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Abstract

This thesis studies two types of graph labeling problems, namely binary label-
ing problems and Zk-magic labeling problems. We study general properties of
both notions for general graph classes and in particular for regular graphs.
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Chapter 1

Introduction

In this thesis, unless otherwise stated, a graph means a finite undirected simple
graph without multiple edges or loops. Notations not specifically defined here
please see [7].

1.1 Binary Labeling

In 1995, M. Kong and S. M. Lee[3] initiated the study of the edge-balanced
graphs, which may be inspired from the following situation. Let us imagine
that in a two-party parliament of a democratic country, suppose the legislators
from two parties are approximately the same (precisely, they differ by at most
one). In order to form fairly committees with focuses on different affairs in
the parliament, further suppose that every legislator participate exactly two
committees at a time. By the majority rule, one would wonder that, what are
possible arrangements of the legislators of parties such that a balanced situa-
tion for committees is reached? More precisely, how to make the numbers of
committees dominated by either party are approximately the same (precisely,
they differ by at most one)? We can naturally model this situation using so
called edge-balanced graph labeling. Each vertex represents a committee and
each edge represents a legislator from one specific party. Two vertices are
joined by an edge if and only if the legislator(edge) takes part in these two
committees(vertices). We seek a partition of the vertices into two sets which
satisfies certain condition of balance, and hence the definition of edge-balanced
graphs. In fact it is not hard to see that the concept of edge-balanced labeling
may be applied to many other situations in practical life in which some type
of balance is needed.

We will give the definition and some generzation in this paper.
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2 CHAPTER 1. INTRODUCTION

1.2 A-magic Labeling

For any additive abelian group A, let A∗ = A − {0} where 0 is the additive
identity element. Given a graph G, any mapping f : E(G) → A∗ is called an
edge labeling of G. A graph G is said to be A-magic if there exists an edge
labeling such that the induced vertex labeling f+ : V (G) → A defined by

f+(v) =
∑

uv∈E(G)

f(uv)

is a constant map. We call the constant a magic sum index of G with respect
to A, an index for short, and IA(G) = {r : G is A-magic with an index r}
the magic sum spectrum , or the index set for short, of G with respect
to A. In general, a graph may admit more than one edge labeling to be an
A-magic graph. No generally efficient algorithm is known for finding magic
labeling for general graphs. A. Kotzig and A. Rosa used the same term in
[10], their notion of magic labeling is different from what we consider here. It
is well-known [22, 31, 40] that a graph G is N-magic if and only if every edge
of G is contained in a {1, 2}-factor and every pair of edges is separated by
this (1, 2)-factor. For a list of properties of N-magic graphs, see [21, 38, 39].
Richard Stanley studied Z-magic graphs in [36, 37], and he demonstrated that
the study of magic labelings can be reduced to solving a system of linear
diophantine equations.

In this article, we shall refer A as the finite cyclic group Zk, and the magic
sum index set IA(G) as Ik(G). Note that the case of Z2-magicness is easy to
settle. Since every edge of a Z2-magic graph must be labeled with 1, the magic
sum is the degree of any vertex modulo 2.

However the discussion of Z2-magic graphs is completely different from that
of Zk-magic graphs for k ≥ 3. It is quite challenging, and still open thus far, to
obtain similar or whatsoever characterizations for Zk-magic graphs for k ≥ 3.
Therefore the index sets of Ik(G) is hard to calculate for k ≥ 3. Throughout
this article we study the Zk-magicness for all k ≥ 3, unless otherwise stated.
We remark that usually for the case of infinite cyclic group Z one may have
similar results, when one obtains results over the finite cyclic group Zk.

In later chapter, we study the index sets of various graph classes. It is not
hard to see that any regular graph is Zk-magic for k ≥ 3, however it is not
easy to determine completely the magic sum spectrum for a regular graph G.
We show in this paper that a regular graph with a 1-factor has the full index
set Zk for all k ≥ 3, and give examples of regular graphs without 1-factor
whose index set is not full Zk for some k ≥ 3. We also show that the index set
of complete bipartite graphs Km,n is the cyclic subgroups Zd generated by k

d
,

where d = gcd(m − n, k). Among others we determine completely the index
sets of wheels Wn, fans Fn, and all circulant graphs. Some open problems are
presented in the conclusion remarks.



Chapter 2

Binary Labeling

2.1 Terminology and Background

We define an edge friendly edge labeling f , and the edge-balance index for a
graph G with respect to f as follows:

Definition 2.1.1 A binary edge labeling f is a mapping from E(G) to {0, 1},
and the induced vertex labeling f+ is a mapping from V (G) to {0, 1} defined
in the following way. f+(v) = 1 if at the vertex v the number of incident
edges labeled 1 is more than the number of incident edges of edges labeled 0.
f+(v) = 0 if at the vertex v the number of incident edges labeled 0 is more
than the number of incident edges of edges labeled 1. f+(v) is undefined, if
at the vertex v the numbers of incident edges labeled 0 and 1 respectively are
the same. Let ef (i) = |{e ∈ E(G) : f(e) = i}|, where i = 0, 1, and an edge
labeling f is called edge-friendly if |ef (0)− ef (1)| ≤ 1. For an edge-friendly
labeling f , we denote vf (i) = |{v ∈ V (G) : f+(v) = i}|, where i = 0, 1, and
tf = |{v ∈ V (G) : f+(v) is undefined}|. We define |vf (0) − vf (1)| to be an
edge-balance index of G with respect to f . The set of all possible indices of
G with respect to all possible edge-friendly labeling is called the edge-balance
index set of G, and is denoted by EBI(G).

A graph G is called edge-balanced if the edge-balance index of G is either
0 or 1. Equivalently, one graph is edge-balanced if there exists an edge labeling
f such that |ef (0)− ef (1)| ≤ 1 and |vf (0)− vf (1)| ≤ 1.

In [1] B.-L. Chen et al. proved that all connected simple graphs, except
the star graphs K1,2k+1, are edge-balanced, k ≥ 1. In this article, we consider
a more general notion edge-balance index set, and calculate the index sets of
regular graphs and related graphs. The motivation to do the study is that, as
indicated in the above imagined situation in a parliament, one may wonder the
spectrum of various arrangements of the committees consisting of members
of two parties, for example to the extreme in a monopolized situation, or

3



4 CHAPTER 2. BINARY LABELING

somewhere in between, other than the balanced situation. This corresponds to
the study of edge-balance index set of a graph. Also regular graphs represent
the normal situation that every committee consists of the same number of
legislators.

In the following are some known examples, as mentioned in [2].

Example 2.1.1 The edge-balance index set EBI(nK2) of the 1-regular graphs
nK2 is {0} if n is even, and is {2} if n is odd.

Example 2.1.2 The edge-balance index set EBI(St(n)) of the star graph St(n)
with n pendant edges is {0} if n is even, and is {2} if n is odd.

Example 2.1.3 EBI(Pn) =





{2}, n = 2
{0}, n = 3
{1, 2}, n = 4
{0, 1}, n ≥ 5 is odd
{0, 1, 2}, n ≥ 6 is even

2.2 Edge-Balance Indices of Cubic Graphs

A 3-regular graph is also called a cubic graph. We have the following obser-
vations for cubic graphs. A cubic graph G must have even order, and every
vertex labeling f+ induced from an edge friendly labeling f is defined, hence
tf = 0. Also for any v ∈ V (G), we have f+(v) = 0 if and only if there are
at least two 0-edges incident with v. Note that for cubic graphs, the index
|vf (0)−vf (1)| = 2vf (0)−|V (G)| = 2(p2(G0)+p3(G0))−|V (G)| is even. In or-
der to analyze the edge-balance indices of cubic graphs, we need the following
two lemmas.

The first lemma gives the upper bound of the edge-balance index set of
general cubic graphs. Let G be a cubic graph with p vertices, and let f be
an edge-friendly labeling of G. Let Gi be a partial subgraph of G obtained
from G and a friendly labeling f by deleting all edges labeled 1 − i , where
i = 0, 1. We denote pk(Gi) to be the number of vertices of degree k in Gi for
k = 0, 1, 2, 3 and i = 0, 1. Then we have the following:

Lemma 2.2.1 Let G be a cubic graph with p vertices. Then

max(EBI(G)) ≤ 2d3p
4
e − p

and the equality holds for the following conditions:
max(EBI(G)) = 2d3p

4
e − p if and only if

p0(G0) = p− d3p
4
e, p1(G0) = 0, p2(G0) = d3p

4
e, and p3(G0) = 0,
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if and only if

p0(G1) = 0, p1(G1) = d3p
4
e, p2(G1) = 0, and p3(G1) = p− d3p

4
e,

and if and only if the subgraph G0 is a disjoint union of cycles with possibly
isolated vertices.

The upper bound in the above lemma is optimal, since we easily have
examples which achieve the upper bound.

The next natural question is that, can every even number strictly less than
the upper bound be attained as an edge-friendly index of a cubic graph? It
was proved in [43]:

Theorem 2.2.1 Let G be a cubic graph with p vertices with a perfect matching
M . Then every even number strictly less than the upper bound 2d3p

4
e − p can

be attained as an edge-balance index of G. That is, we have

{0, 2, 4, · · · , 2d3p
4
e − p− 2} ⊆ EBI(G).

Making use of the above result, one may conclude the calculation of the
edge-balance index sets of many classes of graphs with perfect matching. Let
us mention certain examples in the below.

First of all, from the well known Hall’s Marriage Theorem one have that ev-
ery k-regular graph has a perfect matching, therefore with the above Lemma 2.2.1
and Theorem 2.2.1, we may determine the edge-balance sets of bipartite cubic
graphs with 8k + 4 or 8k + 6 vertices completely.

Theorem 2.2.2 Let G be a bipartite cubic graphs with p ≡ 4 or 6 (mod 8)
vertices, we have EBI(G) = {0, 2, 4, · · · , 2d3p

4
e − p− 2}.

Remark 2.2.1 In the following graph PC, which is of order 16 and size 24,
EBI(PC) = 0, 2, · · · , 8. Since we always can find subgraphs of PC which are
disjoint union of three components of types from H1, H2, H3, where H1 is of
size 4, and p3(H1)+p2(H1) = 4, H2 is of size 4, and p3(H2)+p2(H2) = 3, H21
is of size 4, and p3(H3)+ p2(H3) = 2. For any index 0 ≤ 2x ≤ 8, 8 ≤ v0 ≤ 12,
we always have such G0 such that G0 is of size 12, and p3(G0) + p2(G0) = v0.

This example shows that there exists a cubic graph without perfect matching
which realizes all indices below the upper bound.

In order to realize the edge-balance indices of more regular graphs, let us
define the circulant graph here.
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Figure 2.1: PC1

Definition 2.2.1 A circulant graph CIRn(S) is defined by using the vertex
set V (CIRn(S)) = {0, 1, 2, · · · , n − 1}, and the edge set E(CIRn(S)) = {ij :
|i− j| ≡ s (mod n), s ∈ S}, where S ⊂ {1, 2, · · · , bn

2
c}.

For example, CIRn({1}) ∼= Cn, CIRn({1, 2, · · · , bn
2
c}) ∼= Kn, and CIR2n({1, n}) ∼=

the n-Möbius ladder. A prism graph Y (n) is a graph corresponding to the
skeleton of an n-prism. Prism graphs Y (n) are therefore both planar and
polyhedral, and are isomorphic to the Cartesian product Cn × P2 which has
2n vertices and 3n edges. Note that the prism graphs are examples of cubic
graphs with perfect matching, therefore it is straightforward to get the index
sets if we use the result in this paper. In [44] we obtained the index set of the
n-Möbius ladder M(n) and the index set of prism graphs Y (n):

Theorem 2.2.3 For n ≥ 3, EBI(Y (n)) =





{0, 2, · · · , n}, n ≡ 0 (mod 4)
{0, 2, · · · , n + 1}, n ≡ 1 (mod 4)
{0, 2, · · · , n− 2}, n ≡ 2 (mod 4)
{0, 2, · · · , n + 1}, n ≡ 3 (mod 4)

Proof.
Since the prism graphs admit perfect matching, by Lemma 2.2.1, to obtain

the index sets it is sufficient to determine the upper bounds.
CASE 1 n = 4k Apply Lemma 2.2.1, the upper bound is 4k. The G0 is

the cycle u0v0v1 · · · v3k−1u3k−1 · · · u1u0, therefore the upper bound is realized.
CASE 2 n = 4k + 1 Apply Lemma 2.2.1, the upper bound is 4k + 2, The

G0 is the cycle u0v0v1 · · · v3ku3k · · ·u1u0, therefore the upper bound is realized.
CASE 3 n = 4k + 2 Apply Lemma 2.2.1, the upper bound is 4k + 2, and

the G0 is 2-regular and of size 6k +3. On the other hand, Note that Y (4k +2)
is a bipartite graph, hence contains no odd cycles and every 2-regular subgraph
of Y (4k + 2) is of even order. Therefore the upper bound is not realized.

