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Abstract

We analyze left-truncated and right-censored (LTRC) data using semiparametric

transformation models. It is demonstrated that the approach of Chen et al. (2002)

can be extended to LTRC data. A simulation study is conducted to investigate the

performance of the proposed estimators.
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Chapter 1. Introduction

Left-truncated and right-censored (LTRC) data often arise in epidemiology and

individual follow-up studies (see Wang, 1991). Their importance stems from the

common use of prevalent cohort study designs to estimate survival from onset of a

specified disease. Consider the following applications.

Example 1.1: prevalent cohort data

In epidemiology, a prevalent cohort is defined as a group of diseased individuals

who are recruited for a prospective study. Suppose that the disease population

in a certain area is a representative sample from a large disease population. The

target interest of a research project is to study the natural history of the disease

for individuals who developed the disease during the calendar time period (τ0, τ),

τ0 < τ . Consider the sampling under which all of the individuals in the area

who have experienced a first event (such as being diagnosed as having Alzheimer’s

disease or AIDS) between τ0 and τ and have not experienced a second event (such as

death) are recruited at the time τ for a prospective follow-up study. The follow-up

study is terminated at τ ∗ (τ ∗ > τ). Suppose that the initial time of the first event

(denoted by Ts) can be quite accurately determined. For example, the dates of

Alzheimer’s disease or vascular dementia onset can be provided by the caregivers of

those patients (e.g. Canadian study of Health and Aging (see The CSHA working

group, 1994). Let T be the time from Ts to death. Let V denote the time from Ts

to τ , and C denote the time from Ts to censoring. Note that the censoring time can

be written as C = min(C1, C2) and P (C ≥ V ) = 1, where C1 = V + τ ∗− τ denotes

the time from onset of disease to the end of study, and C2 denotes the time from

onset of disease to drop-out or death due to other causes. Left truncation arises

because those individuals who have been diagnosed as having the disease and die

prior to time of recruitment (τ) are excluded from the cohort. Assume for each

individual, data is available on Z1, . . . , Zp covariates (e.g. sex, education, smoking

status, myocardial infarction). It is important to investigate the association between

these covariates Zi’s and survival rate. Figure 1 highlights all the different times

for LTRC data as described in Example 1.1
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Figure 1. Schematic depiction of LTRC data described in Example 1.1

Example 1.2 (Channing House data)

Channing House is a retirement centre in Palo Alto, California. The data were

collected between the opening of the house in calendar time τ = 1964 (in years) and

τ ∗ = 1975.5 (Hyde, 1980; Klein and Moeschberger, 1997). In that time 97 men and

365 women passed through the center. A distinctive feature of these individuals

was that all were covered by a health care program provided by the center which

allowed for easy access to medical care without additional financial burden to the

resident. Suppose that an individual must survival to an age of 60 (in years) to

enter the retirement community. Let τ0 denote the calendar time 1915.5 (in years).

Define a population as the resident who were born before τ0 and covered by a health

cure program provided the center. The target interest of a research project is to

study the survival time for the population defined above. Let Tb denote the calendar

time (in years) of birth. Let Te denote the calendar time (in years) of entry. Let

V = Te−Tb denote the entry age into the Channing House. Let T be the time from

Tb to death. It is clear that only subjects with entry age (V ) smaller than or equal

to the age on death (T ), i.e. T ≥ V , can become part of the sample. Moreover,

a large number of the observations were right-censored due to the residents being

alive on 1975.5 (termination of the follow-up). Let C denote the age at the end of

study. Hence C = V + τ ∗ − Te and P (C ≥ V ) = 1. Figure 2 highlights all the

different times for LTRC data as described in Example 1.2



5

 

Figure 2. Schematic depiction of LTRC data described in Example 1.2

Following the notations in Examples 1.1 and 1.2, let (T,C, V ) denote the lifetime,

censoring time and truncation time, respectively. Let Z = [Z1, . . . , Zp]
T represent

a p × 1 vector of covariates. Assume that T , V and C are continuous. Further,

assume that given Z, T and (V,C) are independent of each other but V and C are

dependent with P (C ≥ V ) = 1. For LTRC data, one can observe nothing if T < V

and observe (X, V, δ, Z), with δ = I[T<C] and X = min(T,C), if T ≥ V . In Example

1, the calendar time of the potential censoring point must be greater than τ , since

only those individuals in the follow-up study might be observed subject to right

censoring. Therefore, the relationship C ≥ V is always satisfied, i.e. P (C ≥ V ) = 1.

