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Abstract

Interval censoring refers to a situation in which, T , the time to occurrence of an event of

interest is only known to lie in an interval [L,R]. In some cases, the variable T also suffers

left-truncation. Based on an integral equation, we propose a self-consistent estimator (SCE)

of survival function of T . It is shown that the NPMLE is a solution of the integral equation.

Under some conditions, we show the consistency of the SCE.
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1. Introduction

Left truncated and interval-censored data often arise in epidemiology and individual
follow-up studies and possibly in other fields. Their importance stems from the common
use of prevalent cohort study designs to estimate survival from onset of a specified disease.
Consider the following example.

Example 1: AIDS Cohort Studies

In AIDS cohort studies, we are interested in the incubation time of the disease. An
individual is selected only when he (or she) is HIV-positive and yet none have developed
AIDS. Hence, earlier onset of AIDS would then be a truncating force for the variable of
interest. Suppose that the infection time (denoted by Ts) can be quite accurately determined
(e.g. due to blood transfusion). The recruitment starts at τ0 and the follow-up is terminated
at τe. For each individual i, let T ∗i denote the time from Ts to development of AIDS. Let
V ∗i = τ0 − Ts if Ts < τ0 and V ∗i = 0 if Ts ≥ τ0. Let C∗i = τe − Ts denote the censoring times.
Furthermore, there are many situations, in which the onset of AIDS is recorded only between
an interval although the initiating events (HIV infection) Ts is recorded exactly. Hence, the
variable of interest T ∗i is only recorded between an interval, say [L∗i , R

∗
i ]. Note that when T ∗i is

right censoring, we can write [L∗i , R
∗
i ] as [C∗i ,∞]. In this case, T ∗i is subject to left-truncated

and interval-censored. Hence, one observes nothing if T ∗i < V ∗i , and observes ([L∗i , R
∗
i ], V

∗
i ) if

T ∗i ≥ V ∗i . We assume that T ∗i is independent of (V ∗i , L
∗
i , R

∗
i ) and V ∗i is dependent of (L∗i , R

∗
i )

with P (V ∗i ≤ L∗i |T ∗i ≥ V ∗i ) = 1.

Let F (t) denote the distribution function of T ∗i , andG(x)andQ(x) denote the distribution
function of V ∗i and C∗i , respectively. For any distribution function W denote the left and
right endpoints of its support by aW = inf{t : W (t) > 0} and bW = inf{t : W (t) = 1},
respectively. Throughout this article we assume that T ∗i , L∗i , R

∗
i and V ∗i are all continuous,

and
aG ≤ aF and bG ≤ bF ≤ bQ. (1.1)

Let (L1, R1, V1), . . . , (Ln, Rn, Vn) denote the left-truncated and interval-censored data.
Note that [Li, Ri] ⊂ [Vi,∞], i.e. Vi ≤ Li. The nonparametric maximum likelihood estimator
(NPMLE) of F can be obtained by using EM algorithm of Turnbull (1976). When there
is no truncation, the asymptotic properties of the NPMLE have been derived for interval-
censored data. Groeneboom and Wellner (1992) proposed an iterative convex minorant
algorithm to calculate the NPMLE and proved the uniform consistency of the NPMLE when
F is continuous and the joint distribution function of (L,R) is absolutely continuous. If
(L,R) is assumed discrete, the NPMLE has the usual

√
n convergence rate and a normal

limiting distribution (Yu et al. (1998a, b)). However, if (L,R) is continuous, the NPMLE
converges slower than

√
n to a non-Gaussian limiting distribution (see Groeneboom and

Wellner (1992), Shick and Yu (2000), van der Vaart and Wellner (2000), Song (2004)).
Although asymptotic properties of the NPMLE have been derived for the interval-censored
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data without truncation much less is known about the large sample properties of the NPMLE
if both interval censoring and truncation are present. Pan and Chappell (1999) showed
that the NPMLE is inconsistent when data is subject to case 1 interval censoring and left
truncation. Under the assumption of monotonic hazard function, Pan et al. (1998) showed
the consistency of the NPMLE when data is subject to left truncation and interval censoring.

In Section 2, based on an integral equation, we propose a self-consistent estimator (SCE)
of survival function of T ∗i . We show that the NPMLE is a solution of the proposed integral
equation. Under some conditions, we show the consistency of the SCE. In Section 3, a
simulation study is conducted to compare the performance between the SCE and NPMLE.