CASE 4 n = 4k + 3 Apply Lemma 2.2.1, the upper bound is 4k + 4,
to realize 4k + 4 in EBI(Y (4k + 3)), consider an edge friendly labeling f as
following:
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f(uivi) = 1, i = 1, 3, · · · , 4k + 1, f(ui−1ui) = 1, i = 1, 5, · · · , 4k + 1

f(vj−1vj) = 1, j = 3, 7, · · · , 4k − 1

and

f(v4k+2v0) = 1, f(e) = 0 for other edges e.

The upper bound is realized.
Q.E.D.

And similarly, we also have edge balanced index sets of n-Möbius ladder
M(n):

Theorem 2.2.4 For n ≥ 3, EBI(Mn) =





{0, 2, · · · , n}, n ≡ 0 (mod 4)
{0, 2, · · · , n + 1}, n ≡ 1 (mod 4)
{0, 2, · · · , n}, n ≡ 2 (mod 4)
{0, 2, · · · , n− 1}, n ≡ 3 (mod 4)

In 1950 H. S. M. Coxeter introduced a family of graphs generalizing the
Petersen graph. These graphs are now called generalized Petersen graphs, a
name given to them in 1969 by Mark Watkins. In Watkins’ notation:

Definition 2.2.2 The generalized Petersen graph G(n, k) is a graph with ver-
tex set

{u0, u1, · · · , un−1, v0, v1, ..., vn−1}
and edge set

{uiui+1, uivi, vivi+k : i = 0, ..., n− 1},
where subscripts are to be read modulo n and k < n/2.

In Coxeter’s notation for the generalized Petersen graph would be {n} +
{n/k}. The Petersen graph itself is G(5, 2) or {5}+ {5/2}.

The generalized Petersen graph G(n, k) is a graph consisting of an inner star
polygon (circulant graph CIRn(k) ) and an outer regular polygon (cycle graph
Cn ) with corresponding vertices in the inner and outer polygons connected
with edges. G(n, k) has 2n vertices and 3n edges, and is bipartite if and only if
n is even and k is odd. The famous example of generalized Petersen graphs is
the Petersen graph G(5, 2). The example of the prism graphs Y (n) ≡ G(n, 1),
and we have the following result of index sets for G(n, 2):

Theorem 2.2.5 For n ≥ 3, EBI(G(n, 2)) = {0, 2, 4, · · · , d3n
2
e}.
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2.3 General Regular Graphs

For a general regular graph G, we have the following observations. If G is odd
regular, then G is of even order, and very vertex labeling f+ induced from an
edge-friendly labeling f is defined. Also for any v ∈ V (G), we have f+(v) = 0
if and only if there are at least dp/2e 0-edges incident with v. Note that we
may assume vf (0) ≥ vf (1). Therefore, the edge-balance index associated with
an edge-friendly labeling f of an odd regular graph G is 2vf (0)− |V (G)|, and
thus every index in EBI(G) is even for odd regular graphs. As for the case of
even regular graphs, it is more complicated since there could exist undefined
vertices.

In order to analyze the edge-balance indices of regular graphs, we start
with the following lemma of integer programming nature:

Lemma 2.3.1 Suppose anxn + an−1xn−1 + ..... + a2x2 + x1 = T , where an >
an−1 > . . . > a2 > 1 fixed positive integers, T a fixed nonnegative integer, xi

for 1 ≤ i ≤ n are nonnegative integer variables, then

1. xn + xn−1 + ...... + xm ≤ b T
am
c for m ≥ 2. In case am is a divisor of T ,

equality holds if and only if xm = T
am

, and xi = 0, for i 6= m.

2. When ai = i, i = 2, . . . , n, we have 2(xn + xn−1 + ...... + xm) + xm−1 ≤
b T

m
c+ bT+1

m
c, for m ≥ 2.

Let δ0 = b δ
2

+ 1c, where δ is the minimum degree of G. We have that
degG0(v) ≥ 1

2
(bdegG(v)c + 1) if and only if v is labeled by 0 in G. Note that

for the vertices v labeled 0, we have that degG0(v) ≥ δ0. However the converse
statement is not necessarily true in general. Apply the Lemma 2.3.1, we have
2v0 +hf ≤ 2

∑∆
i=δ0

pi +pδ0−1 ≤ b2q0

δ0
c+b2q0+1

δ0
c, and if G is an odd graph, hence

no undefined vertex labeling, the bound may be more precise. In the case of
n-regular graphs, q0 = dnp

4
e. Therefore we are in a position to give the upper

bounds of edge-balance indices for odd and even regular graphs.

Lemma 2.3.2 Let G be an n-regular (n odd) graph with p vertices, and let f
be an edge-friendly labeling of G. Then

max(EBI(G)) ≤ 2b2dn
2
e−1dnp

4
ec − p.

Proof.
Note that δ0 = dn

2
e. Apply Lemma 2.3.1, we have that vf (0) ≤ b2dn

2
e−1dnp

4
ec,

and for any index r ∈ EBI(G), r = 2vf (0)− p ≤ 2b2dn
2
e−1dnp

4
ec − p.

Q.E.D.
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Lemma 2.3.3 Let G be an n-regular graph (n even) with p vertices, and let
f be an edge-friendly labeling of G. Then

max(EBI(G)) ≤
⌊

4

n + 2

⌈np

4

⌉⌋
+

⌊
2

n + 2
(2

⌈np

4

⌉
+ 1)

⌋
− p.

Proof.
Note that δ0 = dn

2
+ 1e. Apply Lemma 2.3.1,

max EBI(G) ≤
⌊

4

n + 2

⌈np

4

⌉⌋
+

⌊
2

n + 2
(2

⌈np

4

⌉
+ 1)

⌋
− p

.
Q.E.D.

Basic techniques used here are from previous lemmas. Now we determine
the edge-balance index sets of complete graphs Kn in the following.

Theorem 2.3.1 For n = 4k or n = 4k + 2, EBI(Kn) = {0, 2, · · · , n − 2},
where k is a positive integer.

Proof.
Note that K4k is (4k−1)-regular, and has 2k(4k−1) edges. By Lemma 2.4.1,

we have 4k−2 as the upper bound of EBI(K4k). To realize 4k−2 in EBI(K4k),
we consider a subgraph of K4k as follows:

G0
∼= CIR4k−1([1, k]) ∪ {v}

Therefore, |E(G0)| = |E(K4k)|
2

= k(4k − 1) and G0 is 2k-regular. Let f be the
labeling such that f(e) = 0 if and only if e ∈ G0 and f(e) = 1 otherwise. Then
f+(v) = 0 for 4k − 1 vertices under the labeling f , and the upper bound is
attained.

As for 0 ≤ 2t ≤ 4k − 2, we realize each 2t as an edge-balance index us-
ing the circulant graphs as follows. Consider a subgraph of K4k using graphs
as follows: CIR4k−1([2, k]) ∪ {v} with (k − 1)(4k − 1) edges, a path P2k+t =
{0, 1, 2, ...., 2k + t} with (2k + t) edges, and Et = {1v, 2v, ......., (2k + t− 1)v}
with 2k + t − 1 edges. Let G2t = CIR4k−1[2, k] ∪ {v} ∪ P2k+t ∪ Et, then

|E(G2t)| = k(4k − 1) = |E(K4k)|
2

. Let ft be the labeling such that f(e) = 0 if
and only if e ∈ G0 and f(e) = 1 otherwise. Therefore f+

t (v) = 0 for 2k+ t ver-
tices under the labeling f , and the index r = 2vf (0)−|V (G)| = 4k+2t−4k = 2t
is realized.

The case for n = 4k+2 is similarly obtained by taking G0
∼= CIR4k+1([1, k])

⋃
E0,

where the E0 is an edge set consists of {0v, (1)(2k+1), 2(2k+2), · · · , (2k)(4k)},
and realize other indices by deleting cycle on CIR4k+1 and add edges back.
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Q.E.D.

Using the same method, that is, to find G0 which contains a cycle formed
by all vertices of degree n

2
+ 1, delete the cycle, and add edges back such that

the number of vertices of degree more than n
2

is n
2

+ t, and number of vertices
of degree n

2
is 1 or 0.

Note that K5 and K7 are exceptional, one may still have the following
results:

Lemma 2.3.4 For EBI(K5) = {0, 1} and EBI(K7) = {0, 1, 2, 3, 4}.

Proof.
Since K5 has 10 edges, G0 is of size 5, take G0

∼= K4 \ {e}, which is a
diamond, we have v0 = 2, v1 = 1.

Since K7 has 21 edges, G0 is of size 11 take G0
∼= K5

⋃{ux, uy}, where
x, y ∈ V (K7), u /∈ V (K5), we have v0 = 5, v1 = 1.

Q.E.D.

Theorem 2.3.2 For n = 4k+1 or 4k+3, k ≥ 2, EBI(Kn) = {0, 1, · · · , n−4}.

Proof.
For n = 4k + 1, k ≥ 2, take G0

∼= CIR4k−1([1, k])
⋃

E0, where the E0 is an
edge sert consists of {0v, (1)(2k − 2), 2(2k − 1), · · · , (2k − 1)(4k − 3)}.

For n = 4k − 1, k ≥ 2, take G0
∼= CIR4k−2({1}

⋃
CIR4k−3([2, k]).

Q.E.D.

2.4 Regular Graphs Join with Null Graphs

Let us consider almost regular graphs by using the join product of regular
graphs .

Lemma 2.4.1 Let G be an n-regular graph (n even) with p vertices, let G+Kc
m

be the join of G and m points if m + n ≤ p.

max(EBI(G + Kc
m)) ≤ 2b2dn + 1

2
e−1dn + 2mp

4
ec − p− 1.

Proof.
Note that δ0 = n+m

2
and q0 = n+2mp

2
, by Lemma 2.3.1 it follows.

Q.E.D.
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Lemma 2.4.2 Let G be an n-regular graph with p vertices, let G + Kc
m be the

join of G and one point v if m + n ≤ p is even Then

max(EBI(G+Kc
m)) ≤

⌊
4

n + m + 2

⌈np

4

⌉⌋
+

⌊
2

n + 2
(2

⌈
n + 2m

p
4

⌉
+ 1)

⌋
−p−1

.

Proof.
Note that δ0 = n+m

2
and q0 = n+2mp

2
, by Lemma 2.3.1 it follows.

Q.E.D.

Theorem 2.4.1 For a generalized wheel GWn = {v0} + G, where G is a 2-
regular graph. Let V (GWn) = {v}⋃{v1, · · · , vn} and E(GWn) = {vvi : i =
1, · · · , n}⋃

E(Cn). Then

EBI(GWn) =

{ {0, 2, · · · , 2i, · · · , n− 1}, if n is odd,
{1, 3, · · · , 2i + 1, · · · , n− 1}⋃{0, 2, · · · , 2(dn

4
e − 1)}, if n is even.

Proof.
Since G + v has n + 1 vertices and 2n edges, hence q0 = n, δ0 = 2 here,

and any index x = 2v0 + hf − (n + 1).
For n odd, each vertex labeling is defined and even, hence hf = 0. Let

G0
∼= G, we realize index n− 1. For 0 ≤ 2t ≤ n− 3, pick a path union cycles

of size n+1
2

+ t, say P2t = u0u1 · · · um, where m = n+1
2

+ t. Construct G0 by
joining v to u0, u1, · · · , un−m, then we realize index 2t.

For n even, if hf = 0, the odd index is realized similarly by above method.
For any even index x = 2v0 + hf − (n + 1), hf = 1 and degG0(v) = n

2
, G0\{v}

contains n− n
2

= n
2

edges on the 2-regular graph G. Choose these edges such
that they are independent if they are adjacent to vvi, and the others form
cycles union path.

Q.E.D.

2.5 Open Problems of Edge-Balance Index Sets

There are more open problems left as follows from our work:

• Characterize the graphs G with edge-balance index r, where r ≤ |V (G)|−
2.

• In particular, characterize those graphs G which represents the majority,
in the sense of the parliament and committee model mentioned, that
vf (0) = r, tf = |V (G)| − r, and vf (1) = 0. Note that the cases r =
|V (G)|, |V (G)| − 1, and |V (G)| − 2 have been done in this article.
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• Can the statement that, regular graphs with 1-factor admits all edge-
balance indices except the maximum one, be extended or generalized in
any way?

• Certain fundamental classes of graphs, as special cases, such as cycles
Cn, complete graphs Kn, hypercubes Qn, wheels Wn, fans Fn, complete
bipartite graphs Km,n, complete multipartite graphs Kn,n,··· ,n with parts
of the same orders etc.

• All regular graphs with 1-factor, such as regular bipartite graphs, regular
claw-free graphs, generalized Petersen graphs, cubic graphs with at most
two bridges, some cases of circulant graphs etc.

• Certain regular graphs without 1-factor, such as Petersen’s counterex-
ample for cubic graphs with bridges admitting no 1-factor (that is our
graph PC in the Figure 4.1), circulant graphs without 1-factor, etc.

