第一章 緒論

1.1 1,4-丁二醇(BDO)簡介^{[1][2]}

BDO, 化學名稱 1.4-丁二醇, 是一種由四個碳原子所組成的飽和 直鏈二元醇,分子式為C4H10O2,於室溫下為無色及幾乎無味黏稠液 體,可用來生產四氫呋喃(THF)、γ-丁內酯(GBL)和聚對苯二甲酸二丁 酯等附加價值高的精細化工產品。 四氫呋喃(THF)具有毒性、低沸點、 流動性佳等特點,亦是一種重要的有機合成原料和優良的溶劑。此外, 四氫呋喃(THF)是目前全球幾項最熱門化工產品,例如:熱塑 性聚氨酯彈性體(thermoplastic polyurethane, 簡稱 TPU)、 高彈性纖維 Spandex 等高功能性彈性體之原料-聚四亞甲 基乙二醇醚 (PTMEG)。γ-丁內酯(GBL),可以合成 N-甲 基-2-吡喀啶酮(n-methyl-2-pyrrolidone, NMP),此是高附 加價值的工業無毒溶劑;也可合成聚乙烯吡喀啶酮 (polyvinylpyrrolidone, PVP)之單體 N-2-乙烯吡喀啶酮 (2-vinylpyrrolidone, 2-VP),為製造醫療器材、藥品和化 妝品的原料。1,4-丁二醇(BDO)與對苯二甲酸(PTA)反應可生產聚對 苯二甲酸二丁酯(PBT), PBT 是一種性能優良的工程塑膠, 主要用 於電子電器、汽車、摻混和塑膠合金及汽車零組件等方 面,由於其優異的性能成爲 1,4-丁二醇(BDO)目前幾項下游

產品中發展最快、消費最多的項目之一。由於 1,4-丁二醇 (BDO)具有廣泛的用途,並具有巨大的市場發展,因此越來越為石化 工業所關注。

表 1.1 1,4-丁二醇(BDO)衍生產品

1.2 研究動機

1,4-丁二醇(BDO)是一種重要精細化工原料,下游產品更是高附加 價值的精細化工產品,廣泛用做溶劑、醫藥、化粧品、增塑劑、固化 劑、農藥、除銹劑、人造皮革、纖維、工程塑膠等方面,這些都是缺 一不可的民生必需品,使得市場對 1,4-丁二醇(BDO)的需求量有增無 減,因此開發出高價值產品及降低生產成本的製程,必定對國內石化 產業成長有顯著影響。

丙烯醇氫醛化反應會產生直鏈(4-hydroxybutyradehyde, HBA)與支 鏈(3-hydoxy-2methylpropionaldehyde, HMPA)之中間產物,直鏈中間 產物 HBA 再經由觸媒氫化反應後會得到產物 BDO 及其他高經濟價 值的石化原料。本論文主要研究是以奈米級核殼式觸媒與 HBA 進行 氫化反應得到 BDO,並延伸探討同時具備有氫化和脫氫或脫水性能 之雙金屬核殼式觸媒對於氫化 HBA 的影響,在本研究中找到合適的 雙金屬觸媒及其適當的組成和反應條件,使製程中除了生產主要產物 BDO 外,也可同時提高 GBL 或 THF 的產率,來提升我國石化產業 的競爭能力。

第二章 文獻回顧

從第一章中已經瞭解1,4-丁二醇(BDO)重要性,接下來本章節將會介紹1,4-丁二醇(BDO)製程、丙烯醇法製程及核殼式金屬觸媒的應用。

2.1 1,4-丁二醇(BDO)製程^{[2][3][4]}

合成1,4-丁二醇(BDO)的原料很多,有乙炔、乙烯、丙烯醇、丁二烯、順酐等。國內外石化工業1,4-丁二醇(BDO)製程主要方法有:Reppe法、順酐法、丁二烯法和環氧丙烷法。

2.1.1 Reppe 法

Reppe法,又稱炔醛法、甲醛炔化法,是傳統1,4-丁二醇(BDO)製 備方法。30年代由I.G法本公司(BASF公司前身)Reppe等人開發成 功,1940年由德國BASF公司實現工業化的生產製程。此法是BDO的 主要製程方法,產量佔世界總產量的40到60%左右。它是以乙炔和甲 醛為原料,利用銅觸媒催化炔化反應以生成1,4-丁炔二醇,然後再進 行氫生成1,4-丁二醇(BDO)。Reppe法又有傳統法和改良法兩種,在傳 統法中,觸媒與產品無需分離,可減少分離所需的操作費用,但是由 於乙炔分壓較高,有爆炸的危險,因此反應器設計的安全係數高達 12-20倍,致使反應裝置龐大,設備造價昂貴。除此之外,乙炔在反

應器中也會聚合生成聚乙炔,使觸媒活性降低或失去活性,聚乙炔也 會堵塞管道。由於傳統法中仍存在許多缺點,所以現在的製程已經由 改良的Reppe法取代傳統法。改良法,由美國GAF公司開發成功並廣 泛應用於工業生產。該製程採用乙炔亞銅/鉍為催化劑,使丁炔二醇 合成能在較低的乙炔分壓下進行,從而減少聚合物的生成,消除了管 道堵塞,而且催化劑可以阻火防爆,不會因為減少乙炔和甲醛而永久 鈍化。反應物經過濾、離心分離,催化劑可送回反應器循環使用,濾 液則流出反應器進行純化得到1,4-丁炔二醇,再經由兩段式氫化反應 得到1,4-丁二醇(BDO)。代表製成的公司有Base、Du Pont的浮床製程 和GAF淤漿床製程。

2.1.2順酐法

順酐法生產 1,4-丁二醇(BDO)技術主要包括順酐酯化加氫法和順 酐直接加氫法。順酐酯化加氫法由英國 Davy 公司開發成功,製程包 括三個部份:(1)順酐先與甲醇進行酯化反應生成順丁烯二酸二甲酯; (2)順丁烯二酸二甲酯加氫氫化反應得 1,4-丁二醇(BDO);(3)反應物 及產物分離純化,分離後的甲醇可以循環使用。順酐直接加氫法是由 BP Amoco和 Lurgi 公司共同研發,將正丁烷製備順酐的汽相氧化與 順酐氫化技術結合,與順酐酯化加氫法相比,此法省去了順酐脫水、 純化及酯化等步驟讓整個製程簡化,也使設備及操作的費用大幅下降。

另外,順酐法還有一個特點,透過對製程的修改,順丁烯二甲酸二甲 酯在氫化過程中除了1,4-丁二醇(BDO)同時也可產生γ-丁內酯(GBL) 和四氫呋喃(THF)。

2.1.3 丁二烯法

以丁二烯作為原料生產 1,4-丁二醇(BDO),目前實際運用在工廠 製程的方法有丁二烯乙醯氧基化法和丁二烯氯化法兩種。1970 年由 日本三菱化成公司率先打破 Reppe 法的技術壟斷,成功的開發出丁 二烯乙醯氧基化法並實現工廠量產化。此方法可以分成三個步驟,乙 醯氧基化、氫化、水解,丁二烯、乙酸和空氣進入填充催化劑的固定 床反應器中進行乙醯氧基化反應,反應產物經由精餾分離出乙酸後產 物 1,4-二乙醯氧基丁烯,再經氫化可以得到 1,4-乙醯氧基丁烷,最後 水解產物及為 1,4-丁二醇(BDO)。丁二烯氯化法是 1971 年日本東洋曹 達公司開發成功,該製程方法須經過丁二烯氯化、水解、氫化三個步 驟後得到 1,4-丁二醇(BDO)。

2.1.4 環氧丙烷法

環氧丙烷法又稱可樂麗法(Kuraray),由日本 Kuraray 公司和美國 Lyondell 公司所開發的新製程。以環氧丙烷為原料,先將環氧丙烷催 化異構化成丙烯醇,丙烯醇通入混合氣體下進行氫甲醯化反應,再繼 續經由觸媒氫化反應成 1,4-丁二醇(BDO)。此種方法,反應壓力可比 其他製程低、投資成本低、製程的流程簡易且觸媒可回收再利用等優 點。目前國內大連化工開發丙烯醇法與此種方法製程相似,但是大連 化工原料丙烯醇是由醋酸丙烯酯脫水反應獲得。

表 2.1、BDO 主要製程優缺點比較

製程方法		優點 缺點	
Reppe 法	傳統法	1. 製程技術成熟	1. 原料乙炔長程運輸有危險
		2. 製程短,產品產率高	性
			2. 反應必須在高壓下進行
			3. 原料乙炔供應有限
			4. 生產設備費用太高
	改良法	1. 製程技術成熟	1. 原料乙炔長程運輸有危險
		2. 製程短,產品產率高	性
		3. 生產設備成本較低,適用	2. 原料乙炔供應有限
		於工廠量產	
		4. 反應可以在低壓進行	
		5. 觸媒活性高,可回收再利	
		用	
順酐法	順酐酯化	1. 反應條件溫和	1. 製程流程長且複雜
	加氫法	2. 生產成本低	2. 順酐價格高
		3. 酯化轉化率高	
		4. 觸媒價格低,選擇性高	
		1 制积法积石,副产物小	1
	加急让	2 設備費用及什產成本低	
	加到公	2. 政備員用及主座成本區 3. 可同時上斎喜價值的 THE	
		B. GRI	
丁二	烯法	1. 原料供應充足	1. 製程流程長且複雜
		2. 運作環境要求較低	2. 高耗能
		3. 產生廢液及副產品少	3. 設備嚴重腐蝕
		4. 可以同時生產高價值的	
		THF	
		1. 觸媒可再利用	1. 副產物過多
		2. 生產技術簡易,設備成本低	2. 氫醛化選擇性低
		3. 製程中蒸氣可有效利用	

2.2 丙烯醇法製程簡介^{[5][6][7]}

2.1 中介紹到 1,4-丁二醇(BDO)主要製程,Reppe 法、順酐法、丁二烯法和環氧丙烷法。由於本研究之反應液來源是丙烯醇經氫醛化反應而得,因此這邊將再對丙烯醇法製程做介紹,其製程如圖 2.1 所示 包含:丙烯醇氫醛化反應、產物萃取、氫化反應和分離純化等步驟。

資料來源:大連化學工業

圖 2.1 工業界丙烯醇法生產 BDO 流程圖

2.2.1 丙烯醇氫醛化反應

氫醛化反應(hydroformylation)又稱羰基合成反應,由氫氣與一氧 化碳混合氣在羰基化過渡金屬的催化下對烯烴進行加成使多一個碳 原子生成正構醛(n-aldehyde)和異構醛(iso-aldehyde)的反應如圖2.2所 示。現今工業上用來做氫甲醯化反應觸媒以金屬銠和鈷為主。

圖 2.2 烯類氫醛化反應式

丙烯醇通入氫氣/一氧化碳混合氣在磷配位體觸媒催化下進行氫 甲醯化反應,生成直鏈產物 HBA (4-hydroxybutyradehyde)與支鏈產物 HMPA (3-hydoxy-2methylpropionaldehyde) 如圖 2.3 所示。由於產物 HBA 和 HMPA 在氫甲醯化反應後存在於有機相,因此必須加入去離 子水做萃取的動作將 HBA 和 HMPA 取出。

圖 2.3 丙烯醇氫醛化反應式

2.2.2 HBA 和 HMPA 氫化反應

直鏈中間產物 HBA 經由觸媒氫化反應後得到產物 1,4-丁二醇 (BDO),如圖 2.4 所示支鏈產物 HMPA 經由氫化反應則會得到副產物 2-甲基-1,3-丙二醇(MPO)。

圖 2.4 HBA 氫化反應式

丙烯醇氫甲醯化產物 HBA 在氫化過程中了除了主要產物 BDO 外 若透過不同觸媒及改變操作條件,也可同時得到脫氫及脫水的產物 GBL 和 THF,如圖 2.5 所示。

2.3 奈米級核殼式金屬觸媒 Ru@SiO2

2.3.1 液相化學合成法^[9]

奈米金屬微粒製備,在去離子水溶液中加入了釘的前驅物(氯化釘)
後,以甲醛作為還原劑,將前驅物還原為奈米級釘粒子。甲醛的還原
能力會受 pH 值所影響,當溶液在鹼性狀態下會有較佳的還原能力。
鹼性環境中,甲醛的標準還原電位為:
HCHO+3OH \longrightarrow HCOO +2H₂O+2e $E^0 = 0.927 V$ (2-1)

釘離子的標準還原電位為:

 $Ru^{2+} + 2e^{\overline{}} \longrightarrow Ru$ $Ru^{3+} + e^{\overline{}} \longrightarrow Ru^{2+}$ $E^{0} = 0.455 V \quad (2-2)$ $E^{0} = 0.2487 V \quad (2-3)$

將上面(2-1)、(2-2)和(2-3)合併,還原電位如下所示:

 $Ru^{3+} + HCHO + 3OH^{-} \longrightarrow Ru + HCOO^{-} + 2H_2O = 1.6307 V$ (2-4)

釘藉由甲醛還原時,還原電位極大,表示氧化還原反應劇烈。製 備奈米微粒時,若反應速率過大,生成之微粒未被保護,合成出來的 粒子容易彼此產生凝聚而沉澱,因此選用 PVP 保護金屬微粒避免粒 子凝聚。PVP 分子量對粒徑的影響不大,但 PVP/金屬比例對粒徑則 有明顯的影響,PVP 太少或金屬鹽濃度太高,PVP 形成的分散保護 作用不足,粒子易聚集成大顆粒,PVP 太多對粒徑則無進一步有益 的影響。

