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Abstract

Interval censoring refers to a situation in which, 7', the time to occurrence of an event of
interest is only known to lie in an interval [L, R]. In some cases, the variable T also suffers
left-truncation. Based on an integral equation, we propose a self-consistent estimator (SCE)
of survival function of T". It is shown that the NPMLE is a solution of the integral equation.

Under some conditions, we show the consistency of the SCE.

Key Words: left truncation; interval censoring; self-consistent.
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1. Introduction

Left truncated and interval-censored data often arise in epidemiology and individual
follow-up studies and possibly in other fields. Their importance stems from the common
use of prevalent cohort study designs to estimate survival from onset of a specified disease.
Consider the following example.

Example 1: AIDS Cohort Studies

In AIDS cohort studies, we are interested in the incubation time of the disease. An
individual is selected only when he (or she) is HIV-positive and yet none have developed
AIDS. Hence, earlier onset of AIDS would then be a truncating force for the variable of
interest. Suppose that the infection time (denoted by Ts) can be quite accurately determined
(e.g. due to blood transfusion). The recruitment starts at 7 and the follow-up is terminated
at 7.. For each individual 7, let T;" denote the time from 7§ to development of AIDS. Let
Vi=r—Tsif Ty <719and V* =01if Ty > 79. Let CF = 7. — T denote the censoring times.
Furthermore, there are many situations, in which the onset of AIDS is recorded only between
an interval although the initiating events (HIV infection) T} is recorded exactly. Hence, the
variable of interest 77" is only recorded between an interval, say [L}, Rf]. Note that when T is
right censoring, we can write [L}, R] as [C}, oo]. In this case, T} is subject to left-truncated
and interval-censored. Hence, one observes nothing if 7* < V*, and observes ([L}, R}], V;*) if
Tr > V*. We assume that T} is independent of (V*, L?, R;) and V;* is dependent of (L, R})
with P(V;* < Li|T;F > V*) = 1.

Let F'(t) denote the distribution function of T}, and G(z)and Q(z) denote the distribution
function of V;* and C}, respectively. For any distribution function W denote the left and
right endpoints of its support by aw = inf{t : W(t) > 0} and by = inf{t : W(t) = 1},
respectively. Throughout this article we assume that 7, L7, R; and V;* are all continuous,
and

ag < ap and bg < bp < bg. (1.1)

Let (L1, Ry, V1),...,(Ln, Ry, Vy,) denote the left-truncated and interval-censored data.
Note that [L;, R;] C [V}, 00|, i.e. V; < L;. The nonparametric maximum likelihood estimator
(NPMLE) of F' can be obtained by using EM algorithm of Turnbull (1976). When there
is no truncation, the asymptotic properties of the NPMLE have been derived for interval-
censored data. Groeneboom and Wellner (1992) proposed an iterative convex minorant
algorithm to calculate the NPMLE and proved the uniform consistency of the NPMLE when
F' is continuous and the joint distribution function of (L, R) is absolutely continuous. If
(L, R) is assumed discrete, the NPMLE has the usual \/n convergence rate and a normal
limiting distribution (Yu et al. (1998a, b)). However, if (L, R) is continuous, the NPMLE
converges slower than y/n to a non-Gaussian limiting distribution (see Groeneboom and
Wellner (1992), Shick and Yu (2000), van der Vaart and Wellner (2000), Song (2004)).
Although asymptotic properties of the NPMLE have been derived for the interval-censored



data without truncation much less is known about the large sample properties of the NPMLE
if both interval censoring and truncation are present. Pan and Chappell (1999) showed
that the NPMLE is inconsistent when data is subject to case 1 interval censoring and left
truncation. Under the assumption of monotonic hazard function, Pan et al. (1998) showed
the consistency of the NPMLE when data is subject to left truncation and interval censoring.

In Section 2, based on an integral equation, we propose a self-consistent estimator (SCE)
of survival function of T7*. We show that the NPMLE is a solution of the proposed integral
equation. Under some conditions, we show the consistency of the SCE. In Section 3, a
simulation study is conducted to compare the performance between the SCE and NPMLE.

