東海大學化學研究所

碩士論文

指導教授: 黃承文 博士

Fe₃O₄@Al₂O₃磁性奈米粒子/固相萃取結合 毛細管電泳/螢光偵測法應用於 Alendronate 的分析

Analysis of Alendronate by Fe₃O₄@Al₂O₃ Magnetic Nanoparticles/Solid Phase Extraction Coupled with Capillary Electrophoresis/Fluorescence Detection

> 研究生:蘇曉薇 撰 中華民國一百年七月

私立東海大學碩士班研究生

論文指導教授推薦書

化學系 碩士班 蘇曉薇 君所提之論文

 Fe₃O₄@Al₂O₃ 磁性奈米粒子/固相萃取結合

 毛細管電泳/螢光偵測法應用於

 Alendronate 的分析

Analysis of Alendronate by Fe₃O₄@Al₂O₃ Magnetic Nanoparticles/Solid Phase Extraction Coupled with Capillary Electrophoresis/Fluorescence Detection

係由本人指導撰述,同意提付審查。

指導教授一支。末文

<u>_100</u>年<u>7</u>月<u>11</u>日

私立東海大學碩士班研究生論文口試委員審定書

<u>.化學系_</u>碩士班 _<u>蘇曉薇_</u>君所提之論文

<u>Fe₃O₄@Al₂O₃ 磁性奈米粒子/固相萃取結合</u> <u>毛細管電泳/螢光偵測法應用於</u> <u>Alendronate 的分析</u>

Analysis of Alendronate by Fe₃O₄@Al₂O₃ Magnetic Nanoparticles/Solid Phase Extraction Coupled with Capillary Electrophoresis/Fluorescence Detection

謝誌

在東海讀了大學跟研究所,轉眼六年就這樣過了。研究所跟大學 真的不太一樣,所遇到的挫折也不同,面對挫折的態度有所成長,經 過研究所的階段真的有長大的感覺,將踏入社會告別學生生活了。研 究期間感謝黃承文老師的指導及樓元琪助教幫忙處理實驗室的大小 事。同時也感謝口試委員張柏齡老師及劉敏瑛老師對論文提供的指 正,並給予諸多寶貴意見,在此由衷感謝,並致上最高的敬意。

感謝先前學長姐家瑜、念容、瑪姍、家甄、貞儀在實驗上的帶領; 張柏齡老師實驗上的協助,常去借用離心機,麻煩了瑞民同學跟子學 學弟;課業上一起討論的庭伊、品柔、教程同學等等;同實驗室相處 半年多的哲賢同學;研究助理佩娟也是大學同學,再次陪伴了我的研 二生活;新進的學弟妹也帶給我很多歡笑,非常感謝你們。

最後感謝我的家人及所有關心我的朋友們,願你們能和我一起分 享這份成就與喜悅。

摘要

Alendronate 為一種雙磷酸鹽類藥物,對於治療骨質疏鬆症有好的 療效,目前已有超過 80 個國家 (包括台灣) 核准 alendronate 用於治 療和預防骨質疏鬆症、類皮質激素導致 (corticosteroid-induced) 骨質疏 鬆症及治療佩吉特氏病 (Paget's disease)。Alendronate 為不具吸光與螢 光性質的一級胺化合物,分析前需先使其帶有吸光團或衍生使具有螢 光性質才能偵測。目前應用在 alendronate 的分析方法以液相層析搭配 螢光偵測器為主,其樣品前處理流程複雜,樣品消耗量多,且解析度 較毛細管電泳差。

本研究利用 NDA (2,3-naphthalene dicarboxyaldehyde) 及 CN 與 alendronate 在鹼性條件下衍生,再以毛細管電泳/螢光偵測器分析 alendronate。水溶液樣品中 alendronate 的檢量範圍為 7~200 ppb,偵 測極限 (S/N =3) 為 2.1 ppb。由於尿液樣品基質複雜,分析前需先淨 化樣品。文獻報導的前處理流程複雜,為了改善樣品處理方法,本研 究利用 Fe₃O₄@Al₂O₃ 磁性奈 米 粒子 (nanoparticles, NPs) 萃取 alendronate。磁性 NPs 具有比表面積大、生物相容性高及磁性易收集 的特點。

經 Fe₃O₄@Al₂O₃ NPs 固相萃取後 alendronate 在水樣中的檢量範

I

圍為 0.6~100 ppb, 偵測極限為 0.18 ppb, 濃縮倍率約 12 倍,回收率約 14 %。添加 alendronate 於尿液樣品中,經固相萃取後檢量範圍為 5~100 ppb, 偵測極限為 1.5 ppb。結合磁性 NPs 的特性、毛細管電泳的優異解析能力及螢光偵測的高靈敏度,本研究為 alendronate 藥物開發一種快速、方便且靈敏的分析方法。

目錄

摘要I
目錄III
表目VII
圖 目VIII
內容
壹、緒論1
1.1 骨質疏鬆簡介1
1.2 Alendronate 簡介9
1.2.1 Alendronate 的藥物動力學9
1.2.2 Alendronate 的分析方法13
1.2.2.1 高效能液相層析14
1.2.2.2 其它分析方法18
1.2.2.3 毛細管電泳18
1.3 磁性 Fe ₃ O ₄ @Al ₂ O ₃ nanoparticles (NPs)19
1.4 研究動機

貳、	實馬	æ	22
	2.1	儀器設備	22
	2.2	藥 品	25
	2.3	實驗方法	27
		2.3.1 緩衝溶液的配製	.27
		2.3.2 儲備溶液 (stock solution) 的配製	.27
		2.3.3 尿液樣品前處理	.28
		2.3.4 磁性 Fe ₃ O ₄ @Al ₂ O ₃ NPs 的製備	.29
		2.3.5 Fe ₃ O ₄ @Al ₂ O ₃ NPs 萃取步驟	.30
		2.3.6 Alendronate 衍生反應	32
		2.3.7 毛細管的處理與進樣	.32
		2.3.8 毛細管電泳/He-Cd 雷射激發螢光偵測裝置	32
		2.3.9 毛細管電泳/Xe-Hg 燈激發螢光偵測裝置	.33
參、	結果	民與討論	38
	3.1	最佳實驗條件探討	38
		3.1.1 衍生反應	.38
		3.1.2 衍生反應溫度的影響	.40
		3.1.3 衍生反應時間的影響	.40
		3.1.4 衍生 pH 值的影響	.43

	3.1.5	電泳緩衝溶液濃度的影響43	3
	3.1.6	電泳緩衝溶液 pH 值的影響48	3
	3.1.7	電泳分離電壓的影響48	3
	3.1.8	衍生劑量的影響53	3
	3.1.9	最佳分析條件	3
3.2	Fe ₃ O ₄ 0	@Al2O3 奈米粒子萃取條件最佳化58	
	3.2.1	Fe3O4@Al2O3NPs 萃取時間的影響58	;
	3.2.2	脫附時間的影響	3
	3.2.3	沖堤液的選擇60)
	3.2.4	Na5P3O10 沖堤溶液濃度的影響63	3
	3.2.5	沖堤液體積的影響63	3
	3.2.6	最佳 Fe ₃ O ₄ @Al ₂ O ₃ NPs 萃取條件67	7
3.3	Alendı	onate 標準水樣檢量線與分析再現性69	
3.4	Alendı	onate 經萃取後的檢量線與分析再現性69	
3.5	尿液材	羕品分析75	,
	3.5.1	尿液樣品經不同處理過程的影響75	5
	3.5.2	尿液樣品最佳分析條件77	7
	3.5.3	尿液中添加 alendronate 經萃取後的檢量線78	,
	3.5.4	尿液樣品經 Fe ₃ O ₄ @Al ₂ O ₃ NPs 萃取的濃縮倍率81	

	3.5.5	尿液分析之	在效試驗	•••••		
肆、結	論		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	86
伍、參	考文獻.		•••••	•••••		87

表目錄

表	1-1	台灣行政院衛生署建議的每天鈣攝取量2
表	1-2	不同 R1 取代基對 HAP 親和力比較7
表	1-3	雙磷酸鹽類藥物抗溶蝕效力比較7
表	3-1	直接分析 alendronate 的檢量線、偵測極限及分析再現性71
表	3-2	Alendronate 經萃取後的檢量線、偵測極限、濃縮倍率、
		回收率及分析再現性73
表	3-3	添加低、中、高 alendronate 濃度於尿液樣品中重複分析
		結果
表	3-4	添加低、中、高 alendronate 濃度於尿液樣品中時間的
		再現性

圖目錄

圖	1-1	雙磷酸鹽類藥物結構5
圖	1-2	不同 R2 基團對抗溶蝕作用的比較8
圖	1-3	靜脈注射 10 mg alendronate 後血漿中藥物濃度變化圖10
圖	1-4	靜脈注射 10 mg alendronate 後尿液中藥物濃度變化圖12
圖	1-5	尿液樣品前處理流程圖15
圖	2-1	Fe ₃ O ₄ @Al ₂ O ₃ NPs 萃取流程圖31
圖	2-2	雷射激發螢光偵測裝置的內部光學元件34
圖	2-3	毛細管電泳/雷射激發螢光偵測裝置35
圖	2-4	CE/Xe-Hg 燈激發螢光偵測裝置36
圖	3-1	NDA 與一級胺化合物的衍生反應
圖	3-2	衍生反應溫度對分析物訊號面積的影響41
圖	3-3	衍生反應時間對分析物訊號面積的影響42
圖	3-4	衍生反應 pH 值對 NDA-A 及 NDA-P 訊號面積的影響44
圖	3-5	衍生反應 pH 值對分析物訊號面積的影響45
圖	3-6	電泳緩衝溶液濃度對 NDA-A 及 NDA-P 遷移時間的影響46
圖	3-7	電泳緩衝溶液濃度對分析物訊號面積的影響47

圖 3-8 電泳緩衝溶液 pH 值對 NDA-A 及 NDA-P 遷移時間的

	影響	.49
圖	3-9 不同 pH 值電泳緩衝溶液的電泳圖	.50
圖	3-10 電泳緩衝液 pH 值對分析物訊號面積的影響	.51
圖	3-11 不同分離電壓下的電泳圖	.52
圖	3-12 不同分離電壓對訊號的影響	.54
圖	3-13 不同 NDA/(A+P) 莫耳比對訊號的影響	.55
圖	3-14 最佳分析條件下 alendronate 及 pamidronate 的電泳圖	.57
圖	3-15 Fe ₃ O ₄ @Al ₂ O ₃ NPs 萃取時間的影響	.59
圖	3-16 震盪脫附時間的影響	.61
圖	3-17 比較以 Na ₄ P ₂ O ₇ 與 Na ₅ P ₃ O ₁₀ 緩衝液沖堤的效果	.62
圖	3-18 Na ₅ P ₃ O ₁₀ 沖堤溶液濃度對分析物訊號面積的影響	64
圖	3-19 分析物於 50 mM Na ₅ P ₃ O ₁₀ 緩衝液中的電泳圖	.65
圖	3-20 沖堤液體積的影響	.66
圖	3-21 最佳萃取及分析條件下的電泳圖	.68
圖	3-22 Alendronate 標準溶液檢量線	.70
圖	3-23 Alendronate 標準水樣經 Fe ₃ O ₄ @Al ₂ O ₃ NPs 萃取後檢量線	.72
圖	3-24 空白尿液樣品經三種處理過程的電泳圖	.76
圖	3-25 最佳條件下分析尿液中添加 alendronate 的電泳圖	.79

圖	3-26	尿液中添加	alendronate	經萃取後的檢量線.	80
圖	3-27	尿液中添加	alendronate	經萃取後的電泳圖.	