2. The Nonparametric Estimators

2.1 The NPMLE

In this section, we briefly review the NPMLE of SF (t) = P (T ∗i > t) using EM algorithm
of Turnbull (1976). Notice that due to sampling scheme described in Section 1, we have
P ([Li, Ri] ⊂ [Vi,∞)) = 1. Without loss of generality, suppose the observed data are ordered
according to Li such that L1 < L2 < · · · < Ln. Following Turnbull (1976), Frydman (1994)
and Alioum and Commenges (1996), we consider nonparametric estimation of F using the n
independent pairs {A1, B1}, . . . , {An, Bn}, where Ai = [Li, Ri] and Bi = [Vi,∞). Assuming
that the inspection process which gives rise to Ai is independent of Ti, we consider the
following conditional likelihood:

Lc(SF ) =
n∏

i=1

PSF
(Ai)

PSF
(Bi)

, (2.1)

where PS(R) denotes the probability that is assigned to the interval by SF . We define an
NPMLE as ŜM = argmaxS∈S{Lc(S)}, where S denotes the class of survival functions such
that PS(∪ni=1Bi) = 1 and Lc(S) is defined, i.e. PS(Bi) > 0 for all i = 1, . . . , n. Using
the approach of Hudgens (2005), we define K = {K1, K2, . . . , K2n}, where K1 = Ai for
i = 1, . . . , n, and Ki = (−∞, Vi) for i = n + 1, . . . , 2n. An intersection graph for K is
constructed as follows. For each element of K, we define a corresponding vertex. Let i be
the label of the vertex corresponding to Ki. Denote the set of vertex by Sv. Two vertices
in Sv are considered connected by an edge if and only if the two corresponding regions in K
intersect. A clique is defined as a subset M of Sv such that every member of M is connected
by an edge to every other member of M . A maximal clique has the additional property
that it is not a proper subset of any other clique. Let M = {M1, . . . ,MJ} be the subset of
maximal cliques of Sv that contain at least one vertex corresponding to a censoring interval,
i.e. for each Mj ∈M, there is some i ∈ {1, . . . , n} such that i ∈Mj. Let H = {H1, . . . , HJ}
be the corresponding set of real representations of elements of M where Hj = ∩i∈Mj

Ki

for j = 1, . . . , J . For example, when A1 = [2, 5], B1 = [1,∞), A2 = [4, 9], B2 = [1,∞),
A3 = [6, 7], and B3 = [3,∞), we obtain H1 = [2, 3], H2 = [4, 5], and H3 = [6, 7]. By Lemma
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Figure 1. Schematic depiction of the innermost set [qj, pj]

1 of Hudgens (2005), any distribution function which increases outside ∪Jj=1Hj cannot be
an NPMLE. By Lemma 2 of Hudgens (2005), for fixed value of PF (Hj), the likelihood is
independent of the values of F within the region Hj. These lemmas allow us to consider
maximizing a simpler likelihood than equation (2.1). For each Hj ∈ H, let sj = PF (Hj)
and let s be an m-dimension column vector with elements sj. We shall assume throughout
that H1, . . . , HJ are ordered such that Hj = [qj, pj] is to the left of Hj+1 = [qj+1, pj+1] for
j = 1, . . . , J − 1, i.e. [q1, p1], [q2, p2], . . . , [qJ , pJ ], where q1 ≤ p1 < q2 ≤ p2 < · · · < qJ ≤ pJ .
Figure 1 also highlights the innermost set [qj, pj]. It follows that from lemmas 1 and 2 of
Hudgens (2005) that maximizing likelihood (2.1) is equivalent to maximizing

Lc(s) =
n∏

i=1

∑J
j=1 αijsj∑J
j=1 βijsj

, (2.2)

where αij = I[Hj ⊂ Ai], βij = I[Hj ⊂ Bi] and I[·] is the usual indicator function. The result-
ing reduced likelihood (2.2) is exactly as described in section 2 of Alioum and Commenges
(1996). The goal is to maximize likelihood (2.2) subject to the constraints

J∑
j=1

sj = 1, (2.3)

sj ≥ 0 (j = 1, . . . , J), (2.4)
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and
J∑

j=1

αijsj > 0, (i = 1, . . . , n). (2.5)

We shall use Ω to denote the parameter space that is given by constraints (2.3)-(2.5), i.e.