2.3.2 PVP 穩定化金屬奈米微粒^{[10][11]}

金屬觸媒的活性及選擇性往往與觸媒粒徑、形狀、反應媒介、擔 體等環境因素息息相關。奈米金屬微粒更因極高的表面原子數,表面 配位不飽和致表面活性增加,表面粗糙程度隨粒徑減小而增加,形成 凹凸不平的原子臺階,增加化學反應的接觸面,使其備受學術界及產 業界矚目,已然成為21世紀催化反應的主角之一。

製備金屬奈米微粒的技術有化學還原法、電化學還原法、氣相沉 積法、微波輻射法、UV 光解法、熱分解法等,其中化學還原法因具 有容易製備、分散穩定、粒徑較小及分散較窄的優點,在催化應用上 被廣泛應用。而在工業生產要求觸媒能有再現性,金屬奈米微粒通常 於製備過程負載於異相擔體或添加高分子、微乳液、配位基或適當溶 液為穩定劑,並分散於溶劑中加以保存及使用,以避免奈米微粒聚集 成長。分散在液體媒介中之穩定化金屬微粒以所添加穩定劑之種類概 分為四類:溶劑穩定型、表面活性劑穩定型、配位基穩定型及高分子 穩定型,前三類用為觸媒時較不穩定易分解,而以高分子穩定之金屬 簇較為穩定,可容許較嚴苛的反應條件。高分子穩定劑為能與金屬奈 米微粒表面產生弱作用力而對金屬微粒形成一高分子鏈保護層的官 能性高分子,以水溶性高分子為主,PVP(poly-N-vinyl pyrolidone,聚 乙烯吡咯酮)、 PVA(poly-vinyl alcohol , 聚乙烯醇)、

PEI(poly-ethyleneimine,聚乙烯亞胺)、PVM(poly-methyl vinyl ether, 聚乙烯甲基醚)、PEG(poly-ethlene glycol,聚乙二醇)均曾被使用,其 中以與金屬吸附效果良好保護效果顯著之 PVP 最受青睐。

2.3.3 核殼結構 (Core-shell structure) 之奈米粒子^{[12][13]}

製備核殼形式之奈米粒子,除了可將多功能結合在一起外,也可 能產生新的特性。一般而言,其目標可區分為四大項:(1)修飾奈米 粒子的塊材特性或產生不同於原成份的新特性;(2)調整奈米粒子的 表面特性,以改變其表面電荷密度、功能性、反應性、生物相容性、 穩定性及分散性;(3)以核心粒子為板模,製備中空球殼;(4)創造多 功能性複合奈米粒子。其製備除了提供在膠體粒子科學上的研究外, 在觸媒、生物、生醫、與光、電、磁、熱及高性能機械材料等多方面 更具潛力及應用價值。製備核-殼形式之奈米粒子,除了藉由各成分 反應、成核(nucleation)、成長(growth)速率過大的差異性來產生 外,最常見的製備方法是以兩步驟來完成。先以一般單成分奈米粒子 合成法合成所需要的核心粒子,再進一步的以披覆技術產生奈米殼層。 在製備殼層的部分,其可分為高分子、無機物及生化分子披覆等三部 份。

2.3.3.1 高分子披覆

此部份可以利用三種不同的聚合反應加以分類:

1.聚合反應:

Matijevic 等人將聚二乙烯苯 (poly (divinylbenzene),PDVB) 鍍 在二氧化矽的粒子上 (silica)。他是先將中心核 SiO₂ 的表面利用 4-vinylpyridine 或 1-vinyl-2-pyrrolidone 偶合劑 (coupling agent) 進行 改質,然後再與 PDVB 和適當的起始劑混合反應,使高分子的單體 在核心表面行聚合作用。

如果核心粒子表面便具有催化活性可以促使單體聚合,則起始劑 便可以省略。例如在赤鐵礦 (α -Fe₂O₃, hematite)、氧化矽修飾的 hematite 或氧化鈰 (CeO₂)表面上可鍍上聚吡咯 (polypyrrole)。方法 是將無機氧化物粒子浸泡 在此咯的酒精及水的混合物 中,加熱至 100°C即可使吡咯聚合。由於聚吡咯是熟知之導電高分子,聚吡咯包 覆的 α -Fe₂O₃或 CeO₂粒子,便具有導電性。包覆的厚度可以用反應 時間來控制。另外一種新穎的方法,是在金屬粒子表面鍍聚 吡咯,由 Feldheim 提出,他利用真空過濾法 (vacuum filtration)將金的粒子吸 附排列在多孔性的 Al₂O₃滲透膜 200nm 微孔中,然後將 吡咯的單體由 下而上進入微孔,將起始劑 Fe (ClO₄)₃擺在微孔的上方。當吡咯的 單體由下而上進入微孔與起始劑接觸而在微孔中聚合,便會在金的粒 子表面形成聚吡咯的包覆薄層。隨後可以用 KOH 將多孔滲透膜溶解 掉,造成一顆顆聚 吡咯包覆的金奈米粒子。或者用KCN/K₃[Fe(CN) 6]水溶液透過聚吡咯外殼溶蝕掉金粒子,再將多孔滲透膜一起溶解 掉,形成中空聚吡咯奈米粒子容器。

2.異質凝集聚合:

利用高分子的離子性質不同的異相凝集成高分子—高分子的 Core-Shell 結構。利用半徑較小的陽離子型高分子—聚丁基甲丙烯酸酯 PBMA (poly (butyl methacrylate),約 167nm) 異質凝集在半徑較大 的陰離子型高分子—PS (polystyrene,約 600nm) 表面上,在保持電 中性的原理下,當加熱溫度超過 PBMA 的玻璃轉換溫度 (glass-transition temperature,約 45°C)時,PBMA 就會均勻的覆蓋 於 PS (polystyrene)上,形成 Core-Shell 結構。

3.乳化聚合常會造成核心凝聚包覆的現象:

近來,此技術已改進,例如將銀的奈米粒子表面包覆一層聚苯乙烯(polystyrene)及甲基丙烯酸酯(methacrylate)。做法是將金屬粒子置於乳化的 oleic acid 中,控制聚合時間及單體濃度,則十分容易得到 2-10nm 的鍍膜。

4.自行組合(Self-assembled)的高分子:

此法也就是熟知層接層 LbL (Layer-by-Layer) 的方法,可得到

單層或多層均勻且一致性的包覆薄膜。在使用 LbL 法時,選取相反 電性的多電解質乳劑,一層接著一層,由於相反電性的緣故,每層均 容易因為電性的吸引而達到成膜的效果。

2.3.3.2 無機物披覆

許多無機物可以藉由在核心粒子表面析出,或是在核心粒子表面 藉由官能基的反應達到披覆的目的,目前已有 SiO₂,TiO₂,Si₃N₄,ZrO₂ 等無機材可作成奈米殼層的披覆。

目前而言,將無機物披覆在核心粒子外表面,大多利用矽或鈦的 烷氧化物為起始劑,進行水解與縮合反應,造成二氧化鈦或是二氧化 矽的披覆,例如 Ohmori 和 Matijevic⁽¹⁰⁾就是利用四乙基氧矽(TEOS (tetraethoxysilane))當起始物,在針狀赤鐵礦(α-Fe₂O₃)表面成功 鍍上氧化矽薄膜,這個方法亦稱為 Stober process,指利用 TEOS 的水 解及縮合反應,形成 SiO₂ 的方法;同樣的方法也應用於氧化鋯核心 粒子外披覆二氧化矽上。或是銀粒子的外面披覆上二氧化鈦,也是利 用鈦的烷氧化物起始劑進行水解與縮合反應的結果。在利用 Stober process 成長氧化矽殼層的過程中,TEOS 溶液的濃度必須低,以避免 形成矽的成核,才能使氧化矽均匀鍍上金屬粒子表面,形成核殼形式 奈米粒子。本研究即以 Stober Process 製作以貴重金屬為核、二氧化 矽為外殼的核-殼觸媒

2.3.3.3 生化分子的披覆

在生化科技中,如何將生化分子—蛋白質、酵素、抗體、抗原 (protein、enzymes、antibodies、antigens)等,固定於固體粒子支撑 物的表面,是長久以來便吸引許多科學家研究的課題。

一般而言,將生化分子鉗合於固體粒子的表面常使用的方法有: 被動吸附(passive adsorption)、共價鍵結(covalent bonding)、sol-gel 法、特定分子附著法(specific recognition)及靜電的自行排列法 (electrostatic self-assembly method)等。這些方法都是將生化分子與 中心核粒子偶合(coupling)來達成。而常用的中心核粒子有聚苯乙 烯(polystyrene)、聚丙烯胺(polyacylamide)等。這些鍍上生化分子 的 Core-Shell 微粒將會為生物化學應用上帶來嶄新的貢獻。

第三章 實驗系統

本章將分述實驗所用的藥品、儀器、實驗步驟及觸媒分析方法。 3.1 核殼式觸媒製備方法

本章分述氫化反應所使用各核殼式觸媒的製備方法,分別為單金 屬核殼式觸媒Ru、Rh、Pd、Pt及NiB@SiO2;雙金屬核殼式觸媒Ru-Pd、 Ru-Fe、Ru-Cu、Ru-Pt及Ru-Cr@SiO2。

3.1.1 單金屬核殼式觸媒製備^{[14][15][16]}

(1) Ru@SiO₂核殼式觸媒的製備:

Part 1 活性金屬還原

事前準備: 0.313g RuCl₃、1.275g PVP、0.519ml 甲醛、0.092gNaOH

- 先將 0.313g RuCl₃ 加入 15ml 去離子水溶解後再倒入放置 PVP 燒杯 中攪拌至完全溶解。
- 2. 將上述步驟水溶液加入甲醛及 NaOH 攪拌均勻。
- 3. 倒入離心管中並加入適當的去離子水及丙酮後離心 10 分鐘。
- 4. 取出離心管並將上層溶液去除。
- 5. 重複 5-6 步驟一次後放進 100℃烘箱中烘乾。

Part 2 加入載體

事前準備 :1.695ml 氨水、33.215ml 乙醇、2.675mlTEOS

- 1. 將 Part 1 烘乾後之前驅物取出加入去離子水、氨水及乙醇攪拌至完 全溶解。
- 2. 於(1)中之水溶液加入 TEOS 後,超音波震盪 1hr。
- 3. 攪拌 24hr。
- 4. 放置 100℃烘箱中乾燥。

Part3 空氣鍛燒

- 1. 將 Part 2 完成之觸媒取出研磨。
- 2. 於空氣中由室溫以1℃/min 升溫至 400℃,然後維持 3hr。

Part4 氫氣鍛燒

- 1. 將 Part 3 完成觸媒取出倒入石英管中,裝置如圖 3.1 所示。
- 在氫氣中由室溫以1℃/min 升溫至 200℃,然後維持 3hr。

圖 3.1 高溫爐煅燒系統

- 1. 高溫管狀爐
- 2. 石英管
- 3. 混合氣體(氩氣/氫氣)
- 4. 溫度控制氣

- 5.氣體流量控制器
- 6.溫度計
- 7. 氣體流量控制電磁閥
 - 8.抽氣裝置

(2) Rh@SiO₂ 核殼式觸媒的製備:

把前驅物換成 Rhodium(III) chloride anhydrous 然後重複 Ru@SiO2 觸媒製備步驟。

(3) Pd@SiO₂核殼式觸媒的製備:

把前驅物換成 Palladium(III) nitrate hydrate 然後重複 Ru@SiO2 觸媒製備步驟。

(4) Pt@SiO₂ 核殼式觸媒的製備:

把前驅物換 Hydrogen hexachloroplatinate(IV)然後重複 Ru@SiO2 觸媒 製備步驟。

(5)NiB@SiO2核殼式觸媒的製備:

Part 1 活性金屬還原

- 秤取2 mmol 醋酸鎳與所需PVP/Ni 莫耳數比之PVP於平底錐形 瓶中,加入20 ml 去離子水調配成0.1 M 鎳之水溶液。
- 2. 秤取6 mmol 硼氫化鈉於燒杯中,加入6 ml去離子水調配成1 M 水溶液。
- 平底錐形中放置磁石,於電磁攪拌器固定轉速下通入氮氣以排除 空氣,然後以固定速率下將硼氫化鈉水溶液滴入金屬鹽水溶中, 將硼氫化鈉水溶液緩慢的滴入,滴入過程會迅速產生黑色

PVP-NiB 觸媒微粒,並產生大量氫氣氣泡,等待硼氫化鈉水溶液 全部加入並不再產生氫氣泡後反應即可中止。

- 使用離心機將PVP-NiB 觸媒自水溶液中分離出,以去離子水攪拌 清洗二次,再以99.8%乙醇清洗三次,即得具有催化活性的 PVP-NiB 觸媒。
- Part 2 加入載體
- 將已完成的 PVP-NiB 觸媒放置 100℃烘箱中乾燥十二個小時,之 後取出加入去離子水 0.998ml、水 0.339ml、乙醇 6.643ml 攪拌至 完全溶解後,加入 0.535ml TEOS。
- 2. 超音波震盪 1hr。
- 3. 攪拌 24 小時。
- 4. 放置100℃烘箱中乾燥。