2. The Nonparametric Estimators
2.1 The NPMLE

In this section, we briefly review the NPMLE of Sp(t) = P(T; > t) using EM algorithm
of Turnbull (1976). Notice that due to sampling scheme described in Section 1, we have
P([L;, R;] C [Vi,00)) = 1. Without loss of generality, suppose the observed data are ordered
according to L; such that L; < Ly < -+ < L,,. Following Turnbull (1976), Frydman (1994)
and Alioum and Commenges (1996), we consider nonparametric estimation of F' using the n
independent pairs {Ay, B1},...,{4,, B,}, where A; = [L;, R;] and B; = [V;,00). Assuming
that the inspection process which gives rise to A; is independent of T;, we consider the
following conditional likelihood:

n

&

Lse) = [ Pszggg, @.1)

i=1

where Pg(R) denotes the probability that is assigned to the interval by Sp. We define an
NPMLE as Sy = argmaxgeg{L.(S)}, where S denotes the class of survival functions such
that Pg(U,B;) = 1 and L.(S) is defined, i.e. Pg(B;) > 0 for all @ = 1,...,n. Using
the approach of Hudgens (2005), we define K = {K;, Ks, ..., Ks,}, where K; = A; for
i=1,...,n, and K; = (—o0,V;) for i = n+1,...,2n. An intersection graph for K is
constructed as follows. For each element of K, we define a corresponding vertex. Let ¢ be
the label of the vertex corresponding to K;. Denote the set of vertex by S,. Two vertices
in S, are considered connected by an edge if and only if the two corresponding regions in &
intersect. A clique is defined as a subset M of S, such that every member of M is connected
by an edge to every other member of M. A maximal clique has the additional property
that it is not a proper subset of any other clique. Let M = {M;,..., M;} be the subset of
maximal cliques of S, that contain at least one vertex corresponding to a censoring interval,
i.e. for each M, € M, there is some i € {1,...,n} such that i € M;. Let H = {Hy,...,H;}
be the corresponding set of real representations of elements of M where H; = Nienr, K;
for j = 1,...,J. For example, when A; = [2,5],B; = [1,00), Ay = [4,9], By = [1,00),
A3z =[6,7], and B3 = [3,00), we obtain H; = [2,3], Hy = [4,5], and H3 = [6,7]. By Lemma



Figure 1. Schematic depiction of the innermost set [g;, p;]

1 of Hudgens (2005), any distribution function which increases outside U;’ZIHJ- cannot be
an NPMLE. By Lemma 2 of Hudgens (2005), for fixed value of Pp(H;), the likelihood is
independent of the values of F' within the region H;. These lemmas allow us to consider
maximizing a simpler likelihood than equation (2.1). For each H; € H, let s; = Pp(H,)
and let s be an m-dimension column vector with elements s;. We shall assume throughout
that Hy,..., H; are ordered such that H; = [g;,p;] is to the left of H;11 = [gj+1, pj+1] for
j=1,...,J =1, ie. [q1,p], [a2,p2];---,[q7,ps], where ¢ < p1 < g < ps < - - < q; <py.
Figure 1 also highlights the innermost set [¢;,p;]. It follows that from lemmas 1 and 2 of
Hudgens (2005) that maximizing likelihood (2.1) is equivalent to maximizing

L) = [ S (22)
S =l =7 :
i=1 ijl Bijs;

where o;; = I[H; C A;], Bi; = I[H; C B;] and I[] is the usual indicator function. The result-
ing reduced likelihood (2.2) is exactly as described in section 2 of Alioum and Commenges
(1996). The goal is to maximize likelihood (2.2) subject to the constraints

D si=1, (2.3)

=1

<

$;>0(=1,....J), (2.4)



and

J
ZO&Z‘J‘S]' > 0, (Z: 1,...771). (25)
=1

We shall use €2 to denote the parameter space that is given by constraints (2.3)-(2.5), i.e.

J J
Q:{SERJ:Zsjzl;sj2()forj:1,...,J;Zaij5j>0forz':1,...n}.

