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Abstract

Kissing number k(n) is the highest number of equal nonoverlapping spheres
in R™ that can touch another sphere of the same size. In this paper, we discussed
the kissing number problem of dimension three and four. That is, we discussed how

many unit balls can kiss a fixed ball.

Finally, we introduce applications of three dimension in chemistry and crystal-
lography. The kissing number problem is the foundation of sphere packing problem.
In mathematics, sphere packing problems concern arrangements of nonoverlapping
identical spheres which fill a space. Using the conclusion of k(3) and apply it to the

complex sphere packing problem.
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g 1ZE Introduction

The kissing number k(n) is the highest number of equal nonoverlapping spheres
in R™ that can touch another sphere of the same size. In this paper, we discussed the
kissing number problem of dimension three and four. In three dimension the kissing
number is ask how many unit balls can kiss(touch) the center fixed ball. In four dimen-
sion, the kissing number can be stated in other way: How many points can be placed

on the surface of S? so that the angular separation between any two points is at least

?

ol

In chapter 2, we discussed the kissing number problem for three dimension, it is
also called the thirteen spheres problem. This problem was a famous discussion between
Isaac Newton and David Gregory in 1694. Newton believed the answer was 12, while
Gregory thought that 13 might possible. The problem was solved until 1953. Actually,
k(3) = 12. We use Fejes Toth's lemma to estimate the area of spherical triangles and

prove k(3) = 12.(Figure [[.0.1))

In chapter 3, we discussed the kissing number problem for n = 4. In section 3.1,
we give a graph of outline of the main theorem k(4) = 24 and the main theorem proven

by Lemma and Lemma . We show that Lemma by Delsarte's method
and inequality in section 3.3. Section 3.9 gives a proof of Lemma [3.3.2.

In chapter 4, we introduce applications of k(3) in chemistry, crystallography and

sphere packing problem. We give examples in chemistry and crystallography and intro-



Figure 1.0.1: The graph of kissing number in three dimension.

duce the sphere packing problem.



B 2E Kissing Number Problem in

Three Dimension

2.1 Basic Formulas and Lemmas

We introduce some basic formulas and key lemmas in this section.

Definition 2.1.1. The A(z,y, z) stands for a triangle with edge-length z,y, z and cap
(ABC) stands for the cap enclosed by the circum-scribed circle of ABC' and containing
the triangle ABC.

Girard's formula 2.1.2.
|ABC| =LA+ 4B+ ZC —m,
where |ABC| is the area of a triangle ABC.

Spherical cosine law 2.1.3. Let 6 be the angle of A(z,y,z) opposite to the edge .
Then

COS z = COS X COS Y + sin x siny cos 6.

Fejes Toth's lemma 2.1.4. [9] Let d be the length of the shortest edge of a triangle
ABC. If the angular radius of cap(ABC) is less than d, then |[ABC| > |A(d, d,d)|.



Figure 2.1.1: A proper diagonal AC' of a quadrilateral ABC'D

Suppose ABC'D is a quadrilateral. If D is not an interior point of cap(ABC),
then AC' ia called a proper diagonal of ABC'D.(Figure P.1.1)

Proper diagonal lemma 2.1.5. [9] Let AC be a proper diagonal of a quadrilateral
ABCD. If we deform ABC'D with keeping its edge lengths fixed so that the length of

the diagonal AC' decreases, then the area | ABC D| decreases.

If a triangle ABC contains the center of cap(ABC), then the triangle ABC' is
called a major triangle. Suppose ABC' is a major triangle and triangle AB’C'is obtained
by reflecting ABC' with respect to the edge AC', then AC is a proper diagonal of the
quadrilateral ABCB’. By Proper diagonal lemma, if = decreases in a major triangle
AN(z,y, 2), |A(x,y, z)| decreases. And if P is the center of cap(ABC'), the intersection
of the ray (ﬁ% and the plane ABC is the circum-center of the planar triangle ABC'.
Therefore, if triangle ABC' is a major triangle, the planar triangle ABC is an acute

triangle or a right triangle. So we have the following

(1) For every z,y, 2z € [g, g], A(z,y,z) is a major triangle. (2.1.1)

2
(2) For every z,y € [g, %], A(z,y, g) is a major triangle. (2.1.2)



2.2 The Main Theorem

Let X be a subset of S*. If no two points of X are closer than % in spherical
distance, then X is called Z-separated. So we have if n mutually nonoverlapping unit
balls can simultaneously touch S? then there is a 3-separated point set of cardinality n

on S2.

Theorem 2.2.1. [5] Every Z-separated set on S? has at most 12 points.

Proof. Suppose X C S” be the maximal % - separated point set, |[X| =n, ['(X)
is a convex hull of X and T'(X) contains the center of S%. Now, we project the edge
of T'(X) onto S? from the center of S? and divided S? into spherical polygons. By
adding diagonals to these polygons, making a triangulation T’ of S?. Then T satisfies

the following

(1) By Euler's formula, T has 2n — 4 triangles.

(2) Since the spherical triangle is projected by the vertex of I'(X') and adding diago-
nals. So the interior of the circum-scribed cap of each triangle in 7' contains no

vertex of T.

(3) By(2), each edge of T is a proper diagonal of the quadrilateral obtained as the

union of two triangles sharing the edge.