• Is the sufficient condition admitting a 1-factor is also necessary for reg-
ular graphs to have the full index sets Zk, for all k ≥ 3?



Chapter 3

Group Labeling with Zero
Magic Sums

3.1 Introduction and Terminology

For a positive integer k, let Zk = (Zk, +, 0) be the additive group of congru-
ences modulo k with identity 0, and Zk is the usual group of integers Z when
k = 1. We call a finite simple graph G = (V (G), E(G)) to be Zk-magic if it
admits an edge labeling ` : E(G) → Zk\{0} such that the induced vertex sum
labeling `+ : V (G) → Zk defined by `+(v) =

∑
uv∈E(G) `(uv) is constant. The

constant is called a magic sum index, or an index for short, of G under
the labeling `, which follows R. Stanley. The null set of G, which is defined
by E. Salehi as the set of all k such that G is Zk-magic with zero magic sum
index, and is denoted by Null(G). For fix integer k, we consider the set of all
possible magic sum indices r such that G is Zk-magic with a magic sum index
r, and denote it by Ik(G). We call Ik(G) the index set of G with respect
to Zk. In this paper, we investigate the properties and relations of the index
sets Ik(G) and the null sets Null(G) for Zk-magic graphs. Among others, we
determine the null sets of generalized wheels and generalized fans, and also
construct infinitely many examples of Zk-magic graphs with magic sum zero.
Some open problems are presented.

For any additive abelian group A, let A∗ = A−{0} where 0 is the additive
identity element. Given a graph G, any mapping ` : E(G) → A∗ is called an
edge labeling of G. A graph G is said to be A-magic if there exists an edge
labeling such that the induced vertex labeling `+ : V (G) → A defined by

`+(v) =
∑

uv∈E(G)

`(uv)

is a constant map. We call the constant a magic sum index of G, an index
for short, and IA(G) = {r : G is A-magic with an index r} the index set of

13
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G with respect to A. In this article we focus on A = Zk and denote IA(G)
by Ik(G). The notion of index sets is first introduced and studied by C-M
Lin and T-M Wang in [23]. A related notion is the null set of G, which is
defined as the set of all k such that G is Zk-magic with index 0. The problems
related to the null sets was studied by E. Salehi in [33, 32]. E. Salehi also
studied a particular class of graphs called uniformly null , which is defined
as the graphs G with the property that, if G is Zk-magic, then the magic sum
is zero only. He identified the class of complete bipartite graphs Kn,n+1 to be
uniformly null in [33].

In general, a graph may admit more than one edge labeling to become an A-
magic graph. At present, no generally efficient algorithm is known for finding
magic labeling for general graphs. It is well-known [22, 31, 40] that a graph
G is N-magic if and only if every edge of G is contained in a {1, 2}-factor.
For a list of properties of N-magic graphs, see [21, 24, 26, 38, 39]. Stanley
studied Z-magic graphs in [36, 37]; he demonstrated that magic labelings can
be found by solving a system of linear diophantine equations. Being Z-magic is
a weaker condition than being N-magic. Given a graph G, the set of all k such
that G is Zk-magic is defined as the integer-magic spectrum of G, and is
denoted by IM(G). The integer-magic spectra of some families of graphs can
be found in [25, 27, 28, 29]. The concepts of the index sets, the null sets, and
the integer magic spectra of graphs are closely related. Note that the case of
Z2-magicness is easy to settle. Since every edge must be labeled with 1, the
magic sum is the degree of any vertex modulo 2. Therefore the degrees of the
vertices must have the same parity. This leads to the following result.

Lemma 3.1.1 A graph G is Z2-magic if and only if its degrees are all even
or all odd.

However the discussion of Z2-magic graphs is completely different from
that of Zk-magic graphs for k ≥ 3 or k = 1. It is quite challenging to obtain
similar characterizations of Zk-magic graphs for k ≥ 3 or k = 1.

In [33], E. Salehi introduced the null set of a graph, and obtained some
interesting results regarding various classes of graphs. Formally we define the
null set of a graph as follows.

Definition 3.1.1 The null set of a graph G is the set of all possible positive
integers k, such that G has a zero magic sum index under a Zk-magic edge
labeling, and is denoted by Null(G).

First of all we define precisely the magic sum spectrum with respect to
Zk, which is referred as the index set in this paper, of a graph as follows:

Definition 3.1.2 For a graph G, we define the set of all magic sum indices r
such that G is Zk-magic with magic sum index r, to be the magic sum spectrum,
namely the index set of G with respect to Zk, and denote such a set by Ik(G).
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For the index sets of vertex disjoint union of graphs, we have the following
formula.

Proposition 3.1.1 Let H1 and H2 be vertex disjoint graphs. Then Ik(H1 ∪
H2) = Ik(H1)∩ Ik(H2). In particular, let nG be the vertex disjoint union of n
copies of G, then nG has the same index set as G, that is, Ik(nG) = Ik(G).

Proof. On one hand, if r ∈ Ik(H1∪H2), then r ∈ Ik(H1) and r ∈ Ik(H2) sim-
ply consider the restriction of the labeling of H1 ∪H2 over H1 and H2, respec-
tively. On the other hand, if r ∈ Ik(H1) and r ∈ Ik(H2), then r ∈ Ik(H1 ∪H2)
since H1 and H2 are vertex disjoint, hence edge disjoint. 2

We have the following basic observations over the indices of edge disjoint
union of Zk-magic graphs. Let in particular G = G1 ⊕ G2 ⊕ · · · · · · ⊕ Gm

be the edge disjoint union of spanning subgraphs G1, G2, · · · and Gm, that
is, G admits a factorization with factors G1, G2, · · · , Gm. Suppose for fix k
the graphs Gi is Zk-magic with index ri for i = 1, · · · , k. Then we have
G = G1 ⊕G2 ⊕ · · · · · · ⊕Gm is Zk-magic with an index

∑m
i=1 ri. The reason is

at each vertex v of G1 ⊕ G2 ⊕ · · · · · · ⊕ Gm, the incident edges consist of the
incident edges of v in G1, G2, · · · , Gm. We organize these facts as follows.

Proposition 3.1.2 Let G = G1 ⊕ G2 ⊕ · · · · · · ⊕ Gm be a factorization of
spanning subgraphs G1, G2, · · · and Gm. Suppose for fix k the graphs Gi is
Zk-magic with index ri for i = 1, · · · , k. Then we have:

(1) G = G1 ⊕G2 ⊕ · · · · · · ⊕Gm is Zk-magic with an index
∑m

i=1 ri.
(2) Ik(G1) + Ik(G2) + · · · · · · + Ik(Gm) ⊆ Ik(G1 ⊕ G2 ⊕ · · · · · · ⊕ Gm), and in

particular, Ik(G1 ⊕G2 ⊕ · · · · · · ⊕Gm) = Zk if Ik(Gi) = Zk for some i.

Remark. Note that in previous Proposition, Ik(G1) + Ik(G2) + · · · · · · +
Ik(Gm) # Ik(G1⊕G2⊕· · · · · ·⊕Gm) in general. That is, not necessarily every
index of G1 ⊕G2 ⊕ · · · · · · ⊕Gm comes from the sum of indices of G1, G2, · · ·
and Gm. Examples could be found in later sections.

Remark. In case the graphs G1, G2, · · · and Gm are Zk-magic with indices 0
for each Gi, where i = 1, · · · , k. Then we have the resulting arbitrary union
graph

⋃k
i=1 Gi, which is formed by attaching these m graphs in any way, is

still Zk-magic with an index 0.

One direct application with the above observation is that the Cartesian
product of Zk-magic graphs is still Zk-magic with an index of the sum of
corresponding indices.
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Proposition 3.1.3 For fix k, let the graphs Hi be Zk-magic with index ri for
i = 1, · · · , s. Then the Cartesian product H1 × H2 × · · · × Hs has an index∑s

i=1 ri, and Ik(H1) + Ik(H2) + · · · · · ·+ Ik(Hs) ⊆ Ik(H1 ×H2 × · · · ×Hs). In
particular, the index set Ik(H1 ×H2 × · · · ×Hs) = Zk whenever Ik(Hi) = Zk

for some 1 ≤ i ≤ s.

Proof.
It suffices to show that the Cartesian product of two Zk-magic graphs

is Zk-magic with an index the sum of original indices. Let |V (H1)| = m1

and |V (H2)| = m2. Decompose H1 × H2 as graphs K1 and K2 such that
V (K1) = V (K2) = V (H1 ×H2), where E(K1) = {(ui, v)(uj, v)|uiuj ∈ E(H1)}
and E(K2) = {(u, vi)(u, vj)|vivj ∈ E(H2)}. Then K1

∼= m2H1 and K2
∼=

m1H2, thus have indices r1 and r2, respectively. Then from previous fact,
H1×H2 = K1⊕K2 has an index r1 + r2, and Ik(H1) + Ik(H2) ⊆ Ik(H1×H2).
Hence the proof is complete.

2

However in general, the index set will not be the full Zk. Note that the
index set in general is a subset of Zk, not necessarily a subgroup. Note that if
r ∈ Ik(G) then −r ∈ Ik(G), simply by reversing the sign of the labels on each
edge. If one can show for any r, r′ ∈ Ik(G) we have r + r′ ∈ Ik(G), then Ik(G)
is a subgroup of Zk. We have the following necessary condition for a Zk-magic
graph with magic sum r.

Proposition 3.1.4 For any Zk-magic labeling f of a graph G with index r,
we have

2
∑

e∈E(G)

f(e) ≡ r · |V (G)| (mod k)

Proof. Summing the vertex sums will count each edge label twice. 2

By the above necessary condition, for a graph G with V (G) odd and for
even k, it implies that r must be an even number, as a representative in the
congruence class modulo k. Therefore we have the following fact.

Corollary 3.1.1 For a graph G with odd vertices and for even k, we have
that Ik(G) j 2Zk $ Zk.

Remark. For example, for n ≥ 1 odd and t ≥ 0, let G be Kn,n,··· ,n, the
complete multipartite graphs with 2t + 1 parts of the same odd order n. By
the above corollary we have the index set Ik(G) = 2Zk $ Zk for k even, since
G is of odd order. Note that G is even regular, therefore by Lemma 4.1.10
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later, every even index is assumed except K1 and K3. By the way, from the
Theorem 4.1.2 in later section it follows that the remaining cases for the index
set of Kn,n,··· ,n (even n, or parts of even orders) is full Zk for all k ≥ 3 since
it admits 1-factor. Therefore we determine completely all the index sets of
complete multipartite graphs Kn,n,··· ,n with parts of equal orders n ≥ 1.

Remark. The converse statements of the Proposition 3.1.4 and Corollary 3.1.1
are not true in general, please see for example F3 in Lemma 4.2.1 in later sec-
tion, which provides with an example having the index set Ik(G) j 2Zk $ Zk

for even k, but with even number of vertices.

We have the following examples of the index sets of cycles and Cartesian
product of cycles.

Proposition 3.1.5 Let Cn be an n-cycle, where n ≥ 3, and k be a positive
integer. We have the following:

(1) Ik(Cn) = 2Z∗k = {2x : x 6= 0, x ∈ Zk}, for n odd.
(2) Ik(Cn) = Zk, for n even.

Proof.
(1) Note that in any Zk-magic labeling of a cycle, the edges should alterna-

tively be labeled the same. Therefore, for n odd, the labels on all edges
are all the same. Therefore Ik(Cn) = 2Z∗k = {2x : x 6= 0, x ∈ Zk}.

(2) For n even, we label the edges 1, x−1, 1, x−1, · · · , 1, x−1 for x ∈ Zk\{1}
to obtain the index x, and 2,−1, 2,−1, · · · , 2,−1 to obtain the index 1.
Therefore Ik(Cn) = Zk.

2

Remark. Note that 2Z∗k = Z∗k for k is odd, and 2Z∗k = {0, 2, · · · , k
2
} = 2Zk

for k is even. One may see from the above proposition that 0 ∈ Ik(Cn), for n
even, and 0 ∈ Ik(Cn) if and only if k is even, for n odd.

As corollaries of the above observations, we have the following example for
the index set of the hypercube graphs Qn.

Proposition 3.1.6 For fix k and n ≥ 2, the index set of the hypercube is
Ik(Qn) = Zk. Note that Qn = P2 × P2 × · · · × P2︸ ︷︷ ︸

n copies

.

Proof. Note that Ik(Q2) = Ik(C4) = Zk by Proposition 3.1.5. Then by
Proposition 3.1.2, we have Ik(Qn) = Zk. 2

Moreover, we have the following examples for the index sets of toroidal
grids Cm1 × Cm2 × · · · × Cmt :
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Proposition 3.1.7 For fix k and n ≥ 2, the index set of a toroidal grid
G = Cm1 × Cm2 × · · · × Cmt is

Ik(G) =

{
Zk, if some mi is even,
2Zk, otherwise.

