關係, $(\lambda = E_{FC}, \lambda_o = \Delta G^o)$

$$\upsilon_{\rm op} = \lambda + \lambda_{\rm o} \tag{14}$$

$$\lambda = \lambda_{i} + \lambda_{o} = \lambda_{i} + e^{2} \left(\frac{1}{2r_{1}} + \frac{1}{2r_{2}} - \frac{1}{d} \right) \left(\frac{1}{n^{2}} - \frac{1}{D_{s}} \right)$$
(15)

 $\lambda_i \ \mathcal{L} \ \lambda_o \ \mathcal{C} \ \mathcal{N}$ 為針對 λ 所需內圈及外圈重組能(reorganization energy), $r_1 \ \mathcal{L} \ r_2$ 為兩金屬中心再活化狀態的半徑, d 為雙核錯 合物金屬間的距離, n $\mathcal{L} \ \mathcal{D}_s \ \mathcal{C} \ \mathcal{N}$ 為溶劑的折射率及介電常數, λ 與 $(1/n^2 - 1/D_s)$ 呈線性關係,截距為 λ_i 。

2. IT 吸收在室溫下的半波寬 Δv_{1/2} 與 υ_{op} 關係為:

$$v_{op} - v_o = (\Delta v_{1/2})^2 / 2310$$
 (16)

$$\Delta v_{1/2} = [2310(v_{\rm op} - v_{\rm o})]^{1/2}$$
(17)

 3. 價間電子轉移之振動強度(force constant)則如 eq. 18 及 eq.19 所

 示:

$$f = 4.6 \times 10^{-9} \varepsilon_{\rm max} v_{1/2}$$
 (18)

或

 $f = 1.085 \times 10^{-5} v_{\rm max} (\alpha d)^2 \qquad (19)$

從 eqs. 18、19 可求得混價分子的不定域化參數(delocalization parameter) α^2 , 再利用 α 求得電子在兩金屬間的耦合參數 (electronic coupling, H_{AB}), 如 eqs. 20、21:

$$\alpha^{2} = 4.24 \times 10^{-4} \ (\varepsilon_{\max} \, \Delta v_{1/2}) / (v_{\max} \, d^{2}) \tag{20}$$

$$H_{\rm AB} = v_{\rm max} \, \alpha \tag{21}$$

4. IT 吸收能量與混價分子之熱電子轉移(Eth)有以下關係:

$$\mathbf{M}^{\mathrm{II}} - \mathbf{L} - \mathbf{M'}^{\mathrm{III}} \xrightarrow{E_{th}} \mathbf{M}^{\mathrm{III}} - \mathbf{L} - \mathbf{M'}^{\mathrm{II}} \quad (22)$$

$$E_{th} = \frac{(\lambda + \Delta G^o)^2}{4\lambda}$$
(23)

如為對稱性同核混價分子, $\Delta G^\circ = 0$, E_{th} 可簡化為

$$E_{\rm th} = \lambda/4 \tag{24}$$

Figure.14 非對稱混價化合物之位能-核座標圖

在本系統中,混價分子在 D_2O 中所得價間電子轉移光譜如圖 15 所示,其中 $\lambda_{max} = 830 \text{ nm} (1.20 \times 10^4 \text{ cm}^{-1}), \epsilon_{max} = 1.02 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1},$ $\Delta v_{1/2} = 4.80 \times 10^3 \text{ cm}^{-1}; m trans-[Ru(NH_3)_4(isn)(4-NCpy)]^{2+}單核及$ $trans-[(isn)(NH_3)_4Ru(4-NCpy)Fe(CN)_5]⁻ 雙核錯合物在此波長範圍皆$ 未觀測到吸收峰的出現。

[binuclear] = 1.27×10^{-4} M

雖然 E_o (或 ΔG^o)無法由實驗測得,但藉 Scheme. 4 的 thermal cycle 可間接求得:

$$(isn)(NH_3)_4 Ru^{II}(4-NCpy)Fe^{III}(CN)_5 \xrightarrow{E_0} (isn)(NH_3)_4 Ru^{III}(4-NCpy)Fe^{II}(CN)_5 (25)$$

$$\searrow E_1^{\circ} \qquad / E_2^{\circ}$$

$$(isn)(NH_3)_4 Ru^{III} (4-NCpy)Fe^{III} (CN)_5$$

Scheme. 4

從表 2 得知其中 $E_1^{\circ} = 0.847V$,由於 Ru^{III} 金屬中心可當作 σ —酸 中心,與其上配位無太大關連, E_2° 可視為與 (NH₃)₅ Ru^{III} (4-NCpy)Fe^{III}(CN)₅¹⁺/(NH₃)₅ Ru^{III} (4-NCpy)Fe^{II}(CN)₅電位相同,亦即 $E_2^{\circ} = 0.622V[22] \circ$ 因此根據 eq.30 求得 $E_0=0.225V(1.83\times10^3 \text{ cm}^{-1}$ 或 5.23kcal mol⁻¹) \circ

假設金屬間距離為 d = 9.13 Å,與(NH₃)₅Ru4-NCpyFe(CN)₅⁻相 同[22],再代入 IT 吸收之 $v_{max} \cdot \varepsilon_{max} \mathcal{E} \Delta v_{1/2}$ 值,根據 eqs. 20、21 可求得混價分子之 $\alpha^2 \mathcal{E} H_{AB}$ 值,分別為 2.07 × 10⁻³ 以及 5.42 × 10² cm⁻¹,微小的 α^2 值亦支持此錯合物為定域性之混價錯合物。根據 eq.17 我們亦可求得理論值 $\Delta v_{1/2} = 4.90 \times 10^3 \text{ cm}^{-1}$,與我們實驗測得結果一致,因此可確定吸收為 IT band。