(4) If the radius of the circum-scribed cap of each triangle in T" is greater than %,
then we can add a point be a interior point of a triangle such that the edge of
the triangle is decreases and the number of triangles is increases. So, the radius

s

of the circum-scribed cap of each triangle in T is less than %

By (4) and Fejes Toth's lemma, the area of every triangle in T is greater or equal

to § = |A(5,%,%)|. Hence, 2n — 4 < 2% =~ 22.8, n < 13. Now, we show that n # 13.

5



Lemma 2.2.2. [5] If n=13, then at most one edge of T" has length greater than or equal

to a = arccos(1) ~ 1.427.

Proof. Let n = 13, then T has 2n — 4 = 22 triangles. Suppose the common

edge AC of triangle ABC' and triangle ACD is the longest edge of T'. Let e denote

the second longest edge. Now, we show e < a.

(a)

Suppose e > 7. By the Proper diagonal lemma, if we deform the guadrilateral
ABCD with keeping its edge length so that the length of the diagonal AC be-

comes 2, then [ABCD| decreases. By (4), every edges has length less than 27,
then triangles ABC' and AC'D become major triangle. If e is edge of ABCD,

then
TTw TTom
ABCD A=, = — A= = 2
4BOD| > 18G5, 5. Dl +18(5, 5.5
and
T T m T Tm T T
4 > (22 —=3)0 + |A(=, =, = A= = — A= Z 2
2 @-30+ 180G 2 D+ 18G5 DI+ 18G50

~ 196 + 1.047.0.679 4 0.679 = 12.874 > 4m,

it is a contradiction. On the other hand, if e is not an edge of ABCD, then
|ABCD| > 2|A(5,5 2 3)

than 2|A(7, %, 5)[. So we have

|, the area of two triangles sharing the edge e is greater

dr > (22— 4)6 + 4|A(g, g g)|
4

~ 180 +4-0.679 = 12.634 >

It is a contradiction.

Suppose & < e < §. By (R.I), triangles other than ABC, ACD are all major

triangles. If e is an edge of ABCD, then

)+ 1A(@,

[ABCD| > |A(5, )

wl

s
3’

0~3|=]

il
3’
6



Consider triangle sharing edge e in common, the area of triangle is greater than

dm > (22 = 35+ A0 3,5l + A0, ) + 1A )]

T
3

wl X

T
37
~ 196 + 0.667 4 0.892 + 0.667 = 12.695 > 4,

and it is a contradiction. If e is not an edge of ABCD, then |[ABCD| >

2|A(a, %, )| and area of two triangles sharing edge e in common is greater than
2[A(a, 5, 5)I-
We have

dr > (22 — 4)6 + 4|A(a, g )| & 12.59 > 4r.

wl

It is a contradiction. Therefore, e < a.

Lemma 2.2.3. [5] Let © = O(x, y, z) be the angle of A(z, vy, z) opposite to the edge z.

If 3 <x<y<aand 3 <z then © > 7.

Proof. By the Spherical cosine law, we have the angle © of A(x,y, z) opposite
to z is monotone increasing on z, O(z,y, %) < O(z,y,2) and cosz = cosz cosy +

sinzsinycosO. Let

COSZ — COsSx Cosy

cos® = flz,y.2) = sinzsiny

, we have

COSX — COSYyCos z

fy(z,y, 2) = >0

sinzsinx

for 3 <o <y <a. Soyisincreasingon ¥ <y < a and

sin® £ cosy — Cos 2 CoS T + COs” ' CoS Y

fx($7y7 Z) =

sin?zsinx



Consider

fz(z, a, E) = V3(2 — Tcos )

3 24 sin*x
fo(,a,%) has maximal when z = % or v = a. Since f(%,4,%) = 5, f(a,a,%) = 5,
then f(%,a,%) > f(a,a,%). We have f(z,y,z) = cos© < f(5,4,%) = 3. Hence,
©>7% |

By Lemma R.2.2, if n = 13, then at most one edge of T" has length greater than
or equal to a. Let G be the graph obtained from T by eliminating the edges of length
greater than or equal to a. By Lemma R.2.3, since © > 3, 2m >n0O > 55, n <5, each
vertex of GG has degree at most 5. If T" has no edge of length greater than or equal to
a, then G has (222—3) = 33 edges and average degree of a vertex become ?—g > 5. ltis
a contradiction. Therefore, by Lemma and above, T" must have exactly one edge

of length at least a. Now, consider the graph (G, we have

(1) G is a planar graph having 32 edges, one quadrilateral and 20 triangles. And

since every edge has two degree, G has 64 degree of vertices.
(2) G has one vertex of degree 4 and 12 vertices of degree 5.

(3) Every 3-cycle of G is the boundary of a triangular face.

Now, we consider case(a)and case(b)(Figure R.2.1). Two cases are satisfy the
above (1)(2)(3).

In the case(a): The four vertices of the quadrilateral are all of degree 5. In Figure
case(a), contain 12 vertices, every vertex has degree 5. Suppose the quadrilateral
which the vertex's degree is 5. Therefore, it will be extending three edge from every
vertex and it is difference. Beside, there is difference that every vertex connected is
disjoint. Now, the sum of edges of Figure is 36 and the degree of 13-th vertex at

least 6, which is a contradiction.
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Figure 2.2.1: case(a) and case(b)

In the case(b): One vertex of the quadrilateral has degree 4. In Figure case
(b). Now, fixed the degree of vertex is 4 of quadrilateral and others degree is 5. So,
it will be extending three edge from every vertex and it is difference. Beside, there is
difference that every vertex connected is disjoint. Now, the sum of edges of Figure
is greater than 32. It is a contradiction. Hence, by case(a) and case(b) , n # 13.
[



B 3E Kissing Number Problem in

Four Dimension

3.1 Outline of The Main Theorem k(4) = 24

We will introduce the step of the proof of k(4) = 24 in Figure B.1.1.