壹、緒論

1.1 骨質疏鬆簡介

人類骨質到達一定年齡便會逐年自然衰退,大部分人都是發生骨 折之後才發現罹患骨質疏鬆症,隨著醫療的進步及壽命的延長,骨質 疏鬆成為現今一重要的健康照護議題。

骨質疏鬆症尤其好發在停經後婦女 (postmenopausal osteoporosis, PMO)。一般來說,女性的骨量在 30~35 歲之間達到最高峰^[1-2],之 後會逐漸減少,約在 45 歲左右進入更年期。由於體內雌激素分泌減 少,使副甲狀腺功能降低、尿液鈣排出量增加,加速了骨質流失。女 性在停經後,骨質流失更為快速。男性因無特殊生理變化,故罹患骨 質疏鬆症大多是年齡增長導致的退化型骨質疏鬆症。

人體中的礦物質含量以鈣最多,約有 99 % 的鈣分布在骨骼及牙 齒,1 % 存在血清、肌肉及神經內。一旦血液中的鈣離子濃度不夠, 身體就會自動從骨骼中吸收鈣離子來補充血液中鈣。所以隨著鈣的流 失,若無額外補充,就容易發生骨質疏鬆症。為了預防骨質疏鬆,平 日可補充一些含鈣補給品,台灣行政院衛生署建議的每天鈣攝取量^[3] 如表 1-1。

1

丰	1_1	厶灣行政院街上墨建議的每天紅攝取昌[3]
1X	T_T	口马们以几个工在足或的每八到解外里

年齡別	建議攝取量 (mg/day)
0~6 個月	400
6 個月~6 歲	500
7~9 歲	600
10~12 歲	700
13~19 歲	男 800/女 700
20 歲以上	600
懷孕及哺乳	1100
成年婦女停經後	^a

a: 沒有明確的建議攝取量

一般常透過骨密度 (bone mineral density, BMD) 檢查來評估是否 罹患骨質疏鬆症,常用的骨密度檢測儀大致分為以下兩種^[1]:

(一) 定量超音波儀 (quantitative ultrasound, QUS)

利用聲波傳導原理量測,只適用於周邊位置,即較少軟組織覆蓋的部位,因軟組織會造成聲波的誤差。

(二) 雙能量 X 光吸光儀 (dual energy X-ray absorptiometry, DXA) 利用兩道不同能量的 X 光束,穿透測定部位之後所產生的能量衰 減來計算,此測量方法較快且準確。

世界衛生組織 (WHO) 只以 DXA 所測出來的數值為依據。一般 以測得骨密度 (BMD) 的 T-score 值來判定骨質狀況, T-score 是指以 DXA 所測得的數值再與年輕族群骨密度平均值做比較所得。 $T \ge -1$ 為正常骨質, -2.5 < T < -1 有骨質缺乏現象,當 $T \le -2.5$ 即罹患 骨質疏鬆^[4],需進行藥物治療。

治療骨質疏鬆的藥物種類相當多,大致分成以下六類^[1]:

(一) 雙磷酸鹽類藥物 (bisphosphonates, BPs)

是目前最普遍被使用於骨質疏鬆治療的藥物,作用為抑制破骨細胞的活性,減少骨質的流失,達到增加骨密度的目的。

(二) 副甲狀腺荷爾蒙 (parathyroid hormone, PTH)

為第二大類用藥,作用不同於 BPs,其為注射從副甲狀腺荷爾蒙

(PTH) 衍生出的藥物 Teriparatide,使造骨細胞的數量與活性增強,直接刺激骨頭生長。

(三) 抑鈣素 (calcitonin)

可調節血液中的鈣量,抑制破骨細胞的活性,減少骨轉移而增加 骨量吸收率轉為正常值。但使用一段時間後效果會變差,臨床上 使用率已大為下降。

- (四)荷爾蒙治療 (hormone treatment, HT) 破骨細胞上有雌激素接收器,因此雌激素可對其產生抑制作用, 降低骨質流失的可能性。
- (五)選擇性雌激素受體調節劑 (selective estrogen-receptor modulators, SERMs)
 主要作用在骨骼組織的雌激素接收器上,可以仿效雌激素的益,

减少骨質流失,增加骨質密度。

(六) 鍶鹽 (strontium ranelate)

總會刺激造骨細胞的增生,同時抑制破骨細胞的活性及分化,具有獨特的雙重作用,因而對骨質疏鬆有防治效果。

以下針對 BPs 做介紹,各種 BPs^[5-8]顯示於圖 1-1,其結構類似 焦磷酸鹽類 (pyrophosphate)。BPs 中的 P-C-P 基團為生物活性骨架, 是與人體骨骼組織中主要成份氫氧磷灰石 (hydroxyapatite, HAP) 鍵結 **Bisphosphonate Structures**

圖 1-1 雙磷酸鹽類藥物結構^[6]

所需基團,對骨骼具有強親和力^[6,9]。進入體內的 BPs 經骨組織吸收後,即被蝕骨細胞 (osteoclast) 吞噬,會減少蝕骨細胞的活性,並降低骨骼溶蝕作用 (resorption) 及骨置換作用 (bone turnover)。

如圖 1-1, BPs 結構中的 R1 側鏈若為氫氧基 (OH), 可增強其與 HAP 的結合,且與骨中鈣的親和力也會增加。不同 R1 取代基對 HAP 的親和力比較,如表 1-2 所示。Clodronate 的 R1 為 Cl 而非 OH, 所以它與 HAP 的結合力較弱。BPs 的 R2 側鏈則決定其抗溶蝕效力 (antiresorptive potency)^[10-11],抗溶蝕效力愈好表示藥效愈長。R2 側鏈 主要分為含氮與不含氮兩大類,見圖 1-1。BPs 抗溶蝕效力比較,如 表 1-3 所示。含氮類 BPs 通常具有較強的療效,而含氮類 BPs 又因 其胺基構形不同而有不同的效力。不同 R2 基團對抗溶蝕作用的比較 顯示於圖 1-2。Clodronate 的 R2 側鏈為 Cl 故效力最差,一級胺基 結構的 alendronate 比三級胺基結構的 ibandronate 效力差些。若 R2 為雜環結構,效力會更好。此差異是由於不同 R2 會影響其與生物分 子連結活性。含氮類 BPs 會與 FPP 合成酶 (farnesyl pyrophosphate synthase) 結合,在 mevalonic acid pathway 過程中抑制 FPP 合成酶活 性,進而抑制蝕骨細胞活性^[12]。

表 1-2 不同 R1 取代基對 HAP 親和力 (avidity) 比較^[11]

Bisphophonate,	In vitro HAP avidity,		
ranked for potency	1/mol		
Clodronate	$7.2 imes 10^5$		R1 is Cl
Alendronate	$2.94 imes 10^6$		
Risedronate	$2.19 imes 10^6$		
Ibandronate	2.36×10^6	$\left \right\rangle$	R1 is OH
Zolendronate	3.47×10^6	J	

表 1-3 雙磷酸鹽類藥物抗溶蝕效力比較^[8]

Active pharmaceutical ingredient (API)	Potency ^a	
Non-N-containing bisphosphonates		
Etidronate	1	
Clodronate	10	
Tiludronate	10	
N-containing bisphosphonates		
Pamidronate	100	
Neridronate	100	
Olpadronate	500	
Alendronate	500	
Ibandronate	1,000	
Risedronate	2,000	
Zoledronate	10,000	

a:抗溶蝕效力值相對於 Etidronate

圖 1-2 不同 R2 基團對抗溶蝕作用的比較^[11]

1.2 Alendronate 簡介

BPs 是目前臨床上最常使用於治療骨質疏鬆症的藥物。本研究的 目標分析物 alendronate 即屬於一種 BP。Alendronate 結構上 R1 為 OH 基,R2 為一級胺基,其對於治療骨質疏鬆症有好的療效,目前已 有超過 80 個國家 (包括台灣) 核准 alendronate 用於治療和預防骨質 疏鬆症^[13-14]、類皮質激素導致 (corticosteroid-induced) 骨質疏鬆症^[15] 及治療佩吉特氏病 (Paget's disease)^[16]。

1.2.1 Alendronate 的藥物動力學

a、吸收

Alendronate 為高極性化合物,不容易進入細胞,對一般組織的毒性很小,由腸胃道吸收的量約 0.76 % $^{[17-19]}$,但是隨著循環過程進入血液後吸收很快速。當施予患者靜脈注射 10 mg alendronate,血浆中alendronate 的濃度隨時間變化顯示於圖 $1-3^{[17]}$ 。由圖中可看到一個小時左右即達血中最高濃度 (C_{max}) ,三小時的濃度約 C_{max} 的 20 %,六

服用 alendronate 時須空腹,不只 alendronate,許多 BPs 若在飯後服用,或與含鈣離子及多價陽離子食物一起服用,其吸收效果會明顯下降^[17-20]。

圖 1-3 靜脈注射 10 mg alendronate 後血漿中藥物濃度變化圖^[17]

b、分布

服藥後, alendronate 暫時分布於非鈣化組織, 停留在血中的時間 很短,其會快速的與骨頭結合 (約為循環劑量的 50~60%) 或經尿液排 出^[17]。靜脈注射 10 mg alendronate 後,在人體中藥物的穩定狀態分 佈體積 (steady-state volumn of distribution, V_{ss}) $\geq 28 L^{[17]}$,表示其進 入人體內主要集中在特定的組織上。Alendronate 在 0.1~0.5 mg/mL 濃 度範圍與蛋白質 (主要為血清蛋白) 的結合率約 70~80%^[17],但其結 合率會因 pH 或鈣離子濃度不同而變化^[17-19,22-24]。血清蛋白結合率會 影響藥物在體內的消除速率及作用時間長短。

c、代謝

BPs 由於 P-C-P 結構非常穩定,且為高極性的化合物,並不會經由肝臟代謝。目前沒有證據顯示 alendronate 在人體內會被代謝成其它產物^[17,19,21]。

d、排除

未經骨骼吸收而自循環系統中移出的 alendronate 會以原始形式 由腎臟排除^[17,19,21],腎臟清除及骨骼吸收會促使血中的 alendronate 濃 度快速下降,尿液是唯一排泄途徑^[17,19,23-24]。靜脈注射 10 mg alendronate 後,尿液中 alendronate 排泄率隨時間的變化顯示於圖 1-4

圖 1-4 靜脈注射 10 mg alendronate 後尿液中藥物濃度變化圖^[17]

^[17],前八小時尿液中 alendronate 的排泄量約為 45% (相對於靜脈注 射劑量 10 mg),八到七十二小時的排泄量約為 5%。靜脈注射後七十 二小時的總排泄量約 50%。

e、副作用

在健康人體中,骨骼的生成與溶蝕息相關,當老舊的骨骼被溶 蝕則會被新生的骨骼所取代。在使用 BPs 治療的患者中,因蝕骨細胞 活性被抑制,曾有顎骨壞死 (osteonecrosis of jaw, ONJ) 的例子^[25-26]。 由於拔牙及植牙的傷口癒合都需要蝕骨細胞的存在,如果沒有蝕骨細 胞,就不會有成骨細胞引發新骨頭的生成。在骨頭受傷或感染下,骨 頭無法修復,產生壞死的機會也就增加,但大部分病例是發生於使用 靜脈注射 BPs 治療的患者,僅少數發生在口服 BPs 的患者。目前沒 有資料可判定停止使用 BPs 治療能降低發生 ONJ 的風險^[2]。

使用 BPs 會造成暫時性低血鈣的現象,故患有低血鈣症的骨質疏 鬆病患並不適合使用 BPs 治療。其它可能的副作用還包括腸胃不適、 頭痛、皮疹等。

1.2.2 Alendronate 的分析方法

Alendronate 為不含吸光團與螢光團的一級胺化合物,需先衍生使 其帶有吸光團或使具有螢光性質,才能進行偵測。根據文獻報導,

13

alendronate 的分析方法主要以液相層析(liquid chromatography,LC) 搭 配螢光偵測 (fluorescence detection,FD) 為主,還有其他分析方法及 毛細管電泳 (capillary electrophoresis, CE) 搭配 UV 吸收偵測。因為 alendronate 為水溶性,較適合以 LC 及 CE 分離,若要使用氣相層析 (gas chromatography,GC) 則需將分析物衍生成揮發性疏水物質,步驟 較繁雜,所以目前尚無使用 GC 分析的報導。

1.2.2.1 高效能液相層析 (high performance liquid chromatography, HPLC)

a. 衍生劑為 2,3-naphthalene dicarboxyaldehyde (NDA)

1990 年,Kline 等人^[27]利用衍生劑 NDA 及 CN 與 alendronate 在鹼性條件下進行衍生,再以逆相-HPLC/FD (激發波長 420 nm、放射 波長 490 nm)分析尿液中 alendronate 濃度。此方法需經三步驟的樣 品前處理:(1)加入 Ca²⁺將樣品中的 alendronate 與 Ca(OH)₂ 共沉澱; (2)利用固相萃取 (solid phase extraction, SPE)淨化樣品;(3)利用 NDA/CN⁻衍生。詳細的樣品前處理步驟顯示於圖 1-5^[28],其流程如 下:於尿液中加入緩衝溶液 (加入後以代號 A 表示);加入 Ca²⁺ 錯合 樣品中的 alendronate (B);加入 NaOH,使鈣的錯合沉澱物形成 (C); 將混濁溶液離心,移除上清液,留下沉澱物 (D);加酸溶解沉澱物 (E);

圖 1-5 尿液樣品前處理流程圖 [28]

液 (F); 再利用 SPE,以 diethylaminopropyl/silica based (DEA) 弱陰離 子交換樹脂淨化樣品。最後進行衍生反應及 HPLC/FD 分析,尿液中 alendronate 檢量範圍為 5~100 ppb (原始尿液 5 mL),定量極限 (S/N = 10) 為 5 ppb。

1992 年, Kline 等人^[29] 延續之前^[27] 的分析方法, 將衍生反應中 的親核性取代基 CN⁻ 換成 N-acetyl-D-penicillamine (NAP), 再與 NDA、alendronate 在鹼性條件下衍生,以逆相-HPLC/FD (激發波長 436 nm、收集波長 440 nm 以上放射光)分析血浆與尿液中 alendronate。樣品處理流程同圖 1-5,此方法偵測尿液中 alendronate 的 檢量範圍為 1~25 ppb (原始尿液 5 mL), 定量極限為 1 ppb; 血浆中檢 量範圍為 5~125 ppb (原始血液 1 mL), 定量極限為 5 ppb。作者同時 以 NDA/CN⁻與 alendronate 衍生, 再以逆相-HPLC 搭配電化學偵測 器 (electrochemical derection, ED) 分析尿液中 alendronate, 檢量範圍 為 2.5~50 ppb (原始尿液 5 mL), 定量極限為 2.5 ppb。

b. 衍生劑為 9-fluorenylmethyl chloroformate (FMOC)

1989 年, De Macro 等人^[30]利用 FMOC 與 alendronate 在鹼性 條件下衍生,再以逆相-HPLC 搭配 266 nm UV 吸收偵測,分析 alendronate 藥劑,檢量範圍為 1~100 ppm,定量極限為 1 ppm。

16

2002 年, Ptácek 等人^[31]利用 FMOC 與 alendronate 衍生,以逆 相-HPLC/FD (激發波長 260 nm、放射波長 310 nm) 分析尿液中 alendronate。樣品處理流程同圖 1-5,分析尿液中 alendronate 的檢量 範圍為 3.5~300 ppb (原始尿液 5 mL),定量極限為 3.5 ppb。