Proof. Directly from the Proposition 3.1.3 and the Proposition 3.1.5. 2

In general if G is Zk-magic, then it is Zmk-magic for k and m positive
integers. Therefore it suffices to consider the cases of prime numbers when
one studies the Zk-magicness of a graph. We have the following relationship
of index sets with respect to k and mk:

Proposition 3.1.8 Let m, k be positive integers. Then m · Ik(G) ⊆ Imk(G)
and |Ik(G)| ≤ |Imk(G)|.

Proof. Note that if G is Zk-magic with index r (mod k), then it is Zmk-magic
with index mr (mod mk), since we may simply use the Zk-magic labeling
with index r, multiplying on each edge label by m, which turns out to be a
Zmk-magic labeling with index mr. On the other hand, mri ≡ mrj (mod mk)
implies ri ≡ rj (mod k), thus |Ik(G)| ≤ |Imk(G)|. 2

Remark. From the above observation, one may see that for checking the
Zk-magicness of a graph, it suffices to look at the prime numbers k, instead of
all positive integers k.

It is quite challenging to obtain similar characterizations as in Z2-magic
cases for Zk-magic graphs for k ≥ 3. However, we have the following ob-
servation for Z3-magic graphs. Let G = (V, E) with |V | = p and |E| = q,
V = {v1, v2, · · · , vp}. Note that there are only two possible edge labels 1 and
−1 in a Z3-magic labeling. Let ik be the number of (−1)-edges incident with
the vertex vk, and jk be the number of 1-edges incident with the vertex vk for
1 ≤ k ≤ p, respectively. Then ik + jk = deg(vk) for 1 ≤ k ≤ p. Denote ν the
total number of (−1)’s, hence q − ν is the total number of 1’s, then we have
2ν =

∑p
k=1 ik =

∑p
k=1(deg(vk)− jk) = 2q−∑p

k=1 jk. Therefore in terms of the
local information of the number of 1’s or that of (−1)’s, we have the following.

Proposition 3.1.9 Let G be a Z3-magic graph with p vertices and q edges.
Then

1. If the magic sum index is 0 (mod 3), then 3|q − 2ν.

2. If the magic sum index is 1 (mod 3), then 3|2q − p− 4ν.
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3. If the magic sum index is 2 (mod 3), then 3|q − p− 2ν.

Proof. Directly from the Proposition 3.1.4. 2

It is plausible but tedious to have similar necessary conditions for graphs
being Zk-magic with the magic sum index r, in terms of local information
of the graph, with the parameters the number of vertices and the number of
edges.

3.2 Null Sets of Generalized Fans and Gener-

alized Wheels

In this section, the null sets of windmills, fans, wheels, and their variants and
generalizations are discussed and determined completely.

Note that at first for any Zk-magic labeling f of a graph G with index r,
we have the following equation by summing all vertex sums:

2
∑

e∈E(G)

f(e) ≡ r · |V (G)| (mod k).

Hence we have 2
∑

e∈E(G) f(e) ≡ 0 (mod k) for any magic labeling with
index 0, and also note that the sum of labels for all the incident edges with
one single vertex is 0, therefore we have the following Lemma:

Lemma 3.2.1 Let f be a Zk-magic labeling of G with an index 0, v be a vertex
of G, and G′ = G− {v}. Then we have:

∑

e∈E(G)

f(e) =

{
k
2

or 0 (mod k), for k even,
0 (mod k), for k odd.

and

∑

e∈E(G′)

f(e) =

{
k
2

or 0 (mod k), for k even,
0 (mod k), for k odd.

We will determine the null sets of generalized fan graphs, the null sets
of generalized wheel graphs, and the null sets of generalized windmill graphs
completely in this section.

Definition 3.2.1 A fan graph Fn = {v} + Pn is formed by adding a vertex
v to the vertex set of Pn and joining this vertex to every vertex of Pn, and a
wheel graph Wn = {v} + Cn is formed by adding a vertex v to the vertex set
of Cn and joining this vertex to every vertex of Cn, for n ≥ 3. A generalized
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fan graph is formed by joining one vertex to each vertex of a disjoint union of
paths, and a generalized wheel graph is formed by joining one vertex to each
vertex of a disjoint union of cycles. We call the vertex v the center, and the
edges connecting the center v and vertices of paths Pn or cycles Cn spokes.

Therefore, by the above Lemma 3.2.1, we observe that for the zero-sum
Zk-magic labeling of {v}+H (In particular H = Wn, H = Fn, or H = disjoint
union of paths or cycles), the sum of edge labels on H (that is cycles Cn, and
paths Pn respectively) must be 0 or k

2
modulo an even k, and also the induced

vertex sum of every vertex on H must be non-zero since the edge labels on
spokes are non-zero.

Remark. We observe that fans Fn and wheels Wn for n ≥ 3 have no Z2-magic
labeling with index 0. Therefore 2 /∈ Null(Fn) and 2 /∈ Null(Wn).

Note that the null sets of wheels and fans have already been determined
and presented at the 40th Southeastern International Conference on Combina-
torics, Graph Theory and Computing, March 2-6, 2009(Please see the abstract
of the talk ”Zero-Sum Magic and Null Sets of Planar Graphs”, E. Salehi and
S. Hansen, University of Nevada Las Vegas). We work independently regard-
ing this subject, and obtain the null sets of fans, wheels, and other graphs,
respectively. Therefore we omit our proof and just put the result for the null
set of the fans Fn for n ≥ 2 in the following for reference. Note that the proof
is based upon the induction and a method of subdivision.

Theorem 3.2.1 For n ≥ 2,

Null(Fn) =





2N, n = 2,
2N\{2}, n = 3,
N\{2}, n > 3, n ≡ 1 (mod 3),
N\{2, 3}, n > 3, n ≡ 0, 2 (mod 3).

More precisely, we define the generalized fans as follows.

Definition 3.2.2 A generalized fan F (n1, n2, · · · , nm) = {v} + (Pn1 ∪ Pn2 ∪
· · · ∪ Pnm), where Pni

are disjoint paths on ni ≥ 2 vertices, for i = 1, · · · ,m
and m ≥ 2.

We first deal with the Z3 case for a generalized fan F (n1, n2, · · · , nm) where
ni ≥ 2 vertices, for i = 1, · · · ,m:

Lemma 3.2.2 For ni ≥ 2, ∀i = 1, · · · ,m, let S = {ni : ni ≡ 0 or 2 (mod 3)}.
Then we have that 0 ∈ I3(F (n1, n2, · · · , nm)) if and only if |S| 6= 1.



3.2. NULL SETS OF GENERALIZED FANS AND GENERALIZED WHEELS21

Proof. Suppose 0 ∈ I3(F (n1, n2, · · · , nm)). By Lemma 3.2.1, we note that
every label restricted on each path is either 1 or −1 for any zero sum Z3-magic
labeling of the generalized fan. If we label all 1s on some path Pni

, then there
are (ni− 2) 1’s and two (−1)’s on the spokes incident with each vertex of such
path. Therefore, the partial vertex sum of the center with respect to Pni

is
ni − 4 ≡ ni − 1 (mod 3). On the other hand, if we choose to label all (−1)’s
on the path Pni

, the partial vertex sum of the center with respect to Pni
is

4− ni ≡ 1− ni (mod 3).
Let the total vertex sum of the center be T , we have the following four

cases:
Case 1: |S| = 1.

Then T is never zero (mod 3).
Case 2: |S| = 3k, k ∈ N ∪ {0}.

Label 1 on all the edges, then T ≡ 3k ≡ 0 (mod 3).
Case 3: |S| = 3k + 1, k ∈ N.

Label two fans such that the partial vertex sums of the center with respect
to them are −1, and 3k−1 fans such that the partial vertex sums with respect
to them are 1, then T ≡ (3k − 1)− 2 ≡ 0 (mod 3).
Case 4: |S| = 3k + 2, k ∈ N.

Label one fans such that the partial vertex sum of the center is −1, and
3k + 1 fans such that the partial vertex sums of the center with respect to
them is 1, then T ≡ (3k + 1)− 1 ≡ 0 (mod 3).

The converse is clear from the given labeling. 2

Note that we may view F (n1, n2, · · · , nm) as the one vertex union of Fni
,

for i = 1, · · · ,m, and write it as F (n1, n2, · · · , nm) = Fn1 ¯ Fn2 · · · ¯ Fnm .
Since N(Fn) ⊃ N\{2, 3}, for all n ≥ 4, that is Fn (n ≥ 4) is Zk-magic with
index 0 for all k ≥ 4, therefore if we can show that F (n1, n2, · · · , nm) with
certain ni ≤ 3 admits a Zk-magic labeling with zero sum, for all k ≥ 4, then
the null set of F (n1, n2, · · · , nm) is completely determined. We proceed with
the following steps.

Lemma 3.2.3 The double fans F (2,m) and F (3,m) admit a Zk-magic label-
ing with 0 index, for all m ≥ 4 and k ≥ 4.

Proof. Clearly, F (2, 4), F (2, 5), F (3, 4), and F (3, 5) admit Zk-magic labeling
with 0 index, for all k ≥ 4, as shown in the Figure 3.1 and Figure 3.2.

Note that the given labeling has 1-edge and (−1)-edge over the F4 and F5

sides, then by inserting spokes labeled 2 and −2, we may get a Zk-magic label-
ing with 0 index for general F (2,m+2) from F (2,m), and get F (3, m+2) from
F (3,m), respectively, for all m ≥ 4 by induction. Please see the Figure 3.3 for
the above mentioned method, which is also used in our proof in obtaining the
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Figure 3.1: F (2, 4) and F (2, 5)

Figure 3.2: F (3, 4) and F (3, 5)

null sets of fans. 2

Figure 3.3: F (∗,m) to F (∗,m + 2): a method of subdivision

Corollary 3.2.1 For k ≥ 4 and m ≥ 2, suppose {n1, n2, · · · , nm} contain
only one 2 or only one 3. Then F (n1, n2, · · · , nm) admits a Zk-magic labeling
with zero sum index.

Proof. If 2 (or 3) appears once in {n1, n2, · · · , nm}, then F (n1, n2, · · · , nm)
is a vertex union of F (2, t) (or F (3, t)) for t ≥ 4 and other fans Fj with j ≥ 4. 2
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Theorem 3.2.2 The generalized fan F (n1, n2, · · · , nm), ni ≥ 2, ∀i = 1, · · · ,m
and m ≥ 2, admits a Zk-magic labeling with zero index, for all k ≥ 4.

Proof. For convenience and without loss of generality, we may express the
generalized fan as the one vertex union of a copies of F , b copies of F2, and
c copies of F3, where F is an a vertex union of fans Fj, j ≥ 4. That is, we
assume that F (n1, n2, · · · , nm) = aF ¯ bF2 ¯ cF3 where b, c non-negative and
a is 0 or 1. Note that Fj, j ≥ 4 admits Zk-magic labeling with zero sum for
k ≥ 4. Then we have the following cases:
Case 1. b, c are both even.

Note that this case can be reduced to F (2, 2) and F (3, 3). For F (2, 2), it
admits a Zk-magic labeling with zero index, for k ≥ 4, since it is Eulerian
of even size. For F (3, 3), it admits a Zk-magic labeling with zero index, for
k ≥ 4, see the Figure 3.4. Therefore, bF2¯ cF3 = ( b

2
F2¯ b

2
F2)¯ ( c

2
F3¯ c

2
F3) =

b
2
F (2, 2)¯ c

2
F (3, 3) admits a Zk-magic labeling with zero index, k ≥ 4.

Figure 3.4: F (2, 3) and F (3, 3)

Case 2. b even, c odd.
In case b ≥ 2 it reduces to the case F (3, 2, 2), see the Figure 3.5. In case

b = 0 and c = 1, since a 6= 0, that is F 6= φ, it reduces to the case F (3, p),
p ≥ 4. In case b = 0 and c ≥ 3 odd, it reduces to the case F (3, 3, 3), see
Figure 3.6.

Figure 3.5: F (2, 3, 3) and F (2, 2, 3)
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Figure 3.6: F (2, 2, 2) and F (3, 3, 3)

Case 3. b odd, c even.
In case b = 1, c = 0. Then a 6= 0, that is F 6= φ, it reduces to the case

F (2, p), p ≥ 4. In case b ≥ 3 odd, c = 0, it reduces to the case F (2, 2, 2), see
Figure 3.6. In case c ≥ 2, it reduces to the case F (2, 3, 3), see the Figure 3.5.
Case 4. b, c are both odd.

In this case it reduces to the case F (2, 3), see the Figure 3.4.
2

Summarizing all up,

Theorem 3.2.3 Let F (n1, n2, · · · , nm) be a generalized fan, where ni ≥ 2, for
i = 1, · · · ,m and m ≥ 2. The null set is

Null(F (n1, n2, · · · , nm)) =




N, if n1 = n2 = · · · = nm = 2,
N\{2, 3}, ∃ unique ni ≡ 0 or 2 (mod 3),
N\{2}, otherwise.

