第四章 結果與討論

前言

本章節會先介紹 Random 下之 SEM、EDS、Hall effect 和 BET 等 相關分析儀器所分析出來之結果,再分兩部分依序介紹低頻介電量測 及電化學之循環伏安分析兩部分。

首先驗證低頻量測系統可用後,再經由實驗得知隨機分佈型態為 最適合本實驗之混合定律公式,後再量測出 RBP 之介電及改質後之 影響。

另一部分就以循環伏安法量測 RBP 之充放電趨勢及比電容值後,知其為一良好之電極材料,最後更近一步研究改質後對其比電容值及充放電趨勢之影響。

4.1 SEM 表面分析

BP 是由成千上萬根的 CNTs 累積而成,為了解 BP 表面的型態, 我們利用 SEM 來觀察得知。構成 BP 的材料為奈米碳管,而 CNTs 則以粉末的形式呈現,粉末狀之 CNTs 在 10000 倍下的 SEM 如圖 4-1 (a)所示,可以從圖發現到 CNTs 彼此會因凡德瓦力而糾結團聚且無序 的分散開來,且其孔隙度非常的大。經過製程改善而製造出的巴克紙 在 10000 倍下的 SEM 如圖 4-1 (b)所示,和圖 4-1(a)相比較下可以觀 察出 CNTs 因製程的改善使彼此間之凡德瓦力被打散,令所有 CNTs 能重新分佈,使 CNTs 整體的平均密度提高,管身與管身間如同網狀 般排列。

除了在 10000 倍觀察之外,另外分別列出了 30000 倍與 50000 倍 之 SEM 圖來觀察。從圖 4-2 (a)、圖 4-2 (b)與圖 4-3(a)、圖 4-3(b)兩 組對照圖來看,可以更加清楚的觀察出 BP 內的 CNTs 的確分布的更 平均,且不會出現有大孔隙的狀況。帶電粒子的傳輸路徑是靠著奈米 碳管上的π鍵作為傳輸媒介,而未處理的粉末 CNTs 在 SEM 下有著 相當明顯且比例相當高的孔隙存在,造成了帶電粒子在傳輸時的困 難,也直接影響了其導電性能。但是當奈米碳管的排列方式經過製程 改善進而使得糾結團聚現象消失,CNTs 彼此間緊密交織,使帶電粒 子在 CNTs π 鍵上的跳躍更為連續,整體呈現出的導電性質就更好。 上述所探討的 SEM 為粉末的 CNTs 經過製程改善之後變成 BP 的過 程,SEM 觀測下的 BP 之 CNTs 呈現隨機(Random)的排列方式。

4.2 EDS 成份分析

EDS 可得知樣品內部元素重量本分比最好的分析工具。圖 4-4 為 粉末 CNTs 的 EDS 分析圖,從分析圖上搭配表 4-1 可以看到碳原子佔 了 90%以上,而剩下的氧、鐵原子不到 10%。圖 4-5 為 BP 之 EDS 分析圖,從分析圖配合表 4-2 可以看到含碳原子超過 90%,但是其成 分卻多了 Al、Ti 等元素,其含量加總不到 2%,根據相關文獻[154] 解釋,會有 Al、Ti 兩種金屬元素出現,概因製程中超音波破碎機前 端 Tip 消耗並殘留在懸浮液裡面所致。

無論是粉末 CNTs 或 BP 的 EDS 分析圖,都可看出兩者碳元素比 例皆高達 90%以上。而鐵原子會存在於粉末之 CNTs 或 BP 中概因 CNTs 在成長時添加催化劑所致,故其管身內部皆含有微量的 Fe、 Co、Ni 等微量催化金屬。

4.3 Hall Effect 電性分析

Hall Effect 利用外加磁場並通與外加磁場垂直之電流,令導體內 載子受到勞倫茲力(Lorentz force)的作用而在導體兩端形成電位差,藉 此推算載子的濃度。此外再透過四點探針量測可得 BP 之電阻率,並 得知其導電性質高低。 4.3.1 載子濃度分析

載子濃度高低決定了 BP 之導電性,而遷移率大小則決定單位電場作用強度下帶電粒子移動的難易程度。在 3.6.3 節已詳細介紹過 Hall Effect 的實驗原理,在此不多加介紹。