Ω = {s ∈ RJ :
J∑

j=1

sj = 1; sj ≥ 0 for j = 1, . . . , J ;
J∑

j=1

αijsj > 0 for i = 1, . . . n}.

To find the maximum likelihood estimate of the vector s, we can use an EM algorithm and
the resulting self-consistent estimate of s is exactly the Turnbull’s (1976) self-consistency
algorithm as follows:

s
(b)
j =

{
1 +

dj(s
(b−1))

M(s(b−1))

}
s
(b−1)
j (1 ≤ j ≤ J), (2.6)

where

dj(s
(b−1)) =

n∑
i=1

{(
αij

/ J∑
k=1

αiks
(b−1)
k

)
−
(
βij

/ J∑
k=1

βiks
(b−1)
k

)}
,

and

M(s(b−1)) =
n∑

i=1

1∑J
j=1 βijs

(b−1)
j

.

Let ŝj (j = 1, . . . , J) denote the estimators obtained from (2.6). As pointed out by Hudgens
(2005), in general, a maximizer of Lc(s) subject to s ∈ Ω need not exist since Ω is not closed.
For left-truncated and interval-censored data, Hudgens (2005) (see Theorem 1, page 578)
proposed a sufficient and necessary condition for the existence of the NMPLE as follows:

“ There is a maximizer of Lc(s) subject to s ∈ Ω if and only if for each non-empty proper
subset S of {1, . . . , n} there is an i /∈ S such that Ai ⊂ DS, Ai = ∪j∈A∗

i
Hj, DS = ∪k∈SBk,

Bk = ∪j∈B∗
k
Hj, where A∗i = {j : αij = 1} and B∗k = {j : βkj = 1}”. Based on the

estimators ŝj’s, an estimator ŜM(t) of SF (t) can be uniquely defined for t ∈ [pj, qj+1) by

ŜM(pj) = ŜM(qj+1−) = 1 − (ŝ1 + · · · + ŝj), but is not uniquely defined for t being in

an open innermost interval (qj, pj) with qj < pj. To avoid ambiguity we define ŜM(t) =
1 − [ŝ1 + · · · + ŝj−1 + sj(t − qj)/(pj − qj)] if t ∈ (qj, pj] and 0 < qj < pj < ∞. Figure 2
highlights the estimated distribution function FM(t) = 1− SM(t).
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Figure 2. Schematic depiction of the estimated d.f. FM

2.2 The SCE

Let SF (t) = 1− F (t) denote the survival function of T and p = P (V ∗i ≤ T ∗i ) denote the
proportion of un-truncation. We have the following equation:

SF (t) = P (T ∗i > t, V ∗i ≤ t) + P (T ∗i > t, V ∗i > t)

= pP (V ∗i ≤ t < L∗i |T ∗i ≥ V ∗i ) + pP (T ∗i > t, L∗i < t ≤ R∗i |T ∗i ≥ V ∗i ) + P (T ∗i > t, V ∗i > t).
(2.7)

Motivated by (2.7), given p, we consider the following self-consistent estimator:

Ŝ(t) =
1

np−1

{ n∑
i=1

I[Vi≤t<Li] +
n∑

i=1

I[Li≤t<Ri]
Ŝ(t)− Ŝ(Ri)

Ŝ(Li)− Ŝ(Ri)
+

n∑
i=1

I[Vi>t]
Ŝ(t)

Ŝ(Vi)

}
. (2.8)

Notice that the last term of the equation (2.8) is to recover the missing information due to
left-truncation. Given the observation Vi > t, a pseudo observation is recovered by adding
the weight Ŝ(t)/Ŝ(Vi). Let G̃(t) = P (Vi ≤ t) denote the sub-distribution function of Vi.
Since G̃(t) = p−1

∫ t

0
1/SF (Vi)dG(t). It follows that np−1 can be estimated by

∑n
i=1 1/SF (Vi)

(see Shen (2005)). Hence, a self-consistent estimator Ŝn is given by solving the following
equation:

Ŝn(t) =[ n∑
i=1

1

Ŝn(Vi)

]−1{ n∑
i=1

I[Vi≤t<Li] +
n∑

i=1

I[Li≤t<Ri]
Ŝn(t)− Ŝn(Ri)