1. Introduce the polynomial f;.
f1 made by Jacobi polynomial. As n = 4, Jacobi polynomial is the same as Chebyshev
polynomial of the second kind. We use recurrence relation and mathematical induction

to prove.
2. k(4) = 24.
Using lemma and lemma to prove ks = 24.
3. Introduce the Delsarte’s method, inequality and Delsarte’s bound.

We use Delsarte’s method and inequality to prove lemma 3.3.1. And we get k(4) < 25

by Delsarte’s bound.

4. (a) We extend Delsarte’s bound to get theorem B.5.2.
Theorem B.5.2: k(4) < Pmaz(n.cos 5.1) % max{hg, h1, -, hm}, where h,, :== f(1) +

co

fo-y)+ .o+ f(Yo - Ym)-

10



(b) We introduce the polynomial ®(to, 1) and simplify the kissing number problem in
dimension four to the sphere cap(eg, 6y). We calculate 6, and then get theorem B.6.3.
Theorem B.6.3: Let Y = {y1,92,--- ,ym} C S™! be the spherical Z-code. Suppose
Y C cap(ep,bp) and § > 2 > 0y > 0. Then any y; is a vertex of A,,, where A, =
A, (Y) is the convex hull of Y.

(c) Consider the number of the vertices of cap(eg,6y) on S"~! and get theorem B.7.1.
Theorem B.7.1: Let Y = {y1,%2,  * ,Ym} C S"! be a spherical z-code. Suppose

1_cos26, )

Y C cap(eg,0p) and 0 < § <6y < Z < 7. Thenm < A(n — 1, arccos 2
Using the conclusion of theorem and we get corollary B.7.4.
Corollary B:7.4: If t; > 0.6058, then m(4, %, f) < 6.

’ 9

sin? 6

(d) Introduce the optimal and irreducible sets.

Consider the set Y such that h,, attains its maximum and use the rotation of vertices
of spherical cap. Then we get theorem B.8.7.

Theorem B.8.7: Suppose Y is irreducible and dim(A,,,) = 2, then 3 < m <5 and A,,
is a spherical regular triangle, rhomb or equilateral pentagon with edge length .

(e) For n = 4, we get theorem 3.9.6.

Theorem B.9.6: Let Y C S be an irreducible set, |Y| = 5. Then A,, for2 < m < 4 is
a regular simplex of edge length Z and Aj is isometric to ps(a) for some a € [3, 7.
(f) Consider 2 < m < 6, we get theorem 3.10.3.

Theorem B.10.3:

(1) ho=f(1), ha = f(1) + f(=1).

(2) B < An(Z,00) < AN, Z,65) for 2 < m < 5.

(3) he < maz{f(—costy) + s(5,00), f(—5) + Xs(5.00)}, 05 € [, 60]-

5. Using the step 4 to prove lemma [3.3.2.

11
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3.2 Introduce The Polynomials

In this section, we introduce some polynomials. Consider the polynomial of degree
nine :

1344 2688 1764 2048 1229 516 217 2
= 9 — T+ o+ t— A 12

25 25 25 125 125 125 500 125

fa(t)

f4 is a monotone decreasing function on the interval [—1, —t,] and f(t) < 0 for t €

—tg, 1], to > L > 0. The polynomial f,(t) was found by the linear programming
2 2

method.

First, consider the finite set of inequalities at the points

t; = —1+0.0015j, where 0 < j < 1000.

Next, choose a value of k& and use linear programming to find ¢;, ¢, -+ , ¢, so as to
minimize

k

E cipi(t;)

i=1

subject to the constrains

k
¢ >0 for 1<i<Ek,and Zcipi(tj) < -1 for 0<j <1000,

=1

11
where p;(t) stands for the Jacobi polynomial pz(?’?)(t).

Definition 3.2.1. [2] The Jacobi polynomial

PP (z) = 2-’1; (th‘) (" - 5) (¢ — Die+ )" zel[-1,1],

]

is a orthogonal with respect to the weight (1 — 2)%(1 + x)” such that

. 2081 (n 4+ a4+ Dl(n+ B+ 1)
1 _ (0% 1 5 (anB) (avﬁ) g m,n
[ =y aye @ @) = o B s,

13



1,
where 4,,, = men and has the lead coefficient 27" "7 ("J”?‘) ("fﬂ) =

n— 3

9—n (2n+a+,3) _

n

Definition 3.2.2. (Recurrence Relation)[2]

The sequence {p'*? (2)}> | satisfies
Dt (@) = (Au + Bu)p? (2) = CoplY ()
where p )y =1, pl*(2)= sla— B+ (a+B+2)x] and
D, =2n+1)(n+a+B+1)2n+a+p),
A, = 2n+a+ B+ 1)(a® - 57,
B,=02n+a+5+2)2n+a+F+1)2n+a+ B),
Cn=2(n+a)(n+p)2n+a+B+2).

Definition 3.2.3. [1] [11] The Gegenbauer polynomials G,(:)(x) (Ultraspherical poly-

nomials) can be defined by the recurrence formula:

(2k +n — 4)2G" D (z) — (k — 1)GW,(2)
k4+n—3 '

Py =1, ¢P@)=z--,6" ) =

In the case n=4 are Chebyshev polynomials of the second kind, but with a different

normalization than usual.