J=1 J=1

To find the maximum likelihood estimate of the vector s, we can use an EM algorithm and
the resulting self-consistent estimate of s is exactly the Turnbull’s (1976) self-consistency
algorithm as follows:

(o(b—1)
® di(s®) -1 .
S; —{1+m}3j (1<5<), (2.6)

where

n J J

i) = 3 (o / ™) = (5 ) st ) |

i1 k=1 k=1

and

n

1
M(s(b_l)): E _—
J b—1
i=1 Zj:15ij*9§' )

Let 5; (j =1,...,J) denote the estimators obtained from (2.6). As pointed out by Hudgens
(2005), in general, a maximizer of L.(s) subject to s € Q need not exist since €2 is not closed.

For left-truncated and interval-censored data, Hudgens (2005) (see Theorem 1, page 578)
proposed a sufficient and necessary condition for the existence of the NMPLE as follows:

“ There is a maximizer of L.(s) subject to s € 2 if and only if for each non-empty proper
subset S of {1,...,n} there is an i ¢ S such that A; C Ds, A; = Ujear Hj, Ds = UpesBy,
B = Ujep; Hj, where AY = {j : a;; = 1} and By = {j : B; = 1}7. Based on the
estimators §,’s, an estimator Sy (t) of Sg(t) can be uniquely defined for t € [p;,q;41) by
Su(p;) = Sulgis1i—) = 1 — (5 + --- + §;), but is not uniquely defined for ¢ being in
an open innermost interval (g;,p;) with ¢; < p;. To avoid ambiguity we define gM(t) =
1—[514+ - +38-1+s;(t—q)/(pj—q;)] if t € (¢;,p;] and 0 < ¢; < p; < oo. Figure 2
highlights the estimated distribution function Fys(t) = 1 — Sp(t).



Figure 2. Schematic depiction of the estimated d.f. Fi,

2.2 The SCE

Let Sp(t) = 1 — F(t) denote the survival function of 7" and p = P(V* < T;") denote the
proportion of un-truncation. We have the following equation:

Sp(t) = P(T; >,V <)+ P(T} > t,V;* > 1)

PPV <t < LITY 2 VE) 4 pP(TF > £, L7 <t < RS > Vo) 4 P(TY > 1,V > 1),
(2.7)
Motivated by (2.7), given p, we consider the following self-consistent estimator:

i (& " S() - S(R) & 3(t) }
t) = Iy 1+ I 1= R + A ) 2.8
) np_l{; Vist<Li] ; S TR > Vg (2.8)

i=1

Notice that the last term of the equation (2.8) is to recover the missing information due to

left-truncation. Given the observation V; > ¢, a pseudo observation is recovered by adding
the weight S( )/ Sg ). Let G(t) = P(V; < t) denote the sub-distribution function of V;.
Since G(t) = p~! [, 1/Sr(V;)dG(t). It follows that np~* can be estimated by Y1, 1/Sr(V;)

(see Shen (2005)). Hence, a self-consistent estimator S, is given by solving the following
equation:

n(t)z
{ “ 5.V, ] {Zl[v<t<”+z]“<t<’% 5( )> g Z Vs g v)} (2.9)

D

3

-.
Il



Let G(v) denote the empirical version of G(v). Similarly, Let H,(v,1) and Q,(l,) denote
the empirical versions of the joint sub-distributions of H(v,l) = P(V; < v, L; < 1) and

Q(l,r) = P(L; <, R; <r), respectively. It follows that (2.9) can be written as

N

S

n(t)
~1 5 5 .
U A én(dv)] { ﬁn(dv,dl)Jr/ Sn(t) = Sn(r) Qn(dl,dr)+/ ?”—(t)én(dv)}.
Sn(v) v<t<l 1<t<r Sp(l—=) — Su(r) vt Sy (V)
(2.10)
Notice that when there is no truncation, (2.10) is reduced to the following self-consistent
equation:

o [ o 50505 o
8,(t) = /Kl Qraldl) + /lgm S Q) (2.11)

where Q1 is the empirical version of the sub-distribution function of Q. (I) = P(L; < I).
Note that equation (2.11) is the same as equation (2.2) of Yu et al. (2001) for mixed interval
censored data.

The following theorem shows that Sy satisfies the equation (2.9).

Theorem 1.
The NPMLE Sy, satisfies equation (2.9).