Ŝn(Li)− Ŝn(Ri)
+

n∑
i=1

I[Vi>t]
Ŝn(t)

Ŝn(Vi)

}
. (2.9)
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Let G̃n(v) denote the empirical version of G̃(v). Similarly, Let H̃n(v, l) and Q̃n(l, r) denote
the empirical versions of the joint sub-distributions of H̃(v, l) = P (Vi ≤ v, Li ≤ l) and
Q̃(l, r) = P (Li ≤ l, Ri ≤ r), respectively. It follows that (2.9) can be written as

Ŝn(t) =[ ∫
1

Ŝn(v)
G̃n(dv)

]−1{∫
v≤t<l

H̃n(dv, dl)+

∫
l≤t<r

Ŝn(t)− Ŝn(r)

Ŝn(l−)− Ŝn(r)
Q̃n(dl, dr)+

∫
v>t

Ŝn(t)

Ŝn(v)
G̃n(dv)

}
.

(2.10)
Notice that when there is no truncation, (2.10) is reduced to the following self-consistent
equation:

Ŝn(t) =

∫
t<l

Q̃L,n(dl) +

∫
l≤t<r

Ŝn(t)− Ŝn(r)

Ŝn(l)− Ŝn(r)
Q̃n(dl, dr), (2.11)

where Q̃L,n is the empirical version of the sub-distribution function of Q̃L(l) = P (Li ≤ l).
Note that equation (2.11) is the same as equation (2.2) of Yu et al. (2001) for mixed interval
censored data.

The following theorem shows that ŜM satisfies the equation (2.9).

Theorem 1.

The NPMLE ŜM satisfies equation (2.9).

Proof:

First, consider an initial estimator Ŝ
(0)
n , which puts mass only on [qj, pj] (j = 1, . . . , J).

Let Ŝ
(1)
n denote the first step estimator. Without changing the innermost intervals and

likelihood function, we can transform data by moving all right censored and left truncated
points between pj−1 and qj to pj−1. Similarly, move all left censored points between pj−1
and qj to qj. (see Li et al. (1997)). Based on the transform data, for all i, j, we have
I[pj−1<Vi≤qj ] = 0, I[Vi≤pj−1≤Li]I[qj>Li] = 0, I[Vi≤pj−1≤Li]I[qj>Li] = 0, I[Vi>pj−1]I[Vi≤qj−≤Li] = 0,

I[Li≤pj−1<Ri] = 0 and I[Li≤qj−≤Ri] = 0. It follows that Ŝ
(1)
n (pj−1) − Ŝ

(1)
n (qj−) = 0. Hence,

Ŝ
(1)
n also puts mass only on [qj, pj] (j = 1, . . . , J). Next, since there is no left censoring

observations in (qj, pj] and there is no left truncation observations in [qj, pj), we have for all
i, j, I[Vi≤qj<Li]I[pj≥Li] = 0 and I[Vi>qj ]I[Vi≤pj<Li] = 0. Furthermore, given an interval [Li, Ri],
we either have [qj, pj] ⊆ [Li, Ri] or [qj, pj] ∩ [Li, Ri] = ∅. Thus, we have

Ŝ(1)
n (qj−)− Ŝ(1)

n (pj) =

[ n∑
i=1

1

Ŝ
(0)
n (Vi)

]−1{ n∑
i=1

I[[qj ,pj ]∈([Li,Ri]]
Ŝ
(0)
n (qj−)− Ŝ(0)

n (pj)

Ŝ
(0)
n (Li)− Ŝ(0)

n (Ri)
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+
n∑

i=1

Ŝn(qj−)− Ŝn(pj)

Ŝn(Vi)
−

n∑
i=1

I[Vi≤qj ]
Ŝn(qj−)

Ŝn(Vi)
+

n∑
i=1

I[Vi≤pj ]
Ŝn(pj)

Ŝn(Vi)

}
. (2.12)

Since there is no left truncation observations in [qj, pj), (2.12) can be written as

Ŝ(1)
n (qj−)− Ŝ(1)

n (pj) =

[ n∑
i=1

1

Ŝ
(0)
n (Vi)

]−1{ n∑
i=1

I[[qj ,pj ]∈([Li,Ri]]
Ŝ
(0)
n (qj−)− Ŝ(0)

n (pj)