Part3 空氣鍛燒

- 1. 將 Part 2 完成之觸媒取出研磨。
- 於空氣中由室溫以1℃/min 升溫至400℃,然後維持3hr。

Part 4 氫氣鍛燒

- 1. 將 Part 3 完成之觸媒取出倒入石英管中,裝置如圖 3.1 所示。
- 在氫氣中由室溫以1℃/min 升溫至 200℃,然後維持 3hr。

3.1.2 雙金屬核殼式觸媒製備方法^[17]

(1) Ru-Pd@SiO₂核殼式觸媒的製備:

Part 1 活性金屬還原

事前準備: 0.255g RuCl₃、0.058gPd(NO₃)₃、1.275g PVP、0.519ml 甲

醛、0.092gNaOH

- 先將 0.255g RuCl₃和 0.058gPd(NO₃)₃加入 15ml 去離子水溶解後再 倒入放置 PVP 燒杯中攪拌至完全溶解。
- 2. 將上述步驟水溶液加入甲醛及 NaOH 攪拌均勻。
- 3. 倒入離心管中並加入適當的去離子水及丙酮後離心 10 分鐘。
- 4. 取出離心管並將上層溶液去除。
- 5. 重複 5-6 步驟一次後放進烘箱中烘乾。
- Part 2 加入載體

事前準備:1.695ml 氨水、33.215ml 乙醇、2.675mlTEOS

- 將 Part 1 烘乾後之前驅物取出加入去離子水、氨水及乙醇攪拌至 完全溶解。
- 2. 上述步驟水溶液取出加入 TEOS 後超音波震盪 1hr。

3. 攪拌 24hr。

4. 放置烘箱中乾燥。

Part3 空氣鍛燒

1. 將 Part 2 完成之觸媒取出研磨。

2. 於空氣中由室溫以1℃/min 升溫至 400℃,然後維持 3hr。
 Part 4 氫氣鍛燒

1. 將 Part 3 完成觸媒取出倒入石英管中,裝置如圖 3.1 所示。

在氫氣中由室溫以1℃/min 升溫至200℃,然後維持3hr。

(2) Ru-Fe@SiO₂核殼式觸媒的製備:

事前準備:0.177g RuCl₃、0.136g Fe(NO₃)₃・9H2O、1.275g PVP、 0.519ml 甲醛、0.092gNaOH 然後重複 Ru-Pd@SiO₂ 觸媒製備步驟。

(3) Ru-Cu@SiO₂核殼式觸媒的製備:

事前準備:0.225g RuCl₃、0.088g Cu(NO₃)₃・9H₂O、1.275g PVP、 0.519ml 甲醛、0.092gNaOH 然後重複 Ru-Pd@SiO₂ 觸媒製備步驟。

(4) Ru-Pt@SiO₂核殼式觸媒的製備:

事前準備: 0.256g RuCl₃、0.057g H₂PtCl₆・6H₂O、1.275g PVP、
0.519ml 甲醛、0.092gNaOH 然後重複 Ru-Pd@SiO₂ 觸媒製備步驟。

(5) Ru-Cr @SiO₂ 核殼式觸媒的製備:

事前準備:0.198g RuCl₃、0.115g Cr(NO₃)₃・9H₂O、1.275g PVP、
0.519ml 甲醛、0.092gNaOH 然後重複 Ru-Pd@SiO₂ 觸媒製備步驟。

Ru-Pd@SiO ₂	4:1	2:1	1:1
Ru(g)	0.255	0.215	0.163
Pd(g)	0.058	0.098	0.149
Ru-Fe@SiO ₂	4:1	2:1	1:1
Ru(g)	0.236	0.189	0.136
Fe(g)	0.078	0.124	0.177
Ru-Cu@SiO ₂	4:1	2:1	1:1
Ru(g)	0.225	0.174	0.121
Cu(g)	0.088	0.139	0.193
Ru-Pt@SiO ₂	4:1	2:1	1:1
Ru(g)	0.256	0.218	0.150
Pt(g)	0.057	0.095	0.170
Ru-Cr @SiO ₂	4:1	2:1	1:1
Ru(g)	0.198	0.145	0.094
Cr(g)	0.115	0.168	0.214

表 3.1 雙金屬核殼式觸媒各比例之用量

3.2 氫化反應^[16]

3.2.1 HBA 與 HMPA 的氫化反應(batch reactor)

批式反應器裝置如圖 3.2 所示,其操作條件如下:

攪拌速度:600 rpm

反應溫度:95℃~220℃

反應壓力: 300~1000 psi

實驗步驟:

- 1. 秤取 0.2g 的觸媒和 50ml 的反應液, 倒入烘乾後之反應器。
- 將反應器的所有閥件鎖緊,裝置好所有氣體進出系統,設定攪拌
 速度及反應溫度,通入氫氣,排出反應器內的空氣。
- 開始升溫,達反應溫度後通入氣體至反應壓力,開始計時反應時間。
- 待反應結束,降溫、洩壓、打開反應器,離心過濾觸媒,取0.05g
 內標品加入產物,將溶液配製成10ml裝入樣品瓶。
- 5. 然後取 1µl 注入 GC 中,由產生之訊號波峰面積計算實驗結果。

圖 3.2 批式反應裝置圖

7.加熱包

1.氮氟

2.氫氣

3.攪拌/溫度控制器

4.攪拌傳動軸

5.溫度計

8.高壓不鏽鋼反應器
9.氣體進料控制閥
10.氣體出口控制閥
11.抽氣裝置

6. 攪拌器

3.2.1 HBA 與 HMPA 的氫化反應(Packed bed reactor)^[16]

固定床反應器裝置如圖 3.3 所示,其操作條件如下:

Mini pump 流量: 10~20(ml/hr)

反應溫度:120℃

反應壓力: 400~1000 psi

實驗步驟:

秤取 20g 的觸媒(觸媒在管柱中大概九分滿),加入烘乾後填充床反應器。

1. 將反應器的所有閥件鎖緊,確定沒有任合管件有漏氣現象。

- 2. 通入氣體,排出反應器內的空氣。
- 將各段之電熱偶計(thermocouple)固定管狀反應器的加熱裝置與 控溫箱系統相連接後設定控溫系統,讓所有測溫點達到反應溫 度。
- 4. 達到目標溫度後,打開氣體進口端,通入氫氣調整壓力。
- 5. 壓力溫度均達反應條件後,開啟 Mini pump 通入液相反應液。
- 6. 每小時後出口端經過氣液分離以便取樣。
- 7. 產物加入內標取 1µl 打 GC 進行分析。

圖 3.3 固定床連續式反應裝置圖

1.氮氟	9. 氣液分離裝置
2.氫氣	10.出口端壓力控制裝置
3.填充床反應器	11.進口端壓力控制裝置
4.四段加熱包	12.氣相進料控制閥
5.mini pump	13.液相進料控制閥
6.四段加熱控溫器	14.出口端液相產物控制閥
7. 反應液	15.出口端氣相洩壓控制閥
8. 溫度計	16.抽氣裝置

3.3 儀器設定與反應物產物定性、定量分析

本研究反應物濃度與產物濃度之分析儀器為氣相層析儀(G.C.)。

3.3.1 氣相層析分析法^{[16] [20]}

氣相層析,這項技術基礎是先將一個樣品被注射到氣體的樣品閥 中,並使其完全氣化,再利用一個載流氣體(carrier gas)的流動來帶動 氣化後的樣品,通過一個分離用的管柱(column)管柱中充填了固相的 載體,固相的載體表面具有一層薄薄的液體,當樣品通過時,一方面 氣相的載流氣體會帶動樣品向前走,但是在載體上的液相薄膜又會有 與樣品相互吸引的作用力,一個化合物在管柱中行進的速度快慢就看 這兩種相反作用力的淨值大小來決定,不同的化合物其作用力結果之 淨值也不盡相同,所以行進速度也會產生差異,最後導致混合物分 離。

氣相層析儀可以進行定性分析及定量分析,本實驗的氣相層析儀型號為 GC-2014,所選用的管柱型號為型號 FFAP 的毛細管,Length 60m, I.D. 0.53mm, Film Thickness 1.00μm,表 3.2 為分析之條件。

為了減低 GC 分析之誤差,以正丁醇(1-Butanol)為內標品,藉由 正丁醇與 1,4-丁二醇 (BDO)面積比與重量比之關係做出標準曲線, 即可進一步求得實驗後 1,4-丁二醇之產率。

設定參數					
Injector temp(°C)	210				
Detector temp(°C)	220				
Column Init temp(°C)	70				
Column Init time(min)	2				
Rate(°C/min)	35				
Column Final temp($^{\circ}C$)	180				
Column Final time(min)	15.12				
carrier gas: 氮氣	氣體壓力: 69.2 kPa				
氣體流量:244.9ml/min	分流比:30				

表 3.2 氣相層析儀之分析條件

3.3.2 定性分析

將樣品注入氣相層析儀中,讀取儀器所傳出之訊號,傳輸至個人 電腦,利用訊華公司的積分軟體計算波峰的滯留時間,利用不同樣品 滯留時間不同的原理,分辨出樣品之性質。圖 3.4 及表 3.3 為定性分 析之結果。

表 3.3 氣相層析儀滯留時間

樣品成份	滯留時間(min)
THF	3.2
РОН	4.2
IBA	4.6
1-Butanol	5.0
HBA	8.0
HMPA	8.4
GBL	9.6
MPO	11.5
BDO	13.8

3.3.3 定量分析(內部標準品法)

將已知量的樣品及內部標準品注入層析儀,量計兩者的波鋒面積, 然後用兩者重量比值為橫座標,兩者面積比為縱座標,便可得到校正 標準曲線,圖 3.5 至圖 3.9 為氫化反應之產物的校正曲線圖。

反應後欲分析樣品中成分之含量時,將已知量的標準品加入分析 樣品中,可得成分與標準品層析圖譜的波峰面積,計算出相對面積比, 再利用此面積比,在校正標準曲線中找出對應的重量比,由於已知標 準品之重量,便可以計算出欲知成分的含量。

本法優點是注入量不必十分精確,檢測器的回應一不必預知或保 持一定,因為任何回應雖略有改變,但其面積比都是固定的,而且內 部標準品依樣品的條件選擇合適之後,可以長久使用。缺點是內部標 準品比較難找到,必須符合以下條件:

- (1) 內標品波峰必須與其他樣品分開。
- (2) 滞留時間與樣品接近。
- (3) 不能與其他樣品反應。
- (4) 與樣品成分的構造類似。
- (5) 與樣品成分之濃度接近。

圖 3.5 1,4-丁二醇 (BDO) 之標準曲線

圖 3.6 2-甲基-1,3 丙二醇 (MPO) 之標準曲線

圖 3.7 γ-丁內酯 (GBL) 之標準曲線

圖 3.8 丙醇 (POH) 之標準曲線

圖 3.9 四氫呋喃 (THF) 之標準曲線

3.4 熱場發射掃描式電子顯微鏡(TFSEM)

掃描式電子顯微鏡包括兩部份:

一為提供並聚集電子於樣品上產生訊息的主體,包含電子槍、電 磁透鏡、樣品室及真空系統,二為顯像系統。

SEM 主要是利用電子槍所產生出來的電子束,經過電磁透鏡聚成 極小的電子束後,照射於樣品上後形成作用,並在不同層面釋放歐傑 電子、二次電子、背向散射電子及 X 射線。電子束撞擊樣品後,產 生的訊號由偵測器接收,並經轉換放大後顯示於螢光幕上,即可顯像 以及元素分析光譜圖 (Spectrum)。由於 SEM 是利用電子束撞擊樣品 表片來成像,而場發射式電子槍則比一般電子槍所使用之 鎬燈絲和六 硼化鑭燈絲的亮度又分別高出 10~100 倍,同時電子能量散佈僅為 0.2~0.3 eV,所以目前市售的高解析度掃描式顯微鏡都是採用場發式 電子槍。

熱場發式電子槍是在 1800K 溫度下操作,避免了大部份的氣體分子吸附在針尖表面,所以免除了針尖 flashing 的需要。熱式能維持較 佳的發射電流穩定度,並能在較差的真空度下(10⁻⁹ torr)操作。雖 然亮度與冷式相類似,但其電子能量散佈卻比冷式大 3~5 倍,影像 解析度較差,較不常使用。所用儀器機型為 JOEL7000F。

3.5 能量散佈分析儀 (EDS)

能量散佈分析儀主要是由擴散鋰原子的矽晶接收器(Lithium Drifted Si p-i-ndiode, Si(Li))為核心的固態偵測器,其中鋰是為了中 和矽晶接收器中可能存在的其他雜質,減少電子電洞對再結合中心使 得偵測的效率準確,由於此種偵測器必須要在低溫下操作,傳統機型 係利用液態氮冷卻之,現在已有以冷凍幫浦冷卻的機型推出。被電子 束激發而放射出來之X光穿過薄的鈹窗(Beryllium Window, Be)或 超薄的高分子膜窗甚至是無窗型的偵測器中,激發矽晶接收器產生電 子電洞對,再轉換成電流,經放大器(Amplifier)及脈衝處理器 (PulseProcessor)的處理後,送至能量數位轉化器(Energy-to-Digital Converter)處理由多頻道分析儀(Multi-channel Analyzer, MCA)將X 光能量信號存入其對應之頻道位置。偵測特性X光的分析方法,能量 散佈分析儀相較於波長散佈分析儀的優點有:

- 1. 快速並可同時偵測不同能量的X-光能譜。
- 使用之一次電子束電流較低可得較佳的空間解析度(Spacial Resolution),且較不會損傷試片表面。
- 3. 接收訊號的角度(Solid Angle)大。
- 4. 儀器之設計較為簡單。
- 5. 操作簡易,不需作對準(Alignment)及聚焦(Focusing)。

而主要缺點則有:

- 1. 能量解析度差。
- 2. 對輕元素的偵測能力差。
- 3. 偵測極限差(>0.1%)。
- 4. 定量能力較差所列。

基於上述的快速及設計簡單、操作簡易的優點,一般掃描式電子 顯微鏡或穿透式電子顯鏡所附加的特性X光偵測器多採用能量散佈 分析儀。

3.6 表面積與孔洞分析實驗(BET)^[21]

3.6.1 BET 表面積之測定原理

觸媒的性能與其表面積之大小和孔徑度的分佈有密切的關係,因 為觸媒表面直接接觸到反應物氣體,所以表面積的大小控制了觸媒的 活性,而孔洞大小和孔洞的形式控制其選擇性。標準特性分析包含總 表面積的測定及孔徑大小分佈的測定。總表面包含觸媒的內表面積與 外表面積,藉由 Brunauer-Emmett-Teller (BET) 方法來測量。而孔徑 的大小定則藉由不等量氦氣吸附觸媒的孔洞中,再分別以氦氣填充, 由此可得出吸附前後所吸附上去的量,再利用 BJH (Barrett-Joyner-Halenda)吸附法,可得出孔徑的大小分佈。藉由氣 體的物理吸附來測定表面積,表面積是由氣體的分子數以單層覆蓋於 固體表面而決定。由測定氣體體積或氣體重量計算單層的吸附氣體分 子數目進而求出固體的表面積。等溫線是表示氣體在一固定溫度下的 吸附量,在固體上達到一個平衡。通常吸附曲線可分為六種形式,如 圖 3.10:

圖 3.10 吸附曲線的形式

- Type I:又稱作 Langmuir-type 等溫曲線,通常發生在具有微小孔 洞(micropore)的多孔性固體中。在相對壓力值遠小於1時,所 吸附之氣體便已將所有孔洞填滿。
- Type II:又稱作 S-type 等溫曲線,通常發生在非多孔性(nonporous)
 和大孔隙(macroporous)物質。曲線圖中的轉彎點 B,一般認為
 是單層吸附已經完成,開始轉往多層吸附。
- Type III:此類吸附曲線呈下凹形,發生於氣體分子與固體間之吸 附力遠小於氣體分子間的作用力時,會有此類型的圖型,且通常 在單層吸附尚未完成前就開始多層吸附。
- 4. Type IV:多發生於多孔性物質。在低相對壓力時圖形和 Type II 相似。但隨著壓力上升吸附劑開始在孔洞中凝結而發生毛細現象 (capillary condensation),造成吸附量驟劇增。其脫附曲線常具 有遲滯現象 (hysteresis),為典型的中孔洞物質之吸附曲線。
- Type V:其低分壓區類似 Type III,高分壓則有毛細現象。此類吸附曲線較為少見。
- Type VI:此類型的吸附行為多發生在具有規則且均匀的非孔洞物 質,會發生多重吸附,此類吸附曲線亦相當少見。

典型的中孔洞物質其吸附等溫線主要有兩個特徵,一個是受毛細 現象的影響,而使得在某一段分壓範圍時吸附量急遽上升;另一個則

43

是遲滯現象發生,亦即吸脫附曲線中,吸附與脫附所走的路徑不一樣, 在特定分壓下吸附量總是比脫附量來的高。而遲滯現象的形狀則會受 孔洞結構的不同而有所影響,因此常被用來說明孔洞的大小和形 狀。

根據 IUPAC 的報告,遲滯現象的型態可分為四類,如圖 3.11。 H1 的吸附曲線跟脫附曲線幾乎垂直且互相平行,主要是發生在具有 規則球體陣列間的孔或是具規則圓柱孔的物質,被吸附物在吸附與脫 附的行為有著較大的差異。H2 則是認定為具有墨水瓶孔(ink bottle pores)之物質。H3 通常出現在粒子以平版狀排列造成的狹縫型孔隙 (slit-like shaped)。H4 的型態和 H3 相似,由平版型孔隙所造成。而 在高分壓相異行為則是因為 H4 平版孔隙較 H3 窄的緣故。

Brunauer、Emmett 及 Teller (BET) 吸附理論為 Langmuir 吸附理 論的延伸,可用以計算非孔洞性固體表面之多層吸附現象。利用不同 吸附分子層中氣體分子蒸發及冷凝速率之平衡,可導出 BET 吸附方 程式。此理論係假設氣體的吸附熱與表面分子的覆蓋率無關。其吸附 方程式為:

$$\frac{P}{V(P_0 - P)} \equiv \frac{1}{V_m C} + \frac{C - 1}{V_m C} \times \frac{P}{P_0}$$

其中,P₀為吸附氣體的飽和蒸氣壓,V_m為單一吸附層的容積,P 為平衡壓力,V 為吸附氣體的總體積,C 為常數,此常數可由吸附熱

44

(\triangle Hi)和氣體凝結(\triangle Hc)來算得。以 $\frac{P}{V(P_0-P)}$ 對 $\frac{P}{P_0}$ 之作圖應 該是一條直線,而斜率是 $\frac{C-1}{V_mC}$,截距為 $\frac{1}{V_mC}$,即可求出 V_m 。相對 壓力值有正確範圍是介於 0.05~0.35 之間。在高的相對壓力下,BET 方程式是不正確的因為毛細管凝結的效應關係,當 $\frac{P}{P_0}$ 低於 0.05 時, 吸附氣體的量是太小以至於偵測不到充分的正確值。

若氣體吸附僅限定於 n 個分子層 (n 與孔隙大小有關),則其方 程式為:

$$V = \frac{V_m C}{1 - x} \times \frac{1 - (n + 1)x^n + nx^{n+1}}{1 + (C - 1)x - Cx^{n+1}}$$

其中, $x = \frac{P}{P_0}$, 當 n = 1 時, 此公式即成為 Langmuir 吸附方程式;

而當 n =∞時,此式即為 BET 吸附方程式。

圖 3.11 遲滯現象的型態

3.6.2 BET 表面積及孔徑大小之測定實驗

觸媒載體之表面積測定利用 BET 計算在液態氮溫度下之氮分子
物理吸附量。取約 0.200~0.500 g 之樣本置於石英管中以專用管塞塞
住,為防止粉末樣品流入儀器內。將石英管置於除氣(Degases)處
抽真空,並以加熱包加熱,以去除表面水分及不純物。完成除氣
(Degases)步驟後,將樣品稱重並與石英管直接連接至樣品分析處。
使石英管慢慢浸入於液態氮中,使其吸附氮氣於樣品上呈飽和狀態,
再於室溫下量測脫附之氮氣量。以氮氣在室溫脫附量及氮氣之單分子
面積(約 0.162nm²)計算觸媒之表面積,亦可進行實驗計算其孔徑大
小及體積。由於表面積的大小會影響觸媒活性成分的分佈,進而對反
應產量有直接的影響;而孔徑分佈及大小會影響反應物吸附速率及擴
散速率、觸媒的催化特性,但是並不一定與觸媒的活性與生成物產量
成正比,所以在此觸媒的表面積只當作輔助其他分析的工具。

3.7 X 射線粉末繞射儀 (XRD)

X 射線是定義為短波長的電磁波,它乃由於高能量電子經過減 速作用或是電子在原子內層軌域發生電子躍遷而產生的。X 光波長範 圍大約在 10⁻⁵A~100A 左右,而用於 X 射線光譜學的 X 射線波長範圍 則大約 0.1 Å~25 Å。X 射線繞射與其他種的電磁輻射相似,X 輻射 的電向量與被其穿過物質的電子間,因交互作用而造成散射。

當 X 射線被晶體內有規則的環境所散射時,散射的光線間會發 生建設性或破壞性干涉,因為散射中心之間的距離與輻射波長大小約 在同一等級,結果產生繞射。經散射出來的 X 射線數據符合布拉格 定律:2dsinθ=nλ,其中 n=1,2,3.....。

X 光繞射分析儀之樣品必須具有結晶性,它可用來判斷結晶物質 的組成、排列及結構,因為結晶物質具有特定之波峰。它內部之計數 器以一固定的角速度移動,並自動地畫出繞射束強度隨 20 變化之函 數,而此 20 即為繞射角,特別是當材料之結晶面排列符合布拉格繞 射條件時,亦即散射能及間格與波長的大小相當,此時繞射的強度特 別明顯,亦會有強烈的繞射能量產生,而這些經繞射出來之特性能量 的強度及角度則可用來計算晶體的排列結構。

樣品若為粉末狀,通常取適量置於載具裡,利用玻璃片將樣品刮 平均匀放入儀器中分析,若是高分子亦可先熱壓成片之後置入載具中

47

分析。

本實驗中所使用 X 光射線光源為銅靶的 Kα 射線,測量時電壓與 電流為 40kv 與 30mA。XRD 所用儀器之機型為 Shimazu XRD-6000。

圖 3.12 X 光繞射分析原理示意圖

3.8 實驗藥品與儀器

鈀水合物	Palladium(III) nitrate hydrate	STREM
釘水合物	Ruthenium (III) chloride hydrate	SEEDCHEM COMPANY
銠氯化合物	Rhodium(III) chloride anhydrous	ACROS
Ni	Raney Nickel	廠商提供
NiAl ₂ O ₃	Nickel Aluminun oxide	廠商提供
氢化六氯鉑酸塩(IV)六 水合物 H ₂ PtCl ₆ ·6H ₂ O	Hydrogen hexachloroplatinate(IV)	SHOWA
硝酸鐵(III)九水合物 Fe(NO ₃) ₃ ・9H ₂ O	Iron(III) nitrate enneahydrate	SHOWA
硝酸銅(III)三水合物 Cu(NO ₃) ₂ ・3H ₂ O	Copper(III) nitrate enneahydrate	SHOWA
硝酸鉻(III)九水和物 Cr(NO3)3 · 9H2O	Chromium(Ⅲ) nitrate enneahydrate	SHOWA
醋酸鎳(II)四水合物 (CH ₃ COO) ₂ Ni・4H ₂ O	Nickel(II) acetate tetrahydrate	SHOWA
四氫呋喃 C4H8O	Tetrahydrofuran	TEDIA

表 3.4 藥品等級與製造商一覽表

異丁醇 C4H10O	Isobutyl alcohol	TEDIA
丙醇 C3H8O	N-propyl alcohol	TEDIA
正丁醇 C4H10O	N-Butanol	ECHO
γ-丁內酯 C ₄ H ₆ O ₂	Gamma-Butyrolactone	ACROS
1,4-丁二醇 C ₄ H ₁₀ O ₂	1,4-Butanediol	TCI-GR
甲醛 CH ₂ O	Formaldehyde	Scharlau
氫氧化鈉 NaOH	Sodium hydroxide	SHOWA
乙醇 CH ₃ CH ₂ OH	Ethanol	ECHO
TEOS	High-purity Tetraethyl silicate	SHOWA
	表 3.5 氣體與製造商一覽表	
高純氫氣 99.9%	Hydrogen	東洋氣體
高純氮氣 99.9%	Nitrogen	東洋氣體

高純氬氣 99.9%	Argon	東洋氣體
液態氮	Liquid nitrogen	翔源氣體

Air

東洋氣體

空氣 79%N₂₊ 21%O₂

表 3.6	儀器設備型號與廠商-	-覽表
儀器設備名稱	型號	製造廠商
氣體流量控制器	5850E series	Brooks
質量流量控制器	Model 5878	Brooks
高溫鍛燒爐	訂製	登盈儀器公司
攪拌器	DC-CD-1	SHIN KWANG
溫度探針	Туре К	登盈儀器公司
加熱包	A2230HCEB	中美科學
高壓反應系統	4842 (600ml)	PARR
電子天平	XB 220A	Precisa
熱風循環烘箱	CDV-60	伸隆
手套箱	OMNI-LAB	VAC
UV 偵測器	L-4250	HITACHI
真空烘箱	CVD-30L	CHENGSANG
高溫爐	SJDF202	森積科技
管柱	C ₁₈ 250×4.6 mm (5μm)	HYPERSIL

混合氣 90%Ar+10%H₂ Mix 90%Argon+10%Hydrogen

Mix

東洋氣體

第四章 實驗結果與討論

本研究之實驗結果將分成四個部分來進行報告:(1)藉由改變反 應溫度、壓力、觸媒用量及不同的活性金屬來進行氫化反應,並計算 出 turnover frequency(TOF),比較各種單金屬核殼式觸媒於催化 HBA 及 HMPA 之氫化能力;(2) i.將 Batch reactor 氫化反應之最佳觸媒顆粒 化,並且測試造粒之後觸媒於固定床反應器之反應結果。 ii.在 Packed bed reactor 中填充不同雙層觸媒,希望藉此直接獲得 1,4-丁二醇(BDO) 下游產物 GBL 及 THF;(3)利用不同雙金屬核殼式觸媒對 HBA 及 HMPA 進行氫化反應,找尋最適當活性金屬、比例、反應條件,希望 能藉此控制產物之比例;(4) 探討核殼式金屬觸媒特性之分析,分別 以 X 能量散譜儀 (EDS)、穿透式電子顯微鏡 (TEM)、表面積與孔洞 分析 (BET) 及 X 射線粉末繞射儀(XRD)等儀器進行分析。