Now, we discuss the relation of Jacobi polynomial and Chebyshev polynomial.

Lemma3.2.4. Whena = = % the Jacobi polynomial are the C'hebyshev polynomial

of the second kind U,,(x), then
2n + 1\
Up(x) = 22”( n ) pn(T).

n+1
The Chebyshev polynomial of the second kind satisfies the following recurrence rela-

tion
UO<:C> =1 ) Ul('T) =2z ) Un(x) = 2$Un,1($) - Uan(l.)? n= 27 37 s

14



Proof. For n = 0,

when n = 1, we have

2 @) @) = 22 (e) = Spila)l = 20 = Vi)

Suppose n = k hold, )
nf2n+1Y
2? ( ) pn(z) = Uy().

n+1

Now consider n=k+1, then

2(k+1)+1\ "
left = 22(k+1) ( ((k N 1))+ ] > Pr+1(x)

22(k+1) Dy — -
k+2 20k + 1)(k + 2)(2k + 1) 20k + 1)(k + 2)(2k + 1)
_ 2k [T (k+ D)W (k+3)°(k+ 1)K
- 2 2k + DIPF T 2k + 2)1(2k + )17+
B S A R VG VLT
k+1 4(2k + 2)1(2k + 1)1PF
_ 22k’+lx Det

(2 + 2)!

2k + 1\ o Kl(k— 1)
(2k — 1) et

2k + 1\ 2k —1\ !

k+1> pr — 22 2( I ) Dk—1
2k + 1\ L2k —1\ !

=2z 22k<k+1) pk] — [22(k 1)( I ) pk—l]

= 22Uy — Up_1 = Upyq = right.

(
|
(
(2k + 1) ‘1pk _ opkapp 2+ 1)(k + DK
(
(

15

2k + 3) - [g;(% +3)(2k + 2)(2k 4+ 1) 2(k + 3)(k+ )2k + 3)



3.3 The Main Theorem of Kissing Number and Lemmas

Lemma 3.3.1. [11] Let X = {zy,x,..., 25} be points in the unit sphere S*. Then

SX) =" falwi - xy) > M*.

i=1 j=1
Lemma 3.3.2. [11] Suppose X = {xy,75,...,75} is a subset of S* such that the

angular separation between any two points z;, 7; is at least 7, then

i=1 j=1
Theorem 3.3.3. [11]
k(4) = 24.

Proof. Let X be a spherical Z-code on S%, M = K(4). Applying the Lemma
and Lemma B.3.2, we obtain

M? < S(X) < 25M,

which implies M < 25. On the other hand, M > 24,[10] [12] [15] therefore M =
K(4) = 24.

3.4 Delsarte’s Method , Inequality and Delsarte’s Bound

Let ¢; ; = dist(z;, x;) be the spherical distance between x;, z; and cos ¢;; = z;-x;.

If z; - x; < cos % for all i # j, then we called the set is a %—code.

Theorem 3.4.1. (Schoenberg's Therem) [6]

Let uy, ug, - -+, ups be any real numbers, then
|| E U,ZZL'ZHQ = E Uﬂl;j COSQSU 2 0
i7j

16



or equivalently the Gram matriz (cos qﬁij) is a positive semidefinite.

Schoenberg extended this property to Gegenbauer polynomial.

Lemma 3.4.2. [6] Gegenbauer polynomials pgf\)(cos t),n=1,2--, A=3(k—1)are

all positive de finite in Sk.

Proof. For k = 1, p( )(cost) = p%o)(cost) is the Legendre polynomial and by

the cosine addition formula, the statement is true. Assume k = m — 1. p{”(cost) is
positive definite in S,,_1 hold.
Consider k = m, p; € S,, fori = 1,2,--- , N and associate with the points p; and p;,

on the equator S,,_; of equation © = %71’ such that the last m — 1 polar coordinates

61, -+, ¢ of both points p; and p, agree. We have
cos p;pr, = cos B cos 6% + sin 0 sin OF cos py .
By the addition formula for Ultraspherical polynomials, we may write

(

Lom—
PN (cos pip) chmp (cos 6)p*(cos 0% )p 2 )(cospi/pk/),

(A

where p)* are the real polynomials associated to p; ) and Cm,).s are positive coefficients.

3(m—2)

Since p% was assumed to be positive defim'te in S,,_1 then
5(m—2)
Z p(’\) (cos pipr )&k = Z Cn,\,s Z Z Pn (cos pypr )iy = 0,
=1 j=1 =1 j=1
where n; = p*(cos 0)&;. |

If a symmetric matrix M is positive semidefinite, then the sum of all its entries
is nonnegative. Schoenberg’s theorem implies that the matrix (G,i") (tij)> is positive

semidefinite, where t; ; := cos ¢; ;. Then 3™ Zﬁl G;”) (tij) >0 (%)

Definition 3.4.3. [11] We denote by G the set of continuous functions f : [-1,1] - R

representable as series

=Y aG )
k=0

17



whose coefficients satisfy the following conditions

>0, ¢ >0 for k=123 and f(1)=) ¢ <o0.
k=0
Suppose f € G, and let
M M
S(X)=>"3" f(ty)
i=1 j=1
By (%), we have
M M M M
SO =33 (Y el t) = D3 (w6 () =M (3.4.1)
i=1 j=1 k=0 =1 j=1

Hence S(X) > coM?.
Next, using above definition, we will prove the Lemma B.3.1l.