最後根據 eq.23,我們求得 eq.22之活化能 $\Delta G^* = 10.0$ kcal mol⁻¹, 而由於 v_{et} 為跳躍頻率(hopping frequency),其值為 5 × 10¹² s⁻¹ (25 °C) [33],因此根據 eq. 26 求得 ΔG^* 為 10.0 kcal mol⁻¹, $k_{\text{et}} = 2.3 \times 10^5$ s⁻¹, 利用 $k_{\text{et}} \ \Delta \Delta G^\circ$,我們同時求得 eq.22 逆反應之反應速率常數 $k_{\text{-et}} = k_{\text{et}}/\text{K} = 1.44 \times 10^9$ s⁻¹。

 $k_{\rm et} = v_{\rm et} \exp(-\Delta G^* / RT) \tag{26}$

第四章 結論

- 從吸收光譜及電化學之結果顯示均支持混價錯合物 trans-(isn)(NH₃)₄Ru(4-NCpy)Fe(CN)₅屬於定域性,Ru(II)、Fe(III) 之氧化狀態。
- 由電化學結果,求得 comproportionation constant, K_c=3.5×10⁵, 顯示相對於其 isoelectronic isomers 混價分子具有 3.8 kcal mol⁻¹ 額外穩定能。
- 混價分子價間吸收光譜的分析果符合 Hush 理論的預測的性質。

參考文獻

- [1] A. Werner, Z. Anorg. Chem. 12 (1896) 53.
- [2] M. B. Robin, Inorg. Chem. 1 (1962) 337.
- [3] M. B. Robin, D. Day, Adv. Inorg. Chem. Radiochem. 10 (1967) 247.
- [4] N. S. Hush, Prog. Inorg. Chem. 8 (1967) 391.
- [5] P. Ford, DeF. P. Rudd, R. Gaunder, H. Taube, J. Am. Chem. Soc.90 (1968) 1187.
- [6] H. Taube, Surv. Prog. Chem. 6 (1973) 1.
- [7] C. Creutz, H. Taube, J. Am. Chem. Soc.91 (1969) 3988.
- [8] C. Creutz, H. Taube, J. Am. Chem. Soc. 95 (1973) 1086.
- [9] C. R. Brulet, S. S. Isied, H. Taube, J. Am. Chem. Soc. 95 (1973) 4758.
- [10] G. M.Tom, C. Creutz, H. Taube, J. Am. Chem. Soc. 96 (1974) 7827.
- [11] G. M.Tom, H. Taube, J. Am. Chem. Soc. 97 (1975) 5310.
- [12] H. Fischer, G. M.Tom, H. Taube, J. Am. Chem. Soc. 98 (1976) 5512.
- [13] H. Krentzien, H. Taube, J. Am. Chem. Soc. 98 (1976) 6379.
- [14] K. Rieder, H. Taube, J. Am. Chem. Soc. 99 (1977) 7891.
- [15] J. K. Beatie, N. S. Hush, P. R. Taylor, Inorg Chem. 15 (1976) 992.
- [16] H. Taube, Ann. N. Y. Acad. Sci. 313 (1978) 481.
- [17] J. E. Sutton, H. Taube, Inorg. Chem. 20 (1981) 3125.
- [18] D. E. Richardson, H. Taube, J. Am. Chem. Soc. 105 (1983) 40.
- [19] H. E. Toma, J. M. Malin, Inorg. Chem. 12 (1973) 1039.
- [20] F. Felix, A. Ludi, Inorg. Chem. 17 (1978) 1782.
- [21] A. Yeh, A. Haim, J. Am. Chem. Soc. 107 (1985) 369.

- [22] H. Y. Huang, W. J. Chen, C. C. Yang, A. Yeh, *Inorg. Chem.* 30 (1991) 1862.
- [23] G. Tsaur, M. C. Wu, A. Yeh, J. Chin. Chem. Soc. 41 (1994) 431.
- [24] C. L. Lin, K. Huang, A. Yeh, H. T. Tsen, C. C. Su, *Inorg. Chem.* 38 (1999) 411.
- [25] S. Isied, H. Taube, Inorg. Chem. 13 (1974) 1545.
- [26] G. Brauer, "Handbook of prepartive Inorganic Chemistry", Vol. 2, 2nd ed. Academic Press, New York N. Y. 9 (1965) 1511.
- [27] A.Yeh, H.Taube, Inorg. Chem. 19 (1980) 3740.
- [28] A. Yeh, A. Haim, M. Tanner, A. Ludi, *Inorg. Chim. Acta* 33 (1979) 51.
- [29] D. O. Cowan, C. LeVanda, J. Park, F.Kavfman, ACC. Chem. Res. 6 (1973) 1.
- [30] U. Fuerholz, A. Haim, *Inorg. Chem.* 26 (1987) 3243.
- [31] M. H. Chen, S. Lee, S. Liu, A. Yeh, Inorg. Chem. 35 (1996) 2627.
- [32] D. M. Stanburg, Adv. Inorg. Chem. 33 (1989) 70.
- [33] C. Creutz, Prog. Inorg. Chem. 30 (1983) 1.
- [34] D. M. Stanbury, O. Haas, H. Taube, Inorg. Chem. 19 (1980) 518.