2006 年, Yun 等人^[32] 同樣以 FMOC 與 alendronate 衍生,並以 逆相-HPLC/FD (激發波長 260 nm、放射波長 310 nm) 分析血浆中 alendronate。樣品處理流程同圖 1-5,血浆中 alendronate 的檢量範圍 為 1~100 ppb (原始血浆 3 mL),定量極限為 1 ppb。

2007 年, Apostolou 等人^[33]使用相同方法分析尿液中 alendronate。 尿液樣品處理流程同圖 1-5,但利用 96-well SPE 裝置,優點是節省時 間。以此方法分析尿液中 alendronate 的檢量範圍為 5~500 ppb (原始 尿液 5 mL),定量極限為 5 ppb。

c. 衍生劑為 isobutyl chloroformate (IBCF)、trimethyl orthoacetate (TMOA)

2007 年, Tarcomnicu 等人^[34]利用 HPLC/MS (mass spectrometry) 分析尿液中 alendronate。樣品處理先以 IBCF 與 alendronate 於鹼性 條件下反應,經過一連串的有機溶劑萃取,最後再以 TMOA 衍生。 HPLC 分離後以正離子模式質譜分析,尿液中 alendronate 的檢量範圍 為 6.667~4860 ppb (原始尿液為 2 mL), 定量極限為 6.667 ppb。

17

1.2.2.2 其它分析方法

2002 年, Kuljanin 等人^[35]利用 UV 吸收光譜儀, 在波長 290-310 nm 偵測 alendronate 與 Fe³⁺ 形成的錯合物。分析 alendronate 藥劑含 量的檢量範圍為 8.1~162.5 ppm, 偵測極限為 2 ppm。

2005年, Tzanavaras 等人^{[361}利用 UV 光譜儀和 stopped-flow (SF) 螢光儀分析 alendronate 藥劑。利用酸性溶液中 Cu²⁺ 與 alendronate 形成吸光錯合物,在波長 240 nm 下進行 UV 吸收偵測,檢量範圍為 1~60 ppm,定量極限為 1 ppm。SF 螢光分析是利用衍生劑 *o*-phthalaldehyde/2-mercaptoethanol (OPA/ME) 與 alendronate 在鹼性 條件下混合形成螢光物,在激發波長 340 nm、放射波長 455 nm 條件 下偵測,檢量範圍為 0.13~10 ppm,定量極限為 0.13 ppm。

1.2.2.3 毛細管電泳

1992 年, Tsai 等人^[37]利用 Cu²⁺ 與 alendronate 形成吸光錯合物, 再以毛細管電泳 (capillary electrophoresis, CE) 搭配 240 nm UV 吸收偵測, 分析 alendronate 藥劑, 其檢量範圍為 50~150 ppm, 定量 極限為 50 ppm。

2006 年, Bexheti 等人^[38]結合兩支毛細管進行預分離 (pre-separation) 和線上 (on-line) 樣品濃縮, 搭配導電度 (conductivity) 偵測器分析尿液中 alendronate, 其檢量範圍為 3.25~32.5 ppm (10~100 μM), 偵測極限 (S/N=3) 為 1 ppm (3.1 μM)。

2010年, Prutthiwanasan 等人^[39]利用 UV 吸收光譜儀間接分析 alendronate 藥劑 (UV 波長 220 nm), 其檢量範圍為 100~750 ppm, 定 量極限為 100 ppm。

1.3 磁性 Fe₃O₄@Al₂O₃ nanoparticles (NPs)

磁性奈米粒子其粒子尺寸為奈米 (10⁻⁹ m) 等級,優點為比表面積 大、表面容易修飾、生物相容性高及具有磁性。將特定官能基修飾於 磁性奈米粒子表面上,可使粒子與特定生物分子結合,以外加磁鐵便 可使粒子聚集,處理上相當方便。

利用 Al₂O₃ 萃取磷酸基分子的發展

1989 年, Coletti-Previero 等人^[40]首先報導 Al₂O₃ 會以螯合的方 式與帶有磷酸基的分子鍵結,所形成的錯合物穩定且適用的 pH 範圍 很廣。

2001 年, Hofer 等人^[41]比較 dodecyl phosphate (DDPO₄)、 12-hydroxy dodecyl phosphate (OH-DDPO₄) 在水溶液中吸附至 Ta₂O₅、 Al₂O₃、Nb₂O₅、ZrO₂、TiO₂及 SiO₂ 修飾過的玻璃片表面形成自組裝 層的能力,發現除了 SiO₂外,另五種金屬氧化物皆可與磷酸基形成穩 定的配位化合物。作者也提出 DDPO₄ 是否形成自組裝層與等電點無直 接關係,證明磷酸基分子不是藉由靜電吸引力吸附在金屬氧化物的表面,而是磷酸基分子與金屬氧化物的金屬離子中心進行螯合反應^[42]。

2007 年,Li 等人^[43]成功的將 Al₂O₃ 修飾至 Fe₃O₄ 形成 core-shell microsphere,並利用此 Fe₃O₄@Al₂O₃ magnetic core-shell microsphere 萃 取老鼠肝臟中的磷酸化胜肽,此萃取方法不僅快速、選擇性高,且可 達到濃縮目的。同年,Lo 等人^[44]嘗試利用奈米尺寸的 Fe₃O₄@Al₂O₃ particles 萃 取 經 由 胰 蛋 白 酶 消 化 後 的 磷 酸 化 蛋 白 質 。 由 於 Fe₃O₄@Al₂O₃ particles 為奈米尺寸,其表面積增加,因而提高其捕捉容 量 (trapping-capacity)。

2008 年,Liu 等人^[45]比較利用 Fe₃O₄@Al₂O₃NPs 及 Fe₃O₄@TiO₂ NPs 萃取人類血清中的磷酸化胜肽。從 MALDI (matrix-assisted laser desorption ionization) mass spectrum 結果顯示 Fe₃O₄@Al₂O₃NPs 對磷 酸化胜肽或蛋白質的選擇性較 Fe₃O₄@TiO₂ NPs 好。因此後續研究常 用 Fe₃O₄@Al₂O₃NPs 來萃取磷酸基分子。

1.4 研究動機

根據文獻報導,alendronate 的分析方法以 HPLC/螢光偵測為主, 其樣品前處理流程複雜 (詳細過程見圖 1-5) 及樣品消耗量多,且解析 度比 CE 差。先前文獻^[37-39]曾以 CE 搭配 UV 或導電度偵測,但偵 測極限不夠低。為了改善樣品處理過程、減少分析時間及降低偵測極

限,故需建立一套簡單、靈敏的分析方法。雖然 CE 擁有高解析力、 操作方便、樣品用量少等優點,但對於生物樣品或組成複雜的樣品, 由於基質效應的影響常使分離與偵測遭遇困難,故需發展具有高選擇 性的萃取方法以去除干擾並降低偵測極限。目前文獻報導利用 Fe₃O₄@Al₂O₃ NPs 萃取樣品溶液中的磷酸基分子,大多集中在生化大 分子的應用。先前實驗室學姐^[46] 曾成功的利用 Fe₃O₄@Al₂O₃ NPs 萃 取小分子雙磷酸鹽藥物 ibandronate, 並配合 CE/電激發化學放光偵測 分析,本研究則嘗試利用 Fe₃O₄@Al₂O₃NPs 萃取添加於尿液中的雙磷 酸鹽藥物 alendronate。分析物經萃取後與 NDA/CN⁻ 在鹼性條件下衍 生,再以 CE/螢光偵測器分析。因磁性 NPs 具有比表面積大、表面容 易修飾、生物相容性高及磁性的特點,且 CE 有優異的解析能力,以 及螢光偵測擁有高靈敏度的特性,結合以上的優點,發展一種快速、 方便且靈敏的 alendronate 藥物分析方法。

21

貳、實驗

2.1 儀器設備

1. 毛細管電泳裝置:

實驗室中自行組裝,包括一台高壓電源供應器,Glassman High Voltage 公司 (Whitehouse Station, NJ, USA) 產品,Model PS / MJ 30P0400-11,可提供直流電壓至 + 30 kV。高電壓啟動線路為實驗 室中自行設計組裝。

2. 熔融矽毛細管:

實驗使用的熔融矽毛細管為內徑 47 μm,外徑 365 μm,長度 55 cm, 外覆聚乙烯胺 (polyimide), Polymicro Technologies公司 (Phoenix, AZ, USA) 產品, Model TSP050375。

3. 酸鹼度計:

Mettler Toledo 公司 (Columbus, OH, USA) 產品, Type InLab439。

4. 三用電表:

廣華電子材料有限公司 (Kwang-Hwa, Taichung, Taiwan) 產品,三位 半數位多功能電表, Model DM-1240, 連接偵測端白金電極並接地, 用來監控電泳電流。
5. 磁石攪拌器:

新光精機工業股份有限公司 (Taipei, Taiwan) 產品, Model MS-1。 6. 超音波震盪器:

L&R Ultrasonic 公司 (Kearny, NJ, USA) 產品, Model Quantrex AG 90。

7. 數位加熱攪拌器:

VWR Scientific 公司 (San Francisco, CA, USA) 產品, Model 400HPS。

8. 過濾薄膜:

TITAN 公司 (San Diego, CA, USA) 產品, Nylon 材質, 孔徑大小為 0.45 μm。

9. 高速冷凍離心機:

KUBOTA 公司產品, Model KUBOTA 3740。

10. 烘箱:

Kwang Shen 公司 (Taipei, Taiwan) 產品, Model KS-21。

11. 天平:

日本電子科學株式會社 (Kyoto, Japan) 產品, Model AJ-100。

12. 不斷電系統 (UPS): 飛瑞公司 (Taipei, Taiwan) 產品, Model C-3000。 13. 顯微鏡:

American Optical 公司 (Buffalo, NJ, USA) 產品, Model series 150.160。

14. 注射針:

TERUMO 公司 (Tokyo, Japan) 產品,體積 3 mL, Type DVR - 3414H。

15. 數據處理:

以個人電腦配合訊華公司 (Taipei, Taiwan) 積分軟體 (Data Station) 進行數據處理。

- 16. Amicon Ultra-0.5 超過濾膜: Millipore 公司(Billerica, MA, USA)
 產品,孔徑大小 5000 NMWL (nominal molecular weight limit),
 型號: UFC500308。
- 17. 442 nm He-Cd 雷射激發螢光偵測裝置其光學元件:
 - a. 三稜鏡: Edmund Scientific 公司(Barrington, NJ, USA)產品, Model E43498。
 - b. 442 nm 干涉濾片: Edmund Scientific 公司產品,有效帶寬 10 nm。
 - c. 聚焦鏡: Edmund Scientific 公司產品, Model D45079, 焦距 1.4 cm。

- d. 10 倍顯微接物鏡: Edmund Scientific 公司產品, Model D43903。
- e. 反射鏡: Edmund Scientific 公司產品, Model D33502。
- f. 475 nm cut-off 濾片: Edmund Scientific 公司產品。
- g. 500 nm 干涉濾片: Edmund Scientific 公司產品,有效帶寬 10 nm。
- h. 光電倍增管 (PMT):Hamamatsu 公司 (Bridge Water, NJ, USA) 產品, Model R-928, 電源供應器, Model HC123-01。
- Argos 250 B 螢光偵測器: Flux instruments AG 公司 (Basel, Switzerland) 產品,光源為 Xe-Hg 燈,功率 75 W,光譜範圍 185-2,000 nm。激發光源波長 400 nm,收集波長 495 nm 以上放 射螢光。

2.2 藥品

- 4-Amino-1-hydroxy-1-phosphonobutyl phosphonic acid, monosodium (C₄H₁₂NO₇P₂Na · 3H₂O ; alendronate sodium trihydrate) : Sigma-Aldrich 公司 (St. Louis, MO, USA) 產品,純度 97%。
- 3-Amino-1-hydroxy-1-phosphonopropanephosphonic acid disodium salt hydrate (C₃H₉NO₇P₂Na₂ · x H₂O; pamidronate disodium salt hydrate): Sigma-Aldrich 公司產品,純度 95%。
- 3. 氰酸鉀 (KCN; potassium cyanide): E. Merck 公司 (Darmstadt,

Germany) 產品。

- 4. NDA (C₁₂H₈O₂; 2,3-naphthalenedicarboxaldehyde): Molecular Probes
 公司 (Eugene, OR, USA) 產品,純度 97%。
- 5. 磷酸氫二鈉 (Na₂HPO₄ · 2 H₂O; disodium hydrogen phosphate dihydrate): E. Merck 公司產品,純度 99.5%。
- 5. 氫氧化鈉 (NaOH; sodium hydroxide): E. Merck 公司產品,純度
 99%。
- 四氧化三鐵 (Fe₃O₄; iron (Ⅱ,Ⅲ) oxide): Alfa Aesar 公司 (Heysham, Lancs, UK) 產品,純度 98%,粒徑 20~30 nm。
- 矽酸鈉溶液 (Na₄O₄Si; sodium silicate solution): Sigma-Aldrich 公司產品,重量百分比為 27%。
- 異丙醇鋁 ((C₃H₇O)₃Al; aluminum isopropoxide): Sigma-Aldrich 公司產品,純度 99.99%。
- 10. 二磷酸四鈉 (Na₄P₂O₇ · 10 H₂O ; tetra-sodium diphosphate decahydrate): E. Merck 公司產品,純度 99~103%。
- 11. 三聚磷酸鈉 (Na₅P₃O₁₀; sodium tripolyphosphate): Showa 公司 (Tokyo, Japan) 產品,純度 55~59%。
- 12. 甲醇 (CH3OH; methanol): E. Merck 公司產品, HPLC 級試藥。
- 13. 氰甲烷 (CH₃CN; acetonitrile): E. Merck 公司產品, HPLC 級試藥。