Proof:

First, consider an initial estimator 5’,(10), which puts mass only on [g;,p;] (j = 1,...,J).
Let S denote the first step estimator. Without changing the innermost intervals and
likelihood function, we can transform data by moving all right censored and left truncated
points between p;_; and ¢; to p;_;. Similarly, move all left censored points between p;_;
and ¢; to g;. (see Li et al. (1997)). Based on the transform data, for all 7,j, we have

I[pj—1<ViSqJ'] = 0, I[Viﬁpj—léLi}I[qj'>Li] =0, I[ViSpj—1§Li]I[Qj>Li} =0, I[Vi>pj—ﬂI[Vi§qJ'—§Li] =0,
Ip,<p;—1<ry) = 0 and Ijp,<4,—<gr) = 0. It follows that S,(LI)(pj_l) — Sﬁl)(qj—) = 0. Hence,
S also puts mass only on [g;,p;] (7 = 1,...,J). Next, since there is no left censoring

observations in (g;, p;] and there is no left truncation observations in [g;, p;), we have for all
i, 7, Ivi<qy<rilip;>r) = 0 and Ijy;5q 1 v;<p,<z,) = 0. Furthermore, given an interval [L;, R;],
we either have [g;,p;] C [Li, Ri] or [q;,p;] N [Ls, Ri] = 0. Thus, we have

n

: : 1L 1< S (g5=) = S ()
W(g=) = SV (py) ={§ :S*(O)(V»)] {E gy pile (LR SA(O)(;) S(o)(R])
i=1 ©Pn 7 i=1 n i) T Pn i




Z Z i) 3 Z; Vin] nVE)}' (2.12)

=1 n z z

Since there is no left truncation observations in [qj, p;), (2.12) can be written as

. A ~ 1 ]y S (g5=) = 5% ()
Sél)(qj—)—sﬁl)(pj):[ZW)] {ZI[[qj,pj]e([Li,Ri}] -0 :

~ 5, SP(L:) — S (R)
"L Su(gi—) = Su(p) O Sn(qj—)—gn(Pj)}
+ — — I sy _ . 2.13
; S (Vi) ; GRS ) (2.13)

Next,

n n n

Su(g=) = Su(p;) = [Z %] _I{Z#jLZﬁ_—ﬁ”}sa (2.14)

i=1 i=1 Zk:l QikSk =1 Zkzl Bik5k

By definitions of A;, B;, a;; and (3,5, it follows that equation (2.13) is equivalent to equation
(2.14). The proof is completed.

The following Theorem shows the consistency of S, (t).

Theorem 2.

Let © = {f : f is nonincreasing function from [ar,br| to [0,1], f(br) = 0 and f(ap) = 1}.
Let S € © be a [0, 1]-valued function and h be a function such that h(t)K(t) =

(2.15)

where h(t) = S(t) — Sp(t) and K(t) = G(t) — P(Lf <t < R}). (i) Suppose that (2.15) holds
on the set {t: 0 < S(t) < 1} implies that h(t) = 0 for all ¢ € (ar, br) provided that h(t+) #
h(t) = S(t+) < S(t) on {t : 0 < S(t) < 1}, h(t) =0 on {t : S(t) = 0 or S(t) = 1}. (ii)
Suppose that S, € © and S, is right continuous, then lim,, SUD, < pchy 15 ()= Sp(x)| = 0
a.s.

Proof:

Let Q be the event {lim H,,(v,1) = H(v,1),lim Q,(l,7) = Q(I,r) uniformly for allv < [ <
r}. For each w € Q, let S, be the solution of (2.9). Since {S, }n>1 is bounded and monotone,
for each subsequence of natural numbers, by Helly’s selection theorem, there exists a further
subsequence, say {n}, such that lim,, . Sy, (t) = So(t) pointwisely for some Sy € ©. Thus,
it suffices to show that Sy(t) = Sp(t) for all ¢t € [ar, bp].