4.1 單金屬核殼式觸媒催化 HBA / HMPA 之氫化反應

4.1.1 Raney Nickel、 Ru、Rh、Pd、Pt 及 NiB@SiO2 觸媒

表 4.1 是各種觸媒對於 HBA 及 HMPA 氫化反應的結果,若單純 從轉化率來判斷, Raney Nickle 是有著較佳的催化能力,但是透過轉 換頻率 (turnover frequency, TOF),公式如下:

$$turnover frequency = \frac{(\text{moles of HBA & HMPA formed})}{(\text{time})(\text{moles of catalyst active sites})}$$

計算結果如圖 4.1,發現 Raney Nickel 的 TOF 只有 0.002(1/s),反倒 是 Ru@SiO₂ 的 TOF 高達 0.026(1/s),從 TOF 可以知道 Raney Nickel 觸媒活性不及其它奈米級核殼式觸媒,最大差距有數十倍之多。

Catalyst	conversion %		_
Catalyst	HBA	HMPA	TOF(1/s)
Ru@SiO ₂	18.5	23.2	0.026
Rh@SiO ₂	5.2	11.9	0.009
Pd@SiO ₂	6.5	50.1.	0.021
Pt@SiO ₂	6.5	20.1	0.007
NiB@SiO ₂	5.5	12.7	0.006
Raney Nickel	41.9	52.0	0.002

表 4.1 觸媒種類對氫化反應之影響

反應條件

反應時間:0.5hr	反應物體積:50ml
反應壓力:400 psi	反應物 n/i:4.17
反應溫度:95℃	觸媒重量:0.4 wt%

圖 4.1 觸媒種類對氫化反應之 TOF 的影響

4.1.2 Ru@SiO2 觸媒

從 4.1.1 節中知道 Ru@SiO2有最佳的催化 HBA 及 HMPA 氫化反應的活性,本章節探討改變反應壓力、溫度及觸媒用量對其 TOF 的影響。

(A)壓力對氫化反應的影響

從表 4.2 和圖 4.2 中可以看到隨著壓力的上升, HBA 及 HMPA 的轉化率也跟著上升, TOF 呈線性的成長。

		conversion %		
PIG	essure (psi)	HBA	HMPA	TOF(1/s)
	400	18.5	23.2	0.026
	800	30.7	38.1	0.044
	1000	40.8	39.4	0.055

表 4.2 壓力對氫化反應之影響

反應條件

反應時間:0.5hr	反應物體積:50ml
反應溫度:120℃	反應物 n/i:4.17
觸媒重量:0.4 wt%	

圖 4.2 壓力對氫化反應之 TOF 的影響

(B)溫度對氫化反應的影響

從表 4.3 和圖 4.3 中可以看到隨著溫度的上升, HBA 及 HMPA 的轉化率也跟著上升, TOF 仍呈線性的成長。

Tomporature $\binom{\circ}{C}$ –	conversion %		_	
	HBA	HMPA	TOF(1/s)	
95	18.5	23.2	0.026	
110	26.1	31.0	0.037	
120	32.0	55.0	0.049	

表 4.3 温度對氫化反應之影響

反應條件

反應時間:0.5hr	反應物體積:50ml
反應壓力:400 psi	反應物 n/i:4.17
觸媒重量: 0.4 wt%	

圖 4.3 溫度對氫化反應之 TOF 的影響

(C)觸媒用量對氫化反應的影響

從表4.4和圖4.4中可以發現增加觸媒的用量,雖然HBA及HMPA 的轉化率會上升,TOF卻不會改變。由於TOF定義是單位時間觸媒 上每個活性點所反應的分子數,增加觸媒使用量並不會改變活性點反 應的分子數,因此TOF亦不會隨觸媒用量改變。

表 4.4 觸媒量對氫化反應之影響

细出千旦(~)		conversion %		
	胸妹里里(g)	HBA	HMPA	TOF(1/s)
	0.2	18.5	23.2	0.026
	0.4	30.6	33.8	0.021
	0.6	56.3	48.9	0.025
	1	75.2	70.5	0.020

反應條件

反應時間:0.5hr	反應物體積:50ml
反應壓力:400 psi	反應物 n/i:4.17
反應溫度:95℃	

圖 4.4 觸媒用量對氫化反應之 TOF 的影響

(D) Ru@SiO2 觸媒之 TEM 分析

圖 4.5 至圖 4.6 為奈米級核殼式觸媒 Ru@SiO₂ 的 TEM 分析圖, 圖中顏色較深的黑點為觸媒的活性金屬 Ru,外圍顏色較淺的部分為 觸媒載體 SiO₂。圖 4.5 拍攝下可以看到觸媒一團一團的聚在一起,圖 4.6 左邊的部分可以看到有 4 顆觸媒糾結成團依比例尺來看,單一顆 觸媒大小約 10nm,圖 4.7 上依比例尺可以看到每顆觸媒活性金屬大 小約 5mn。未來研究方向可以試著控制載體大小或者是金屬顆粒的大 小探討其對氫化反應的影響。

圖 4.5 Ru@SiO₂ 觸媒之 TEM(50nm)

圖 4.7 Ru@SiO₂ 觸媒之 TEM(5nm)

(E) Ru@SiO2 觸媒之 BET 分析

表 4.5 中可以看到 Ru@SiO₂ 的比表面積高達 509.1069 m²/g,表示 觸媒具有極大之表面積可以與反應物接觸進行反應。另外,測得觸媒 的平均粒徑約在 11nm 左右也與 TEM 分析結果相符,從 TEM 和 BET 的分析結果可以說明核殼式觸媒顆粒大小達奈米等級。

CatalystSurface Area(m^2/g) Pore volume(m^3/g)Average particle
size(Å)Ru@SiO2509.10690.668503117.853

表 4.5 Ru@SiO2BET 分析

圖 4.8 Ru@SiO2 觸媒之吸附/脫附曲線圖

圖 4.9 Ru@SiO2 觸媒之孔徑分布圖

4.2 Ru@SiO2 造粒及 Packed bed reactor 氫化 HBA / HMPA 之結果

4.2.1 顆粒狀 Ru@SiO₂ 觸媒催化 HBA/HMPA 之氫化反應(Batch reactor)

利用粉末狀 Ru@SiO₂核殼式觸媒 0.2g 在 1000Psi、120℃下反應 3 個小時, HBA / HMPA 轉化率就達 99%,造粒之後相同反應條件下 HBA 轉化率只有 47%、HMPA 轉化率 95%,當觸媒用量增加至 0.8g 時才能使轉化率達 99%如表 4.6 及圖 4.10 所示,比較轉化率 99%時 各產物的產率也幾乎一致如圖 4.11 所示。

表 4.6 觸媒重量對氫化反應轉化率之影響

觸媒重量 (g)	0.2	0.4	0.8	0.2(粉體)
HBA conversion (%)	47.1	57.6	99.9	99.0
HMPA conversion (%)	95.8	96.9	99.8	99.4

表 4.7 觸媒重量對氫化反應產率之影響

觸媒重量(g) ·	yield %						
	BDO	MPO	GBL	IBA	РОН	THF	
0.2	33.3	5.0	0.7	4.9	2.1	0.3	
0.4	40.7	6.7	0.7	5.9	2.5	0.3	
0.8	72.5	12.7	0.7	8.4	3.9	0.2	
0.2(粉體)	72.2	16.9	0.6	4.9	3.1	0.3	

反應條件

反應時間:3hr	反應物體積:50ml
反應壓力:1000 psi	反應物 n/i:4.17
反應溫度:120℃	觸媒:顆粒狀 Ru@SiO2

圖 4.11 不同顆粒狀 Ru@SiO2 用量之產率

4.2.2 顆粒狀觸媒催化 HBA / HMPA 之氫化反應(Packed bed reactor)
(A)顆粒狀 Ru@SiO2

從表 4.8 及圖 4.12 可以看到取樣時間為一個小時時,HBA/HMPA 轉化率就已經達94%~95%,之後的取樣時間轉化率也皆達98%~99%。 表 4.9 及圖 4.13 顯示 HMPA 產物幾乎都轉化成 MPO,HBA 的主要產 物為 BDO,其產率介於 61%~65%,相同條件下 Batch reactor 的 HBA 主要產物 BDO 產率有 72%,推測原因可能是反應液快速通過反應器 和觸媒,使得反應液與觸媒接觸反應時,反應溫度並未達控溫器上的 溫度,讓產物的比例不同。

表 4.8 顆粒狀 Ru@SiO2 對氫化反應轉化率之影響

取樣時間 (h)	1	2	3	5
HBA conversion (%)	94.1	98.2	98.9	98.7
HMPA conversion (%)	95.1	98.2	98.9	99.1

表 4.9 顆粒狀 Ru@SiO2 對氫化反應產率之影響

取樣時間 (h) -	yield %								
	BDO	MPO	GBL	IBA	РОН	THF			
1	65.9	20.4	0.8	0.9	5.7	0.2			
2	61.8	19.9	0.7	1.3	10.5	0.2			
3	61.6	20.9	0.8	1.3	13.1	0.2			
5	64.4	20.3	2.2	1.8	9.2	0.4			
反應條件									
觸媒:顆粒狀 Ru@SiO ₂ 10g				Mini pump: 10ml/h					
反應壓力	: 1000 psi			反應物 n/i:4.17					
反應溫度:120℃									

圖 4.12 顆粒狀 Ru@SiO2 觸媒在不同取樣時間之轉化率

圖 4.13 顆粒狀 Ru@SiO2 觸媒在不同取樣時間之產率

Packed bed reactor 填充觸媒換成 Ni/Al₂O₃,結果如表 4.10、4.11 及圖 4.14、4.15 所示。取樣時間 1 小時,HBA / HMPA 轉化率皆未達 90%,取樣時間為 2、3、4、5 小時,HBA 轉化率也只有 96%,相較 之下,Ru@SiO₂(取樣時間 1 小時,轉化率 94%)催化 HBA / HMPA 之 氫化能力明顯優於 Ni /Al₂O₃,但是 HBA 主要產物 BDO 的產率, Ru@SiO₂ 卻不及 Ni/Al₂O₃。並非 Ru@SiO₂ 對 BDO 的選擇率劣於 Ni/Al₂O₃,而是如(A)部分裡所討論原因造成。

表 4.10 顆粒狀 Ni/Al₂O₃ 對氫化反應轉化率之影響

取樣時間 (h)	1	2	3	4	5
HBA conversion (%)	82.1	93.7	96.1	95.6	96.7
HMPA conversion (%)	87.8	97.4	97.6	98	98.8

取樣時間 (h) ·	yield %						
	BDO	MPO	GBL	IBA	РОН	THF	
1	59.2	14.3	0.9	5.6	3.0	0.2	
2	69.8	16.3	0.6	4.8	2.3	0.2	
3	70.9	16.9	0.8	4.3	2.2	0.2	
4	70.6	16.7	0.7	5.2	2.3	0.2	
5	70.7	15.6	0.7	6.2	2.3	0.2	
		反應	條件				
觸媒:顆	頁粒狀 Ni/Al ₂ O ₃ 10g Mini pump: 10ml/h						
反應壓力	7:1000 psi 反應物 n/i:4.17			i:4.17			
反應溫度	∶120°C						

表 4.11 顆粒狀 Ni/Al2O3 對氫化反應產率之影響

圖 4.14 顆粒狀 Ni/Al₂O₃ 觸媒在不同取樣時間之轉化率

圖 4.15 顆粒狀 Ni/Al2O3 觸媒在不同取樣時間之產率

4.2.3 雙層觸媒催化 HBA / HMPA 之氫化反應 (Packed bed reactor) (A) Pure Ni /Al₂O₃

此組實驗所用之反應物 n/i 比為 2.5、進料流量:20ml/h、觸媒用 量為 20g,用來與後面兩組填充雙層觸媒之實驗進行比較。由表 4.12 及圖 4.16 中看到隨著取樣時間拉長,HBA 轉化率和 4.2.2(B)相似, 可以說明儘管改變了反應物 n/i 比例,利用 Ni/Al₂O₃在固定床反應器 中進行 HBA 之氫化反應時,轉化率約在 95~96%左右。

表 4.12 Ni/Al₂O₃對氫化反應轉化率之影響

取樣時間 (h)	1	2	3	4	5
HBA conversion (%)	92.6	96.9	95.1	94.6	96.9
HMPA conversion (%)	97.4	99.1	98.8	98.2	99.2

取樣時間 (h) ·		yield %					
	BDO	MPO	GBL	IBA	РОН	THF	
1	58.8	17.3	0.8	11.7	3.7	0.2	
2	64.1	18.9	0.6	9.8	3.3	0.2	
3	60.7	16.9	1.1	11.8	3.8	0.1	
4	61.7	17.3	1.3	10.7	3.6	0.1	
5	63.8	18.9	0.7	9.5	3.2	0.2	