14. 鹽酸 (HCl; hydrochloric acid): E. Merck 公司產品,濃度 37%。

- 乙二胺四乙酸二鈉 (C₁₀H₁₄N₂O₈ Na₂·2 H₂O; ethylenediaminetetraacetic acid disodium salt; EDTA·2 Na): 島久藥品株式會社 (Osaka, Japan), 純度 99%。
- 實驗所用之純水是將自來水軟化與蒸餾後,再經 Barnstead 公司 (Dubuque, IA, USA) NANOpure Diamond Analytical ultrapure water system 純化處理。

2.3 實驗方法

2.3.1 緩衝溶液的配製:

以去離子水配製所需濃度的磷酸氫二鈉緩衝溶液,並以 NaOH 或 H₃PO₄ 調整 pH 值至實驗所需之酸鹼值,再使用 0.45 μm 濾膜過濾後, 保存於 4℃冰箱,期限為一個月。

2.3.2 儲備溶液 (stock solution) 的配製

(1) Alendronate sodium trihydrate:以去離子水配製成 1 mg/mL 儲備溶液,置於 4℃ 冰箱保存,期限為一個月。

(2) Pamidronate disodium salt hydrate: 做為內標準品,以去離子水配製

- 成 1 mg/mL 儲備溶液,置於 4 ℃ 冰箱保存,期限為一個月。
- (3) EDTA:以去離子水配製成 0.3 M 溶液,置於 4 ℃ 冰箱保存,期 限為一個月。

(4) NDA:分析物的衍生劑,以 HPLC 級甲醇配製所需濃度,需避光 並用鋁箔紙包覆置於 4℃ 冰箱保存,每次實驗前重新配製。

(5) KCN:以 20 mM Na₅P₃O₁₀ (pH 9.0) 配製所需濃度,置於 4℃ 冰箱 保存,此為 NDA 衍生反應中 CN 離子的來源。

(6) Na₂HPO₄ · 2 H₂O:以去離子水配製成 150 mM 溶液,置於 4 ℃ 冰箱保存,期限為一個月。

(7) Na₄P₂O₇·10 H₂O:以去離子水配製所需濃度,置於 4℃ 冰箱保存, 期限為一個月。

(8) Na₅P₃O₁₀:以去離子水配製所需濃度,置於 4 ℃ 冰箱保存,期限為一個月。

2.3.3 尿液樣品前處理

以乾淨紙杯收集人體尿液後,置於 15 mL 的離心管中,以 6,000 rpm 離心 5 分鐘,去除沉澱物,取上清液,並保存於 -4℃ 冰箱中。 進行分析前,於 1 mL 尿液樣品中添加 50 µL 的 0.5 M NaOH 或配製 於 0.5 M NaOH 中的 alendronate 標準溶液。添加 0.5 M NaOH 的目 的是為了調整溶液 pH 值為鹼性,使在下一步加入 50 µL 0.3 M EDTA 後 pH 值約 10.0, EDTA 能與尿液樣品中的鈣、鎂錯合,避免鈣、鎂 和 alendronate 結合。最後使用超過濾膜以 14,000 x g 離心 30 分鐘,

約可得濾液 1 mL。後續實驗尿液中 alendronate 添加濃度皆表示為原始尿液樣品中的濃度。

2.3.4 磁性 Fe₃O₄@Al₂O₃NPs 的製備^[45]

a、Fe₃O₄@SiO₂NPs 的合成:

依照實驗室學姐的合成方式^[46],配製 0.6 % Na₄O₄Si 水溶液 40 mL,以 12 M HCI (約 350 µL) 調整溶液 pH 至 9.0 左右。取 0.2 g Fe₃O₄ NPs 置於 250 mL 圓底燒瓶中,加入 40 mL 去離子水,再加入 40 mL 已配製好的 0.6 % Na₄O₄Si 水溶液,在 37 ℃ 油浴下劇烈攪拌 持續進行反應 24 小時。反應結束後,利用外加磁鐵吸附 Fe₃O₄@SiO₂ NPs 於瓶壁,將溶液去除,再加入 40 mL 去離子水清洗過量的 Na₄O₄Si,並確定漂浮在水面上的過量氧化矽顆粒被移除。重複上述清 洗步驟三次,將產物置於 60 ℃ 烘箱烘乾後,即得到 Fe₃O₄@SiO₂ NPs。

b、Fe₃O₄@SiO₂@Al₂O₃NPs 的合成:

取 0.1 g (a) 部分合成好之 Fe₃O₄@SiO₂ NPs 置於 100 mL 樣品 瓶中,加入 40 mL 去離子水,再加入 20 mg 異丙醇鋁,以超音波震 盪使溶液混合均匀。將此溶液置於 80℃ 水浴下,持續攪拌反應 1 小 時,實驗過程中需觀察 Fe₃O₄@SiO₂@Al₂O₃ NPs (簡寫成 Fe₃O₄@Al₂O₃

NPs) 是否會聚集成芝麻狀大小顆粒。若有此現象,則須以超音波將聚 集的粒子震散,再重新進行 80 ℃ 水浴。反應結束後,將水浴溫度調 升至 90 ℃,並打開瓶蓋使產生的異丙醇逸散,30 分鐘後再將瓶蓋半 旋緊繼續反應 2.5 小時。反應結束後,利用外加磁鐵吸附 Fe₃O₄@Al₂O₃ NPs,將溶液去除,再加入 40 mL 去離子水清洗過量的 異丙醇銘,並確定漂浮在水面上的過量氧化鋁顆粒被移除。重複上述 清洗步驟三次,將產物置於 60 ℃ 烘箱烘乾後,即得到 Fe₃O₄@Al₂O₃ NPs。

2.3.5 Fe₃O₄@Al₂O₃NPs 萃取步驟

释取 1 mg Fe₃O₄@Al₂O₃NPs 置於 1.5 mL 樣品瓶中,加入 1 mL 含有 alendronate 經前處理過的尿液樣品。將此樣品瓶置於超音波震盪 器震盪 10 分鐘,利用外加磁鐵將 Fe₃O₄@Al₂O₃NPs 吸附於瓶壁以方 便移除所有溶液。再加入 10 μL 20 mM Na₅P₃O₁₀ (pH 9.0) 沖堤溶液於 NPs 中,並震盪 20 分鐘,使吸附在 Fe₃O₄@Al₂O₃ NPs 上的 alendronate 再脫附於沖堤溶液中,最後取出 10 μL 澄清液進行衍生反 應。詳細萃取流程見圖 2-1^[46]。

圖 2-1 Fe₃O₄@Al₂O₃ NPs 萃取流程圖^[46]

2.3.6 Alendronate 衍生反應

取 10 μL alendronate 標準樣品或經 Fe₃O₄@Al₂O₃ NPs 萃取的樣 品置於微量離心管中,再加入 5 μL 1 ppm pamidronate 內標準溶液、 1.5 μL 10 mM NDA 衍生劑及 1.5 μL 10 mM KCN,在室溫及避光下震 盪反應 20 分鐘進行衍生。

2.3.7 毛細管的處理與進樣

電泳分離管柱使用內徑 47 μm,外徑 365 μm,有效偵測長度 45 cm,全長 65 cm 或有效偵測長度 35 cm,全長 55 cm 之毛細管。每 次實驗前,以去離子水沖洗毛細管 15 分鐘,再以電泳緩衝溶液沖洗 15 分鐘,在高電場下平衡一段時間,待背景訊號穩定後即可進行實驗。 樣品注射採用重力進樣方式,進樣高度 20 公分、15 秒,分析物會因 虹吸現象進入毛細管前端。當天實驗後,以去離子水清洗殘餘的電泳 緩衝溶液,再以 0.1 M 的 NaOH 清洗毛細管 15 分鐘,最後以去離 子水沖洗 15 分鐘,並將毛細管保存於去離子水中。

2.3.8 毛細管電泳/He-Cd 雷射激發螢光偵測裝置

取一內徑 47 μm, 外徑 365 μm、長度 65 cm 之毛細管, 在距離 進樣端 45 cm 處以火焰燒去約 0.5 cm 的聚乙烯胺 (polyimide) 保護

膜當作偵測視窗,並以甲醇擦拭乾淨。毛細管置於偵測裝置中,使偵 測視窗對準雷射光束,雷射激發螢光偵測裝置的內部構造見圖 2-2^[47]。 雷射光束先經過三稜鏡後射入一平面鏡反射 90 度,再經由一個焦距 1.4 cm 的凸透鏡聚焦於毛細管的偵測視窗上。在與雷射光束垂直的方 向架設一顯微接物鏡,收集由毛細管偵測視窗處樣品被激發後放射的 螢光。經由另一平面反射鏡反射 90 度後,依序通過 475 nm cut-off 濾 片及 500 nm 干涉濾片,以除去激發光與散射光背景干擾,最後進入 光電倍增管(PMT)。PMT 所產生的微弱電流藉由 picoammeter 放大 並轉換為電壓信號輸出。經背景抑制線路降低背景訊號並過濾雜訊後, 再透過數據處理介面及電腦記錄,並將數據積分處理。整個毛細管電 泳/雷射激發螢光連接裝置如圖 2-3^[47]。為隔絕外界光線干擾,所有光 學元件均置放於黑色壓克力暗箱中。

2.3.9 毛細管電泳/Xe-Hg 燈激發螢光偵測裝置

取一內徑 47 μm,外徑 365 μm、長度 55 cm 之毛細管,在距離 進樣端 35 cm 處以火焰燒去約 1 cm 的聚乙烯胺 (polyimide)保護膜 當作偵測視窗,並以甲醇擦拭乾淨。Xe-Hg 燈激發螢光偵測裝置顯示 於圖 2-4,光源為 75 W 高壓 Xe-Hg 燈,於光源出口放置 400 nm 干 涉濾片,光源經由光纖傳導至偵測槽。毛細管偵測視窗置於偵測槽中,

圖 2-2 雷射激發螢光偵測裝置的內部光學元件 [47]

圖 2-3 毛細管電泳/雷射激發螢光偵測裝置^[47]

圖 2-4 CE/Xe-Hg 燈激發螢光偵測裝置

再將毛細管兩端由偵測槽中拉出,以注射器將電泳緩衝液注入毛細管 中,使其管柱內充滿電泳緩衝液。將毛細管兩端分別浸入充滿電泳緩 衝液的瓶中,於緩衝液瓶中置入白金電極,將高壓電源供應器正極連 接至毛細管進樣端緩衝溶液瓶中之電極,而偵測端電極則連接至地線, 與高壓端形成一電流迴路。分析物被激發後產生的螢光經由光纖傳導, 先通過 495 nm cut-off 濾片,再進入 PMT,光電流經轉換為電壓後, 輸出至電腦記錄並進行數據處理。為隔絕外界光線干擾,偵測槽需置 放於黑色壓克力暗箱中。

參、結果與討論

3.1 最佳實驗條件探討

3.1.1 衍生反應

Pamidronate 其化學和物理性質與 alendronate 相似,屬於同類化 合物(結構顯示於圖 1-1),所以選 pamidronate 當內標。進行分析時, 加入已知量內標準品,在定量上可忽略光源的系統誤差。

Alendronate 及內標物 pamidronate 皆為一級胺化合物,不具螢光 性質,利用毛細管電泳/He-Cd 雷射激發螢光偵測系統分析時,分析物 需先衍生使具有螢光性質。本研究選用 NDA 作為與分析物衍生反應 的試劑,NDA 與一級胺化合物的衍生反應見圖 3-1^[48]。在 CN⁻離子 存在下,NDA 與一級胺反應可形成 1-cyano-2-alkyl-benzisoindole (CBI),衍生時間約三十分鐘左右。衍生過程須在鹼性環境下,使分析 物結構上的胺基具有親核性,利用未鍵結電子對進行反應,且 KCN 在 鹼性環境下才不會產生毒性極高的 HCN。

CBI 的最大吸收波長為 420 及 440 nm^[49], 而 440 nm 與 He-Cd 雷射波長 442 nm 相近,所以選擇 NDA 當 alendronate 的衍生劑。

NDA

CBI-derivative

圖 3-1 NDA 與一級胺化合物的衍生反應^[48]

3.1.2 衍生反應溫度的影響

本研究首先探討溫度對於衍生分析物 alendronate 及內標物 pamidronate 的影響。利用數位加熱攪拌器將衍生反應溫度控制在 15~70℃ 範圍內,以 NDA-alendronate (NDA-A) 訊號面積除以內標物 NDA-pamidronate (NDA-P) 訊號面積的比值對溫度作圖,結果顯示於 圖 3-2。NDA-A/NDA-P 面積比值在 25℃ 時最大。當溫度低於或高 於 25℃,訊號面積比值隨之降低,可能是因為衍生溫度較低,NDA-A 相對於 NDA-P 反應速率較慢,造成 NDA-A/NDA-P 面積比值下降, 但較高溫度可能加速 NDA-A 相對於 NDA-P 產物分解,所以選擇 25℃ 為最佳反應溫度。

3.1.3 衍生反應時間的影響

衍生反應的時間會影響反應的完全性,所以探討衍生時間長短對 於分析物訊號面積的影響,改變衍生時間從 1 到 40 分鐘,結果顯示 於圖 3-3。在 1~20 分鐘範圍內,隨著時間增加,NDA-A/NDA-P 面 積比值隨之增加,當衍生時間達 20 分鐘以後,NDA-A/NDA-P 面積 比值沒有顯著變化,因此選用 20 分鐘作為最佳衍生時間。