Remark. In particular, we have shown in the above Theorem, assuming
n1 = n2 = · · · = nm = 2, that the windmill graphs (see the Figure 3.7)
WMn = F (2, 2, · · · , 2) = {v} + nP2, n ≥ 2, admits Zk-magic zero sum label-
ing for all k ∈ N, that is, the null set Null(WMn) = N, n ≥ 2.

Figure 3.7: Windmill WMn
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Now we proceed to determine the null sets of generalized wheel graphs.
First we put the results here without proof for the null set of the wheel graphs
Wn, n ≥ 3, for reference. Note that the proof is also based upon the induction
and a method of subdivision as in the case of fans and generalized fans.

Theorem 3.2.4 For n ≥ 3,

Null(Wn) =

{
N\{2}, n ≡ 0 (mod 3),
N\{2, 3}, n ≡ 1, 2 (mod 3).

To be more precise about the generalized wheel graphs, we define as follows:

Definition 3.2.3 A generalized wheel graph W (n1, n2, · · · , nm) = {v}+(Cn1∪
Cn2 ∪ · · · ∪ Cnm), where Cni

are disjoint cycles on ni ≥ 3 vertices, for i =
1, · · · ,m and m ≥ 2.

Similar to the situation in the Z3-magic case of generalized fans, we have
the following Lemma for the generalized wheels W (n1, n2, · · · , nm). The proof
is straightforward and similar to the one in Lemma 3.2.2, hence it is left to
the reader.

Lemma 3.2.4 Let ni ≥ 3, ∀i = 1, · · · ,m, and S = {ni : ni ≡ 1 or 2 (mod 3)}.
Then we have that 0 ∈ I3(W (n1, n2, · · · , nm)) if and only if |S| 6= 1.

Theorem 3.2.5 Let W (n1, n2, · · · , nm) be a generalized wheel, where ni ≥ 3
for i = 1, · · · ,m, and m ≥ 2. The null set is

Null(W (n1, n2, · · · , nm)) =

{
N\{2, 3}, ∃ unique ni ≡ 1 or 2 (mod 3),
N\{2}, otherwise.

Proof. Directly from Lemma 3.2.4 and Theorem 4.2.10. 2

3.3 New Classes of Uniformly Null Graphs

In this section we study another class of graphs related to the null sets. A
graph is uniformly null if every Zk-magic labeling induces 0 magic sum
index, which was studied by E. Salehi in [33, 32]. Note that this definition
implies all non-magic (that is non-Zk-magic for all k) graphs are uniformly null
in Salehi’s sense. He identified the class of complete bipartite graphs Kn,n+1

to be uniformly null.
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Definition 3.3.1 We call G an almost equi-bipartite graph if G is a
bipartite graph (without isolated vertices) with bipartition (X, Y ) and ||X| −
|Y || = 1.

We have the following observation for the index sets of almost equi-bipartite
graphs:

Proposition 3.3.1 Let G be an almost equi-bipartite graph with bipartition
(X, Y ), and ||X| − |Y || = 1. If G is Zk-magic, then it is uniformly null, that
is, Ik(G) = {0}, ∀k ≥ 3.

Proof. Suppose G admits a Zk-magic labeling f with index r, and |X| = m,
|Y | = m + 1. By adding all the vertex sums in X, and adding all the vertex
sums in Y respectively, we have

mr =
∑

e∈E(G)

f(e) = (m + 1)r,

which implies r ≡ 0 (mod k). Thus the proof is complete.
2

Remark. If G is an almost equi-bipartite graph, and if moreover G is an
even graph (that is in G every vertex is of even degree), then G is Zk-magic
with an index 0 since it is a disjoint union of Eulerian graphs of even size.
However conversely we have examples of uniformly null graphs which are not
even graphs, namely, the complete almost equi-bipartite graphs Kn,n+1 for
n ≥ 3, as E. Salehi pointed out in [33].

3.3.1 C4-Construction of Almost Equi-bipartite Graphs

The following is a construction with C4 of an infinite family of almost equi-
bipartite graphs G whose degrees are all even and for which Ik(G) = {0}, ∀k ≥
3. In fact, Ik(G) = {0}, for k = 1, 2 as well.

Note that since almost equi-bipartite graphs G with degree one vertices
are not Zk-magic with zero sum, the minimum degree δ(G) ≥ 2 and hence
G contains cycles and only even cycles. Therefore, we may have that the
order |V (G)| ≥ 7 and is odd. So the minimum order of such graphs is 7 as
shown in the graph of Figure 3.8, which is isomorphic to the dumbbell graph
D(4, 4), one vertex union of two four-cycles. We denote it by B7, and clearly
Ik(B7) = 0, ∀k ≥ 3. Let B7 ∈ β7 be the first family of almost equi-bipartite
graphs with the least order 7 and B7 is the one with the least number of edges.

Construct families βn+2 from βn using the following steps to obtain Bn+2 ∈
βn+2 from Bn ∈ βn for n ≥ 1:
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Figure 3.8: Construction from B7
∼= D(4, 4) to B9 ∈ β9

Step 1. Choose vertices x, y in Bn ∈ βn such that their distance d(x, y) is
odd and strictly greater than 1, that is d(x, y) ∈ {3, 5, 7, · · · }. Hence x, y are
in different partite sets and non-adjacent.

Step 2. Then we add two new vertices w, z such that x, z and y, w are in
the same partite sets, respectively, and join the edges to get xy, xw, yz, wz to
create a graph Bn+2 ∈ βn+2.

In such a way we attach a C4 to the chosen vertices x, y to create new
graphs Bn+2 ∈ βn+2. Note that the new graphs are still Eulerian of even size
and, in fact, are of the smallest size in βn+2 if the construction starts from
B7

∼= D(4, 4). Therefore, we obtain an infinitely family β of uniformly null
almost equi-bipartite graphs via the above constructions.

3.3.2 One Point Union Construction of Almost Equi-
bipartite Graphs

We have another infinite set of examples of uniformly null graphs, which is
constructed by attaching even cycles in a particular way. The construction is
as follows.

Step 1. Pick a path of even length, and make each edge to be two parallel
edges between every pair of adjacent vertices.

Step 2. Insert even number (including none) of vertices of degree 2 in
each edge so that the resulting graph is simple and a one point union of even
cycles.

Then it is routine to check that the resulting graph is an almost equi-
bipartite graph, therefore it is a uniformly null graph by the above Proposi-
tion 3.3.1. Please see Figure 3.9.
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Figure 3.9: One Point Union of Even Cycles

3.3.3 Application to Integer Magic Spectrum of Corona
Product

Let G and H be two graphs, where |V (G)| = n. Take one copy of G and n
copies of H, for each i from 1 to n, join the ith vertex of G to each vertex
in the ith copy of H. The resulting graph is called the corona product of
G with H, which we shall denote G c©H. On the other hand, given a graph
G, the set of all k such that G is Zk-magic is defined as the integer-magic
spectrum of G, and is denoted by IM(G). Please see [25, 27, 28, 34, 35].

We obtain the following criterion to get the integer magic spectra of the
corona G c©Nm using the information of index sets of G in [23], where Nm is
the null graph (empty graph) with m isolated points.

Proposition 3.3.2 For fixed m and k ≥ 2, let d = gcd(k, 1−m). We analyze
IM(G c©Nm) in the following cases:

Case 1. d > 1, then k ∈ IM(G c©Nm) if and only if d|ri, for some ri ∈
Ik(G).

Case 2. d = 1, then k ∈ IM(G c©Nm) if and only if Ik(G) has an non-zero
element.

Therefore,

1. If Ik(G) contains both 0 and another non-zero element, then k ∈ IM(G c©Nm).

2. In particular if 0 ∈ Ik(G), then k ∈ IM(G c©Nm).

3. Moreover, for all non-negative integer n, G c©Nnk+1 is Zk-magic if and
only if 0 ∈ Ik(G).

Hence we have the following observation for calculating the integer magic
spectra of the corona products of uniformly null graphs with null graphs:
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Proposition 3.3.3 If Ik(G) = {0} for all k ≥ 3, then the integer magic
spectrum

IM(G c©Nm) = {k : gcd(1−m, k) > 1} =
t⋃

i=1

piN,

where m− 1 = pα1
1 pα2

2 · · · pαt
t the prime divisor decomposition.

Therefore we have obtained the integer magic spectra of infinitely many
examples of corona products of G with null graphs Nm by the above Propo-
sition 3.3.3, where G could be any of previously constructed uniformly null
graphs, say Kn,n+1, graphs in the family β by C4-construction, or graphs con-
structed by one point union of even cycles.

3.4 Open Problems of Null Sets

Note that we have obtained the null sets of generalized wheels and generalized
fans in this article. Also we have created infinitely many examples of uniformly
null graphs using the different even cycle constructions. Therefore in particular
we answer the open problems posted by E. Salehi in [33], which are finding the
null sets of wheels and fans, and identifying families of uniformly null graphs
other than the complete bipartite graphs Kn,n+1.

We conclude this paper by posting the following open problems left out of
the discussion over these related topics:

1. Determine the index sets of the generalized fans and the generalized
wheels.

2. Characterize the class of graphs G for which Ik(G) = {0}, ∀k ≥ 3.

3. Characterize the class of almost equi-bipartite graphs G which are uni-
formly null.
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Chapter 4

Group Labeling with Various
Magic Sums

4.1 Index Sets of Regular Graphs

We may have many examples of regular graphs with index sets Zk from the
above observations for now. We have the following observations for the index
sets of general r-regular graphs:

Lemma 4.1.1 Let G be an r-regular graph, r ≥ 1. Then the index set Ik(G) ⊇
Z∗k for those integers k relatively prime with r, that is, gcd(r, k) = 1. In
particular for 1-regular G, we have Ik(G) = Z∗k.

Proof. Note that rZ∗k = Z∗k if gcd(r, k) = 1. Then in order to finish the proof,
one simply label all edges with i ∈ Z∗k, for i = 1, · · · , k − 1, respectively. 2

Lemma 4.1.2 Let G be an r-regular graph, r ≥ 2, and let gcd(r, k) = d > 1.
Then the index set Ik(G) ⊇ Z k

d
= the cyclic subgroup of Zk generated by the

element r. In particular 0 ∈ Ik(G).

Proof. Let r = r′ · d and k = k′ · d, where gcd(r′, k′) = 1. Label all edges
with i ∈ Z∗k, for i = 1, · · · , k − 1, respectively, we have the magic sums
r = r′d, 2r = 2r′d, · · · , k′r = k′r′d = r′k ≡ 0 (mod k), · · · , (k − 1)r, · · · , and
may see then the pattern is repeated with the period k′ = k

d
. 2

Remark. From the above lemmas we see that, for regular graphs only partial
information is immediate for the calculation of the index sets. For example one
is not sure and wonder that whether 0 is in Ik(G) or not for a r-regular graph in
case gcd(r, k) = 1. In fact we have an example later in Theorem 4.1.4 showing

31
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that sometimes 0 /∈ Ik(G) may happen to regular G in such a situation. More
generally, one will wonder that for a regular graph G, when is the index set
Ik(G) = Zk? We show the answer is positive for regular graphs admitting a
1-factor in the following section.

4.1.1 Index Sets of Regular Graphs with 1-Factor

We start with several lemmas.

Lemma 4.1.3 Any Eulerian graph with even size has a zero index.

Proof. Label 1and −1 alternately on an Eulerian cycle. 2

Lemma 4.1.4 For any cubic graph G with a 1-factor, Ik(G) = Zk for all
k ≥ 3.

Proof. Assume k ≥ 3. Let M be the 1-factor of G. Since Ik(M) = Z∗k
and G\M is a 2-regular graph with index 2 via labeling 1 on all edges, then
2 + Z∗k = Zk\{2} ⊂ Ik(G). It remains to show 2 ∈ Ik(G). Labeling −2 on
all edges of M and 2 on all edges of G\M , then it is easy to see that 2 is an
index. 2

Lemma 4.1.5 Let G be a regular graph. Suppose G has a factorization con-
taining a 1-factor M1 and a 2-factor M2, then Ik(G) = Zk for all k ≥ 3.

Proof. Assume that k ≥ 3. Note that G may be factored as edge disjoint
sum of two Zk-magic spanning subgraphs G = (M1 ⊕M2) ⊕ (G\(M1 ⊕M2),
where M1 is a 1-factor and M2 is a 2-factor. Therefore Ik(M1 ⊕M2) = Zk by
Lemma 4.1.4, and this lemma follows by Ik(G) = Ik((M1 ⊕M2) ⊕ (G\(M1 ⊕
M2)) ⊆ Ik((M1 ⊕M2)) + Ik((G\(M1 ⊕M2)) = Zk. 2

We are in a position for showing a sufficient condition to have the full index
set Zk for general r-regular graphs. It is well known one have the following
theorem for even-regular graphs:

Theorem 4.1.1 (Petersen, [12] 1891) A non-empty graph G admits 2-
factorization if and only if G is 2m-regular for some m ≥ 1.