表 4.13 Ni/Al₂O₃ 對氫化反應產率之影響

反應條件

觸媒:Pure Ni/Al ₂ O ₃ 20g	Mini pump:20ml/h	
反應壓力:1000 psi	反應物 n/i:2.5	
反應溫度:120℃		

圖 4.16 Ni/Al₂O₃ 觸媒在不同取樣時間之轉化率

圖 4.17 Ni/Al₂O₃ 觸媒在不同取樣時間之產率
(B) Ni/Al₂O₃和分子篩串聯

在 Packed bed reactor 下層先填充脫水觸媒 MS,上層再填充氫化 觸媒 Ni/Al₂O₃,實驗結果如表 4.14、4.15 及圖 4.18、4.19 所示,當反 應物 HBA 通過氫化段觸媒轉化成 BDO,再往下流經脫水觸媒 MS, 使 BDO 轉化成 THF。但實驗結果卻不如預期,HBA 轉化率只有 85%~88%,產物 BDO 經過脫水觸媒也未如預期轉化成 THF,反倒還 產生了未知副產物。

表 4.14 Ni/Al₂O₃ 串聯 MS 對氫化反應轉化率之影響

取樣時間 (h)	1	2	3	4	5
HBA conversion (%)	85.5	88.9	85.6	84.5	85.1
HMPA conversion (%)	97.4	98.5	97.4	96.6	98.4

表 4.15 Ni/Al2O3 串聯 MS 對氫化反應產率之影響

取样吃明 (h)	yield %						
环际间 (II)	BDO	MPO	GBL	IBA	POH	THF	Other
1	56.5	16.3	0.5	10.9	3.2	0.2	
2	56.0	17.9	0.6	9.9	3.4	0.2	1.2
3	55.6	16.9	0.8	8.5	3.1	0.1	2.3
4	54.4	16.9	1.0	8.2	3.1	0.1	2.6
5	54.9	15.9	0.7	9.7	3.1	0.1	2.6

反瘫條件	Ł

觸媒:	Ni/Al ₂ O ₃ 20g / MS 10g	Mini pump:20ml/h
	反應壓力:1000 psi	反應物 n/i:2.5
	反應溫度:120℃	

圖 4.18 Ni@Al₂O₃ 串聯 MS 觸媒在不同取樣時間之轉化率

圖 4.19 Ni@Al₂O₃ 串聯 MS 觸媒在不同取樣時間之產率

(C) Ni/Al₂O₃和 Al₂O₃串聯

將下層脫水觸媒換成 Al₂O₃,其結果如表 4.16、4.17 及圖 4.20、 4.21 所示,與 2.3.3(B)部分雷同,HBA 無法達到如純 Ni/Al₂O₃ 觸媒時 的高轉化率,產物 BDO 無法也轉化成 THF,同時也有未知副產物並 且在取樣時間第4 和第5 小時明顯增加。

表 4.16 Ni/Al₂O₃ 串聯 Al₂O₃ 對氫化反應轉化率之影響

取樣時間 (h)	1	2	3	4	5
HBA conversion (%)	82.3	83.9	81.6	82.7	91.7
HMPA conversion (%)	89.7	91.7	92.8	91.7	99.0

表 4.17 Ni/Al₂O₃ 串聯 Al₂O₃ 對氫化反應產率之影響

取镁咭問 (b)	yield %						
状 脉时间 (II)	BDO	MPO	GBL	IBA	POH	THF	Other
1	52.2	17.9	0.7	7.2	2.7	0.8	
2	53.5	18.2	0.8	5.5	2.4	0.6	1.1
3	53.4	17.1	0.8	6.5	2.8	0.5	2.2
4	50.4	16.3	0.9	6.3	2.7	0.4	10.3
5	48.4	11.9	1.3	7.7	2.8	0.2	17.8

反應條件

觸媒:	Ni/Al ₂ O ₃ 20g / Al ₂ O ₃ 10g	Mini pump:20ml/h
	反應壓力:1000 psi	反應物 n/i:2.5
	反應溫度:120℃	

圖 4.21 Ni@Al₂O₃ 串聯 Al₂O₃ 觸媒在不同取樣時間之產率

4.3 雙金屬核殼式觸媒氫化 HBA / HMPA

本章節探討雙金屬觸媒系統對於HBA/HMPA 氫化反應的產物之 影響。選用對於HBA/HMPA 有較佳氫化能力的釘金屬做為主要的活 性金屬,配合Fe、Cu、Pt、Cr、Pd 等製成雙金屬核殼式觸媒,透過 實驗找尋最合適之雙金屬觸媒種類、混合比例和反應條件,期望生產 主要產物 1,4-丁二醇(BDO)外,也能提升γ-丁內酯 (GBL)或四氫呋喃 (THF)的產率。

4.3.1 Ru-Fe@SiO2核殼式觸媒

(A) Ru-Fe@SiO2不同比例下對氫化反應的影響

表 4.18 及圖 4.22 顯示純 Ru@SiO₂和 Ru-Fe 重量比例 4:1、2:1 時 轉化率都可以達到 99%。表 4.19 及圖 4.23 顯示純 Ru@SiO₂之 GBL 產率 3.3%, 加了 Fe 的雙金屬核殼式觸媒 GBL 產率上升到 6.0~7.1%, 說明加了 Fe 有助於 GBL 的產生。比較不同的 Ru-Fe 比例,隨著 Fe 的添加量增加, GBL 的產率並沒有明顯的改變, 副產物卻隨之增加, 而且轉化率與產率也越無法達平衡。

表 4.18 不同 Ru/Fe 比例之觸媒對氫化反應轉化率之影響

Cotoliust	Duesio	Ru-Fe(4:1)@ Ru-Fe(2:1)@ Ru-Fe(1:1)@				
Catalyst	Ru@SIO ₂	SiO ₂	SiO ₂	SiO ₂		
HBA conversion (%)	98.9	98.9	98.3	93.0		
HMPA conversion (%)	99.4	99.7	99.6	98.3		

表 4.19 不同 Ru/Fe 比例之觸媒對氫化反應產率之影響

Catalyst							
Catalyst	BDO	MPO	GBL	IBA	POH	THF	Other
Ru@SiO ₂	67.7	0.1	3.3	14.8	6.4	1.9	
$Ru-Fe(4:1)@SiO_2$	66.1	0.3	6.0	16.6	5.6	2.3	
$Ru-Fe(2:1)@SiO_2$	60.8	0.2	7.1	16.0	6.5	2.3	1.3
$Ru-Fe(1:1)@SiO_2$	54.4		6.9	6.6	3.8	0.9	9.7

反	廘	佭	件

反應溫度:200℃	反應物體積:50ml	-
反應壓力: 400 psi	反應物 n/i:4.17	
反應時間:3hr	觸媒用量: 0.2g	

圖 4.23 不同 Ru/Fe 比例之觸媒對氫化反應之產率

(B) Ru-Fe@SiO2不同壓力下對氫化反應的影響

利用 Ru-Fe 重量比例 4:1 的 Ru-Fe@SiO 觸媒可以增加 GBL 產率 且無副產物,因此選用此比例探討壓力對反應影響。表 4.20、4.21 及 圖 4.24、4.25 顯示,當壓力 300Psi 時 GBL 產率最高,隨著壓力的上 升 GBL 產率逐漸下降,BDO 產率逐漸上升。由於 GBL 經 BDO 脫氫 而得,當提高反應壓力就越不利於 BDO 的脫氫,當反應達平衡時, 反應仍在充滿氫氣的情況下,也可能趨使 GBL 再氫化成 BDO。

表 4.20 壓力對氫化反應轉化率之影響

Pressure (psi)	300	400	500	600	800
HBA conversion (%)	90.0	98.9	98.9	99.1	99.8
HMPA conversion (%)	99.0	99.7	99.6	99.6	99.7

表 4.21 壓力對氫化反應產率之影響

Dragoura (nai)	yield %						
Tressure (psi)	BDO	MPO	GBL	IBA	POH	THF	Other
300	51.2		9.4	5.0	3.3	0.8	10.6
400	66.1	0.3	6.0	16.6	5.6	2.3	
500	72.0		4.9	15.4	3.8	1.5	
600	72.8		4.2	15.2	3.9	1.5	
800	72.7		3.6	17.4	3.7	1.3	

反應條件

觸媒:Ru-Fe(4:1)@SiO ₂ 0.2g	反應物體積:50ml	
反應時間:3hr	反應物 n/i:4.17	
反應溫度:200℃		

圖 4.25 不同壓力下氫化反應之產率

(C) Ru-Fe@SiO2不同溫度下對氫化反應的影響

試著固定反應壓力 400Psi,藉由改變溫度觀察溫度對於 GBL 有 何影響。表 4.23 及圖 4.27 顯示,隨著反應溫度的上升,GBL 的產率 也明顯跟的上升。200℃可以視為一個分界點,當溫度高於 200℃時, GBL 產率就有明顯的增加,220℃時 GBL 產率更可達 14.6%。但是高 溫下仍得面對副產物產生,轉化率與產率也越無法達平衡等問題。

表 4.22 温度對氫化反應轉化率之影響

Temperature (°C)	180	190	200	220
HBA conversion (%)	99.8	98.9	98.9	93.2
HMPA conversion (%)	99.4	99.3	99.7	98.8

Temperature ($^{\circ}$ C)				yield %			
Temperature (C)	BDO	MPO	GBL	IBA	РОН	THF	Other
180	72.7		3.4	16.8	5.0	0.6	
190	70.9	0.3	4.0	14.9	4.4	0.6	
200	66.1		6.0	16.6	5.6	2.3	
220	42.1		14.6	7.8	5.3	7.0	6.5

表 4.23 温度對氫化反應產率之影響

反應條件

觸媒:Ru-Fe(4:1)@SiO ₂ 0.2g	反應物體積:50ml	
反應時間:3hr	反應物 n/i:4.17	
反應壓力: 400 psi		

圖 4.27 不同溫度下氫化反應之產率

(D) Ru-Fe@SiO2 觸媒量對氫化反應的影響

不同壓力的實驗中知道,反應時壓力越低,GBL會有較高的產率。 當壓力在 300Psig 時雖然有最佳 GBL 產率,但未知副產物相對也很 高,且轉化率也未完全。因此增加之觸媒的用量(由 0.2 克增加至 0.5 克),表 4.25 及圖 4.29 顯示 BDO 產率增加、產生副產物變少,轉化 率與產率也越相近,但是 GBL 產率卻無明顯增加。

表 4.24 觸媒量對氫化反應轉化率之影響

Catalyst	Ru-Fe(4:1)@SiO ₂	Ru-Fe(2:1)@SiO ₂	Ru-Fe(1:1)@SiO ₂
HBA conversion (%)	99.3	99.0	96.1
HMPA conversion (%)	98.9	98.7	99.0

Catalvat				yield %			
Catalyst	BDO	MPO	GBL	IBA	POH	THF	Other
Ru-Fe(4:1)@SiO ₂	61.7		9.5	15.5	6.1	1.5	2.7
Ru-Fe(2:1)@SiO ₂	62.7		9.3	11.4	4.8	1.3	5.1
Ru-Fe(1:1)@SiO ₂	58.9		8.6	6.0	3.9	0.8	7.5

表 4.25 觸媒量對氫化反應產率之影響

反應條件

反應溫度:200℃ 反應物體積:50ml
反應壓力: 300 psi 反應物 n/i: 4.17
反應時間:3hr

圖 4.29 觸媒量對氫化反應之產率

(E) Ru-Fe@SiO₂不同時間對氫化反應的影響

表 4.27 及圖 4.31 顯示反應的第1個小時即有 GBL 的產生但也有 許多的副產物,隨著時間的增加 GBL 產率漸漸提升副產物也逐漸下 降,第3個小時 GBL 產率為最高,當時間延長到5個小時 GBL 的產 率卻又減少。推測原因如先前敘述,達平衡時反應仍在充滿氫氣的情 況下,持續反應可能趨使 GBL 又氫化成 BDO。

表 4.26 時間對氫化反應轉化率之影響

Time(h)	1	2	3	5
HBA conversion (%)	54.0	80.0	90.0	98.0
HMPA conversion (%)	99.7	99.9	99.0	99.2

Time(h)				yield %			
Time(n)	BDO	MPO	GBL	IBA	POH	THF	Other
1	29.2		6.6	2.3	2.9	0.2	17.2
2	44.2		8.2	3.8	3.2	0.6	12.9
3	51.2		9.4	5.0	3.3	0.8	10.6
5	62.0		7.4	9.7	4.3	1.9	4

表 4.27 時間對氫化反應產率之影響

反應條件

觸媒:Ru-Fe(4:1)@SiO ₂ 0.2g	反應物體積:50ml	
反應溫度:200℃	反應物 n/i:4.17	
反應壓力: 300 psi		

圖 4.31 不同時間對氫化反應之產率

(F) Ru-Fe@SiO2 雙金屬核殼式觸媒之 XRD 分析

圖 4.32 為 Ru-Fe(4:1)@SiO₂觸媒之 XRD 的分析,分析得到其特 徵繞射峰在 2θ = 22°,44°。

圖 4.32 Ru-Fe(4:1)@SiO2 觸媒 XRD 圖

4.3.2 Ru-Cu@SiO2核殼式觸媒

(A) Ru-Cu@SiO2不同比例下對氫化反應的影響

表 4.28 及圖 4.33 顯示,利用 Cu 製成的 Ru-Cu 雙金屬核殼式觸媒 在各比例下反應 3 小時 HBA 皆無法轉化完全,最高轉化率為比例 4:1 的 95%。從表 4.29 及圖 4.34 可以看到,GBL 的產率也有不錯的表現, 其更甚於相同比例下的 Ru-Fe 雙金屬核殼式,卻也產生更多的副產物, 且副產物隨著 Ru/Cu 的比例增加而增加。