We consider the following transformation model:

S(t|Z) = g{h(t) + βTZ}, (1.1)

where S(t|Z) = P (T > t|Z) is the survival function of T given Z, the continuous,

strictly decreasing link function g(·) is given or specified up to a finite-dimensional

parameter, h(·) is a completely unspecified strictly increasing function, and β is a

p×1 vector of unknown regression coefficients. Note that when g(·) = exp{−exp(·)},
(1.1) gives the Cox proportional hazard model (Cox, 1972). The other family of

linear transformation models whose link functions are indexed by a single param-

eter η is given by g(·) = [1/{1 + ηexp(·)}]−1/η (η > 0), which corresponds to the

proportional odds model (Bennett, 1983; Murphy et al., 1997; Ying and Prentice,
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1991) when η = 1. Further, note that model (1.1) has an equivalent form

h(T ) = −βTZ + ε,

where the distribution of the error ε is P (ε ≤ x) = Fε(x) = 1− g(x).

When g(·) is completely specified, Chen et al. (2002) proposed an estimation

procedure for the analysis of right-censored data. The procedure proposed by Chen

et al. (2002) is easily implemented numerically and the estimator is the same as

the Cox partial likelihood estimator in the case of the proportional hazards model.

In Section 2, it is demonstrated that the approach of Chen et al. (2002) can be

easily extended to LTRC data. In Section 3, simulation studies are conducted to

investigate the performance of the proposed estimator.

Chapter 2. The Proposed Estimators

2.1 The Estimator based on the approach of Chen et al.

Let F (t|Z) = P (T ≤ t|Z) denote the cumulative distribution function of T

given Z. Let Q(t|Z) = P (C ≤ t|Z) and G(t) = P (V ≤ t|Z) denote the cumulative

distribution functions of C and V given Z, respectively. Suppose that the left and

right endpoints of T are independent of Z. Let aF and bF denote the left and

right endpoints of F , and similarly, define (aG, bG) and (aQ, bQ) as the left and right

endpoint of V , and C, respectively. Throughout this article, for identifiabilities of

F (t|Z), we assume that

aG = aF = aQ = 0, bG ≤ min(bF , bQ) and bF ≤ bQ. (2.1)

Let (Xi, Vi, δi, Zi) (i = 1, . . . , n) be the observed truncated sample. Let Yi(t) =

I[Vi≤t≤Xi] and Ni(t) = I[Xi≤t,δi=1]. Let F(t) denote the complete σ-field generated

by

{Vi, Zi, Yi(x), I[Vi≤Xi], δiI[Vi<Xi≤t], I[Vi<Xi≤x], x ≤ t; i = 1, . . . , n}.

Let p(Zi) = P (V ≤ T |Zi). Note that E[Yi(t)|Zi] = P (Vi ≤ t ≤ Xi|Zi) =

p(Zi)
−1P (V ≤ t ≤ C|Zi)P (T ≥ t|Zi), and E[Ni(t)|Zi] = p(Zi)

−1P (V ≤ T ≤
C, T ≤ t|Zi). Let λε(·) and Λε(·) denote the hazard and cumulative hazard func-

tions of ε, respectively. Let h0(·) and β0 denote the true values of h(·) and β,

respectively. Let Mi(t) = Ni(t) −
∫ t
0
Yi(s)dΛε(β

T
0 Zi + h0(s)). It follows that Mi(t)
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is a martingale process with respect to F(t). Similar to the approach of Chen et al.

(2002), i.e. by mimicking generalized estimating equation, we consider the following

two estimating equations:

U(β, h) =
n∑
i=1

∫ τc

0

Zi[dNi(t)− Yi(t)dΛε(β
TZi + h(t))] = 0, (2.2)

and
n∑
i=1

[dNi(t)− Yi(t)dΛε(β
TZi + h(t))] = 0, (2.3)

where h is a nondecreasing function satisfying h(0) = −∞ and τc < bF is a pre-

specified constant . This requirement ensures that Λε(a+h(0)) = 0 for any finite a.

Let β̃ and h̃(t; β̃) denote the solution of (2.2) and (2.3). Note that h̃(t; β̃) is a step

function in t that rises at the distinct jump points of {I[Xi≤t,δi=1]; i = 1, . . . , n}.