Proof of lemma B.3.1]. f, can be written as

153 871 128 21
fa(t) = Us(t) +2U1(t) + ﬁUz(t) + ﬁUza(t) + 2—5U4(t) + %Ug(t),

where U, (t) is Chebyshev polynomial of the second kind, then f; € G} and ¢y = 1,
hence S(X) > coM? = M2, |

Let X = {1, 22,...,20} C S"! be a spherical Z-code. Suppose f € G} and
f(t) <0fort e [—1,3] then f(t;;) <O0foralli+j. Then

S(X) = ZZf(tz‘j) = Mf(1) +2f(tie) + -+ 2f(tar—1.m) < M (D).
By (B.4.1)
coM? < S(X) < M(L),
then we obtain

1)

Co

M <
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Let A(n, %) be the maximal size of a Z-code in 5™, then

T, _ f(1)
A( 75) < Co
If n =4 and ¢y = 1, then
Ad. 3) = k(4) < f(1),

f1(1) =~ 25.558, hence 24 < k(4) < 25.

3.5 An Extension of Delsarte’'s Bound

Let f(t) be a function on the interval [-1,1]. For a given value %, consider points
Yo, Y1, ,Yum on the sphere S"1 such that y;-y; < % =cosg, i 7 jand f(yo-y;) >0

for 1 <i < M. (xx)

Definition 3.5.1. [11] For fixed yo € S"™!, M > 0 and f(t), define the family Qs (o)

of finite sets of pints from S™~! by the formula

{yo}
Y ={y1, 92, ,ym}} €S i {yo} UY satisfies (xx) , M > 1.

Qu(vo) =

Denote m := max{M : Qu(yo) # 0}. For 0 < M < m, we define the function

H = Hy on the family Qs (yo):
H(yo) :== f(1), for m=0

H(yo;Y) = H(yo; y1,y2, s Ym) == f(1) + f(yo-y1) + -+ f(yo - ym) for m>1

Let
R = sup {H<y07y)} and Nimax == max{h()?h‘l"” ’hm}

YeQn (vo)

Theorem 3.5.2. [11] Suppose f € G,;. Then

hmaaz ’ Ea 1
A(n,ﬁ)< (n COS?, f) :—max{ho,h1,~~~ ,hm}

37 Co Co
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Proof. Let X = {x1,25,--- ,25} C S" ' be a spherical Z-code. Denote .J(i) :=
{j; flzi-x;)>0,i# 5}, and X (i) .= {x;; j € j(i)}. Then

SiX) =) flai-ay) < fF()+ D flai2)) = H(w; X(0) < hmaxe
j=1 )

jEJ(

Therefore

Since f € G}, S(X) > ¢yM? and by (3.1), we have
00]\42 S S(X) S MhmaXa

which implies that
M < —hmax (3.5.1)

3.6 The Class of Functions ®(t), 1) and A,

Definition 3.6.1. [11] Let real number ¢, satisfies 1 > ¢, > 3 > 0. We denote by

®(to, 1) the set of functions f : [—1,1] — R such that f(t) < 0 for ¢ € [to, 3.

Let f € ®(ty,3) and Y € Qui(yo, n, f). Denote
€y = —Yo, 60 = arccos ty, 61 = dist(eo,yi) for i= 1, 2, e ,Mm,
where ¢ is the antipodal point to yq

Lemma 3.6.2. If 0; < 6y, then f(yo-y;) > 0.

Proof. If 6; < 6y, then m > 7 — 0, > m — 0y, cosm < cos(m — 0;) < cos(m — by),
which implies —1 < cos(m — ;) < —tq, therefore f(cos(¢o;)) > 0 and conclude the

proof. [ |
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From above lemma, Y is a spherical Z-code in the open spherical cap(eo, 0p) of
the center ¢ and radius 0y with 5 > % > 0.

Theorem 3.6.3. [11] Let Y = {y1, 42, ,Ym} C S™ ! be the spherical Z-code. Sup-

pose Y C cap(eg, ) and § > % > 6y > 0. Then any y, is a vertex of A,,, where

A, = A, (Y) is the convex hull of Y.

Proof. The case m = 1,2 are trivial. For m = 3, suppose 1, is not a vertex

T_

of Az.Then Aj is the arc y1y3 and ¥, lies on the arc y1y3. Since Y is a Z-code, then

dist(y1,y3) > %’T According to the triangle inequality
2
T < dist(y1,ya) < dist(ys, co) + dist(ys, co) < 260

It is a contradiction. For m = 4. By the assumptions:

Op = dist(yx,e0) <O <5 for 1<k <m, ¢ :=dist(yr,y;) >3, k#].

We assume that there exist a point y;, belonging both to the interior of A,, and relative
interior of some facet of dimension d, 1 < d < dimA,,. Consider the great (n — 2) —
sphere . such that y, € € and ) is orthogonal to the arc egy,. The great sphere
Q) divides S"! into two closed hemisphere: H; and H,. Suppose ey € H;, then at
least one y; € H,. Consider the triangle egy,y; and denote by v, ; the triangle Zegyyy;

in this triangle. The law of cosines yield
cos f; = cos 0, cos ¢y, j + sin O, sin ¢, j COS Yy
Since y; € Hy, then v, ; > % and cos~;, ; < 0.(Figure 8.6.1)
From the conditions of Theorem B.6.3. We have
sinf, >0, singg; >0, cosf, >0 and cosf; >0
Using the law of cosines,
cos 0; = cos 0, cos ¢y, j + sin 0, sin ¢, j COS Yy j,

we have 0 < cosf; < cosbj, cos @y ;. Since 0 < cos ¢y, ; and cosf; < cos ¢y ; < cos .