Ŝ
(0)
n (Li)− Ŝ(0)

n (Ri)

+
n∑

i=1

Ŝn(qj−)− Ŝn(pj)

Ŝn(Vi)
−

n∑
i=1

I[qj≥Vi]
Ŝn(qj−)− Ŝn(pj)

Ŝn(Vi)

}
. (2.13)

Next,

ŜM(qj−)− ŜM(pj) =

[ n∑
i=1

1∑J
j=1 βijsj

]−1{ n∑
i=1

αij∑J
k=1 αikŝk

+
n∑

i=1

1− βij∑J
k=1 βikŝk

}
ŝj. (2.14)

By definitions of Ai, Bi, αij and βij, it follows that equation (2.13) is equivalent to equation
(2.14). The proof is completed.

The following Theorem shows the consistency of Ŝn(t).

Theorem 2.

Let Θ = {f : f is nonincreasing function from [aF , bF ] to [0, 1], f(bF ) = 0 and f(aF ) = 1}.
Let S ∈ Θ be a [0, 1]-valued function and h be a function such that h(t)K(t) =

S(t)

∫
v≤t

h(v)

S(v)
G(dv)−

∫
l≤t<r

h(l)[S(t)− S(r)]

S(l)− S(r)
Q(dl, dr)−

∫
l≤t<r

h(r)[S(l)− S(t)]

S(l)− S(r)
Q(dl, dr),

(2.15)
where h(t) = S(t)−SF (t) and K(t) = G(t)−P (L∗i ≤ t < R∗i ). (i) Suppose that (2.15) holds
on the set {t : 0 < S(t) < 1} implies that h(t) = 0 for all t ∈ (aF , bF ) provided that h(t+) 6=
h(t) ⇒ S(t+) < S(t) on {t : 0 < S(t) < 1}, h(t) = 0 on {t : S(t) = 0 or S(t) = 1}. (ii)
Suppose that Ŝn ∈ Θ and Ŝn is right continuous, then limn→∞ supaF<x<bF

|Ŝn(x)−SF (x)| = 0
a.s.

Proof:

Let Ω be the event {lim H̃n(v, l) = H̃(v, l), lim Q̃n(l, r) = Q̃(l, r) uniformly for allv < l <
r}. For each ω ∈ Ω, let Ŝn be the solution of (2.9). Since {Ŝn}n≥1 is bounded and monotone,
for each subsequence of natural numbers, by Helly’s selection theorem, there exists a further
subsequence, say {nk}, such that limnk→∞ Ŝnk

(t) = S0(t) pointwisely for some S0 ∈ Θ. Thus,
it suffices to show that S0(t) = SF (t) for all t ∈ [aF , bF ].

Since H̃n and Q̃n converge uniformly to H̃ and Q̃, respectively and Ŝn satisfies (2.9), by



8

the bounded convergence theorem S0 satisfies the following equation: S0(t) =[ ∫
1

S0(v)
G̃(dv)

]−1{∫
v≤t<l

dH̃(v, l) +

∫
l≤t<r

S0(t)− S0(r)

S0(l)− S0(r)
Q̃(dl, dr) +

∫
v>t

S0(t)

S0(v)
G̃(dv)

}
.

(2.16)
Equation (2.16) can be written as

S0(t)

∫
v≤t

1

S0(v)
G̃(dv) =

∫
v≤t<l

H̃(dv, dl) +

∫
l≤t<r

S0(t)− S0(r)

S0(l)− S0(r)
Q̃(dl, dr). (2.17)

Let H(v, l) = P (V ∗i ≤ u, L∗i ≤ l) and Q(l, r) = P (L∗i ≤ r, R∗i ≤ r). Since G̃(dv) =
p−1SF (v)G(dv), H̃(dv, dl) = p−1SF (l)H(dv, dl), and Q̃(dl, dr) = p−1[SF (l)−SF (r)]Q(dl, dr),
(2.17) can be written as

p−1S0(t)

∫
v≤t

SF (v)

S0(v)
G(dv) = p−1

∫
v≤t<l

SF (l)H(dv, dl)

+p−1
∫
l≤t<r

S0(t)− S0(r)

S0(l)− S0(r)
[SF (l)− SF (r)]Q(dv, dl, dr). (2.18)

Replacing S0(·) of (2.18) by SF (·), we obtain

p−1SF (t)G(t) = p−1
∫
v≤t<l

SF (l)H(dv, dl) + p−1
∫
l≤t<r

[SF (t)− SF (r)]Q(dl, dr). (2.19)

Note that (2.19) is equivalent to

P (T ∗i > t, V ∗i ≤ t|T ∗i ≥ V ∗i ) = P (V ∗i ≤ t < L∗i |T ∗i ≥ V ∗i ) + P (T ∗i > t, L∗i < t < R∗i |T ∗i ≥ V ∗i ).