Consider the special case of the Cox model, in which λε = exp(t). It then

follows from (2.2) and (2.3) that the estimator β̃ satisfies the following equation

(see Appendix):

n∑
i=1

∫ τc

0

{
Zi −

∑n
j=1 ZjYj(t)exp(βTZj)∑n
j=1 Yj(t)exp(βTZj)

}
dNi(t) = 0,

which is precisely the Cox partial likelihood score equation for left-truncated and

right-censored data (Pan and Chappell, 2002). Equations (2.2) and (2.3) suggest

the following iterative algorithms for computing β̃ and h̃(t; β̃):

Step 0: Choose an initial value of β, denoted by β̃(0).

Step 1: Let t1 < t2 < · · · < tnd
< τc denote the distinct uncensored points. Obtain

h̃(0)(t1; β̃
(0)) by solving

n∑
i=1

Yi(t1)Λε(β
TZi + h(t1)) = 1,

with β = β̃(0). Then, obtain h̃(tk) for k = 2, . . . , nd, one-by-one by solving the

equation

n∑
i=1

Yi(tk)Λε(β
TZi + h(tk)) = 1 +

n∑
i=1

Yi(tk)Λε(β
tZi + h(tk−)),

with β = β̃(0).



8

Step 2: Obtain a new estimate of β by solving (2.2) with h(tk) = h̃(0)(tk; β̃
(0)).

Step 3: Set β̃(0) to be the estimate obtained in Step 2 and repeat Steps 1 and 2

until prescribed convergence criteria are met.

2.2 The asymptotic Properties of the Proposed Estimator

For any vector x, let x⊗2 = xxT . Similar to Proposition of Chen et al. (2002),

under suitable regularity conditions, we have the following proposition.

Theorem 1. Under assumption (2.1) and regularity conditions (Fleming and Har-

rington, 1991), we have that n
1
2 (β̃ − β) → N(0,Σβ̃) in distribution, as n → ∞,

where Σβ̃ = Σ−12 Σ1(Σ
−1
2 )T

Σ1 = E

[∫ τc

0

[Z1 − µz(t; β0)]⊗2λε(h0(t) + βT0 )Y1(t)]dh0(t)

]
,

Σ2 = E

[∫ τc

0

[Z1 − µz(t; β0)]ZT
1 λ̇ε(h0(t) + βT0 )Y1(t)]dh0(t)

]
,

where

µz(t) =
E[Z1λε(h0(X1) + βT0 Z1)Y1(t)B(t;X1)]

E[λε(h0(t) + βT0 Z1)Y1(t)]
,

where

B(t, s) = exp

(∫ t

s

E[λ̇ε(h0(x) + βT0 Z1)Y1(x)]

E[λε(h0(x) + βT0 Z1)Y1(x)
dh0(x)

)
.

Proof:

Let H be the collection of all nondecreasing step functions on [0, τc] with h(0) =

−∞ and with jumps only at the observed failure times. For any two nondecreasing

functions h1 and h2 on [0, τc] such that h1(0) = h2(0) = −∞, define

d(h1, h2) = sup(|exp{h1(t)} − exp{h2(t)}| : t ∈ [0, τc]).

Let M be a mapping on H defined by

M(h)(t) = n−1
n∑
i=1

∫ t

0

[dNi(s)− Yi(s)dΛε(β
TZi + h(s))].

For an arbitrary but fixed ε∗, consider h1 ∈ H and h2 ∈ H such that d(h1, h2) ≥ ε∗.

There exists a t∗ ∈ (0, τc] such that |exp{h1(t∗)} − exp{h2(t∗)}| ≥ ε∗/2. Then

sup
t∈[0,τc]

|M(h1)(t)−M(h2)(t)| = n−1 sup
t∈[0,τc]

∣∣∣∣ n∑
i=1

Λε(β
T
0 Zi + h1(t∧Xi))−Λε(β

T
0 Zi + h2(t∧Xi))

∣∣∣∣
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≥ n−1
∣∣∣∣ n∑
i=1

∫ h1(t∗∧Xi)

h2(t∗∧Xi)

λε(s+ βT0 Zi)ds

∣∣∣∣≥ n−1
∣∣∣∣ n∑
i=1

I[Xi≥τc]

∫ h1(t∗)

h2(t∗)

λε(s+ βT0 Zi)ds

∣∣∣∣
≥ n−1

∣∣∣∣ n∑
i=1

I[Xi≥τc] inf

{∫ log b

log a

λε(s+ c)ds : 0 < a < b < m, b− a < ε∗/2, c < m

}
,

where m is a large but fixed constant. Similar to the arguments of Step A1 of

Chen et al. (2002), it follows that d(h̃(·; β0) − h(·, β0)) → 0 almost surely, where

h̃(·; β0) ∈ H is the function implicitly defined as the unique solution of (2.2) given

β. By Steps A2 through A6 of Chen et al. (2002), the proof is completed.