表 4.28 不同 Ru/Cu 比例之觸媒對氫化反應轉化率之影響

Catalyst	Ru@SiO ₂	Ru-Cu(4:1) @SiO ₂	Ru-Cu(2:1) @SiO ₂	Ru-Cu(1:1) @SiO ₂
HBA conversion (%)	98.9	95.2	93.0	86.0
HMPA conversion (%)	99.4	98.5	98.8	99.3

表 4.29 不同 Ru/Cu 比例之觸媒對氫化反應產率之影響

Catalyst				yield %			
Catalyst	BDO	MPO	GBL	IBA	РОН	THF	Other
Ru@SiO ₂	67.7	0.1	3.3	14.8	6.4	1.9	
$Ru-Cu(4:1)@SiO_2$	65.1	0.1	7.5	9.1	3.8	1.2	7.3
$Ru-Cu(2:1)@SiO_2$	61.6	0.1	7.0	7.6	3.1	1.6	8.8
$Ru-Cu(1:1)@SiO_2$	51.2	0.1	8.4	7.3	3.6	1.8	9.5

反應條件

反應溫度:200℃	反應物體積:50ml
反應壓力:400 psi	反應物 n/i:4.17
反應時間:3hr	觸媒用量: 0.2g

圖 4.33 不同 Ru/Cu 比例之觸媒對氫化反應之轉化率

圖 4.34 不同 Ru/Cu 比例之觸媒對氫化反應之產率

(B) Ru-Cu@SiO2不同比例下對氫化反應的影響(300Psi)

改變反應壓力為 300Psi, 期望各比例的 Ru-Cu 雙金屬核殼式觸媒 在更低壓力下, GBL 的產率可以有所提升。表 4.31 及圖 4.36 可以看 到 GBL 的產率 8~9%之間, 和反應壓力為 400 Psi 相較下並無明顯增 加,低壓下也使反應不完全,使轉化率更低,產生更多副產物。

表 4.30 不同 Ru/Cu 比例之觸媒對氫化反應轉化率之影響(300Psi)

Catalyst	Ru-Cu (4:1)@SiO ₂	Ru-Cu (2:1)@SiO ₂	Ru-Cu (1:1)@SiO ₂
HBA conversion (%)	78.1	76.2	72.3
HMPA conversion (%)	99.8	99.7	99.9

表 4.31 不同 Ru/Cu 比例之觸媒對氫化反應產率之影響(300Psi)

Catalyat	yield %						
Catalyst	BDO	MPO	GBL	IBA	POH	THF	Other
Ru-Cu(4:1)@SiO ₂	42.2		8.0	5.8	3.5	1.0	8.9
$Ru-Cu(2:1)@SiO_2$	37.9		8.0	5.6	3.4	1.7	14.9
$Ru-Cu(1:1)@SiO_2$	31.8		9.2	5.4	3.5	1.7	15.1

反應條件

反應溫度:200℃	反應物體積:50ml
反應壓力: 300 psi	反應物 n/i:4.17
反應時間:3hr	觸媒用量: 0.2g

圖 4.35 不同 Ru/Cu 比例之觸媒對氫化反應之轉化率(300Psi)

圖 4.36 不同 Ru/Cu 比例之觸媒對氫化反應之產率(300Psi)

(C) Ru-Cu@SiO2 雙金屬核殼式觸媒之 XRD 分析

圖 4.37 為 Ru-Cu(4:1)@SiO₂觸媒之 XRD 的分析,分析得到其特 徵繞射峰在 2θ =22°, 44°,56°,66°。

 $Ru-Cu(4:1)@SiO_2$

圖 4.37 Ru-Cu(4:1)@SiO2 觸媒 XRD 圖

4.3.3 Ru-Cr@SiO2核殼式觸媒

(A) Ru-Cr@SiO2不同比例下對氫化反應的影響

表 4.32 及圖 4.38 顯示,利用 Cr 製成的 Ru-Cr 雙金屬核殼式觸媒 反應 3 小時,Ru-Cr 重量比例為 4:1 時 HBA 轉化率只有 83%,隨 Cr 的添加量增加轉化率表現更差。表 4.33 及圖 4.39 顯示,雖然有助於 GBL 產率提升,但是成效不佳,副產物也較使用其它雙金屬核殼式 觸媒在相同反應條件下來的多。

表 4.32 不同 Ru/Cr 比例之觸媒對氫化反應轉化率之影響

Catalyst	ມາອຽະດ	Ru-Cr(4:1)@	Ru-Cr(2:1)@	Ru-Cr(1:1)@
Cataryst	Ku@SIO ₂	SiO ₂	SiO ₂	SiO ₂
HBA conversion (%)	98.9	83.0	53.8	42.2
HMPA conversion (%)	99.4	99.9	99.8	99.7

表 4.33 不同 Ru/Cr 比例之觸媒對氫化反應產率之影響

Catalyst				yield %			
Catalyst	BDO	MPO	GBL	IBA	POH	THF	Other
Ru@SiO ₂	67.7	0.1	3.3	14.8	6.4	1.9	
$Ru-Cr(4:1)@SiO_2$	57.1		7.2	4.5	3.9	1.0	10.5
$Ru-Cr(2:1)@SiO_2$	29.5		5.9	2.7	2.5	1.1	12.18
$Ru-Cr(1:1)@SiO_2$	20.6		5.7	2.3	2.1	0.9	13.2

反應條件

反應溫度:200℃	反應物體積:50ml	
反應壓力: 400 psi	反應物 n/i:4.17	
反應時間:3hr	觸媒用量: 0.2g	

圖 4.38 不同 Ru/Cr 比例之觸媒對氫化反應之轉化率

圖 4.39 不同 Ru/Cr 比例之觸媒對氫化反應之產率

(B) Ru-Cr@SiO2 雙金屬核殼式觸媒之 XRD 分析

圖 4.40 為 Ru-Cr(4:1)@SiO₂觸媒之 XRD 的分析,分析得到其特 徵繞射峰在 2 θ = 22°,27, 45°,56°。

 $Ru-Cr(4:1)@SiO_2$

圖 4.40 Ru-Cu(4:1)@SiO2 觸媒 XRD 圖

4.3.4 Ru-Pt@SiO2核殼式觸媒

(A)Ru-Pt@SiO2不同比例下對氫化反應的影響

表 4.35 及圖 4.42 顯示,利用 Pt 製成的 Ru-Pt 雙金屬核殼式觸媒 對 BDO 脫氫轉化成 GBL 或 BDO 脫水轉化成 THF 沒有太大的幫助。 此外 Ru-Pt 各重量比例下轉化率皆達 99%,但是 Ru/Pt 比例越大時, 轉化率與產率越無法達平衡。

表 4.34 不同 Ru/Pt 比例之觸媒對氫化反應轉化率之影響

Catalyst	Du@SiO	Ru-Pt(4:1)@	Ru-Pt(2:1)@	Ru-Pt(1:1)@
Catalyst	Ru@SIO ₂	SiO ₂	SiO ₂	SiO ₂
HBA conversion (%)	98.9	99.0	99.0	99.0
HMPA conversion (%)	99.4	99.7	99.2	99.6

表 4.35 不同 Ru/Pt 比例之觸媒對氫化反應產率之影響

Catalvat				yield %			
Catalyst	BDO	MPO	GBL	IBA	POH	THF	Other
Ru@SiO ₂	67.7	0.1	3.3	14.8	6.4	1.9	
$Ru-Pt(4:1)@SiO_2$	69.0	1.0	4.1	13.6	4.3	2.3	1.9
$Ru-Pt(2:1)@SiO_2$	64.3	1.2	4.4	16.7	5.5	3.5	
$Ru-Pt(1:1)@SiO_2$	59.6	0.1	5.0	16.9	5.0	2.8	

反應條件

反應溫度:200℃	反應物體積:50ml
反應壓力:400 psi	反應物 n/i:4.17
反應時間:3hr	觸媒用量: 0.2g

圖 4.41 不同 Ru/Pt 比例之觸媒對氫化反應之轉化率

圖 4.42 不同 Ru/Pt 比例之觸媒對氫化反應之產率

(B) Ru-Pt@SiO2 雙金屬核殼式觸媒之 XRD 分析

圖 4.43 為 Ru-Pt(4:1)@SiO₂ 觸媒之 XRD 的分析,分析得到其特徵 繞射峰在 2θ = 22°,38°,44°,56°,66°,75°,78°。

 $\operatorname{Ru-Pt}(4:1)@\operatorname{SiO}_2$

圖 4.43 Ru-Pt(4:1)@SiO2 觸媒 XRD 圖

4.3.4 Ru-Pd@SiO2核殼式觸媒

(A) $Ru-Pd@SiO_2$ 不同比例下對氫化反應的影響

表 4.36 及圖 4.44 顯示,利用 Pd 製成的 Ru-Pd 雙金屬核殼式觸媒 各重量比例下轉化率皆達 99%,而且並無先前其他觸媒所遇到的問題, 隨著 Ru-Pd 重量比例的改變,轉化率與產率也能趨近於平衡。此外, 表 4.37 及圖 4.45 顯示, Ru-Pd 雙金屬核殼式觸媒能有效的使 BDO 脫 水成 THF,當重量比例 4:1 時即有最大 THF 產率 7.8° 不過隨著 Ru/Pd 之比例增加, THF 產率會逐漸減少。

表 4.36 不同 Ru/Pd 比例之觸媒對氫化反應轉化率之影響

Cetelert	Du@CiO	Ru-Pd(4:1)	Ru-Pd(2:1)	Ru-Pd(1:1)
Cataryst	Ru@S1O ₂	@SiO ₂	@SiO ₂	@SiO ₂
HBA conversion (%)	98.9	99.8	99.6	99.2
HMPA conversion (%)	99.4	99.2	99.6	99.2

表 4.37 不同 Ru/Pd 比例之觸媒對氫化反應產率之影響

Catalvat				yield %			
Catalyst	BDO	MPO	GBL	IBA	POH	THF	Other
Ru@SiO ₂	67.7	0.1	3.3	14.8	6.4	1.9	
$Ru-Pd(4:1)@SiO_2$	59.7	0.1	3.2	16.5	5.8	7.8	3.7
$Ru-Pd(2:1)@SiO_2$	63.1		2.4	17.4	5.1	7.6	3.0
$Ru-Pd(1:1)@SiO_2$	64.4		2.0	17.0	5.2	5.5	3.7

反應條件

反應溫度:200℃	反應物體積:50ml
反應壓力: 500 psi	反應物 n/i:4.17
反應時間:3hr	觸媒用量: 0.2g

圖 4.45 不同 Ru/Pd 比例之觸媒對氫化反應之產率

(B) Ru-Pd@SiO2不同時間對氫化反應的影響

表 4.38 及圖 4.46 顯示,反應 1 小時轉化率就可以達 99%。表 4.39 及圖 4.47 顯示 Ru-Pd@SiO₂ 觸媒同時也有很高的 BDO 產率。隨著反 應時間的增加, BDO 的產率逐漸下降, THF 的產率逐漸增加,反應 時間 5 小時 THF 產率為最高的 9%。BDO 脫水轉化成 THF,隨著反 應時間增加, THF 也不會再轉化成 BDO。

表 4.38 時間對氫化反應轉化率之影響

Time(h)	1	2	3	5
HBA conversion (%)	99.0	99.5	99.8	99.1
HMPA conversion (%)	99.6	99.6	99.2	99.6

Time(h)				yield %			
Time(ii)	BDO	MPO	GBL	IBA	POH	THF	Other
1	65.7		4.8	14.1	6.0	1.8	3.4
2	62.7		5.7	15.8	6.2	5.7	1.1
3	59.7	0.1	3.2	16.5	5.8	7.8	3.7
5	55.8		5.7	17.5	6.9	9.0	1.8

表 4.39 時間對氫化反應產率之影響

反應條件

觸媒:Ru-Pd(4:1)@SiO ₂ 0.2g	反應物體積:50ml	
反應溫度:200℃	反應物 n/i:4.17	
反應壓力: 500 psi		

圖 4.47 不同時間對氫化反應之產率

(C) Ru-Pd@SiO2不同溫度對氫化反應的影響

固定反應壓力為 500Psi,藉由改變溫度觀察產物比例的變化。表 4.41 及圖 4.49 顯示,反應溫度 200℃時,THF 產率高於溫度 190℃的 產物,溫度上升至 210℃時 THF 產率沒有變化,反倒是 GBL 產率有 明顯的增加,說明溫度改變對於 GBL 的影響更甚於 THF。

表 4.40 溫度對氫化反應轉化率之影響

Temperature (°C)	190	200	210
HBA conversion (%)	99.5	99.8	98.5
HMPA conversion (%)	99.8	99.2	99.0

表 4.41 溫度對氫化反應產率之影響

Tomporature $\binom{9}{1}$				yield %			
Temperature (C)	BDO	MPO	GBL	IBA	POH	THF	Other
190	67.4		3.0	16.4	5.2	4.0	1.2
200	59.7		3.2	16.5	5.8	7.8	3.7
210	54.1		6.0	14.9	6.6	7.7	5.0