Theorem 4.1.2 Let G be a r-regular graph (r ≥ 2) which admits a 1-factor,
then Ik(G) = Zk for all k ≥ 3.
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Proof.
Assume that k ≥ 3. Let M be the 1-factor. Note that G = M ⊕ (G\M)

and G\M is an (r − 1)-regular graph. Since for the 1-factor Ik(M) = Z∗k,
and G\M has indices r − 1 and 1 − r by labeling 1 and −1 respectively on
edges, we have that Ik(G) = Ik(M ⊕ (G\M)) ⊇ (r − 1) + Z∗k and Ik(G) =
Ik(M⊕(G\M)) ⊇ (1−r)+Z∗k. If (r−1)+Z∗k 6= (1−r)+Z∗k, then we are done
with Ik(G) = Zk, since (r−1)+Z∗k = Z∗k\{r−1} and (1−r)+Z∗k = Z∗k\{1−r}.

In case (r − 1) + Z∗k = (1 − r) + Z∗k, which implies r − 1 ≡ 1 − r that is
2(r − 1) ≡ 0 (mod k). Therefore, we have that G\M has index 0 by labeling
2 on edges. Hence Ik(G) = Ik(M ⊕ (G\M)) ⊇ 0 + Z∗k = Z∗k in this case,
and it remains to show that 0 ∈ Ik(G). For the case r is even, note that G
has even order, hence G is an Eulerian graph of even size and 0 ∈ Ik(G) by
Lemma 4.1.3. For the case r is odd, since G\M is a even-regular graph, hence
by Petersen’s Theorem 4.1.1 it has a 2-factorization. Then G has a 1-factor
and a 2-factor, by Lemma 4.1.5, and Ik(G) = Zk, k > 2. Then we are done
with the proof. 2

From the above Theorem 4.1.2, immediately we obtain that the index sets
Ik of Generalized Petersen graphs P (n, k), Prisms, Mobius Ladders etc. are
known to be the full Zk, ∀k ≥ 3, since they admit 1-factors.

Corollary 4.1.1 Let G be a regular bipartite graph. Then Ik(G) = Zk for all
k ≥ 3.

Proof. By Hall’s Marriage Theorem, any regular bipartite graph has a 1-
factor. It then follows by the above Theorem 4.1.2. 2

A graph containing no K1,3 as an induced subgraph is said to be claw-free.
Another corollary is based upon the following result:

Theorem 4.1.3 (Sumner[19]) If G is a connected claw-free graph of even
order, then it has a 1-factor.

Corollary 4.1.2 Let G be a claw-free regular graphs with even vertices, then
Ik(G) = Zk for all k ≥ 3.

Proof. It follows by Theorem 4.1.2 and Theorem 4.1.3. 2

Moreover, making use of the above Corollary 4.1.1, one may show that the
index set of the lexicographic product of any graph with a Zk-magic graph is
the full Zk. Given two graph G = (V1, E1) and H = (V2, E2). The lexico-
graphic product of G and H is the graph G ◦H with vertex set V1×V2 and
for (u1, v1), (u2, v2) ∈ V1 × V2 , and (u1, v1) is adjacent with (u2, v2) whenever
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(1)u1 = u2 and v1 is adjacent to v2 in H or (2)u1 is adjacent to u2 in G.
The lexicographic product G ◦H is also called the composition of G and H.
Hence we have the following:

Corollary 4.1.3 Let G and H be any two graphs, and H is Zk-magic. Then
the index set of their lexicographic product is Ik(G ◦H) = Zk.

Proof. Let G(V1, E1) be a (p1, q1)-graph, where |V1| = p1, |E1| = q1, and
H = (V2, E2) be a (p2, q2)-graph, where |V2| = p2, and |E2| = q2. Then we
notice that the lexicographic product G ◦ H can be decomposed into p1 iso-
morphic copies of H, namely the subgraphs Hi = {(ui, vj)(ui, vk) : vjvk ∈ E2}
for 1 ≤ i ≤ p1, together with q1 isomorphic copies of complete bipartite
graphs Kp2,p2 , namely the subgraphs Kj = {(us, vm)(ut, vn) : usut = ej} for
ej ∈ E1, where 1 ≤ j ≤ q1. That is G ◦ H ∼= p1H ⊕ q1Kp2,p2 . Note that in
the decomposition of G ◦ H, there is one part of complete bipartite graphs
with equi-bipartitions, hence regular bipartite. By Theorem 3.1.2 and Corol-
lary 4.1.1, we see that Ik(G ◦H) = Zk. 2

4.1.2 Index Sets of Regular Graphs without 1-Factor

Note that there are examples for regular graphs without 1-factor for which
the index set is not full Zk, ∀k ≥ 3. See the following example. Let PC be
Petersen’s example for a cubic bridgeless graph containing no 1-factors. Please
see the Figure 4.1.

Figure 4.1: PC

Lemma 4.1.6 ±1 /∈ I3(PC).

Proof. See Figure 4.1, we have b + c = d + e, c + d = e + f which implies
b + f = 2d. Suppose 1 ∈ I3(PC). Without loss of generality, there exists one
of three edge labels of the top claw to be 1, say a = 1. Therefore it implies
0 = b+f = 2d in Z3, the nonzero solution for d does not exist, a contradiction.

2
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Lemma 4.1.7 0 /∈ I4(PC), and 1, 2, 3 ∈ I4(PC).

Proof. See Figure 4.1, similarly we have b + f = 2d. Suppose 0 ∈ I4(PC),
then one of three edge labels of the top claw must be 1 or −1. Therefore
it implies ±1 = b + f = 2d in Z4, and the solution for d does not exist, a
contradiction. On the other hand, since PC is 3-regular, by the Lemma 4.1.1,
thus I4(G) ⊇ Z∗4.

2

Lemma 4.1.8 For k ≥ 5, 0 ∈ Ik(PC)

Proof. See the Figure 4.2. 2

Figure 4.2: Zk-magic labeling with magic sum 0 of PC for k ≥ 5

Figure 4.3: Z6-magic labeling of PC with a magic sum x of PC

Lemma 4.1.9 For x ∈ Z∗k, x ∈ Ik(PC), k ≥ 5

Proof. For the case of Z6, see the Figure 4.3. For the general case k ≥ 5, k 6=
6,, see the Figure 4.4 and Figure 4.5, which give two ways of labeling making
the magic sum index x. It remains to show at least one of them contains no
edges labeled by zero. Suppose not, say x−2 = 0 or x+2 = 0 in the Figure 4.4,
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Figure 4.4: One Zk-magic labeling with magic sum x of PC for k ≥ 5

Figure 4.5: Another Zk-magic labeling with magic sum x of PC for k ≥ 5

then in the Figure 4.5 either x + 4 = 0 or x − 4 = 0 in Z6, however this has
been ruled out already.

2

To summarize from above lemmas, we have the following result for the
index set of the graph PC.

Theorem 4.1.4

Ik(PC) =




{0}, k = 3,
Z4\{0}, k = 4,
Zk, k ≥ 5.

4.1.3 Index Sets of Circulant Graphs

To obtain more examples, we further determine the the index sets for the
circulant graphs completely. Note that the class of circular graphs includes
both the examples of regular graphs with 1-factor, and examples of regular
graphs without 1-factor. Circulant graphs may be treated as a generalization
of complete graphs, and contain many well known graph classes such as Möbius
ladder graphs etc.

Definition 4.1.1 A circulant graph CIRn(S) with n vertices, with respect to
S ⊂ {1, 2, · · · , bn

2
c}, is defined as a graph with the vertex set V (CIRn(S)) =
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{0, 1, 2, · · · , n− 1}, and the edge set is formed by the following rule:

E(CIRn(S)) = {ij : i− j ≡ ±s (mod n), s ∈ S}.

For example, CIRn({1}) ∼= Cn, the cycles, CIRn({1, 2, · · · , bn
2
c}) ∼= Kn,

the complete graphs, and CIR2n({1, n}) ∼= the n-Möbius ladder graphs. Note
that CIRn(S) is a class of regular graphs, and is even-regular if bn

2
c /∈ S,

odd-regular otherwise. In order to obtain all the index set of the circulant
graphs, we need the following lemmas:

Lemma 4.1.10 Let G be a 2m-regular graph. Then we have

Ik(G) ⊇
{

2Z∗k, m = 1,
2Zk, m ≥ 2.

Proof. In case G is 2-regular, that is G is a single 2-factor, we have 2Z∗k ⊆
Ik(G) by Proposition 3.1.5.

In case m ≥ 2, we proceed induction on m. By the Petersen’s Theo-
rem 4.1.1 G is 2-factorable, hence G = F1 ⊕ F2 ⊕ · · · ⊕ Fm, where Fi are
2-factors for i = 1, · · · ,m. For the case m = 2, G = F1 ⊕ F2, and note that
Ik(Fi) ⊇ 2Z∗k, for i = 1, 2. Therefore Ik(G) = Ik(F1 ⊕ F2) ⊇ 2Z∗k + 2Z∗k =
2Zk. Assume the Lemma holds for m = n, consider the case m = n + 1
as follows: G = (F1 ⊕ F2 ⊕ · · · ⊕ Fn) ⊕ (Fn+1). By induction hypothesis,
2Zk ⊆ Ik((F1 ⊕ F2 ⊕ · · · ⊕ Fn)), then Ik((F1 ⊕ F2 ⊕ · · · ⊕ Fn) ⊕ (Fn+1)) ⊇
Ik(F1⊕F2⊕ · · · ⊕Fn) + Ik(Fn+1) ⊇ 2Zk + 2Z∗k = 2Zk. Therefore by induction
we are done with the proof.

2

Let S = {a1, a2, ....., am} ⊆ {1, 2, · · · , bn
2
c}, it is not hard to see that

CIRn(S) =
⊕m

i=1 CIRn({ai}) is a factorization of circulant graphs with re-
spect to one point sets {ai}. Then we have the following characterization for
circulant graphs with 1-factor:

Lemma 4.1.11 The circulant graph CIRn({a1, a2, · · · , am}) admits 1-factor
if and only if n

di
is even for some i, where di = gcd(ai, n), for i = 1, 2, · · · ,m.

Proof. Let G be the circulant graph CIRn({a1, a2, · · · , am}). The sufficiency
is clear since if n

di
is even for some i, then CIRn({ai}) ∼= di · C n

di
, which is di

copies of cycles of order n
di

. Therefore G contains one 2-factor consisting of
even cycles, thus a perfect matching of G is obtained.

For necessity, suppose n
di

is odd for all i = 1, 2, · · · ,m. Let d = gcd(d1, · · · , dm),
and for j = 1, 2, · · · , d, let Gj = G[Sj] be the induced subgraph over Sj ⊆
V (G), where Sj = {0 ≤ t ≤ n− 1 : t ≡ j (mod d)}. Then |Sj| = |V (Gj)| = n

d

is odd for each j = 1, 2, · · · , d. For x ∈ Sj and y ∈ Sk, j 6= k, we have
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x − y 6= 0 (mod d) and hence x − y 6= 0 (mod n). On the other hand, if x
and y are adjacent in G, then x− y = ±ai (mod n) for some i, which implies
x− y = 0 (mod d) since di = gcd(ai, n). Therefore Gj and Gk are disjoint for
j 6= k. Thus G consists of disconnected parts G1, G2, · · · , Gd of odd orders,
and hence G must contain odd components. Therefore G contains no 1-factor
and we are done with the proof.

2

With the above lemmas, we are in a position to obtain the index set of all
circulant graphs Ik(CIRn(S)) as follows:

Theorem 4.1.5

Ik(CIRn(S)) =

{
Zk, if there exists some a ∈ S with n

gcd(a,n)
even.

2Zk, otherwise.

Proof. First by applying Lemma 4.1.2 and Lemma 4.1.11, if there exists some
a ∈ S such that n

gcd(a,n)
is even, then Ik(CIRn(S)) = Zk since CIRn(S) is a

regular graph admitting a 1-factor.
Otherwise, if n

dr
is odd for all r = 1, 2, · · · k, then as in previous Lemma 4.1.11,

we can find in CIRn(S) disconnected parts G1, G2, · · · , Gd with odd orders,
and hence some odd component, say P . Hence Ik(G) ⊆ Ik(P ) ⊆ 2Zk by the
Proposition 3.1.1 and the Proposition 3.1.4. On the other hand, Lemma 4.1.10
implies 2Zk ⊆ Ik(G). Therefore we are done with Ik(G) = 2Zk in this case.

2

Remark. Note that from the above observation, we have created many ex-
amples of regular graphs without 1-factor whose index sets are not full Zk for
some k ≥ 3, just like the situation for previously mentioned example PC. For
example, we mentioned earlier that Ik(K2n+1) = 2Zk $ Zk for k even, where
K2n+1 is the complete graphs of odd order. The complete graphs K2n+1 are
special cases of circulant graphs without 1-factor, and note that the result
regarding their index sets also follows from the necessary condition of being
Zk-magic with magic sum r in the Proposition 3.1.4 and its corollary.