圖 3-2 衍生反應溫度對分析物訊號面積的影響

衍生條件: 15 μL 3 ppm alendronate + 15 μL 11 ppm pamidronate (兩者皆 配在 20 mM pH 9.0 磷酸鈉緩衝液) + 10 μL 10 mM KCN + 10 μL 10

mM NDA;衍生時間、溫度:20 分鐘,15~70 ℃

毛細管: 47 µm I.D. × 365 µm O.D. × 65 cm (有效長度 45 cm)

電泳緩衝溶液:20 mM 磷酸鈉, pH 10.0

分離電壓:24 kV

進樣方式:重力進樣,高度 20 公分,15 秒

LIF 偵測:激發波長 442 nm,放射波長 500 nm

PMT 電位:-1000 V

圖 3-3 衍生反應時間對分析物訊號面積的影響

衍生時間、溫度:1~40 分鐘,25±1℃

其他條件同圖 3-2

3.1.4 衍生 pH 值的影響

接著探討衍生反應 pH 值對分析物訊號面積的影響,分別配製 pH 值在 8.0~10.0 之間的 20 mM 磷酸鈉緩衝溶液進行 NDA 與 alendronate 及內標物 pamidronate 的衍生反應,NDA-A 及 NDA-P 訊號面積隨衍生 pH 值的變化顯示於圖 3-4。從圖中可以看出在 pH 8.0~10.0 範圍內,NDA-A 及 NDA-P 訊號面積變化不顯著。pH=9.0 時 NDA-A 訊號面積較大;pH = 9.5 時,NDA-P 訊號面積較大。將 NDA-A/NDA-P 面積比值對衍生 pH 值作圖,顯示於圖 3-5。圖中可 見 pH 值為 9.0 時,NDA-A/NDA-P 面積比值較大,衍生效果最佳, 因此選擇 9.0 為後續衍生反應的 pH 值。

3.1.5 電泳緩衝溶液濃度的影響

在探討適當的電泳緩衝溶液濃度中,改變磷酸鈉的濃度在 10~40 mM 之間,圖 3-6 顯示電泳緩衝溶液濃度對 NDA-A 及 NDA-P 遷移 時間的影響。當磷酸鈉的濃度為 10 mM 時,由於離子強度不高, NDA-A 及 NDA-P 訊號無法分離。隨著磷酸鈉濃度提高,分離效果提 升,但遷移時間也隨之增加。因為磷酸鈉濃度愈高,溶液中的離子強 度愈強,毛細管壁電雙層受到壓縮,電滲流變小,樣品的移動速度因 此變慢,遷移時間增加。緩衝溶液濃度對分析物訊號面積的影響顯示 於圖 3-7。磷酸鈉的濃度從 30 至 40 mM 時分析物訊號面積

圖 3-4 衍生反應 pH 值對 NDA-A 及 NDA-P 訊號面積的影響

衍生緩衝溶液:分析物配在 20 mM 磷酸鈉, pH 8.0~10.0

衍生時間、溫度:20 分鐘,25±1℃

其他條件同圖 3-2

圖 3-5 衍生反應 pH 值對分析物訊號面積的影響

實驗條件同圖 3-4

圖 3-6 電泳緩衝溶液濃度對 NDA-A 及 NDA-P 遷移時間的影響

衍生緩衝溶液:分析物配在 20 mM 磷酸鈉, pH 9.0

衍生時間、溫度:20 分鐘,25±1℃

電泳緩衝溶液:10~40 mM 磷酸鈉, pH 10.0

其他條件同圖 3-2

圖 3-7 電泳緩衝溶液濃度對分析物訊號面積的影響

實驗條件同圖 3-6

下降。考慮分離效果、遷移時間與分析物訊號面積,選定 20 mM 磷酸鈉為緩衝溶液的最佳濃度。

3.1.6 電泳緩衝溶液 pH 值的影響

電泳緩衝溶液 pH 值會影響分析物的遷移時間,在探討電泳緩衝 溶液最佳 pH 值中,改變磷酸鈉緩衝溶液的 pH 值在 9.0~11.0 的範 圍,圖 3-8 顯示緩衝溶液 pH 對 NDA-A 及 NDA-P 遷移時間的影響。 隨著 pH 值的增加,遷移時間隨之減少,在 pH = 11.0 時,NDA-A 及 NDA-P 訊號波峰重疊。不同 pH 值電泳緩衝溶液的電泳圖顯示於圖 3-9,pH 9.0~10.0 範圍內的分離效果較佳。進一步探討 pH 9.0~10.0 對 分析物訊號面積的影響,顯示於圖 3-10。圖中顯示電泳緩衝溶液 pH 9.0、9.5 或 10.0 對於分析物訊號面積影響不大。考慮遷移時間、分離 效果及分析物訊號面積,選擇電泳緩衝溶液 pH = 10.0 為最佳條件。

3.1.7 電泳分離電壓的影響

電泳分離電壓會影響分析物的遷移時間及訊號高度,為探討電泳 分離電壓的影響,改變電壓從 18 到 30 kV,不同電壓下電泳圖顯示 於圖 3-11。隨著電壓的增加,NDA-A 及 NDA-P 移動速度變快,使 得訊號峰寬隨分離電壓的增加而遞減。不同分離電壓對訊號的影響顯

圖 3-8 電泳緩衝溶液 pH 值對 NDA-A 及 NDA-P 遷移時間的影響

衍生緩衝溶液:分析物配在 20 mM 磷酸鈉, pH 9.0

衍生時間、溫度:20 分鐘,25±1℃

電泳緩衝溶液:20 mM 磷酸鈉, pH 9.0~11.0

其他條件同圖 3-2

圖 3-9 不同 pH 值電泳緩衝溶液的電泳圖

實驗條件同圖 3-8

Peak 1 : NDA-A ; peak 2 : NDA-P

圖 3-10 電泳緩衝液 pH 值對分析物訊號面積的影響

實驗條件同圖 3-8

圖 3-11 不同分離電壓下的電泳圖

衍生緩衝溶液:分析物配在 20 mM 磷酸鈉, pH 9.0

衍生時間、溫度:20 分鐘,25±1℃

分離電壓: 18~30 kV

Peak 1 : NDA-A ; peak 2 : NDA-P

其他條件同圖 3-2

示於圖 3-12, 電壓從 18 到 24 kV, 訊號高度隨著電壓而增加。當電 壓為 24 或 27 kV 時, NDA-A 訊號高度沒有顯著的變化; 電壓為 30 kV 時, 訊號再現性較差。在遷移時間與訊號高度的考量下, 選擇 27 kV 為電泳分離電壓。

3.1.8 衍生劑量的影響

衍生劑量會影響反應的完全性,探討衍生劑 (NDA) 與分析物 (alendronate,A) 及內標物 (pamidronate,P) 衍生反應的劑量,藉由 改變 NDA 相對分析樣品 (A+P) 不同莫耳比例下,分別進行衍生反應 試驗。當改變 NDA/(A+P) 莫耳比例時 NDA-A/NDA-P 面積比值的變 化顯示於圖 3-13。從圖中可看出當 NDA/(A+P) 莫耳比值超過 300, NDA-A/NDA-P 面積比值沒有明顯的變化,表示衍生劑的量已足夠。 為了應用於真實樣品中,選擇過量的衍生劑,以 NDA/(A+P) 莫耳比 值為 500 倍作為衍生劑量,NDA 濃度為 10 mM。

3.1.9 最佳分析條件

综合以上實驗結果,歸納出藉由 NDA 對分析物 alendronate 及內 標物 pamidronate 先進行衍生,再以毛細管電泳搭配 He-Cd 雷射激發 螢光偵測分析,最佳衍生條件為:衍生溶液 pH=9.0,衍生時間 20 分

圖 3-12 不同分離電壓對訊號的影響

實驗條件同圖 3-11

NDA / (A+P) mole ratio

圖 3-13 不同 NDA/(A+P) 莫耳比對訊號的影響

衍生條件: 10 μL 40 ppb alendronate + 5 μL 1 ppm pamidronate (兩者皆
配在 20 mM pH 9.0 磷酸鈉緩衝液) + 1.5 μL 不同濃度 KCN + 1.5 μL
不同濃度 NDA (KCN / NDA 濃度比值為 1)
衍生時間、溫度: 20 分鐘, 25±1℃

分離電壓: 27 kV

其他條件同圖 3-2

鐘,衍生溫度 25℃,NDA 濃度 10 mM;最佳電泳分離條件:電泳緩
衝溶液為 20 mM、pH 10.0 磷酸鈉,分離電壓 27 kV,毛細管內徑
47µm、外徑 365 µm,全長 65 cm(有效長度 45 cm),重力注射進樣,
高度 20 公分,時間 15 秒,激發波長 442 nm,放射波長 500 nm,
PMT 電位 -1000 V。

研究進行中 He-Cd 雷射壽命忽然結束,只得改以商品化螢光偵測 器 Argos 250 B 替代,其光源為 Xe-Hg 燈,功率 75 W。配合偵測器 的改變,電泳毛細管內、外徑不變,全長改為 55 cm (有效長度 35 cm), 分離電壓降至 24 kV 使電場強度與 He-Cd 雷射激發螢光偵測時一樣, 激發波長 400 nm,收集波長 495 nm 以上放射螢光,商品化內建 PMT 因背景雜訊關係,而將電位降至 -950 V。考慮接下來以 Fe₃O₄@Al₂O₃ NPs 萃取,將分析物 alendronate 及內標物 pamidronate 配製於 20 mM、pH 9.0 三聚磷酸鈉緩衝液。在最佳分析條件下以商品化螢光偵 测器所得到的電泳圖顯示於圖 3-14。圖 (A) 為空白 Na₅P₃O₁₀ 緩衝液 電泳圖,可看到前 4 分鐘的訊號皆為殘餘的 NDA 衍生劑;圖 (B) 為 10 µL 100 ppb 分析物 alendronate 及 5 µL 1 ppm 內標物 pamidronate, 訊號分別為 peak 1 及 peak 2,出現位置沒有受到衍生劑訊號干擾。 Peak 1 與 peak 2 為底線分離,理論板數分別為 14,389 與 12,973,分 離時間不到五分鐘。

圖 3-14 最佳分析條件下 alendronate 及 pamidronate 的電泳圖

(A) : Blank (B) : Peak 1 : NDA-A ; peak 2 : NDA-P

衍生條件: 10 µL 100 ppb alendronate + 5 µL 1 ppm pamidronate (皆配在

20 mM Na₅P₃O₁₀ 緩衝液, pH 9.0) + 1.5 µL 10 mM KCN + 1.5 µL 10 mM

NDA;衍生時間、溫度:20 分鐘,25±1℃

毛細管: 47 µm I.D. × 365 µm O.D. × 55 cm (有效長度 35 cm)

電泳緩衝溶液:20 mM 磷酸鈉, pH 10.0; 分離電壓:24 kV

進樣方式:重力進樣,高度 20 公分,15 秒

螢光偵測:激發波長 400 nm,收集波長 495 nm 以上放射螢光

PMT 電位:-950 V

3.2 Fe₃O₄@Al₂O₃ 奈米粒子萃取條件最佳化

文獻曾經報導^[41],帶有磷酸基的化合物其氧離子因具孤對電子, 可與金屬氧化物 Al₂O₃、Ta₂O₅、Nb₂O₅、ZrO₂、TiO₂ 及 SiO₂ 上金屬的 空軌域進行螯合鍵結,形成穩定的錯合物。也有文獻針對不同金屬氧 化物進行專一性探討^[50],發現 Al₂O₃ 對於含磷酸官能基的化合物有 非常高的選擇性。先前實驗室學姊^[46]成功的利用 Fe₃O₄@Al₂O₃ NPs 萃 取 帶 有 磷 酸 基 的 三 級 胺 藥 物 ibandronate , 本 研 究 嘗 試 以 Fe₃O₄@Al₂O₃ NPs 來萃取同樣帶有磷酸基的一級胺藥物 alendronate。

3.2.1 Fe₃O₄@Al₂O₃NPs 萃取時間的影響

為了解萃取時間對 alendronate 與 Fe₃O₄@Al₂O₃ NPs 螯合反應的 影響,改變萃取時間從 1 到 20 分鐘,結果顯示於圖 3-15。利用 1 mg 的 Fe₃O₄@Al₂O₃ NPs 與 90 ppb alendronate,發現 10 分鐘即可達完全, 顯示 alendronate 與 Fe₃O₄@Al₂O₃ NPs 螯合反應非常快速。後續實驗 選擇以超音波震盪 10 分鐘為萃取時間。

3.2.2 脫附時間的影響

當 alendronate 經由螯合作用附著於 Fe₃O₄@Al₂O₃ NPs 上,其脫 附的時間也會影響脫附效率。為探討 alendronate 被 Na₅P₃O₁₀ 緩衝液

Extraction time (min)

圖 3-15 Fe₃O₄@Al₂O₃NPs 萃取時間的影響

實驗條件:

分析物:1 mL 90 ppb alendronate 水溶液

 $Fe_3O_4@Al_2O_3 NPs : 1 mg$

萃取時間:1、3、5、10、20 分鐘

沖堤液:15 μL 20 mM Na₅P₃O₁₀ 緩衝液, pH 9.0

脫附時間:10 分鐘

衍生條件:15 μL 沖堤下來的溶液 +1.5 μL 10 mM KCN + 1.5 μL 10 mM NDA

置換下來的速率,改變脫附時間從 3 到 30 分鐘配合超音波震盪,結 果顯示於圖 3-16。隨著脫附時間增加,NDA-A 訊號面積隨之增加, 當脫附時間超過 20 分鐘後,NDA-A 訊號面積沒有顯著變化,表示 alendronate 脫附的濃度已達平衡,因此選用 20 分鐘為脫附時間。