Therefore, §; > %, it is a contradiction. |
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Figure 3.6.1:

3.7 The Bound m of an Extension of Delsarte's Method

We conclude the bound of m on S™1.

Theorem 3.7.1. [11] Let Y = {y1,92,- -+ ,ym} C S™ ' be a spherical §-code. Suppose
Y C cap(eg,bp) and 0 < & < 6y < T < Z. Then

1 2
= — cos” bty
m < A(n — 1, arccos 2

).

Proof. If m > 2, then y, # eo. Conversely, T < dist(y;,y;) = dist(eq, y:) < 0o, it

Siﬁ2 00

is a contradiction. The projection [ from the pole ey which sends y; € S™! along its
meridian to the equator for all y;. Denote v, ; := dist([[(v:), [ [(y;))-(Figure B.7.1) By
the law of cosines and cos ¢; ; < cos g = % We have

cos¢; ; — costcostl;  z— cosb;cosb;
sind; sin6; ~  sinf;sin0;

COS7Y;; =

1
Let R(a, B) = 22028 thep 2Rlad) _ cosfzzcosa £ < 3 < 6, then 2 OR(af) ),

sin asin 3 Ja sinZ, sin 3

R(a, B) is a monotone increasing function in a. We obtain R(«, ) < R(6, ) <

R ) ) 10529 .
R(6o,00). Therefore, cosy, ; = <8¢ucsbicosti 20 _ 6545, and J[(Y) is

sin§; sin6; — sin? 0

§ — code on the equator S"~2. Thus, m < A(n — 1,4).

Corollary 3.7.2. [11] Suppose f € ®(ty, 3). If 2t3 > 2, then m(n, 3, f) = 1, otherwise

1_
m(n, 3, f) < A(n—1,arccos 2 tg)
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Figure 3.7.1:

Proof. Since cosfy = to. 2t2 > % if and only if £ > 2. In this case, any Z-code

in the cap(eg, ) have at most one point. Otherwise, 3 < 26, and this corollary follows

from Theorem B.7.1].

Corollary 3.7.3. [11] Suppose f € ®(ty, 5). Then m(3,1, ) <5.

Proof. Since §f < % and cosfy = to, then

B _1-0GP 4 1
1—3 —1—-(3)? 1+4% 2

we obtain § = arccos T > Z. Thus,m(3, 3, f) < A(2,0) < & < 6.
Corollary 3.7.4. [11] Suppose f € ®(to, 3). Then
(1) If to > /3, then m(4, 3, f) < 4.

(2) If to > 0.6058, then m(4, , f) < 6.

Proof. Denote by (M) the largest angular separation that can be attained

in a spherical code on S*~! containing M points. Schiitte and van der waerden

proved that ¢3(4) = arccos(—3) ~ 109.47°, ¢3(5) = @3(6) = 90°, cosps(7)

cot 40° cot 80°, ¢3(7) ~ 77.86954°. [g]
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_tO

(1) Since £ — 3 < 0. By Corollary B.7.3, m(4, 3, f) < A(3,8) = A(3, arccos %_tg),

)9
where 0 > 90° We have § > 3(5), thus m < 5.
(2) to > 0.6058. 9 = arccos %:;8 > 77.87°. Since 77.87° = 0 > 3(7) and by
0

Corollary (4, L, f) < A(3,77.87°), we have A(3,77.87°) < 7

)99

Hence, we consider the set Y, |Y| < 6 on S3.

3.8 Optimal and Irreducible Sets

Definition 3.8.1. [11] We denote by ®*(}) the set of all functions f € (J, .1 ®(7, 3)

such that f(t) is monotone decreasing function on the interval [-1. — 75] and f(—1) >

0> f(—1).

For any f € ®*(3), denote ty = to(f) := sup{t € [0, 1] : f(—t) < 0}. Consider
a spherical Z-code Y = {y1,92,...,ym} C cap(eo,bp) C S™', then denote by I'=(Y)

_

the graph with the set of vertices Y and the set of edges y;y; with ¢;; = .

Definition 3.8.2. [11] Let f € ®*(1), 6y = arccos(ty). If Hp(—eq;Y) = him(n, z, f),

then spherical Z-code Y = {y1,9s,...,ym} C cap(eq,fy) C S"~" is called optimal.

Definition 3.8.3. [11] Let 0 < 6y < 7 < 7. We say that a spherical 3-code Y =
{y1, 92, - -, Ym} C cap(eg, 0y) C S™ 1 is irreducible if any y;, can not be shifted toward

eo such that Y’ which is obtained after this shifting, is also a F-code.
Proposition 3.8.4. [11] Let f € ®*(3). Suppose Y C cap(eo,by) C S™* is optimal for
f. Then Y is irreducible.

Proof. Let F¢(61,...,0) := Hp(—ep;Y) = F(1)+f(—cosb)+- - -+ f(—cosb,,),

where 0, := dist(yg, e0). Ff(01,...,0) is increasing when 6, decreases. If y, shifted

24



toward eg, then F¢(64,...,60,,) is increasing. It is contradicts with the optimality of the
initial set Y. |

Lemma 3.8.5. [11] f Y = {y1,y2,...,Ym} is irreducible, then

(1) ey € A,,,= convex hull of Y.