4.2 More Examples of Index Sets

We determine the index sets of complete bipartite graphs Km,n for m,n ≥ 1,
wheels Wn, n ≥ 3, and fans Fn, n ≥ 3, in this section. Note that these
examples are not regular graphs in most cases. First of all we deal with the
case of complete bipartite graphs Km,n for m,n ≥ 1.
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4.2.1 Index Sets of Complete Bipartite Graphs Km,n

Note that the index x of a Zk-magic labeling for Km,n is the solution of the
linear congruence equation (m− n)x ≡ 0 (mod k), since mx and nx are both
the total sum of all edge Zk-labels over the graph Km,n, as seen by adding up
m of the same indices x on one partite set, or n of the same indices x on the
other partite set over the graph Km,n.

If m = 1 or n = 1, Km,n is the star graph. Then by the solutions to
above linear congruence equation, we have Ik(K1,1) = Z∗k, and Ik(K1,n) =

{k
d
, 2k

d
, · · · , (d−1)k

d
} for n ≥ 2 and d = gcd(n−1, k) > 1. Note that Ik(K1,n) = ∅

for n ≥ 2 and gcd(n− 1, k) = 1, and in particular 0 /∈ Ik(K1,n) in any case.
Now we study the case for Km,n for m,n ≥ 2 in the following.

Proposition 4.2.1 0 ∈ Ik(Km,n) for m,n ≥ 2 and all k ≥ 3.

Proof. We have the following two cases:
Case 1. m or n is even. Say m is even, we decompose Km,n into an edge
disjoint union of copies of K2,n. Then label on edges of K2,n by the following
rules. Labeling 1 and −1 on each pair of edges incident to the first n−1 degree
2 vertices, then labeling, if necessary (whenever n is odd), 2 and −2 on last
pair of edges. Therefore we get an index 0 over each copy of K2,n, and hence
an index 0 over whole Km,n for m or n is even.
Case 2. m and n are both odd. Note that K3,3 can be labeled with ±1 and
±2 to obtain the magic sum index 0. In this case consider Km,n as the edge
disjoint sum of K3,3 and Km−3,n−3. The part Km−3,n−3 would have an index 0
by the Case 1, together with K3,3 it give rise to an index 0. 2

Theorem 4.2.1 For m,n ≥ 2, and k ≥ 3, the index set of complete bipartite
graph Km,n is Ik(Km,n) = 〈k

d
〉, where d = gcd(m − n, k), and 〈a〉 denote the

additive subgroup of Zk generated by the element a. Or equivalently,

Ik(Km,n) =

{ {0}, if gcd(m− n, k) = 1.
Zd
∼= 〈k

d
〉, if gcd(m− n, k) = d, 1 < d ≤ k.

Proof. Note that the index x of a Zk-magic labeling for Km,n is the solution
of the linear congruence equation (m− n)x ≡ 0 (mod k).

In case gcd(m−n, k) = 1, then (m−n)x ≡ 0 (mod k) has the unique solu-
tion 0, hence Ik(Km,n) = {0} since 0 ∈ Ik(Km,n) as shown in Proposition 4.2.1.

In case gcd(m−n, k) = d > 1, then there are d solutions (mod k) for (m−
n)x ≡ 0 (mod k), namely, 0, k

d
, 2k

d
, · · · , (d−1)k

d
. Note that {0, k

d
, 2k

d
, · · · , (d−1)k

d
} =

〈k
d
〉 ∼= Zd. Then we may obtain all other possible magic sum index x ∈ Z∗d ∼=

{k
d
, 2k

d
, · · · , (d−1)k

d
} by the following observations. Without loss of generality
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Figure 4.6: The decomposition of Km,n into Km−n,n and Kn,n

we may assume that m ≥ n ≥ 2. Decompose the graph Km,n into two parts,
one is regular bipartite Kn,n, and the other is Km−n,n. Note that we write the
part Km−n,n as a bipartite graph with bipartition (A,B), as in the Figure 4.6.

We claim that there exists appropriate edge labeling on the part Km−n,n

such that the vertex sums over the partite set A of m− n vertices are x ∈ Z∗d,
and the vertex sums over the partite set B of n vertices are 0, then since
Ik(Kn,n) = Zk for all k ≥ 3 by the Theorem 4.1.2, the desired labeling is
obtained by combining the labels from two parts. For proving the claim, we
have two cases as follows:
Case 1. n is odd.

Note that the degrees of vertices in the partite set B are m− n. We label
the edges of Km−n,n in an ordering of vertices in B by x, · · · , x︸ ︷︷ ︸

m−n

, −x, · · · ,−x︸ ︷︷ ︸
m−n

,

x, · · · , x︸ ︷︷ ︸
m−n

, −x, · · · ,−x︸ ︷︷ ︸
m−n

, · · · , until x, · · · , x︸ ︷︷ ︸
m−n

. Then the partial vertex sums over

the vertices in B with respect to A are either (m − n) · x or (m − n) · (−x),
both ≡ 0 (mod k) since x is a solution to (m−n)x ≡ 0 (mod k). On the other
hand, the vertex sums over the vertices in A are exactly x. Therefore we got
the desired labeling in the claim in this case.
Case 2. n is even.

Subcase 2.1. 2x 6= 0 (mod k).
We label the edges as in previous case by x, · · · , x︸ ︷︷ ︸

m−n

, −x, · · · ,−x︸ ︷︷ ︸
m−n

, x, · · · , x︸ ︷︷ ︸
m−n

,

−x, · · · ,−x︸ ︷︷ ︸
m−n

, · · · , except the last two groups we use 2x, · · · , 2x︸ ︷︷ ︸
m−n

and −x, · · · ,−x︸ ︷︷ ︸
m−n

instead. Then the new labeling does the job.
Subcase 2.2. 2x = 0 (mod k).

In this case k is even and x = k
2
6= 0. We claim that m − n must be

even. Note that x = k
2
6= 0 is an element of order 2 in the group Zk, and

hence also an element of order 2 in the group Zd
∼= 〈k

d
〉 since d|k. Therefore
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2|d = gcd(m− n, k), thus m− n must be even.
Then in the following we may give a new labeling under the situation that

n is even, m − n is even, and k is even. In the partite set A, we pair off the
vertices as {u1, u2}, {u3, u4} · · · , {um−n−1, um−n}, and label on each 4-cycle
containing these two-vertex sets {u1, u2}, {u3, u4} · · · , {um−n−1, um−n} respec-
tively by k

2
−1, 1,−1, 1− k

2
consecutively, as in the Figure 4.7. Then it is a direct

computation that the partial vertex sums over u1, u2, u3, u4, · · · , um−n−1, um−n

on these 4-cycles are all k
2
≡ −k

2
(mod k), and the partial vertex sums over

vertices related in the other partite set B are all zero.
At last, note that the remaining edges not used in the above C4 construc-

tions induce an even subgraph (in which every degree is even) of Km−n,n, which
is Eulerian of even size in each component. Then as in the Lemma 4.1.3 we
label 1 and −1 consecutively on the edges of an Eulerian cycle, which would
give partial vertex sums of zero over the even subgraph. Combining all the
above partial sums together, we obtain a new labeling as desired on the part
Km−n,n.

2

Figure 4.7: C4 construction when n is even, m− n is even, and k is even

4.2.2 Index Sets of Fans Fn

In [33], the concept of null sets of a graph is defined and studied. The null set
of G is the set of all k′s such that G is Zk-magic with index 0. it is clear that
the concepts null sets, index sets, and Zk-magicness are closely related each
other. We most recently studied and determined completely the null sets of
generalized fans and generalized wheels in [23] among other results. Note that
the notion index sets is more general than the null sets, and naturally harder
to settle.

In order to obtain the whole index sets of fans and wheels, we first describe
a subdivision method which is commonly used in this and later sections for
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the construction of Zk-magic labeling with the same magic sum index of an
infinitely family of graphs, in particular fans and wheels.

Subdivision Method:

Let G be a graph with index r under a Zk-magic labeling f , using the
subdivision method we may obtain a new graph G′ with larger order, and a
new Zk-magic f ′ on G′ with the same index r, based upon G and f . We pro-
ceed by choosing in G a vertex v and edges e1, e2 with labels f(e1) = a, and
f(e2) = b, which are not incident with v. Then subdivide these two edges by
inserting new vertices of degree 2, join them to v respectively. Please see the
Figure 4.8. Now then we may construct a new labeling f ′ on G′ by keeping
the labels on G unchanged, and labeling r − 2a, r − 2b on two newly inserted
edges respectively. Note that if (r − 2a) + (r − 2b) ≡ 0, r − 2a 6= 0, and
r−2b 6= 0 (mod k), then the new labeling f ′ on G′ is still Zk-magic with index
r, and f ′(E(G′)) = f(E(G)) ∪ {r − 2a, r − 2b}.

Figure 4.8: Subdivision Method

We calculate the index sets of fans Fn, and start with a lemma for Z3-
magicness with zero sums. Note that the cases were already obtained in [23],
however for completeness, we still provide with proofs here for fans, also for
wheels in next section.

Note that the index set of 3-fan F3 is special and different from other cases,
as we show in the following.

Lemma 4.2.1 For the 3-fan F3, we have the following facts:

1. F3 is Zk-magic if and only if k is even and k ≥ 2. Therefore Ik(F3) = ∅
for k odd.

2. I4(F3) = {0, 2}.
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3. For k ≥ 5, Ik(F3) = Zk, for k even.

Proof. In F3, as in the Figure 4.9, we have that if r is an index, then there
exists nonzero elements x and y in Zk such that 2(x+y−r) = 0 and x+y−r 6= 0,
r − x 6= 0, r − y 6= 0 (mod k), hence k is even since x + y − r is an element of
order 2. Therefore F3 is Zk-magic if and only if k is even and k ≥ 2.

Suppose r = 1 ∈ I4(F3), we have the labels on the path are 1−x 6= 0, 1−y 6=
0, and the labels on spokes are x 6= 0, y 6= 0, 1− x− y = x + y − 1 6= 0. Then
we have 2(x + y) = 2, hence x + y = −1, which is a contradiction to x 6= 0, 1
and y 6= 0, 1. Therefore ±1 /∈ I4(F3).

For even k ≥ 5, in order to realize all indices in F3 we take a = 1, b =
r − 1 + k

2
for the index r 6= 1, and a = 2, b = r − 2 + k

2
, for r = 1.

2

Figure 4.9: Magic Sum r of F3

Lemma 4.2.2 For n ≥ 3, 0 ∈ I3(Fn) if and only if n ≡ 1 (mod 3).

Proof. Assume 0 ∈ I3(Fn). First observe that the edge labels on the path
of the Fn have to be all the same, either all 1′s or all (−1)′s. If not, then the
there will be 0-edges over the spokes. Without loss of generality, suppose the
edge labels on the path are all 1′s. Thus, the labels on the spokes are two
(−1)′s, and n− 2 of them are 1′s. Then by calculating the vertex sum of the
center, we have (n− 2)− 2 ≡ n− 1 ≡ 0 (mod 3). Conversely follows from the
given labeling.

2

Lemma 4.2.3 0 ∈ Ik(Fn), for n ≥ 4 and k ≥ 4.

Proof. Please see the Figure 4.10, we have the labeling for F4, F5, F6 such that
the vertex sum is 0. Use the above subdivision method, we construct Zk-magic
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labeling from Fn to Fn+2 by subdividing one pair of 1-edge and (−1)-edge in
F5 and F6, respectively.

2

Figure 4.10: Zk-Magic Sum 0 of F4, F5, F6, k ≥ 4

For other cases of fans Fn, see the following. We split the discussion into
cases Z3-magic, Z4-magic, and Zk-magic for k ≥ 5.

Lemma 4.2.4 ±1 ∈ I3(Fn) if and only if n ≥ 6.

Proof. Without loss of generality it suffices to consider the case of index 1.
The labeling on the edges incident to vertices of degree 2 must be both −1.
One may easily check that ±1 /∈ I3(Fn) for n < 6, and we have Z3-magic
labeling with index 1 of F6, F7, F8 as in the Figure 4.11.

To obtain Z3-magic labeling with index 1 from Fn to Fn+3 for n ≥ 6, we
insert three vertices of degree two on some 1-edge on the path of Fn, join them
to the center, and label −1 on the newly added spokes, as in the Figure 4.11.
Then the resulting labeling will do the job.

2

Note that Fn has n + 1 vertex, thus by the necessary condition Propo-
sition 3.1.4, ±1 /∈ I4(Fn) for n even. Therefore we consider the following
Z4-magicness of Fn.

Lemma 4.2.5 ±1 ∈ I4(Fn) for n ≥ 5 is odd.