3.2.3 沖堤液的選擇

沖堤液會與 alendronate 競爭 Fe₃O₄@Al₂O₃ NPs 表面活性位置, 因此沖提液組成對 alendronate 沖洗下來量多寡有直接的影響。實驗室 學姐^[46] 曾利用 50 mM Na₂HPO₄ 緩衝溶液當作沖堤液,但是觀察不到 帶有磷酸基的三級胺 ibandronate 訊號,顯示分析物未被沖洗下來。文 獻^[51] 曾報導以具有雙磷酸基的焦磷酸 (pyrophosphate) 緩衝液當作沖 堤液沖洗經 Al₂O₃ 萃取的樹葉中磷酸化蛋白分子,其效果較單磷酸基 緩衝液好。本實驗比較以含有雙磷酸基的 Na₄P₂O₇(20 mM, pH 9.0) 與 三磷酸基的 Na₅P₃O₁₀(20 mM, pH 9.0) 緩衝液當作萃取步驟最後的沖 堤液,將沖堤下來的分析物衍生,兩種沖堤液的沖堤效果顯示於圖 3-17。 可看到以 Na₄P₂O₇ 緩衝液沖堤的訊號峰型分裂,且訊號面積只有 Na₅P₃O₁₀ 緩衝液沖堤的 80%,故選擇 Na₅P₃O₁₀ 緩衝液當沖堤液。

圖 3-16 震盪脫附時間的影響

分析物:1 mL 100 ppb alendronate 水溶液

萃取時間:10 分鐘

脫附時間:3、5、10、20、30 分鐘

圖 3-17 比較以 Na₄P₂O₇ 與 Na₅P₃O₁₀ 緩衝液沖堤的效果

樣品:1 mL 10 ppb alendronate 水溶液

萃取時間:10 分鐘

沖堤液:

- (A): 20 mM Na₄P₂O₇ 緩衝液,pH 9.0
- (B): 20 mMNa₅P₃O₁₀ 緩衝液, pH 9.0
- 內標:5 µL 300 ppb pamidronate
- Peak 1 : NDA-A ; peak 2 : NDA-P

3.2.4 Na₅P₃O₁₀ 沖堤溶液濃度的影響

當 alendronate 經由螯合作用附著於 Fe3O4@Al2O3 NPs 上, 若要 將其再沖洗下來,沖堤液的濃度是一項重要因素。探討以 10 μL 1~20 mM Na₅P₃O₁₀ (pH 9.0) 溶液沖洗附著於 1 mg Fe₃O₄@Al₂O₃ NPs 上的 alendronate,結果顯示於圖 3-18。隨著 Na₅P₃O₁₀ 溶液濃度增加, alendronate 被沖洗下來的量也增加。當沖堤液的濃度提高為 50 mM 時,由於電泳緩衝溶液濃度僅 20 mM,離子強度差異大,分離效率差, 無法分離 NDA-A 及 NDA-P 信號峰。若將電泳緩衝溶液的濃度提升 至 50 mM, 並將 alendronate 及 pamidronate 配在 50 mM Na₅P₃O₁₀ (pH 9.0) 中,經衍生後的電泳圖顯示於圖 3-19。圖 (A) 空白樣品電泳 圖中的箭頭所指背景峰與圖 (B) 中的分析物 NDA-A (peak 1) 訊號位 置重疊。在測定分析物面積的考量下,最後仍選擇 20 mM Na₅P₃O₁₀ 為 沖提溶液,電泳緩衝溶液的濃度也維持在 20 mM 磷酸鈉。因為 Na₅P₃O₁₀ 藥劑純度僅約 60 %,所以 20 mM 經濃度校正後約為 12 mM。自 3.2.5 節開始 Na₅P₃O₁₀ 報導濃度皆為校正後濃度。

3.2.5 沖堤液體積的影響

沖堤液體積越小,濃縮倍率將越大。探討沖堤液體積 5~20 μL 的 影響,顯示於圖 3-20。在不同體積沖堤液中加入固定量的衍生劑。從

Na₅P₃O₁₀ concentration (mM)

圖 3-18 Na₅P₃O₁₀ 沖堤溶液濃度對分析物訊號面積的影響

- 樣品:1 mL 10 ppb alendronate 水溶液
- 萃取時間:10 分鐘
- 沖堤液:10 μL 1~20 mM Na₅P₃O₁₀ 緩衝液, pH 9.0

圖 3-19 分析物於 50 mM $Na_5P_3O_{10}$ 緩衝液中的電泳圖

(A) : Blank (B) : Peak 1 : NDA-A ; peak 2 : NDA-P

衍生條件: 20 µL 100 ppb alendronate + 2 µL 1 ppm pamidronate (皆配在

50 mM Na_5P_3O_{10} 緩衝液, pH 9.0) + 2 μL 10 mM KCN + 2 μL 10 mM

NDA;衍生時間、溫度:20 分鐘,25±1℃

電泳緩衝溶液:50 mM 磷酸鈉, pH 10.0

分離電壓: 19.5 kV (電泳電流~90 µA)

其他實驗條件同圖 3-14

圖 3-20 沖堤液體積的影響

分析物:1 mL 100 ppb alendronate 水溶液

萃取時間:10 分鐘

最終沖堤溶液體積:5、10、15、20 µL

脫附時間:20 分鐘

衍生條件: 5~20 μL 沖堤下來的溶液 + 1.5 μL 10 mM KCN + 1.5 μL 10 mM NDA

圖中可看到沖堤液體積從 5 到 10 μL 時,NDA-A 訊號面積上升。而 10 μL 以後 NDA-A 訊號面積開始下降。雖然體積越小,alendronate 被 沖洗下來的濃度越高,但加入的衍生劑量會稀釋 alendronate 濃度,其 沖堤液體積越小稀釋越明顯。在沖堤液體積及衍生劑量的影響下,沖 堤液體積為 10 μL 時,NDA-A 訊號面積最大。故選擇沖堤液體積為 10 μL。

3.2.6 最佳 Fe₃O₄@Al₂O₃NPs 萃取條件

最佳電泳分析條件下,綜合以上萃取實驗結果,歸納出最佳萃取 條件為:Fe₃O₄@Al₂O₃NPs 用量 1 mg,原始樣品溶液體積 1 mL,萃 取時間 10 分鐘,沖堤液體積 10 μL,沖堤液濃度 12 mM Na₅P₃O₁₀ (pH 9.0),震盪脫附時間 20 分鐘。最佳萃取條件下的 alendronate 電泳圖 顯示於圖 3-21。圖 (A) 為 50 ppb alendronate 水溶液經萃取後的電泳 圖,圖 (B) 為直接分析 50 ppb alendronate 水溶液電泳圖,圖 (A)、(B) 中內標 pamidronate 皆於衍生時加入;圖 (C) 為空白溶液經萃取後的 電泳圖,可清楚看出利用 Fe₃O₄@Al₂O₃ NPs 萃取樣品溶液中的 alendronate,再利用 Na₅P₃O₁₀ 沖堤液沖洗附著在 NPs 表面的 alendronate,可達到濃縮 (約 12 倍)的效果。

67

圖 3-21 最佳萃取及分析條件下的電泳圖

(A) 1 mL 50 ppb alendronate 水溶液經萃取; (B) 10 μL 50 ppb alendronate 配在 12 mM Na₅P₃O₁₀ (pH 9.0) 直接分析; (C) 1 mL 空白水溶液經萃取

Fe₃O₄@Al₂O₃ NPs: 1 mg; 萃取時間: 10 分鐘; 脫附時間: 20 分鐘 沖堤液: 10 μL 12 mM Na₅P₃O₁₀ 緩衝液, pH 9.0

衍生條件: 10 μL alendronate 溶液 + 5 μL 1 ppm pamidronate (配在 12 mM Na₅P₃O₁₀, pH 9.0) + 1.5 μL 10 mM KCN + 1.5 μL 10 mM NDA 其他條件同圖 3-14

3.3 Alendronate 標準水樣檢量線與分析再現性

於最佳毛細管電泳分析條件下進行檢量線製作,分別配製 7 種不 同濃度 (7,10,15,25,50,100,200 ppb) alendronate 於 12 mM Na₅P₃O₁₀ (pH 9.0) 緩衝液,以重力進樣 (高度 20 cm,15 秒)方式將樣品溶液 注入毛細管中。圖 3-22 為 alendronate 的檢量線,表 3-1 列出 alendronate 在最佳條件下所得的檢量線方程式、再現性及相關係數。 直接分析 alendronate 的檢量線濃度範圍為 7~200 ppb,偵測極限 (S/N = 3) 為 2.1 ppb。為探討分析的再現性,配製 50 ppb alendronate 於 12 mM Na₅P₃O₁₀ (pH 9.0) 緩衝溶液中,在最佳毛細管電泳分析條件下,以 重力進樣方式 (高度 20 cm,15秒) 將樣品溶液注入毛細管中,重複分 析六次,計算結果的再現性,亦包括於表 3-1。NDA-A/NDA-P 時間比 的相對標準偏差 (RSD) 0.53 %, NDA-A/NDA-P 面積比 RSD 為 2.31 %,其再現性良好。

3.4 Alendronate 經萃取後的檢量線與分析再現性

分別配製 7 種不同濃度 (0.6,2,5,10,25,50,100 ppb) alendronate 的標準水溶液,製作經 Fe₃O₄@Al₂O₃ NPs 萃取後的檢量線,顯示於圖 3-23。表 3-2 列出 alendronate 經萃取後在最佳電泳分析條件下的檢量

圖 3-22 Alendronate 標準溶液檢量線

Error bar 為三次分析結果之標準偏差。

實驗條件:

衍生條件: 10 μL 7~200 ppb alendronate + 5 μL 1 ppm pamidronate (雨者 皆配在 12 mM Na₅P₃O₁₀ 緩衝液, pH 9.0) + 1.5 μL10 mM KCN + 1.5 μL 10 mM NDA

表 3-1 直接分析 alendronate 的檢量線、偵測極限及分析再現性

濃度範圍 (ppb)	檢量線 (n=7)	相關係數 (r)	偵測極限 ^a (ppb)	NDA-A/NDA-P 時間比 RSD(%) ^b	NDA-A/NDA-P 面積比 RSD(%) ^c
7~200	y = 0.0026 x + 0.0064	0.9981	2.1	0.53	2.31

註:a:S/N=3

 $b \cdot c : 50$ ppb alendronate (n = 6)

圖 3-23 Alendronate 標準水樣經 Fe3O4@Al2O3 NPs 萃取後檢量線

Error bar 為三次分析結果之標準偏差。

實驗條件:

分析物:1 mL 0.6~100 ppb alendronate 水溶液

沖堤液:10 μL 12 mM Na₅P₃O₁₀ 緩衝液, pH 9.0

衍生條件:10 μL 沖堤下來的溶液+5 μL 1 ppm pamidronate (配在 12 mM Na₅P₃O₁₀ 緩衝液, pH 9.0) + 1.5 μL 10 mM KCN + 1.5 μL 10 mM NDA

表 3-2 Alendronate 經萃取後的檢量線、偵測極限、濃縮倍率、回收率及分析再現性

濃度範圍 (ppb)	檢量線 (n=7)	相關係數 (r)	偵測極限 ^a (ppb)	濃縮倍率	回收率 (%)	NDA-A/NDA-P 時間比 RSD (%) ^b	NDA-A/NDA-P 面積比 RSD (%) ^c
0.6~100	y = 0.0306 x - 0.0094	0.9961	0.18	12	14	0.04	3.28

註:a:S/N=3

 $b \cdot c : 10 \text{ ppb alendronate } (n = 6)$

線方程式及相關係數。Alendronate 經萃取後其檢量線濃度範圍為 0.6~100 ppb, 偵測極限 (S/N = 3) 為 0.18 ppb。表 3-2 中濃縮倍率的 計算方式為以 alendronate 經萃取後檢量線各濃度所得到的訊號面積 比值,代入表 3-1 直接分析 alendronate 的檢量線方程式,所得 x 值 即為經萃取後最終分析溶液濃度;將此經過萃取後所得到的最終分析 溶液濃度除以原始樣品溶液中 alendronate 濃度即得濃縮倍率,經計算 濃縮倍率約 12 倍。比較表 3-2 與表 3-1 發現經固相萃取後的檢量線 斜率大於直接分析的檢量線斜率,顯示利用 Fe₃O₄@Al₂O₃ NPs 萃取 alendronate, 再利用 Na₅P₃O₁₀ 溶液沖洗附著在 NPs 表面的 alendronate, 確實可達到濃縮的效果。

回收率的計算則以經過萃取後所得最終溶液 (10 μL) 中 alendronate 的莫耳數,與萃取前原始溶液 (1 mL) 中 alendronate 的莫 耳數比值代表回收率,經計算回收率約 14%。探討低回收率的原因, 配製 10 ppb alendronate 水溶液進行最佳條件萃取,最後沖堤三次(各 10 μL,分別收集),發現第二次沖堤的殘留量為 ~61%(相較於第一次 沖堤),第三次沖堤的殘餘量為 ~38%(相較於第一次沖堤),顯示分析 物 脫 附 不 完 全。原 因 可 能 是 alendronate 具 有 雙 磷 酸 基,與 Fe₃O₄@Al₂O₃NPs 螯合能力較強,即使以三磷酸基的 Na₅P₃O₁₀ 也不易 沖洗下來,造成第一次沖堤的回收率只有 ~14%。嘗試將前二次沖堤