經由標準半導體之量測來判斷,若P型矽晶片經由霍爾效應量 測,則所得的V_H為正,反之N型矽晶片測得的V_H則為負。本實驗 量測的結果顯示 BP之V_H為正,可知 BP 屬於電洞傳輸之類型。BP 所測得之載子濃度約在10¹⁸~10²⁰之間,對照圖4-6 載子濃度與導電 性的關係圖可知 BP之載子濃度介於金屬及半導體之間,稱為所謂的 半金屬(Semimetal)。BP 本身若由 MWCNTs 100%所組成,則絕大部 分會呈現金屬性,反之若 BP 由 SWCNTs 100%所組成,則有 1/3 金屬、 2/3 半金屬的可能性。本研究所使用之 BP 樣品皆為 100% MWCNTs 所構成。

4.3.2 電阻率分析

利用四點探針配合 Keithley 2410 對 BP 進行電阻率(Resistivity) 的量測時,因考慮到樣本的形狀等因素,故隨著樣本形狀不同則有相 對應的形狀修正因子 CF。而本實驗樣品取邊長為 10mm 之正方形, 將這樣本進行電阻率的量測,實驗量測示意圖如圖 4-7、圖 4-8 所示。 已知 ρ = V/I *CF *t (t 為 BP 之厚度,約為 0.08mm),經由四點探 針量測後可得 V/I=1.81Ω, CF =d/s = 10mm/1.5mm = 6.666(s 為四點探 針之間距),藉由表 3-2 形狀修正因子係數與圖 3-8 相互對照之後,再 以內插法求得出當 CF=6.666,修正係數為 3.844。

 $\therefore \rho = 1.81 * 3.844 * 0.008 = 0.05566 \,\Omega \cdot cm = 5.566 * 10^{-4} \,\Omega \cdot m$

實驗量測的結果可知 BP 的電阻率約在 5.47*10⁻⁴Ω·m, 和表 4-3 對照後得知 BP 的電阻率約介於碳和鍺之間,為一具導電性質之材料。

4.4 BET 比表面積分析

氣體吸附法測比表面積是利用氣體在待測物表面的吸附特性,定 壓時待測物之表面在超低温下對氣體具有可逆的物理吸附作用,並對 應一定壓力的平衡吸附量,通過測出該平衡吸附量,求出被測样品的 比表面積。

本研究利用物理吸附儀,將樣品放入 77k 的樣品管內,並且注入 氦氣進行等溫脫吸附曲線。注入氦氣的原因是因其活性低,不易有化 學反應,且被吸附過程中不會對樣品的特性和表面吸附特性產生影 響。BP 實驗結果的孔隙分佈如圖 4-9 所示,其孔隙大小分佈約在 10nm ~50nm 之間,平均孔隙約為 21nm,遠大於氮原子的直徑,進一步說 明了氦氣適合用來吸附 BP 此一材料。而其比表面積所測定之值如表 4-4 所示,孔洞體積為 1.42 cm³/g。為了求出 BP 的孔隙率,需先算出 BP 的總體積,我們所製之樣品為直徑 45mm、厚度約為 0.08mm 之圓 片型,經計算後其孔隙總體積約佔 BP 體積的 78%,並且與文獻[156] 結果相乎應。BP 的密度經由計算約為 0.55g/cm³(此為含空氣之密 度),相比單根的 CNT 1.33~1.4 g/cm³[157]如圖 4-10 而言,其密度有 下降的趨勢,是因從微觀的 CNTs 變成巨觀之 BP,由於 BP 將大量 CNTs 均質化了,故整體平均密度便會下降,為合理的現象。由 BET 的實驗,我們知 BP 為一具有高孔隙的薄膜 P型材料,也正因為 BP 的多孔隙材料迥異於一般材料的結構,更凸顯 BP 應用領域的廣大。

4.5 低頻介電量測及混合定律計算

本部分研究主要在於探討介電量測,首先我們利用平行板電容的 觀念,以兩片銅極板搭配 LCR Meter 架設一低頻薄膜介電量測系統, 並分別以 Teflon 薄膜、FR4 板及乾燥的紙來量測以確定此量測系統可 用。