反應條件

觸媒:Ru-Pd(4:1)@SiO ₂ 0.2g	反應物體積:50ml	
反應壓力: 500 psi	反應物 n/i:4.17	
反應時間:3hr		

圖 4.49 不同溫度氫化反應之產率

(D) Ru-Pd@SiO2 雙金屬核殼式觸媒之 XRD 分析

圖 4.50 為 Ru-Pd(4:1)@SiO₂ 觸媒之 XRD 的分析,分析得到其特 徵繞射峰在 2θ = 22°, 38.5°, 44°, 56°, 75°。

 $Ru-Pd(4:1)@SiO_2$

圖 4.50 Ru-Pd(4:1)@SiO2 觸媒 XRD 圖

4.3.5 比較各式雙金屬核殼式觸媒

綜合全部雙金屬核殼式觸媒的比較,由表 4.42 顯示,添加 Fe、 Cu、Cr 都有助於 BDO 脫氫轉化成 GBL,但是 Cu 與 Cr 皆會產生副 產物。添加了 Pd 的雙金屬核殼式觸媒,則有助於 BDO 脫水轉化成 THF,但是在反應壓力 400Psi 下會產生許多副產物,上個章節 Ru-Pd 壓力的實驗中,知道壓力在 500Psi 就能改善有過多副產物之情形。

表 4.42 不同觸媒對氫化反應產率之影響

Catalyst				yield %			
Catalyst	BDO	MPO	GBL	IBA	POH	THF	Other
Ru@SiO ₂	67.7	0.1	3.3	14.8	6.4	1.9	
Ru-Fe(4:1)@SiO ₂	66.1	0.3	6.0	16.6	5.6	2.3	
$Ru-Cu(4:1)@SiO_2$	65.1	0.1	7.5	9.1	3.8	1.2	7.3
$Ru-Cr(4:1)@SiO_2$	57.1		7.2	4.5	3.9	1.0	10.5
$Ru-Pt(4:1)@SiO_2$	69.0	1.0	4.1	13.6	4.3	2.3	1.9
$Ru-Pd(4:1)@SiO_2$	41.1	2.1	3.4	11.5	5.5	8.5	19.6

反應條件

反應溫度:200℃	反應物體積:50ml
反應壓力:400 psi	反應物 n/i:4.17
反應時間:3hr	觸媒用量: 0.2g

4.3.6 各式雙金屬核殼式觸媒之 BET 分析

表格 4.43 為各雙金屬核殼觸媒的表面積與孔洞之分析,結果顯示 觸媒的粒徑越大,表面相對就會越大,此外,Ru@SiO2加進了其他金 屬助觸媒後,合成觸媒的粒徑與表面積大小也都明顯下降。粒徑大小 與表面積大小皆會影響到觸媒的催化能力,這也是雙金屬核殼觸媒比 例相同及相同的條件下造成轉化率有所差異的可能原因。

Catalyst	Surface Area(m ² /g)	Pore volume(m ³ /g)	Average particle size(Å)
Ru@SiO ₂	509.1069	0.668503	117.853
Ru-Fe(4:1)@SiO ₂	411.6648	0.577717	140.750
Ru-Cu(4:1)@SiO ₂	178.2233	0.498391	336.656
Ru-Cr(4:1)@SiO ₂	285.2096	0.568996	210.372
Ru-Pt(4:1)@SiO ₂	259.8495	0.584804	230.903
Ru-Pd(4:1)@SiO ₂	437.3988	0.597323	137.175

表 4.43 各式雙金屬核殼式觸媒分析
4.3.7 各式雙金屬核殼式觸媒之 EDS 分析

EDS 是利用電子撞擊樣品後所釋放出之 X 射線,配合元素之分佈圖譜,做樣品內部所含元素之全定性和半定量分析,本實驗是利用 系上 TFSEM-JOEL TEM-2100 所掛載 EDS 所分析而得。以下是各式 雙金屬核殼式觸媒之 EDS 分析結果。

Ru-Fe@SiO ₂	Ru(wt%)	Fe(wt%)
4:1	8.38	2.34
2:1	7.45	4.04
1:1	2.55	2.53
Ru-Cr@SiO ₂	Ru(wt%)	Cr (wt%)
4:1	3.56	0.95
2:1	4.91	3.05
1:1	4.24	3.64
Ru-Pt@SiO ₂	Ru(wt%)	Pt (wt%)
4:1	15.12	2.57
2:1	7.04	2.92
1:1	7.2	5.99
Ru-Pd@SiO ₂	Ru(wt%)	Pd (wt%)
4:1	11.43	2.91
2:1	9.21	5.70
1:1	9.01	10.58

表 4.44 各式雙金屬核殼式觸媒組成之分析

第五章 結論與建議

本研究主要是利用丙烯醇法來生產 1,4-丁二醇 (BDO),並延伸 探討在同一製程中增加 BDO 下游產物之產率。結果分成兩部分來討 論:(1)透過 Packed bed reactor 中填充雙層觸媒,先使 HBA 轉化成 BDO,再經過第二層脫氫或脫水觸媒使 BDO 再轉化成下游 GBL 與 THF;(2)製備雙金屬核殼式觸媒希望在同一製程中同時能生產 BDO、 GBL 與 THF。以下是此研究主要討論及建議:

Packed bed reactor :

- Ru@SiO₂ 粉體製成顆粒狀觸媒,加入甲基纖維素做為黏稠劑後, 填入模具中以油壓機製成錠,Batch reactor 反應後發現,轉化效果 遠不如粉體時的觸媒。顆粒狀觸媒就只有顆粒表面部分能進行參 與反應,顆粒觸媒內部則就浪費掉。因此相同的觸媒重量下轉化 效果就會大大的下降,若能使顆粒狀觸媒有孔洞讓反應液進到顆 粒觸媒內部進行反應,應可使顆粒觸媒催化效果再提升。
- 2. Ru@SiO₂ 顆粒狀觸媒以 PBR 氫化 HBA/HMPA 時,雖然轉化率皆 可達 99%,但 BDO 產率與在 Batch reactor 中有所落差。由於製成 的顆粒狀觸媒體積很小,填入 10g 於反應器內也只占反應器比例 的一小部分,進料的反應液與觸媒所接觸時間不長,可能為造成

產物比例不同的主因。

- 3. Packed bed reactor 填充 Ni 20g 時轉化率就可達 95%,改由填充雙 層觸媒 Ni/MS 和 Ni/Al₂O₃時,HBA 轉化率卻只剩 85%。填充氫化 觸媒 Ni 20g 和脫水觸媒 10g 時,已經占整個反應器七分滿。當反 應液進到反應器中,溫度還未達到控溫器設定溫度就與氫化觸媒 進行反應,此時溫度並非氫化段最佳反應溫度,造成轉化率無法 達到與只填充 Ni 時相同。
- 4. Packed bed reactor 填充雙層觸媒 Ni/MS 和 Ni/Al₂O₃,實驗結果卻發現並無脫水的效果(BDO→→THF)。推測原因有(1)低溫(120℃)下條件下不適於 BDO 進行脫水反應(2)反應液是以水及未萃取液一比一混合後萃取而得,所以反應物本身除了 HBA 和 HMPA 外還含有大量的水,因而影響到在第二層脫水觸媒使脫水反應不易進行。

雙金屬核殼式觸媒:

 添加助觸媒 Fe、Cu、Cr 製備的雙金屬核殼式觸媒皆有助於 BDO 脫氫轉化成 GBL。隨著增加觸媒添加量,也越容易讓反應產生未 知副產物,而且轉化率與產率也越無法平衡。相同的反應條件下, 目前以 Ru-Fe(4:1)@SiO2效果最佳,雖然 GBL 產率不是最高,但

111

是它沒有副產物及轉化率與產率無法達平衡等問題。

- 2. 利用 Ru-Fe@SiO₂ 雙金屬核殼式觸媒進行一連串的實驗中發現, 在較低反應壓力及較短的反應時間下會越有較高的 GBL 產率。 由於 GBL 是由 HBA 產物中 BDO 脫氫而得,在高壓下進行反應 自然讓脫氫反應不易進行,此外,延長反應時間也越容易驅使 GBL 再氫化成 BDO。
- 3. 添加助觸媒 Pd 製備的雙金屬核殼式觸媒對於 HBA 有很好的氫化 能力,不同於其他金屬助觸媒,Ru-Pd@SiO₂ 雙金屬核殼式觸媒 在 4:1、2:1 及 1:1 比例都能使轉化率達到 99%,所產生副產物很 少,也沒有轉化率與產率無法達平衡等問題,而且實驗結果顯示, 反應除了氫化反應外,同時也有脫水反應進行。
- 4. 比較 Ru-Pd@SiO₂與 Ru@SiO₂,發現助觸媒 Pd 有助於脫水反應 的進行,因此期望增加助觸媒 Pd 添加量能提升 THF 產率,但是 反應結果卻不然。推測原因,THF 是經由 HBA 進行氫化反應得 到產物 BDO 再脫水而得,當 Ru-Pd@SiO₂雙金屬觸媒中,Ru 所 占的比例減少的情況,相同反應時間下,HBA 氫化能力下降, BDO 產率減少,進而影響到脫水反應。

- 5. 在 Ru-Pd(4:1)@SiO₂ 觸媒於不同反應時間的實驗中發現,當反應 1小時轉化率就可以達 99%,同時也有很高的 BDO 產率,隨著反 應時間增加,BDO 產率逐漸減少,而 THF 產率逐漸增加。這樣 的結果和第4點的情況是類似的,都是先進行 HBA 氫化反應, 當氫化反應達平衡才接著進行脫水反應,未來可以藉由延長反應 時間來觀察助觸媒 Pd 對於脫水反應的能力。
- 综合所有的實驗結果可以發現若想要反應有脫氫或脫水的反應 產生,反應溫度應在要200℃或以上,若想要使脫氫的能力增加, 則反應必須在較低的壓力下進行。

第六章 參考文獻

- 陳亭秀,黃國維,"中國大陸展開 BDO 反傾銷調查對我石 化產業的衝擊",ITIS 產業資訊服務網(2003)。
- [2] 周國文,李洋,馬友光,"1,4-丁二醇的發展概況與市場預測", 技術經濟與市場,第四期(2001)。
- [3] 蓋紅育,"1,4-丁二醇的生產及消費概況",石油化學動態,第十二期(1994)。
- [4] 王春江.1,4-丁二醇的生產與市場需求.化工科技市場(2000)。
- [5] Aubry,D., "Synthesis, separation, and reactiveties of multidentate phosphine ligands and investigation into dirhodium hydroformylation and hydrocaboxylation catalysis", chapter 1, University of Illinois at Urbana-Champaign(2004).
- [6] White,D.F.,Dubner,W.S,"Hydroformylation process",United States Patent 7271295(2007).
- [7] 大連化學工業網站,"產品介紹",

http://www.dcc.com.tw/chinese/index.asp •

[8] 李耿林,中興大學化學研究所碩士論文,"以新型之銠金屬正一價

錯合物進行催化型均相不對稱醛氫化反應"(1995)。

- [9] 賴岳生,"奈米銀/鈀微粒之化學合成與其特性分析之研究",國立清 華大學化學工程學系碩士論文(2003)。
- [10]Z.Zhang,B.Zhao,L.Hu,J.of Solid State Chemistry, 121, 105-110(1996).
- [11]許名豪, "Pd@SiO2 觸媒催化對羧基苯甲醛氫化反應之研究",東 海大學化學工程研究所碩士論文(2007)。
- [12]王志銘,"以TiO2-ZrO2 為主的觸媒進行正庚烷的轉化反應研究",

清華大學化學工程學系碩士論文(2004)。

- [13]Horner,L.Siegel,H.,Buthe,H.,Angew.chem.Int.Ed.Engl.,7,942-948(19 68).
- [14]伍安義,"以化學還原法合成奈米銀-銅粒子及其特性分析研究",

清華大學化學工程學系碩士論文(2005)。

- [15]林孟萱, "Ag-SrTiO₃ 奈米核-殼結構粒子之研究與製備",中原大 學化學系碩士論文(2003)。
- [16]洪志堅,"丙烯醇加氫醛化觸媒改進之研究",東海大學化材系碩士論文(2009)。
- [17]歐迪政,"氧化鈦和氧化鈦-氧化鐵擔載金-銅雙金屬觸媒應用於甲醇部份氧化產氫之研究",中央大學化學工程與材料工程學系博士

論文(2009)。

- [18]Naoki Ichikawa,Satoshi Sato,Ryoji Takahashi,Toshiaki Sodesawa, Kanichiro Inui,Dehydrogenative cyclization of 1,4-butanediol overcopper-based catalyst,J.Catal.Chem.212,197-203 (2004).
- [19]Steffen Peter Müller, Martin Kucher, Christoph Ohlinger, and Bettina Kraushaar-Czarnetzki, Extrusion of Cu/ZnO catalysts for the single-stage gas-phase processing of dimethyl maleate to tetrahydrofuran, J. Catal. Chem. 218, 419-426 (2003).

[20]王堯展,"丙烯醇環氧化成環氧丙醇之觸媒研究",東海大學化學

工程研究所碩士論文(2000)。