74

混合,但濃度會被稀釋,為顧及濃縮倍率,所以犧牲了回收率。

為探討分析的再現性, 配製 10 ppb alendronate 水溶液, 在最佳萃 取、毛細管電泳分析條件下, 以重力進樣方式 (高度 20 cm, 15 秒) 將 樣品溶液注入毛細管中, 重複分析六次, 計算結果的再現性, 亦包括 於表 3-2。NDA-A/NDA-P 時間比的 RSD 為 0.04%, NDA-A/NDA-P 面積比 RSD 為 3.28%, 其再現性良好。

3.5 尿液樣品分析

接著利用 Fe₃O₄@Al₂O₃NPs 萃取添加於尿液中的 alendronate,以 評估此方法於臨床上的應用性。人體的尿液成份中主要是水約佔 97%, 而固體成份約佔 3%。除此之外,尚含有一些無機鹽、尿素、尿酸等 小分子代謝廢物。尿液所含的成份與人的飲食習慣、體內代謝環境及 腎臟處理功能息息相關。

3.5.1 尿液樣品經不同處理過程的影響

尿液樣品處理過程不同,樣品淨化的程度會不一樣,探討空白尿 液樣品經三種處理過程的影響,分別為:(A) 只經超過濾;(B) 經超過 濾後再以 Fe₃O₄@Al₂O₃NPs 萃取;(C) 同 (B) 流程,但於脫附前多一 道清洗步驟,結果顯示於圖 3-24(圖中 A~C 縱軸刻度大小不同)。圖

75

圖 3-24 空白尿液樣品經三種處理過程的電泳圖

(A)~(C) 樣品處理流程、PMT 電位及縱軸刻度大小不同 樣品皆為 1 mL 空白尿液

(A) 中尿液樣品的前處理已於 2.3.3 節敘述,經超過濾後約可得濾液 1 mL,取其中 10 μL 進行衍生反應,由圖 (A) 中可發現空白尿液樣 品中的基質訊號與衍生劑訊號皆在四分鐘前出現。其訊號大小超過訊 號接收器的上限,為了避免傷害 PMT,已將 PMT 電壓降至 -700 V, 但前四分鐘訊號依舊很大,表示只經超過濾處理,樣品基質還是很複 雜;圖 (B) 為取超過濾後的空白尿液 1 mL,加入 1 mg Fe₃O₄@Al₂O₃ NPs 萃取,以最佳萃取條件下進行實驗,PMT 電壓為 -900 V,前四 分鐘的基質訊號與衍生劑訊號比圖 (A) 中 PMT 為 -700 V 時的訊號 小,表示經過 Fe₃O₄@Al₂O₃ NPs 萃取,可淨化樣品基質;圖 (C) 為 在 Fe₃O₄@Al₂O₃ NPs 進行脫附前,先以 0.5 mL 150 mM Na₂HPO₄ 沖 洗 2 次,再進行沖堤。單磷酸鹽 Na2HPO4 溶液當做清洗液不會造成 Fe₃O₄@Al₂O₃ NPs 表面附著的 alendronate 脫附。圖中 PMT 電壓為 -950 V, 前四分鐘的訊號較圖 (B) PMT 為 -900 V 時的訊號更小, 表 示在脫附分析物前以 Na_2HPO_4 溶液沖洗 $Fe_3O_4@Al_2O_3$ NPs 對於清除 殘餘基質有明顯的效果。

3.5.2 尿液樣品最佳分析條件

綜合上述實驗結果,歸納出尿液樣品最佳萃取條件為:
Fe₃O₄@Al₂O₃NPs 用量 1 mg,尿液樣品濾液體積 1 mL,萃取時間 10

77

分鐘,清洗液 0.5 mL 150 mM Na₂HPO₄,震盪清洗 3 分鐘並重複清洗 2 次,沖堤液 10 µL 12 mM Na₅P₃O₁₀ (pH 9.0),震盪脫附時間 20 分鐘。 在最佳條件下分析尿液中添加 alendronate 的電泳圖顯示於圖 3-25。 圖 (A) 為尿液中添加 30 ppb alendronate 經萃取後再加入內標 pamidronate 的電泳圖;圖 (B) 為空白尿液經萃取後的電泳圖;圖 (C) 為空白 Na₅P₃O₁₀ 緩衝液電泳圖。比較圖 (A)、(B) 與 (C),由圖 (C) 可 確定四分鐘前的訊號主要為衍生劑訊號。再由圖 (A)、(B) 中尿液樣品 基質訊號出現的位置與圖 (C) 比較,顯示尿液樣品經固相萃取後,基 質相當乾淨。圖 (A) 中 alendronate (peak 1) 與內標 pamidronate (peak 2) 訊號沒有受到衍生劑與尿液基質訊號干擾,理論板數分別為 11,549 與 11,629。

3.5.3 尿液中添加 alendronate 經萃取後的檢量線

分別添加 7 種 alendronate 濃度於尿液樣品中(尿液中濃度為 5, 10,20,30,50,80,100 ppb),製作經 Fe₃O₄@Al₂O₃ NPs 萃取後在 最佳電泳分析條件下的檢量線,顯示於圖 3-26。尿液中添加 alendronate 經萃取後的檢量線,所得到的斜率為 0.0041,檢量線範圍 為 5~100 ppb,偵測極限(S/N=3)為 1.5 ppb。

圖 3-25 最佳條件下分析尿液中添加 alendronate 的電泳圖

(A) 1 mL 含 30 ppb alendronate 尿液經萃取; (B) 1 mL 空白尿液經萃 取; (C) 10 μL 空白 12 mM Na₅P₃O₁₀ (pH 9.0) 直接分析 衍生條件: 10 μL alendronate 溶液 + 5 μL 1 ppm pamidronate (配在 12 mM Na₅P₃O₁₀ 緩衝液, pH 9.0) + 1.5 μL 10 mM KCN + 1.5 μL 10 mM NDA

Peak 1 : NDA-A ; peak 2 : NDA-P

圖 3-26 尿液中添加 alendronate 經萃取後的檢量線

Error bar 為三次分析結果之標準偏差。

實驗條件:

樣品: alendronate 添加於 1 mL 尿液後,濃度 5~100 ppb

沖堤液:10 μL 12 mM Na₅P₃O₁₀ 緩衝液, pH 9.0

衍生條件:10 μL 沖堤下來的溶液+5 μL 1 ppm pamidronate (配在 12 mM Na₅P₃O₁₀ 緩衝液, pH 9.0) + 1.5 μL 10 mM KCN + 1.5 μL 10 mM NDA

3.5.4 尿液樣品經 Fe₃O₄@Al₂O₃NPs 萃取的濃縮倍率

從 3.5.1 節中,得知尿液樣品僅經超過濾後基質仍很複雜,故無 法 直 接 進 行 分 析。尿 液 樣 品 中 的 濃 縮 倍 率 計 算 是 以 尿 液 在 Fe₃O₄@Al₂O₃ NPs 萃取前及後分別添加 30 ppb alendronate 所得分析 訊號面積為依據,結果顯示於圖 3-27。圖 (A) 為經固相萃取的空白尿 液;圖 (B) 為尿液中先添加 30 ppb alendronate 再經固相萃取;圖 (C) 為空白尿液經萃取後再加入 30 ppb alendronate。圖 (B)、(C) 中的內標 pamidronate 皆於萃取後加入。比較圖 (B)、(C) peak 1 訊號面積 (以 內標 peak 2 定量),計算出尿液樣品經萃取後的濃縮倍率僅約 2 倍左 右。此處的濃縮倍率是尿液樣品基質被淨化過後求得的結果,然而實 際尿液中的基質是複雜的,這也是為什麼濃縮倍率只有 2 倍的原因。

3.5.5 尿液分析之確效試驗

為檢驗本方法於同日或異日間應用在尿液分析結果的變異 (variance) 是否顯著,分別於尿液中添加 10、30、80 ppb alendronate, 並在最佳萃取及電泳分析條件下進行 within-day (n = 5) 和 between-day (n = 5) 低、中、高濃度的 accuracy 與 precision 及時間的 precision 測試。各濃度分別進行五天重複分析與每天重複分析五次。

圖 3-27 尿液中添加 alendronate 經萃取後的電泳圖

(A) 空白尿液經萃取; (B) 含 30 ppb alendronate 尿液經萃取; (C) 空
 白尿液經萃取後再加入 30 ppb alendronate

尿液:1mL

沖堤液:10 μL 12 mM Na₅P₃O₁₀ 緩衝液, pH 9.0

Peak 1 : NDA-A ; peak 2 : NDA-P

Within-day 與 between-day 低、中、高濃度的 accuracy 與 precision 分別列表 3-3。表 (A) 列出低、中、高濃度的實驗值。表 (B) 為重複 分析結果:within-day 添加低、中、高濃度的 accuracy 分別為 115、 102、101%, precision 分別為 5.48、3.64、1.73%; between-day 添加 低、中、高濃度的 accuracy 分別為 109、101、100%, precision 分別 為 7.64、2.67、3.54 %。Within-day 與 between-day 低、中、高濃度 的時間再現性 precision 列於表 3-4。Within-day 與 between-day NDA-A/NDA-P 遷移時間比值的 precision 皆在 1 % 內。以 AOAC (Association of Official Analytical Chemists)^[52] 的標準, 100 和 10 ppb 分析物濃度的 accuracy 可接受範圍分別為 80~110 與 60~115 %;100 和 10 ppb 分析物濃度的 precision 可接受的誤差為 15 與 21 % 內。 本實驗於 within-day 與 between-day 低、中、高濃度 accuracy 與 precision 皆在 AOAC 標準內,顯示本研究方法可應用於尿液樣品中 alendronate 的分析。

表 3-3 添加低、中、高濃度 alendronate 於尿液樣品中重複分析結果

Within-day	10 (ppb)	30 (ppb)	80 (ppb)	Between-day	10 (ppb)	30 (ppb)	80 (ppb)
No.1	12.02	31.92	78.58	day 1	12.26	29.37	78.68
No.2	10.74	29.04	80.97	day 2	10.16	30.70	75.92
No.3	11.07	31.28	80.13	day 3	10.33	29.69	82.35
No.4	11.59	30.06	82.16	day 4	10.71	30.33	79.66
No.5	12.25	30.49	81.54	day 5	11.05	31.41	82.83
Av. ^a	11.54	30.56	80.68	Av. ^a	10.90	30.30	79.89
SD ^b	0.63	1.11	1.39	SD^{b}	0.83	0.81	2.83

(A) 低、中、高濃度的實驗值

(B) 重複分析結果

Within-day and between-day accuracy and precision for alendronate sodium-spiked urine samples (n = 5)Alendronate Within-day Between-day accuracy^c accuracy^c precision^d precision^d conc. (ppb) 10 115 % 5.48 % 109 % 7.64 % 30 102 % 2.67 % 3.64 % 101 % 80 101 % 1.73 % 100 % 3.54 %

註:a:Average, Av. ; b:Standard deviation, SD ;

c : Accuracy = (mean calculated conc. / nominal conc.) \times 100 % ;

d : Precision = SD / Av. \times 100 %

Within-day					
Alendronate	NDA-A / NDA-P	Precision			
conc. (ppb)	migration time ratio	(n = 5)			
10	0.95	0.29 %			
30	0.95	0.25 %			
80	0.95	0.10 %			

				5			1 1
表	3-4	添加低、	中、	高濃度	alendronate	於尿液樣品	中時間的再現性

Between-day						
Alendronate	NDA-A / NDA-P	Precision				
conc. (ppb)	migration time ratio	(n = 5)				
10	0.94	0.23 %				
30	0.95	0.26 %				
80	0.95	0.34 %				

肆、結論

Fe₃O₄@Al₂O₃ NPs 對於帶有磷酸基的化合物具有高選擇性,可應 用於萃取複雜基質樣品中的含磷酸基分子。本研究以磁性 Fe₃O₄@Al₂O₃ NPs 萃取並結合 CE/螢光偵測,發展雙磷酸鹽藥物 alendronate 的分析方法。直接分析標準 alendronate 溶液的偵測極限 (S/N = 3) 為 2.1 ppb,經 SPE 後的偵測極限可降至 0.18 ppb,濃縮倍 率 12 倍,回收率 14%。尿液經超過濾後,樣品基質仍很複雜,無法 直接分析。添加 alendronate 於尿液經 SPE 後的偵測極限為 1.5 ppb。 尿液樣品處理過程、衍生及分析的時間在二個小時內即可完成,分離 時間約 5 分鐘。

Fe₃O₄@Al₂O₃ NPs 合成步驟簡單,且具有磁性,萃取時用量只需 1 mg (樣品溶液 1 mL),以外加磁鐵便可使粒子聚集,處理方便。文獻中 尿液樣品前處理流程複雜 (詳細過程見圖 1-5),尿液用量較大;本方 法操作過程簡便且成本低,尿液用量只需 1 mL 即可達到相同的 5 ppb alendronate 定量極限 (S/N = 10)。利用 NDA 衍生劑衍生 alendronate, CE/螢光分析方法於尿液樣品的分析相較於液相層析/螢光分析方法,時 間上縮短 2~4 倍。本研究為 alendronate 藥物分析提供了一種快速、 方便且靈敏的分析方法。

伍、参考文獻

- 1. 陳淑卿,李政純,常春月刊, 2009, 314, 28-81.
- Boonen1, S.; Vanderschueren1, D.; Venken1, K.; Milisen, K.; Delforge, M.; Haentjens, P., Recent developments in the management of postmenopausal osteoporosis with bisphosphonates : enhanced efficacy by enhanced compliance. *J. Intern. Med.* 2008, 264 (4), 315-332.
- 台灣行政院衛生署國人膳食營養素參考攝取量及其說明,修訂第六 版, 2003, 257-298.
- Ralston, S. H.; Binkley, N.; Boonen, S.; Kiel, D. P.; Reginster, J.Y.; Roux, C.; Chen, L.; Rosenberg, E.; Santora, Arthur., Randomized trial of alendronate plus vitamin D3 versus standard care in osteoporotic postmenopausal women with vitamin D insufficiency. *Calcif. Tissue Int.* 2011, 88 (6), 485-494.
- Warnke, M. M.; Breitbach, Z. S.; Dodbiba, E.; Crank, J. A.; Payagala, T.; Sharma, P.; Wanigasekara, E.; Zhang, X.; Armstrong, D. W., Positive mode electrospray ionization mass spectrometry of bisphosphonates using dicationic and tricationic ion-pairing agents. *Anal. Chim. Acta* 2009, *633* (2), 232-237.
- Russell, R.G.G.; Watts, N. B.; Ebetino, F. H.; Rogers, M. J., Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. *Osteoporos. Int.* 2008, *19* (6), 733-759.