Since H, and Q,, converge uniformly to H and Q, respectively and S, satisfies (2.9), by



the bounded convergence theorem Sy satisfies the following equation: Sy(t) =

[ sieen] ([, om0 [ SG=siome [ Siae)

(2.16)
Equation (2.16) can be written as
L G = ; So(t) = 5o(r) 5
So(?) /vgt SQ(U)G(dU) =) H(dv,dl)—i—/lSKr 0 _SO(T)Q(dl,dr). (2.17)

Let H(v,l) = P(V;* < wu,Lj < 1) and Q(I,r) = P(L; < r,Rf < r). Since G(dv) =
p1Sp(v)G(dv), H(dv,dl) = p~'Sp()H (dv,dl), and Q(dl, dr) = p~[Sk(l) — Sp(r)]Q(dl, dr),
(2.17) can be written as

p1So(t) / 3 *;i((s)) G(dv) = p~! / Sp(1)H(dv, dl)

ot [ s~ SellQan ). (@19
Replacing So(-) of (2.18) by Sp(-), we obtain
PSR ()G(E) = p! /

v<t<l

Sp(l)H(dv, dl) + p~! / [Sp(t) — Sp(MQ(dl, dr).  (2.19)

I<t<r

Note that (2.19) is equivalent to
PI7 >, Vy <tT7 2 Vi) = PV <t < LT 2 V) + P(T7 > t, L <t < Rj|T] > V).
Subtracting (2.19) from (2.18), we obtain

h(t) K (t) =

T G T T T

where h(t) = Sy(t) — Sp(t). By assumption (i), it follows that h(t) = 0 for t € [ap,bp]. |
follows that So(t) = Sr(t) for all t € [ar,br]. By (2.3) all limit points of S, must satlsfy
(2.5), by Helly-Bray selection theorem we have S, (t) — Sp(t) a.s. for t € (ap,bg). Since S,
is a sequence of monotone, right continuous and bounded functions on (ap,br), it follows
that supse(q, pp) 5, () — Sk(t)] — 0 as. (see Proposition 3.1 of Yu et al. (2001))

The proof is completed.



3. Simulation Results

A simulation study is conducted to investigate the performance of the proposed estimator
F(t). The Ti’s are i.i.d. exponential distributed with mean equal to 1. The V;*’s are i.i.d.
exponential distributed with scale parameters § = 0.5,1 and 2, i.e. G(x;6) =1 — exp(—6z)
for x > 0. The T and V;* are independent to each other. To make the truncated sample
interval-censored, we first generate a random variable X = 2 4+ B(n,, 0.5), where B(n,0.5)
is a binomial random variable with n, = 4,6. Given X = k, we then generate k i.i.d uniform
random variables U;; ~ U(0,1) (j = 1,...,k). Define Zy; = V;* + Uy;, Zoy = Uy + Zy,
Zsi = Usi + Zgiy -+, Zii = Zi—1,; + Upi. We keep the sample if 77" > V;* and regenerate
a sample if 7;° < V*. If T falls in the interval [Z;;, Z;41,] (j = 1,...,k — 1), then let
Ly = Zj and R} = Zj1,. T > Zp; then let LY = Zi; and R} = 10000. The goal is to
estimate S(t,) = p, with p = 0.8, 0.5 and 0.2. The sample sizes n are chosen as 200 and 400.
Based on left-truncated and interval-censored data (V;, L;, R;) (i = 1,...,n), we obtain the
proposed estimator S’n(tp) and the NPMLE S v (tp). The sample sizes are chosen as 200 and
400. The replication is 1000 times. Tables 1 through 3 show the empirical biases, standard
deviations (std.) and mean squared errors (mse) of S, and Sy;. Tables 1 through 3 also list
the proportion of truncation P(T; < V;*) (denoted by ¢r). Based on the results of Tables 1
through 3, we conclude that:

(i) Given ¢r, the rmse of the estimators S, and Sj; increase as n. decreases, i.e. mean
interval length increases.

(ii) Given n., the rmse of estimators S, and Sy, increase as proportion of truncation g¢r
increases.

(iii) In terms of rmse, when n = 200 the NPMLE :§M outperforms the SCE S . When
n = 400, the performance of the estimators S, and Sy, are close to each other for most of
cases considered.