Subtracting (2.19) from (2.18), we obtain

h(t)K(t) =

S0(t)

∫
v≤t

h(v)

S0(v)
G(dv)−

∫
l≤t<r

h(l)[S0(t)− S0(r)]

S0(l)− S0(r)
Q(dl, dr)−

∫
l≤t<r

h(r)[S0(l)− S0(t)]

S0(l)− S0(r)
Q(dl, dr),

where h(t) = S0(t) − SF (t). By assumption (i), it follows that h(t) = 0 for t ∈ [aF , bF ]. It
follows that S0(t) = SF (t) for all t ∈ [aF , bF ]. By (2.3) all limit points of Ŝn must satisfy
(2.5), by Helly-Bray selection theorem we have Ŝn(t)→ SF (t) a.s. for t ∈ (aF , bF ). Since Ŝn

is a sequence of monotone, right continuous and bounded functions on (aF , bF ), it follows
that supt∈(aF ,bF ) |Ŝn(t)− SF (t)| → 0 a.s. (see Proposition 3.1 of Yu et al. (2001))

The proof is completed.
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3. Simulation Results

A simulation study is conducted to investigate the performance of the proposed estimator
F̂ (t). The T ∗i ’s are i.i.d. exponential distributed with mean equal to 1. The V ∗i ’s are i.i.d.
exponential distributed with scale parameters θ = 0.5, 1 and 2, i.e. G(x; θ) = 1− exp(−θx)
for x > 0. The T ∗i and V ∗i are independent to each other. To make the truncated sample
interval-censored, we first generate a random variable X = 2 + B(nc, 0.5), where B(nc, 0.5)
is a binomial random variable with nc = 4, 6. Given X = k, we then generate k i.i.d uniform
random variables Uji ∼ U(0, 1) (j = 1, . . . , k). Define Z1i = V ∗i + U1i, Z2i = U2i + Z1i,
Z3i = U3i + Z2i, · · · , Zki = Zk−1,i + Uki. We keep the sample if T ∗i ≥ V ∗i and regenerate
a sample if T ∗i < V ∗i . If T ∗i falls in the interval [Zji, Zj+1,i] (j = 1, . . . , k − 1), then let
L∗i = Zji and R∗i = Zj+1,i. If T ∗i > Z∗k,i then let L∗i = Zk,i and R∗i = 10000. The goal is to
estimate S(tp) = p, with p = 0.8, 0.5 and 0.2. The sample sizes n are chosen as 200 and 400.
Based on left-truncated and interval-censored data (Vi, Li, Ri) (i = 1, . . . , n), we obtain the
proposed estimator Ŝn(tp) and the NPMLE ŜM(tp). The sample sizes are chosen as 200 and
400. The replication is 1000 times. Tables 1 through 3 show the empirical biases, standard
deviations (std.) and mean squared errors (mse) of Ŝn and ŜM . Tables 1 through 3 also list
the proportion of truncation P (T ∗i < V ∗i ) (denoted by qT ). Based on the results of Tables 1
through 3, we conclude that:

(i) Given qT , the rmse of the estimators Ŝn and ŜM increase as nc decreases, i.e. mean
interval length increases.

(ii) Given nc, the rmse of estimators Ŝn and ŜM increase as proportion of truncation qT
increases.