- Nancollas, G.H.; Tang, R.; Phipps, R.J.; Henneman, Z.; Gulde, S.; Wu, W.; Mangood, A.; Russell, R. G.; Ebetino, F. H., Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. *Bone* 2006, *38* (5), 617-627.
- Shaw, N. J.; Bishop, N. J., Bisphosphonate treatment of bone disease. *Arch. Dis. Child.* 2005, *90* (5), 494-9.
- Gao, Y.; Zou, S.; Liu, X.; Bao, C.; Hu, J., The effect of surface immobilized bisphosphonates on the fixation of hydroxyapatite-coated titanium implants in ovariectomized rats. *Biomaterials* 2009, *30* (9), 1790-1796.
- Van Beek, E.; Löwik, C. W.; Ebetino, F. H.; Papapoulos, S. E., Binding and antiresorptive properties of heterocycle-containing bisphosphonate analogs: structure-activity relationships. *Bone* 1998, *23* (5), 437-442.
- 11. Epstein, S.; Zaidi, M., Biological properties and mechanism of action of ibandronate: application to the treatment of osteoporosis. *Bone* 2005, *37* (4), 433-440.
- Luhe, A.; Kunkele, K.P.; Haiker, M.; Schad, K.; Zihlmann,C.; Bauss, F.; Suter, L.; Pfister, T., Preclinical evidence for nitrogen-containing bisphosphonate inhibition of farnesyl diphosphate (FPP) synthase in the kidney: implications for renal safety. *Toxicol. in Vitro* 2008, 22 (4), 899-909.
- Liberman, U. A.; Weiss, S. R.; Bröll, J.; Minne, H. W.; Quan, H.; Bell, N. H.; Rodriguez-Portales, J.; Downs, R. W.; Dequeker, J., Effect of Oral Alendronate on Bone Mineral Density and the Incidence of Fractures in Postmenopausal Osteoporosis. *N. Engl. J. Med.* **1995**, *333* (22), 1437-1443.

- Devogelaer, J. P.; Broll, H.; Correa-Rotter, R.; Cumming, D. C.; De Deuxchaisnes, C. N.; Geusens, P.; Hosking, D.; Jaeger, P.; Kaufman, J. M., Oral alendronate induces progressive increases in bone mass of the spine, hip, and total body over 3 years in postmenopausal women with osteoporosis. *Bone* **1996**, *18* (2), 141-150.
- Saag, K. G.; Emkey, R.; Schnitzer, T. J.; Brown, J. P.; Hawkins, F.;
 Goemaere, S.; Thamsborg, G.; Liberman, U. A.; Delmas, P. D.; Malice,
 M. P., Alendronate for the Prevention and Treatment of Glucocorticoid-Induced Osteoporosis. *N. Engl. J. Med.* **1998**, *339* (5), 292-299.
- Khan, S. A.; Vasikaran, S.; McCloskey, E.V.; Benéton, M. N.; Rogers, S.; Coulton, L.; Orgee. J.; Coombes, G.; Kanis, J. A., Alendronate in the treatment of Paget's disease of bone. *Bone* 1997, 20 (3), 263-271.
- Porras, A. G.; Holland, S. D.; Gertz, B. J., Pharmacokinetics of alendronate. *Clin. Pharmacokinet.* **1999**, *36* (5), 315-328.
- Gertz, B. J.; Holland, S. D.; Kline, W. F.; Matuszewski, Bogdan K.; Freeman, A.; Quan, H.; Lasseter, K. C.; Mucklow, J. C.; Porras, A. G., Studies of the oral bioavailability of alendronate. *Clin. Pharmacol. & Ther.* 1995, *58* (3), 288-298.
- Gertz, B. J.; Holland, S. D.; Kline, W. F.; Matuszewski, B. K.; Porras, A. G., Clinical pharmacology of alendronate sodium. *Osteoporos. Int.* 1993, *3* (Suppl 3), S13-16.
- Barrett, J.; Worth, E.; Bauss, F.; Epstein, S., Ibandronate : a clinical pharmacological and pharmacokinetic update. *J. Clin. Pharmacol.* 2004, 44 (9), 951-965.
- 21. Lin, J. H., Bisphosphonates: a review of their pharmacokinetic properties. *Bone* **1996**, *18* (2), 75-85.

- 22. Lin, J. H.; Chen, I. W.; Deluna, F. A.; Hichens, M., Role of calcium in plasma protein binding and renal handling of alendronate in hypo- and hypercalcemic rats. *J. Pharmacol. Exp. Ther.* **1993**, *267* (2), 670-675.
- 23. Cocquyt, V.; Kline, W. F.; Gertz, B. J.; Van Belle, S. J.; Holland, S. D.; Desmet, M.; Quan, H.; Vyas, K. P.; Zhang, K. E.; De Grève, J.; Porras, A. G., Pharmacokinetics of intravenous alendronate. *J. Clin. Pharmacol.* 1999, *39* (4), 385-393.
- Lin, J. H.; Duggan, D. E.; Chen, I. W.; Ellsworth, R. L., Physiological disposition of alendronate, a potent anti-osteolytic bisphosphonate, in laboratory animals. *Drug Metab. Dispos.* **1991**, *19* (5), 926-32.
- Pazianas, M.; Miller, W. A.; Miller, P. D., Lack of association between oral bisphosphonates and osteonecrosis using jaw surgery as a surrogate marker. *Osteoporos. Int.* 2008, *19* (6), 773-779.
- Lambrinoudaki, I.; Christodoulakos, G.; Botsis, D., Bisphosphonates.
 Ann. N. Y. Acad. Sci. 2006, *1092* (Women's Health and Disease),
 397-402.
- Kline, W. F.; Matuszewski, B. K.; Bayne, W. F., Determination of 4-amino-1-hydroxybutane-1,1-bisphosphonic acid in urine by automated pre-column derivatization with 2,3-naphthalene dicarboxyaldehyde and high-performance liquid chromatography with fluorescence detection. *J. Chromatogr.* **1990**, *534* (14), 139-149.
- Zacharis, C. K.; Tzanavaras, P.; Tzanavaras, D., Determination of bisphosphonate active pharmaceutical ingredients in pharmaceuticals and biological material: a review of analytical methods. *J. Pharm. Biomed. Anal.* 2008, *48* (3), 483-496.

- Kline, W. F.; Matuszewski, B. K., Improved determination of the bisphosphonate alendronate in human plasma and urine by automated precolumn derivatization and high-performance liquid chromatography with fluorescence and electrochemical detection. *J. Chromatogr.* 1992, 583 (2), 183-193.
- De Marco, J. D.; Biffar, S. E.; Reed, D. G.; Brooks, M. A., The determination of 4-amino-1-hydroxybutane-1,1-diphosphonic acid monosodium salt trihydrate in pharmaceutical dosage forms by high-performance liquid chromatography. *J. Pharm. Biomed. Anal.* 1989, 7 (12), 1719-27.
- Ptácek, P.; Klíma, J.; Macek J., Determination of alendronate in human urine as 9-fluorenylmethyl derivative by high-performance liquid chromatography. *J. Chromatogr. B Analyt Technol. Biomed. Life Sci.* 2002, 767 (1), 111-116.
- 32. Yun, M. H.; Kwon, K. I., High-performance liquid chromatography method for determining alendronate sodium in human plasma by detecting fluorescence: application to a pharmacokinetic study in humans. *J. Pharm. Biomed. Anal.* **2006**, *40* (1), 168-172.
- 33. Apostolou, C.; Dotsikas, Y.; Kousoulos, C.; Tsatsou, G.; Colocouri, F.;
 Soumelas, G. S.; Loukas, Y. L., Application of a semi-automated
 96-well format solid-phase extraction, column-switching, fluorescence
 detection protocol for the determination of alendronate in human urine
 samples obtained from a bioequivalence study. *J. Pharm. Biomed. Anal.*2007, 43 (3), 1151-1155.

- Tarcomnicu, I.; Silvestro, L.; Savu, S. R.; Gherase, A.; Dulea, C., Development and application of a high-performance liquid chromatography–mass spectrometry method to determine alendronate in human urine. *J. Chromatogr. A* 2007, *1160* (1-2), 21-33.
- Kuljanin, J.; Janković, I.; Nedeljković, J.; Prstojević, D.; Marinković, V., Spectrophotometric determination of alendronate in pharmaceutical formulations via complex formation with Fe(III) ions. *J. Pharm. Biomed. Anal.* 2002, 28 (6), 1215-1220.
- Tzanavaras, P. D.; Zacharis, C. K.; Theodoridis, G. A.; Kalaitzantonakis,
 E. A.; Voulgaropoulos, A. N., Normal spectrophotometric and stopped-flow spectrofluorimetric sequential injection methods for the determination of alendronic acid, an anti-osteoporosis amino-bisphosphonate drug, in pharmaceuticals. *Anal. Chim. Acta* 2005, *547* (1) 98–103.
- 37. Tsai, E. W.; Singh, M. M.; Lu, H. H.; Ip, D. P.; Brooks, M. A.,
 Application of capillary electrophoresis to pharmaceutical analysis.
 Determination of alendronate in dosage forms. *J. Chromatogr.*1992, 626 (2), 245-250.
- Bexheti, D.; Anderson, E. I.; Hutt, A. J.; Hanna-Brown, M., Evaluation of multidimensional capillary electrophoretic methodologies for determination of amino bisphosphonate pharmaceuticals. *J. Chromatogr. A* 2006, *1130* (1), 137-144.
- Prutthiwanasan, B.; Suntornsuk, L., Rapid analysis of alkylphosphonate drugs by capillary zone electrophoresis using indirect ultraviolet detection. *J. Sep. Sci.* 2010, *33* (2), 228-234.

- 40. Coletti-Previero, M. A.; Previero, A., Alumina-phosphate complexes for immobilization of biomolecules. *Anal. Biochem.* **1989**, *180* (1), 1-10.
- Hofer, R.; Textor, M.; Spencer, N. D., Alkyl phosphate monolayers, self-assembled from aqueous solution onto metal oxide surfaces. *Langmuir* 2001, *17* (13), 4014-4020.
- Gao, W.; Dickinson, L.; Grozinger, C.; Morin, F. G.; Reven, L.
 Self-Assembled Monolayers of Alkylphosphonic Acids on Metal Oxides. *Langmuir* 1996, *12* (26), 6429-6435.
- 43. Li, Y.; Liu, Y.; Tang, J.; Lin, H.; Yao, N.; Shen, X.; Deng, C.; Yang, P.; Zhang, X., Fe₃O₄@Al₂O₃ magnetic core–shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis. *J. Chromatogr. A* 2007, *1172* (1), 57-71.
- 44. Lo, C. Y.; Chen, W. Y.; Chen, C. T.; Chen, Y. C., Rapid enrichment of phosphopeptides from tryptic digests of proteins using iron oxide nanocomposites of magnetic particles coated with zirconia as the concentrating probes. *J. Proteome Res.* 2007, 6 (2), 887-893.
- Liu, J. C.; Tsai, P. J.; Lee, Y. C.; Chen, Y. C., Affinity capture of uropathogenic *Escherichia coli* using pigeon ovalbumin-bound Fe₃O₄@Al₂O₃ magnetic nanoparticles. *Anal. Chem.* 2008, 80 (14), 5425-5432.
- 46. 黃瑀姍, Fe₃O₄@Al₂O₃磁性奈米粒子/固相萃取結合毛細管電泳/電激發化學放光偵測法應用於 Ibandronate 的分析,東海大學碩士論文,
 2009.

- 47. 簡麗娟,毛細管電泳/雷射激發螢光偵測法應用於有機硒化合物的分析,東海大學碩士論文,2006.
- 48. De Montigny, P.; Stobaugh, J. F.; Givens, R. S.; Carlson, R. G.; Srinivasachar, K.; Sternson, L. A.; Higuchi, T., Naphthalene-2,3-dicarboxaldehyde /cyanide ion: a rationally designed fluorogenic reagent for primary amines. *Anal. Chem.* 1987, *59* (8), 1096-1101.
- 49. Roach, M. C.; Harmony, M. D., Determination of amino acids at subfemtomole levels by high-performance liquid chromatography with laser-induced fluorescence detection. *Anal. Chem.* 1987, *59* (3), 411-415.
- 50. Chen, C. T.; Chen, Y. C., Trapping performance of Fe₃O₄@Al₂O₃ and Fe₃O₄@ TiO₂ magnetic nanoparticles in the selective enrichment of phosphopeptides from human serum. *J. Biochem. Nanotech.* 2008, *4* (1), 73-79.
- Wolschin, F.; Wienkoop, S.; Weckwerth, W., Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). *Proteomics* 2005, 5 (17), 4389-4397.
- 52. AOAC. Peer verified method program, Manual on policies and procedures; Arlington, VA, USA, **1993**.