Note that Σ1 and Σ2 can be consistently estimated by

Σ̂1 = n−1
n∑
i=1

∫ τc

0

[Zi − Z̄(t; β̃)]⊗2λε(β̃
TZi + h̃(t; β̃))Yi(t)dh̃(t; β̃),

and

Σ̂2 = n−1
n∑
i=1

∫ τc

0

[Zi − Z̄(t; β̃)]ZT
i λ̇ε(β̃

TZi + h̃(t; β̃))Yi(t)dh̃(t; β̃),

respectively, where λ̇ε(x) = dλε(x)/dx,

Z̄(t; β̃) =
n∑
i=1

Ziλε(β̃
TZi + h̃(t; β̃))Yi(t)B̂(t,Xi)∑n

i=1 λε(β̃
TZi + h̃(t; β̃))Yi(t)

,

B̂(t, s) = exp

(∫ t

s

∑n
i=1 λ̇ε(β̃

TZi + h̃(x; β̃))Yi(x)∑n
i=1 λε(β̃

TZi + h̃(x; β̃))Yi(x)
dh̃(x; β̃)

)
.

Hence, a consistent estimator of Σβ̃ is given by Σ̃β̃ = Σ̂−12 Σ̂1(Σ̂
−1
2 )T .

Chapter 3. Simulation Studies

We generated T following the proportional odds model with h(t) = log(t/10) and

β = (β1 = 1, β2 = 1)T . The resulting T has the survivorship function

P (T > t|Z1, Z2) =
1

1 + exp{log(t/10) + Z1 + Z2}
,

where Z1 is an ordinal variable with P (Z1 = i) = 0.25 for i = 1, 2, 3, 4 and Z2 is a

Bernouli random variable with probability 0.5. Note that under this set-up, the pth

percentile of T at (Z1, Z2) is tp = 10exp{log((1−p)/p)−(Z1+Z2)}, which decreases

as Z1 or Z2 increases. We generated the left-truncation variable V from uniform

U(0, θ), and right censoring variable C was generated from D + V , where D is
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exponentially distributed with mean θd. The values of θd are set at 0.1 and 0.5, and

the values of θ are set at 0.25, 2 and 5. Sample size is set at n = 100 and 300. The

replication time is 1000. The values of τa and τb are set at the smallest and largest

values of Xi’s, respectively. For each simulated dataset, we obtained β̂ = (β̂1, β̂2)
T .

Tables 1 and 2 show the simulated biases, standard deviations (std), and root mean

squared error (rmse) of β̂i (i = 1, 2) for estimating β1 and β2, respectively. Tables

1 and 2 also shows the proportion of left-truncation
∑K

k=1 f̂kP (T < V |zk) (denoted

by q) and right-censoring (denoted by pc = P (δi = 0)), where f̂k is the simulated

proportion of the observations of the subgroup k.
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Table 1. Simulated biases, std. and rmse of β̂1
θd θ pc q n bias std rmse

0.1 0.25 0.21 0.24 100 -0.034 0.361 0.363
0.1 0.25 0.21 0.24 300 -0.020 0.217 0.218
0.1 2 0.31 0.56 100 -0.040 0.381 0.383
0.1 2 0.31 0.56 300 -0.024 0.252 0.253
0.1 10 0.41 0.81 100 -0.046 0.413 0.416
0.1 10 0.41 0.81 300 -0.031 0.272 0.274
0.5 0.25 0.45 0.24 100 -0.038 0.396 0.398
0.5 0.25 0.45 0.24 300 -0.026 0.257 0.258
0.5 2 0.59 0.56 100 -0.043 0.456 0.458
0.5 2 0.59 0.56 300 -0.026 0.324 0.325
0.5 10 0.65 0.81 100 -0.060 0.491 0.495
0.5 10 0.65 0.81 300 -0.032 0.384 0.385