Table 1. Simulation results for bias, standard deviation and
root mean squared error for estimating S(to.2)

Sn(to.2) Sw(to.2)

0 n. n qr bias std rmse bias std rmse
2 5 200 0.43 -0.074 0.023 0.072 -0.065 0.021 0.068
2 5 400 0.43 -0.050 0.017 0.060 -0.056 0.014 0.057
2 6 200 0.43 0.074 0.026 0.078 -0.077 0.023 0.080
2 6 400 0.43 0.059 0.015 0.061 -0.062 0.013 0.063
4 5 200 0.31 -0.0610.024 0.065 -0.054 0.023 0.058
4 5 400 0.31 -0.053 0.017 0.056 -0.048 0.015 0.050
4 6 200 0.31 -0.0810.026 0.085 -0.076 0.025 0.080
4 6 400 0.31 -0.0650.015 0.066 -0.059 0.012 0.060
8 5 200 0.23 -0.059 0.025 0.064 -0.052 0.023 0.057
8 5 400 0.23 -0.042 0.019 0.046 -0.040 0.015 0.043
8 5 200 0.23 -0.0820.032 0.088 -0.086 0.026 0.084
8 6 400 0.23 -0.065 0.020 0.068 -0.061 0.017 0.063

Table 2. Simulation results for bias, standard deviation and
root mean squared error for estimating S(¢q5)

Sn(tos) Swu(tos)

0 n. n qr bias std rmse  bias std rmse
2 5 200 043 -0.0720.0250.076 -0.065 0.021 0.068
2 5 400 0.43 -0.056 0.014 0.057 -0.051 0.019 0.054
2 6 200 0.43 -0.080 0.026 0.084 -0.077 0.023 0.080
2 6 400 0.43 -0.068 0.019 0.071 -0.066 0.017 0.068
4 5 200 0.31 -0.058 0.025 0.063 -0.054 0.023 0.058
4 5 400 0.31 -0.047 0.015 0.050 -0.043 0.018 0.046
4 6 200 0.31 -0.079 0.035 0.086 -0.076 0.025 0.080
4 6 400 0.31 -0.061 0.017 0.063 -0.059 0.012 0.060
8 5 200 0.23 -0.057 0.025 0.062 -0.052 0.023 0.057
8 5 400 0.23 -0.037 0.019 0.042 -0.040 0.015 0.043
8 6 200 0.23 -0.078 0.029 0.083 -0.086 0.026 0.084
8 6 400 0.23 -0.064 0.018 0.066 -0.061 0.017 0.063




Table 3. Simulation results for bias, standard deviation and

root mean squared error for estimating S(tos)

Sn(tos) Swu(tos)
0 n n gr  bias std rmse  bias std rmse
2 5 200 043 -0.0650.021 0.068 -0.061 0.025 0.066
2 5 400 0.43 -0.056 0.014 0.057 -0.052 0.018 0.055
2 6 200 0.43 -0.081 0.026 0.085 -0.077 0.023 0.080
2 6 400 0.43 -0.074 0.0150.076 -0.072 0.013 0.073
4 5 200 0.31 -0.059 0.024 0.064 -0.054 0.023 0.058
4 5 400 0.31 -0.047 0.019 0.051 -0.048 0.015 0.050
4 6 200 0.31 -0.0730.027 0.079 -0.076 0.025 0.080
4 6 400 0.31 -0.062 0.016 0.064 -0.059 0.012 0.060
8 5 200 0.23 -0.0570.025 0.062 -0.052 0.023 0.057
8 5 400 0.23 -0.042 0.016 0.045 -0.040 0.015 0.043
8 6 200 0.23 -0.073 0.030 0.080 -0.086 0.026 0.084
8 6 400 0.23 -0.060 0.016 0.062 -0.061 0.017 0.063

11
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4. Discussions

For interval-censored and left truncated data, Turnbull’s algorithm leads to a self-consistent
equation which is not in the form of an integral equation. Large sample properties of the
NPMLE have not been previously examined because of, we believe, among other things, the
lack of such an integral equation. In this article, we have presented a SCE using an integral
equation and consistency of the SCE under some conditions (assumption (i) of Theorem
2). Since the NPMLE also satisfies the self consistent integral equation, the consistency of
the NPMLE also holds. More research remains to be done. A rigorous investigation when
assumption (i) of Theorem 2 holds. A similar equation holds for the simpler case: doubly
censored data (see Gu and Zhang (1993)). Consider an alternative proof by extending the
approach of Yu et al. (2001), where the consistency of SCE is established when there is no
truncation.
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