Proof. For n ≥ 5 is odd, we have 1 ∈ I4(F5) as the labeling given in the
Figure 4.12. Since there are edges labeled by 1 and 2 over the path of Fn

respectively, the subdivision method mentioned above may be used by subdi-
viding the 1-edge and 2-edge and connect the newly inserted degree 2 vertices
to the center. Then we may construct Z4-magic labeling with index 1, hence
−1, for n ≥ 5 odd. 2
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Figure 4.11: Z3-Magic Sum 1 of F6, F7, F8, and construction from Fn to Fn+3

for n ≥ 6

Figure 4.12: Z4-magic with index ±1 for Fn for n ≥ 5 odd

Lemma 4.2.6 2 ∈ I4(Fn) for n ≥ 3.

Proof. As in the Figure 4.13, first of all we label 1,−1, 1,−1 · · · alternatively
on the path of Fn. For n odd, in order to obtain the index 2, the labeling
on spokes has to be one of 1, (n − 2) of 2’s, and one of −1. For n even, the
labeling on spokes has to be two of 1’s and (n − 2) of 2’s. In both cases, the
vertex sums are constat 2 and we are done.

2

In the following we deal with the Zk-magic case for k ≥ 5. Again by
the necessary condition of being Zk-magic with index r in Proposition 3.1.4,
we have that Ik(Fn) ⊂ 2Zk, for n even. We will realize every nonzero index
r = 2a, where a ∈ Z∗k in the following lemma.
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Figure 4.13: Z4-magic with index 2 for Fn

Lemma 4.2.7 For all a ∈ Z∗k, we have 2a ∈ Ik(Fn), for all n ≥ 4, k ≥ 5, and
n even.

Proof. Let n = 2t and Fn = {v} + {u1u2 · · · u2t}, we first delete the edges
u2iu2i+1, i = 1, 2, · · · , t − 1 alternatively, and obtain a windmill M , which is
Eulerian since every vertex is of even degree, as in the Figure 4.14.

Figure 4.14: Index Sets of Fans Fn, n even

Case 1: M contains even number of triangles.
Hence M is of even size, and we may labels ±1 on one Eulerian tour of M

such that vertex sum is 0 on each vertex. Add extra a to the ±1 labeling on
the edges vu1, vu2t, and u2j−1u2j, j = 1, 2, · · · , t, then we have labels a ± 1
on M such that vertex sums on v, u1, u2t are 2a, and are a on other vertices,
please see the Figure 4.14. Now put the edges u2iu2i+1, i = 1, 2, · · · , t − 1,
back and label a on each of them, then we have a labeling, call it L1, on Fn

with a, a± 1 such that each vertex sum is 2a.
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By similar method as above, except labeling ±2 instead on the Eulerian
tour of M , we then have another labeling L2 on Fn with a, a ± 2 such that
each vertex sum is 2a. Note that for a 6= 0 and k > 3, if a± 1 = 0 in L1, then
we use the nonzero Zk-labeling L2. If a ± 2 = 0 in L2, we use the nonzero
Zk-labeling L1. Thus we are done in this case.

Case 2: M contains odd numbers (at least three) of triangles.
Take three triangles containing vertices u1 and u2t of M , and label them

as in the Figure 4.14 such that the partial vertex sums on v, u1, and u2t are
2 respectively, and 0 on other vertices. Note that the other triangles form an
Euler graph of even size, and we label ±1 on them such that partial vertex
sum is 0 for each vertex on one Eulerian tour, and remains 2 on the center.
Put the edges u2iu2i+1, i = 1, 2, · · · , t − 1 back and label 2 on them, we then
have labels 2,±1 on Fn such that each vertex sum is 2. By multiplying all
labels on each edge by a, we may have labels 2a,±a such that each vertex sum
is 2a. Then we are done in this case.

2

Lemma 4.2.8 Ik(Fn) = Zk, for all n ≥ 5 odd, and k ≥ 5.

Proof. At first, we construct four types of labeling L1, L2, L3, and L4 such
that vertex sum is r for F5, as in the Figure 4.15.

Figure 4.15: L1, L2, L3, and L4
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We use the subdivision method in the following to extend L1, L2, L3, and
L4 to the labeling of Fn, for n ≥ 5 and n odd. Note that via subdividing
edges labeled by −1 and r + 1 on L1, L2 respectively, we have the following
sets of possible labels S1 = {r ± 1, r − 2,±(r + 2)} and S2 = {r + 1, r −
3,±(r + 2), r − 2} respectively. Subdividing edges labeled by 1 and r − 1
on L3 and L4 respectively, we have the following sets of possible labels S3 =
{r − 1, r + 3,±(r − 2}, r + 2} and S4 = {r, r ± 1,±(r − 2)} respectively.
Subdividing edges labeled by −1 and r + 1 in L4 again, we then have the sets
of possible labels S5 = {r, r ± 1,±(r + 2)}.

It remains to show that the above sets of possible labels contain no com-
mon zero elements in Zk. It is not hard to see that S1 contains zero ele-
ments only for r = ±1,±2, then instead we may use the following label-
ing: S2 = {−1, 2,−2,±3} for r = 1, S3 = {1,−2, 2,±3} for r = −1,
S4 = {−1,−3,−2,±4} for r = −2, and S5 = {2, 1, 3,±4} for r = 2. Hence we
are done. 2

To summarize from the above lemmas, we have the following:

Theorem 4.2.2 The index sets of fans Fn, n ≥ 3, are as follows.

when k = 3 :

I3(Fn) =





∅, n = 3.
{0}, n = 4.
∅, n = 5.
Z3, for all n ≥ 6 and n ≡ 1 (mod 3).
Z3\{0}, for all n ≥ 6 and n ≡ 0, 2 (mod 3).

when k = 4 :

I4(Fn) =




{0, 2}, n = 3.
2Z4 = {0, 2}, n even.
Z4, n ≥ 5 odd.

when k ≥ 5 :

Ik(Fn) =

{
Zk, for all n ≥ 5 odd , and k ≥ 5.
2Zk, for all n ≥ 4 even , and k ≥ 5.

Remark. Note that 2Zk = Zk when k is odd, and 2Zk = {0, 2, · · · , k
2
} when

k is even.
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4.2.3 Index Sets of Wheels Wn

To obtain the index set of the wheel graphs Wn, n ≥ 3, we look at the magic
sum index 0. As mentioned earlier, the magic zero sum has been done in
[23], and we still include the proofs here for completeness. We consider the
Z3-magic case first of all.

Lemma 4.2.9 For n ≥ 3, 0 ∈ I3(Wn) if and only if n ≡ 0 (mod 3).

Proof. Assume 0 ∈ I3(Wn). First observe that the edge labels on the cycle
of the Wn have to be all the same, either all 1′s or all (−1)′s. If not, then the
there will be 0-edges over the spokes. By symmetry, suppose the edge labels
on the cycle are all 1′s. Thus, the labels on the spokes are all (−1)′s. Then by
calculating the vertex sum of the center, we have (−1) · n ≡ 0 (mod 3), hence
n ≡ 0 (mod 3). The converse follows from the given labeling.

2

Then we have the Zk-magic zero sum of the wheels in the following for
k ≥ 4.

Lemma 4.2.10 Let n ≥ 3. Then 0 ∈ Ik(Wn) for all k ≥ 4.

Proof. We deal with the problem by using induction on n ≥ 6 from n to
n + 2, and for the cases Wn for n ≤ 5, we give the labeling in the Figures.
Note that W3 is Zk-magic with zero sum for k ≥ 3, please see the Figure 4.16.
In case of W4, by Lemma 4.2.9 and see the Figure 4.16, we see that 0 ∈ Ik(W4)
for all k ≥ 4. For the case W5, see the Figure 4.16. The case on the left of the
Figure 4.16 is for Zk-magicness with zero sum for W5, for all k ≥ 5, and the
case on the right of the Figure 4.16 is for Z4-magicness with zero sum for W5.

Figure 4.16: W3, W4, and W5

The cases for W6 and W7, see the Figure 4.17. Combined with the Lemma 4.2.9,
we see 0 ∈ Ik(W6) for all k ≥ 3 and 0 ∈ Ik(W7) for all k ≥ 4. Assume the
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result is true for n ≥ 6. The induction step is the construction from Wn to
Wn+2, for all n ≥ 6, using the subdivision method mentioned above. Note that
in the labeling given in the Figure 4.17, W6 and W7 have both 1 and −1 over
the cycles of the wheels, respectively. Therefore we may complete the index
sets of Wn, for all n ≥ 6, by subdividing the 1-edge and (−1)-edge.

2

Figure 4.17: W6 and W7

Lemma 4.2.11 ±1 ∈ I3(Wn) for n ≥ 3.

Proof. Suppose n+1 ≡ r mod 3, and r = 0, 1, or 2. Label −1 on r edges of the
outer cycle of Wn non-consecutively, and 1 on other edges. Please see the Fig-
ure 4.18. In order to get index 1, labeling 2r of 1’s and n− 2r of (−1)’s on the
spokes, hence the vertex sum of the center is 2r−(n−2r) ≡ 4r−n ≡ 1 (mod 3).
2

Figure 4.18: Z3-Magic Sum of 1 of Wn

Lemma 4.2.12 For n odd, Ik(Wn) = Zk.

Proof. Let n = 2t + 1. In W2t+1, each vertex is of odd degree, and it admits
a perfect matching P such that W2t+1\P is an Euler graph of even size. Label
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±1 on W2t+1\P such that each partial vertex sum is 0, then label nonzero
element r on the matching P , we get all possible labeling of index r 6= 0. The
case for zero index is done. 2

By the Proposition 3.1.4, we have Ik(Wn) ⊆ 2Zk for n even. The following
lemma shows the index set is in fact the whole 2Zk.

Lemma 4.2.13 For n even, Ik(Wn) = 2Zk.

Proof. Let n = 2t. Since the zero index case is done, let 2a 6= 0 in 2Zk. Let
Wn = {v}+{u1u2 · · · u2t−1u2tu1}, we delete the edges u2iu2i+1, i = 1, 2, · · · , t−1
and u2tu1 alternatively, and obtain a windmill M , see the Figure 4.19 please.

Figure 4.19: Index Sets of Wheels Wn, n even

Case 1: M contains even number of triangles.
Since M is of even size, we may labels ±1 on one Eulerian tour of M such

that the partial vertex sum is 0 on each vertex. Add value a to labels on edges
vu1, vu2, u2j−1u2j, j = 2, · · · , t, then we have labels a ± 1 and ±1 on M such
that partial vertex sums are 2a on v, and a on other vertices. Now put back
the edges u2iu2i+1, i = 1, 2, · · · , t− 1 and u2tu1, and then label a on them, we
have labels a, a± 1 on Wn such that each vertex sum is 2a.

To remedy the case when a ± 1 = 0, similarly we put labels ±2 on the
Eulerian tour of M , we then have labels a, a± 2 and ±2 on Wn such that each
vertex sum is 2a. Note that at least one of the two labeling on Wn contains
no zero element since a 6= 0 and k ≥ 3 is under consideration.

Case 2: M contains odd number of triangles.
We have an Eulerian tour of odd size starting and ending at v and label

consecutively the edges 1,−1, · · · , 1,−1, 1, then we have labels ±1 on M such
that the partial vertex sum is 2 on v and is 0 on other vertices. Put the
u2iu2i+1, i = 1, 2, · · · , t − 1 and u2tu1 back as in previous case and label 2 on
them, we have then the labels 2,±1 on Wn such that each vertex sum is 2.
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Now adjust the labeling through multiplying the labels on each edge by a, we
may have the labeling with 2a,±a such that each vertex sum is 2a. Then we
are done in this case.

2

To summarize from the above lemmas, we have the following:

Theorem 4.2.3 The index sets of wheels Wn, n ≥ 3, are as follows.

when k = 3 :

I3(Wn) =

{
Z3, n ≡ 0 (mod 3).
Z3\{0}, n ≡ 1, 2 (mod 3).

when k ≥ 4 :

Ik(Wn) =

{
Zk, for all n even .
2Zk, for all n odd .

Remark. Again note that 2Zk = Zk when k is odd, and 2Zk = {0, 2, · · · , k
2
}

when k is even.

4.3 Open Problems of Magic Spectrum

There are more open problems left as follows from our work in this thesis:

• Characterize the graphs which is Zk-magic, for k ≥ 3.
• Identify classes of graphs other than Km,n with the index sets to be the

cyclic subgroup Zd of Zk.
• When is the index set Ik(G) a subgroup of Zk? Or, when do one have

r + r′ ∈ Ik(G) for r, r′ ∈ Ik(G)?
• Characterize the graphs G having the index sets Ik(G) = Zd, where d

is a divisor of k. Note that this open problem includes cases d = 1,
1 < d < k, and d = k, respectively. The case d = 1 corresponds to
characterizing the graphs G having the index sets Ik(G) = {0}, for all
k ≥ 3. The case d = k corresponds to characterizing the graphs G having
the index sets Ik(G) = Zk, for all k ≥ 3.
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