Table 2. Simulated biases, std. and rmse of β̂2
θd θ pc q n bias std rmse

0.1 0.25 0.21 0.24 100 -0.023 0.372 0.373
0.1 0.25 0.21 0.24 300 -0.010 0.239 0.239
0.1 2 0.31 0.56 100 -0.041 0.388 0.390
0.1 2 0.31 0.56 300 -0.018 0.262 0.263
0.1 10 0.41 0.81 100 -0.069 0.434 0.439
0.1 10 0.41 0.81 300 -0.047 0.295 0.299
0.5 0.25 0.45 0.24 100 -0.028 0.397 0.398
0.5 0.25 0.45 0.24 300 -0.017 0.225 0.226
0.5 2 0.59 0.56 100 -0.034 0.439 0.440
0.5 2 0.59 0.56 300 -0.015 0.260 0.260
0.5 10 0.65 0.81 100 -0.053 0.467 0.470
0.5 10 0.65 0.81 300 -0.042 0.329 0.332

Based on the results of Tables 1 and 2, we have the following conclusions:

The standard deviations of both estimators β̂1 and β̂2 increase as the proportion

of left-truncation q and right censoring (pc) increase.
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Chapter 4. Conclusions

In this note, we have demonstrated that the approach of Chen et al. (2002) can

be easily extended to LTRC data. For right-censored data, Zeng and Lin (2007)

considered maximum likelihood estimation in transformation model with random

effects for dependent failure times. It is not easy to extend their approach to LTRC

data due to complexity of the likelihood function. However, our approach can be

extended to the following random-effects linear transformation model:

h(Tli) = −βTZli − bTl Z̃li + εli, (l = 1, . . . , c; i = 1, . . . , nl)

where Tli is the failure time for the ith individual in the lth cluster, Z̃li is a set

of covariates and bl (l = 1, . . . , c) are independent zero-mean random vectors with

multivariate density function f(bl; γ) indexed by a set of parameters γ. We may

obtain a consistent estimator of β by modifying equations (2.2) and (2.3) as

U(β, h) =
c∑
l=1

nl∑
i=1

∫
b

∫ τc

0

Zli[dNli(t)− Yli(t)dΛε(β
TZli + bT Z̃li + h(t))]f(b; γ)db = 0,

and
c∑
l=1

nl∑
i=1

∫
b

[dNli(t)− Yli(t)dΛε(β
TZli + bT Z̃li + h(t))]f(b; γ)db = 0,

where Nli(·) and Yli(·) are defined analogously to Ni(·) and Yi(·) of Section 2.1.

Given γ, let β̃γ and h̃γ be the solutions of the above two equations. Then, optimal

estimators of β̃ and h̃ can be obtained by minimizing the following statistics with

respect to γ:

c∑
l=1

nl∑
i=1

∫
b

[dNli(t)− Yli(t)dΛε(β̃
T
γ Zli + bT Z̃li + h̃γ(t))]

2f(b; γ)db.

Appendix:

Proof that (2.2) and (2.3) are reduced to partial likelihood when g(·) = exp{−exp(·)}

proof:

dΛε(β
TZi + h(t)) = exp(βTZi)d(exp(h(t)))

⇒
n∑
i=1

[dNi(t)− Yi(t)exp(βTZi)d(exp(h(t)))] = 0
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⇒d(exp(h(t))) =
∑n

i=1 dNi(t)∑n
i=1 Yi(t)exp(β

TZi)

n∑
i=1

∫ τc
0
Zi[dNi(t)− Yi(t)dΛε(β

TZi + h(t))] = 0

⇒
n∑
i=1

∫ τc
0
Zi[dNi(t)− Yi(t) exp(βTZi)d(exp(h(t)))] = 0

⇒
n∑
i=1

∫ τc
0
Zi[dNi(t)− Yi(t)

∑n
i=1 dNi(t)exp(β

TZi)∑n
i=1 Yi(t)exp(β

TZi)
] = 0

⇒
n∑
i=1

∫ τc
0
Zi

{
1−

∑n
i=1 Yi(t)exp(β

TZi)∑n
i=1 Yi(t)exp(β

TZi)

}
dNi(t) = 0

⇒
n∑
i=1

∫ τc
0

{
Zi −

∑n
j=1 ZjYj(t)exp(β

TZj)∑n
j=1 Yj(t)exp(β

TZj)

}
dNi(t) = 0
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