(iii) In terms of rmse, when n = 200 the NPMLE ŜM outperforms the SCE Ŝn. When
n = 400, the performance of the estimators Ŝn and ŜM are close to each other for most of
cases considered.
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Table 1. Simulation results for bias, standard deviation and
root mean squared error for estimating S(t0.2)

Ŝn(t0.2) ŜM(t0.2)
θ nc n qT bias std rmse bias std rmse
2 5 200 0.43 -0.074 0.023 0.072 -0.065 0.021 0.068
2 5 400 0.43 -0.050 0.017 0.060 -0.056 0.014 0.057
2 6 200 0.43 0.074 0.026 0.078 -0.077 0.023 0.080
2 6 400 0.43 0.059 0.015 0.061 -0.062 0.013 0.063
4 5 200 0.31 -0.061 0.024 0.065 -0.054 0.023 0.058
4 5 400 0.31 -0.053 0.017 0.056 -0.048 0.015 0.050
4 6 200 0.31 -0.081 0.026 0.085 -0.076 0.025 0.080
4 6 400 0.31 -0.065 0.015 0.066 -0.059 0.012 0.060
8 5 200 0.23 -0.059 0.025 0.064 -0.052 0.023 0.057
8 5 400 0.23 -0.042 0.019 0.046 -0.040 0.015 0.043
8 5 200 0.23 -0.082 0.032 0.088 -0.086 0.026 0.084
8 6 400 0.23 -0.065 0.020 0.068 -0.061 0.017 0.063

Table 2. Simulation results for bias, standard deviation and
root mean squared error for estimating S(t0.5)

Ŝn(t0.5) ŜM(t0.5)
θ nc n qT bias std rmse bias std rmse
2 5 200 0.43 -0.072 0.025 0.076 -0.065 0.021 0.068
2 5 400 0.43 -0.056 0.014 0.057 -0.051 0.019 0.054
2 6 200 0.43 -0.080 0.026 0.084 -0.077 0.023 0.080
2 6 400 0.43 -0.068 0.019 0.071 -0.066 0.017 0.068
4 5 200 0.31 -0.058 0.025 0.063 -0.054 0.023 0.058
4 5 400 0.31 -0.047 0.015 0.050 -0.043 0.018 0.046
4 6 200 0.31 -0.079 0.035 0.086 -0.076 0.025 0.080
4 6 400 0.31 -0.061 0.017 0.063 -0.059 0.012 0.060
8 5 200 0.23 -0.057 0.025 0.062 -0.052 0.023 0.057
8 5 400 0.23 -0.037 0.019 0.042 -0.040 0.015 0.043
8 6 200 0.23 -0.078 0.029 0.083 -0.086 0.026 0.084
8 6 400 0.23 -0.064 0.018 0.066 -0.061 0.017 0.063
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Table 3. Simulation results for bias, standard deviation and
root mean squared error for estimating S(t0.8)

Ŝn(t0.8) ŜM(t0.8)
θ nc n qT bias std rmse bias std rmse
2 5 200 0.43 -0.065 0.021 0.068 -0.061 0.025 0.066
2 5 400 0.43 -0.056 0.014 0.057 -0.052 0.018 0.055
2 6 200 0.43 -0.081 0.026 0.085 -0.077 0.023 0.080
2 6 400 0.43 -0.074 0.015 0.076 -0.072 0.013 0.073
4 5 200 0.31 -0.059 0.024 0.064 -0.054 0.023 0.058
4 5 400 0.31 -0.047 0.019 0.051 -0.048 0.015 0.050
4 6 200 0.31 -0.073 0.027 0.079 -0.076 0.025 0.080
4 6 400 0.31 -0.062 0.016 0.064 -0.059 0.012 0.060
8 5 200 0.23 -0.057 0.025 0.062 -0.052 0.023 0.057
8 5 400 0.23 -0.042 0.016 0.045 -0.040 0.015 0.043
8 6 200 0.23 -0.073 0.030 0.080 -0.086 0.026 0.084
8 6 400 0.23 -0.060 0.016 0.062 -0.061 0.017 0.063
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4. Discussions

For interval-censored and left truncated data, Turnbull’s algorithm leads to a self-consistent
equation which is not in the form of an integral equation. Large sample properties of the
NPMLE have not been previously examined because of, we believe, among other things, the
lack of such an integral equation. In this article, we have presented a SCE using an integral
equation and consistency of the SCE under some conditions (assumption (i) of Theorem
2). Since the NPMLE also satisfies the self consistent integral equation, the consistency of
the NPMLE also holds. More research remains to be done. A rigorous investigation when
assumption (i) of Theorem 2 holds. A similar equation holds for the simpler case: doubly
censored data (see Gu and Zhang (1993)). Consider an alternative proof by extending the
approach of Yu et al. (2001), where the consistency of SCE is established when there is no
truncation.
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