當我們所要量測之薄膜可能帶有金屬性時,不可直接讓樣品接觸 到電極,故我們需要利用兩張乾燥的紙左右夾住樣品在置入量測系統 中做量測,而為了計算出其待測物之介電值,我們使用複合材料的觀 念,以混合定律來分離並得知待測物之介電值,後面將會以常見的幾 種混合公式做探討及驗證出最適合本系統之公式。

4.5.1 低頻介電量測系統驗證

此部分研究主要利用平行板電容的觀念,以兩片等面積之銅板作 為電容器之兩極板,再配合 LCR Meter 量測其介電值。欲之本量測法 之正確性,故我等分別以常見 Teflon 薄膜、FR4 板及乾燥之紙等三種 材料來做為驗證基準,結果如圖 4-11、圖 4-12 及圖 4-13 所示。其中 Teflon 薄膜之介電值一般定義在≦2.1,由圖 4-11 量測結果顯示其值 約在 2 上下,其誤差非常的小。另外 FR4 板標準介電值為 5.5,由圖 4-12 顯示透過本系統量測出之值約在 5.4 左右,與其標準值相去不 遠。最後量測乾燥之紙,由於常見紙的介電值約在 2.5~4 之間,變動 範圍較大,不過我們量測出之結果如圖 4-13 所示,量測出之結果落 在常見值的變動區間之中。透過本實驗驗證之結果,可證實本實驗所 架設的低頻薄膜介電量測系統為一正確之量測系統,後續我們皆會透 過此量測系統來量測低頻之介電值。

4.5.2 混合定律檢測驗證

由前面基礎量測中提到過 BP 本身為一半金屬性質之薄膜材料, 故我們在量測時不可直接讓 BP 接觸到兩側作為電極用之銅板,因此 我們欲使用烘乾之紙作為隔絕 BP 與電極版之絕緣物,但由於增加了 兩張紙後,因此我們所量測到的介電值並非是純 BP 之介電值,而是 一紙+BP 的混合介電值。

進行量測時我們將對極板兩側緊壓,是故我們可將紙+BP 視為一 個複合材料,欲得到 BP 之介電值,我們可藉由 3.4.1 章捷所提到的 混合定律進行分離並得到 BP 之介電值,由於文獻中提及總計 4 種最 為常用之運算公式,故我們將藉由量測(1)紙+Teflon 薄膜 及 (2)紙+FR4板 做量測後以前面做出最精準之公式求出 Teflon 薄膜 及 FR4 板之介電常數,藉此驗證 4 種常見之公式中何者最適用於本 系統。

首先我們量測(1)紙+Teflon薄膜的組合,量測後分別以4種混合定律計算Teflon薄膜的介電值後如圖4-14,由圖中我們可以觀察 到利用混合定律的隨機分佈型來計算出的答案最接近原始量測值,故 可推論其最為精準。

為了準確性,我們再以(2)紙+FR4板的組合作驗證,量測並利 用隨機分佈型計算後之結果如圖 4-15 所示,隨機分佈型來計算出之 結果非常接近原始量測值。

透過這個實驗我們可以指出,常見的4種混合定律的公式之中, 最適用於本低頻薄膜介電量測系統的公式為隨機分佈型。

4.6 奈米碳管紙改質前後之介電量測計算

經由第4.4 章捷的實驗,我們已經充分了解此低頻薄膜介電量測 系統可用,並且也找出最適用於量測非絕緣物介電值的方法及公式, 因此這部分實驗將會以量測 BP 的介電值及研究經過對 BP 改質後有 什麼影響。

4.6.1 奈米碳管紙之介電值量測

本實驗主要目的是量測出 BP 之介電值,藉以了解 BP 在低頻時 的介電值。由於 BP 為一半金屬材料,是故我們在量測時須使用兩張 紙左右夾住 BP 以免碰觸到金屬極板,接著我們利用前面驗證過的低 頻介電量測系統做量測,量測出的結果再利用前面討論的混合定律中 之隨機混合型來分離得出 BP 之介電值如圖 4-16,我們可以得到在低 頻情況下 BP 的介電值約為 16。

4.6.2 沉積金屬氧化物對介電值之影響

由上一個實驗我們知道了 BP 的介電值約為 16,因此本部分實驗 主要在探討當我們沉積不同金屬氧化物時對介電值之影響,再來就是 當沉積不同濃度的金屬氧化物時對介電值會有甚麼變化。