(2) If m > 1, then degy; > 0 for all y; € Y, where by degy; denoted the degree of
the vertex y; in the graph I'= (V).

Lemma B.8.5 plays an important role in the following sections.

Lemma 3.8.6. [11] Consider in S™! an arc w and a regular simplex A ,both are with

edge 7. Suppose the intersection of w and A is not empty, then at least one the distance

between vertices of w and A is less than %

Proof. Let w = ujug, A = v1vy ... v, dist(uy,ug) = dist(vy, v;) = § for i # j.

Suppose not. Let dist(u;,v;) > % for all 4,5, U be the union of the cap(v;, §), where

% is the radius and v; is the center for i = 1,2,... &k and B is the boundary of U.

Since dist(u;,v;) > %, then u; and uy don't lie inside U. If {u}, uy} =w () B, then

T = dist(u1,ug) > dist(u},up) and w’' (A # 0, where w' = wjuj. Now we find

the minimal length of an arc wywy such that wy,ws € B and wywy (B # (). Then

dist(wy, wo) attains its minimum when dist(wy, v;) = dist(ws, v;) = 3. Using this and

2kz2—(k—1)z—1
1+(k—1)z

andonly if z > 1or (k+1)z+ 1 <0. Itis a contradiction. [ |

cosa = , o= min dist(w;,w;), z = cos § = 5. Then we have cosa > z if

Consider A,, C S"! of dimension k, dim(A,,) = k. Since A,, is a convex set,
there exists the great k-dimensional S* in S"~! containing A,,,. If dim(A,,) = 1, then
m = 2. Conversely, it is contradicts Theorem B.6.3.

Theorem 3.8.7. [11] Suppose Y is irreducible and dim(A,,) = 2, then 3 < m <5 and

A, is a spherical regular triangle, rhomb or equilateral pentagon with edge length 7.
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Proof. By corollary and m > 2, then m=3, 4, 5. A,, is a convex polygon
with vertices 41, y2,...,ym and eg € A,,, degy; > 1 by Lemma B.8.5. We claim if
degy; > 2 for all 4, then A,, is an equilateral m-gon with length 3. Lemma B.8.6
implies that two diagonals of A,, of length 3 do not intersect each other. That yield
the proof for m = 4. When m = 5, it remains to consider the case where A5 consists
of two regular non overlapping triangles with common vertex.(Figure B.8.1)) Since the
angular sum in spherical triangle is strictly greater than 180°, we have Zy,yy; > 60°.

Then 180° > 4y2y1y5 = éygylyg + Zygylygl + Ay4y1y5 > 180°. It is a contraction.

3

[
2 '\'-. F; \ﬂ 5

Figure 3.8.1:

Now, we prove that degy; > 2 for all i. Suppose degy; = 1. We consider two cases,
case(1): ey & y1y2 and case(2): ey € y1y2. In the case(1), eg & y1y2.Then turn ¥
round y» to e the ) decreases, it is a contradiction. In the case(2), if ¢;; = % where
i >2orj>2theney ¢ y;y;. Conversely, we have two intersecting diagonals of length
. Therefore degy; > 2 for 2 < i < m. It implies the proof for m = 3 and m = 4.
For m = 5, there is the case where Q3 = y3y,ys is a regular triangle of side length .
By Lemma [B.8.6, arc y1y» can not intersect (03, then arc 1,3, is a side of As. In this
case, as above sufficiently small turn of Q3 round , to eq the distance 6;, i = 3,4,5

decreases. It is a contradiction. [ |
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3.9 Rotations and Irreducible Sets in 4-Dimension

Consider a rotation R(¢p, ) on S? about an 1-dimensional great sphere Q in S3.

We may assume that Q = {4 = (uy, ug, u3,us) € R* 1 ug = up = 0,u? + u3 + ul +

= 1}. Denote by R(p, ) the rotation in the plane {u; = 0, i = 3,4} through

an angle ¢ about the origin Q: u} = wjcosp — uysinp, uh = wuysing + uy cosp,

up = u; fori = 3,4, Let Hy = {u € S :uy >0}, H. = {d € S : uy < 0},
Q={a€S% uyg=0,u1 >0}, Q={a €S uy=0,u; >0}.

Lemma 3.9.1. Consider two points y and e; in S®. Suppose y € Q and ey ¢ Q.

If eg € H,, then any rotation R(p,2) of y with sufficiently small positive ¢ decreases
the distance between y and ¢.

If g € H_, then any rotation R(p, ) of y with sufficiently small negative ¢ decreases

the distance between y and ey,

Proof. Let y be rotated into the point y(¢), v = (u1,0,us,uyg),u; > 0 and

€y = (’U17 V92, V3, U4). Then

V() = ylp) - €
= (ur(p), ua(), us(p), ua(p)) - €
= (u1 COS @ — Uy SiN @, Uy SIN Y + U COS Y, Uz, Uyg) - €
= U101 COS (P — UV SIN Y + ULV SIN P + UV3 COS Y + UV3 + UgVy

= U V1 COS (P + U V3 SIN (P + U3V3 + UgVy

Thus 7/(¢) = —uqvy sin g + ujvg cosp and +'(0) = ujvy, where u; > 0. So we have
7'(0) > 0 iff v, >0, 4 (0) < 0iff vy < 0 and if vy = 0, by assumption ey ¢ Q, then
v1 < 0. Since 7v/(0) = 0 and 7”(0) = —uqv; > 0. Therefore, ¢ = 0 is a minimum

point.
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Proposition 3.9.2. Let Y be irreducible and |Y| = m > 4. Suppose there are no closed
great hemisphere @) in S® such that Q contains 3 points from Y and e;. Then any

vertex of I'z (Y') has degree at least 3.