4.6.2.1 沉積金屬濃度 0.01M

為比較沉積不同金屬氧化物對介電值之影響,首先調配錳、鉻、

鈷、鎮、鋁、鐵等6種硝酸金屬水溶液,再以電泳法分別沉積在BP 上,再烘乾氧化後完成試片,由於鍍上之比例為微量金屬氧化物,故 我們還是以複合材料量測方式進行,利用兩張乾燥的紙左右隔開電極 版後進行量測之,以低濃度0.01M分別電泳6種不同金屬氧化物改質 的BP之介電值變化如圖4-17所示,由圖中我們可以發現沉積鉻氧化 物增加之介電值可達原始BP之2倍以上,此結果並且顯示出我們可 以利用沉積不同金屬氧化物,達到控制BP的介電值增加或減少以利 我們應用。

4.6.2.2 沉積金屬濃度 0.1M

接著我們調整欲沉積的硝酸金屬水溶液濃度至 0.1M,一樣同上 個實驗步驟分別沉積錳、鉻、鈷、鎳、鋁、鐵等 6 種不同金屬至個別 BP上,一樣利用兩張乾燥的紙夾乾燥後之樣品後進行量測,量測的 結果如圖 4-18 所示,由量測的結果可發現在較高濃度時,沉積氧化 鉻效果依然較原始 BP 的介電值增加 2 倍多,顯示沉積氧化鉻可以大 幅提升 BP 之介電值,若欲將 BP 利用於電容中之介電材料時可沉積 鉻氧化物增加其介電值。

4.7 奈米碳管紙改質前後之 CV 測試

由前面章節的基礎測試我們知道 BP 為一高體比表面積極高孔隙 度的半金屬薄膜材料,其特性相當符合電極材料所需之高體比表面 積,若我們想了解 BP 是否實際可應用於電極材料之上,則我們可藉 由電化學的循環伏安法測試其比電容值及其循環壽命趨勢來了解其 電極方面的特性。

4.7.1 不同速率下奈米碳管紙之 CV 測試

若想了解 BP本身是否可作為一理想的電極材料,則我們可利用 循環伏安法(CV)來做測試,首先我們分別以 100mV/s、150mV/s 及 250mV/s 三種掃描速率來做掃描,並且掃描 200 個循環藉此了解其循 環壽命趨勢,掃描結果如圖 4-19(a)、圖 4-19(b)及圖 4-19(c)所示,計 算出其比電容值分別為 155.6F/g、153.94F/g 和 151.93F/g,從掃描速 率不同我們可以觀察到, BP 為一反應速度極快的材料,在不同掃描 速率下衰減的量並不多。

再者 BP 的循環壽命極長,經過 200 個充放電掃描後並沒有明顯的下降如圖 4-20 (a)、圖 4-20 (b) 及圖 4-20 (c)所示,首循環及最後一個循環並沒有明顯的下降。

4.7.2 沉積金屬氧化物對電化學特性之影響

由前面的實驗我們得知 BP之比電容值約在 150F/g,透過電泳沉 積不同濃度的各種金屬氧化物來對 BP 改質後,我們期盼能提升其比 電容值,由於我們在前面看到在不同速率下其比電容值影響並不太 大,故我們該掃描速率接設定在快速的 250mV/s。

4.7.2.1 BP 沉積錳氧化物前後之影響

從前面介電值量測中,我們觀察到有些經改質後介電變得特別低的金屬,本實驗我們篩選兩種金屬氧化物錳及鈷來做高(0.1M)、低(0.01M)濃度摻雜改質,透過循環伏安法來量測其對 BP 改質後對 比電容值之影響。圖 4-21 (a) 及圖 4-21 (b) 分別為低濃度及高濃 度的錳氧化物改質,由圖中我們可以觀察到,在低濃度沉積錳氧化物 時期比電容值可達 182.33F/g,較高濃度沉積的 178.73F/g 還高,而改 質後較原始 BP 增加了 30F/g 左右,效果非常明顯。 4.7.2.2 BP 沉積鈷氧化物前後之影響

本實驗我們配置低濃度及高濃度之鈷硝酸水溶液後, 輔以電泳沉 積分別沉積在個別樣品上後, 再不絕氧情況下對表面進行烘乾並氧 化,對此兩樣品進行循環伏安測試後, 其結果如圖 4-22(a)及圖 4-22 (b)所示, 在低濃度沉積之樣品經 200 圈之循環伏安法測試後, 得 到其比電容值為 172.4F/g, 而較高濃度沉積後之樣品測得其比電容值

111

為172.6F/g,基本上來說是濃淡沉積之效果差不多,但沉積後之比電 容質還是較原始 BP 大了約20F/g。

由上述實驗可知,我們可以藉由沉積不同金屬氧化物在 BP 上來 增加其比電容質,為須注意其氧化還原所失去金屬氧化物的量。

4.8 組裝電容模型量測

由上面兩部分的實驗我們得到了摻雜鉻氧化物時的 BP 為最佳 之介電材料,而摻雜錳氧化物的 BP 為最佳之電極材料,因此我們利 用上述兩材料組合成的電容模型透過 LCR Meter 量測其低頻時的電 容值如圖 4-23,其電容值約在 530 μF。

Element	Weight%	Atomic%
С	85.26	91.64
Ο	8.60	6.94
Fe	6.14	1.42

表 4-2 BP 成份重量與原子百分比 Element Weight% Atomic% 93.97 С 83.58 2.73 2.31 0 8.19 1.98 Fe 0.45 Al 0.90 4.60 1.30 Ti

Material	Resistivity ($\Omega \cdot m$) at 20 °C
Silver	1.59×10 ⁻⁸
Copper	1.72×10 ⁻⁸
Gold	2.44×10 ⁻⁸
Aluminium	2.82×10 ⁻⁸
Calcium	3.3x10 ⁻⁸
Tungsten	5.60×10 ⁻⁸
Nickel	6.99×10 ⁻⁸
Iron	1.0×10 ⁻⁷
Tin	1.09×10 ⁻⁷
Platinum	1.1×10 ⁻⁷
Lead	2.2×10-7
Manganin	4.82×10 ⁻⁷
Constantan	4.9×10 ⁻⁷
Mercury	9.8×10 ⁻⁷
Nichrome	1.10×10 ⁻⁶
Carbon	3.5×10 ⁻⁵
Germanium	4.6×10 ⁻¹
Silicon	6.40×10^2

表 4-3 各種常見材料之電阻率

表 4-4 比表面積與孔洞體積

		Pore volume
BET surface area	106.3869m²/g	
adsorption		1.42cm ³ /g
desorption		1.42cm ³ /g

圖 4-1 (b) BP 於 10000 倍下之 SEM 圖

圖 4-2(b) BP 於 30000 倍下之 SEM 圖

圖 4-3(b) BP 於 50000 倍下之 SEM 圖

圖 4-4 粉末 CNTs 之 EDS 分析圖

圖 4-5 BP 之 EDS 分析圖

Coince to Extromo					
Going to Extremes					
PROPERT	ſΥ	SINGLE-WALLED Nanotubes	BY COMPARISON		
	Size	o.6 to 1.8 nanometer in diameter	Electron beam lithography can create lines 50 nm wide, a few nm thick		
4	Density	1.33 to 1.40 grams per cubic centimeter	Aluminum has a density of 2.7 g/cm ³		
Ċ Ĵ	Tensile Strength	45 billion pascals	High-strength steel alloys break at about 2 billion Pa		
	Resilience	Can be bent at large angles and restraightened without damage	Metals and carbon fibers fracture at grain boundaries		
	Current Carrying Capacity	Estimated at 1 billion amps per square centimeter	Copper wires burn out at about 1 million A/cm ²		
T ···	Field Emission	Can activate phosphors at 1 to 3 volts if electrodes are spaced 1 micron apart	Molybdenum tips require fields of 50 to 100 V/µm and have very limited lifetimes		

圖 4-10 單根 CNT 密度圖

圖 4-12 FR4 板之介電常數

圖 4-14 四種混合定律計算 Teflon 薄膜之介電常數

圖 4-16 利用隨機分佈型計算 BP 之介電常數

圖 4-18 較高濃度的六種金屬氧化物改質的 BP 之介電常數變化

2M

Frequence (Hz)

3M

4M

1M

ò

圖 4-19(b) 150mV/s 掃描 BP 200 個循環

圖 4-20(a) 100mV/s 掃描 BP 首循環及末循環比較圖

圖 4-20(c) 250mV/s 掃描 BP 首循環及末循環比較圖