Proof. Suppose degy:< 3, then ¢1; > % fori = 4,5,...,m . Consider the
great 1-dim sphere Q in S3 that contains the points y», y3. By Lemma B.9.1], a rotation
R(p, Q) of y; with sufficiently small ¢ decreases the distance between 1; and ey, it is

a contradiction. [

Proposition 3.9.3. [11] If Y is irreducible, |Y| = n and dimA,, = n — 1, then degy; =

n—1foralli=1,2,...,n. Inother words, A, is a regular simplex of edge length .

Proof. A, is a spherical simplex. Denote by Fj its facet, F; := conv{yi, yo, ..., ¥i-1
Yit1s - Ynt and o=, Fi foro C I, :={1,2,...,n}. We claim that:

if o ¢ F{i,j} then %:g forall i+ j. (3.9.1)

Conversely, there exist a rotation R(y,(; ;) of y; decreases 6;, where €, ; is the great
(n — 3) — dim sphere contains FY; ;. It contradicts the irreducibility assumption for
Y. So we have if there is no pair {7, j} such that ey € Fy;;;, then ¢; ; = % for all 4, .
Suppose ¢ € F,, where o has maximal size and |o| > 1. Let 5 = I,, o, from (8.9.1),
we have if i € 0 or j € 0, then ¢;; = %. It remains to prove ¢; ; = % forall i, j € 0.
Let A be the intersection of the sphere of centers y;, i € o and radius Z. Then A is a
sphere in S"~! of dimension |o| — 1. Since F,=convex hull of {y;,i € 5} and all the
distance dist(x,y) are the same for x € F, and y € A. Then y;,i € o lie in A at the
same distance from ¢y. Thus, Y is irreducible if and only if y;,i € o, in A are vertices

of a regular simplex of edge length .
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Proposition 3.9.4. [11] If n > 3, then Ay is a regular tetrahedron of edge length %.

Proof. We show that dimA,; = 3. Suppose dimA; = 2 and A, is a rhomb by
Theorem B.8.7. Let 1,95 is the minimal length of A, and the sum of the lengths of any
two sides of a triangle is larger than that of the third side on sphere, then ¢y, > 7.
Consider a sufficiently small turn of the facet y192y4 round yiys. If ey € y1ys, then
decreases either 6, or 6,. If ey € yyy3 any turn of yo round y,y3 decreases ¢4 and

doesn’t change ;. Then there exist a turn of y, such that ¢4 is become to %,it is a

contradiction. Therefore, dimA, = 3 and Ay is a regular tetrahedron of edge length %
by Proposition B.9.3. [ |

Now we consider the irreducible sets |Y'| = 5 on S® and prove that degy;, > 3

for all 3, in the irreducible sets. The proof step are following:

Show that dim A5=3

{
Introduce the gijk
{
Show if deg yr = 1, ¢kl = %, then €o € Skl
{
Show that deg y, = 1 is wrong for all k
{

Show deg y, > 3 for all k

Lemma 3.9.5. [11] If Y C 5% is irreducible and |Y'| = 5, then degy; > 3 for all k.

The detail of proof step as following.

Proof. Stepl: Show that dimAj5; = 3. Conversely, suppose dimAs = 2 and Aj
is a convex equilateral pentagon by Theorem B.8.7. Let 3,95 be the minimal length
diagonal of As. We have ¢4 > % and ¢o5 > 5. Suppose eq & y1ys. If eo € y192us,
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then any sufficiently small turn of the facet y,y3y4y5 round y,y3 decreases 6, and 05 ,
otherwise it decreases 05, it is a contradiction. If eq € ,y3, then any turn of y, round
y1ys decreases ¢, ;, © > 3 and does not change ;. Then there is a turn such that ¢, 4
or ¢95 becomes is equal to Z.itisa contradiction. Thus, dimAs; = 3. There exist two
combinatorial of A5: (A) and (B). In the case(A), the arc yzys lies inside A5 and case
(B) y2y3y4ys is a facet of As.(Figure B.9.1))

step2: Introduce the gl-jk. We denoted by s;; the arc ;; and denote by s; ; ;. the triangle
Yiy;y,. Let gijk be the intersection of great 2-hemisphere Q); ;. and Aj, where Q) ;
contains y;y;y, and bounded by the great circle passes through y;y;. By proposition
B.9.2, we have if there are no i, j, k such that ¢, € Sijk, then degy; > 3 for all 7. Now,
we consider the case ¢ € gmk Sijk # Sijk for the case(A), i =1,2,4; j =3,k =5 or
j=5k=3.

step3: Show if degyy = 1, ¢, = I, then ey € sp;. By LemmaB.8.5, we have degy,, > 0
for all k. If degyr, = 1,01, =

3
z then ey € si;. Otherwise, there exists a rotation
R(p, Q) of y;, in S% with sufficient small ¢ decreases 6y, where Q is the great circle in
S3 and contains y; does not pass through ey, it is a contradiction.

step4: Show degy, = 1 is wrong for all k. Suppose degyr, = 1, ey € si.

(a) First, we consider the sy is an external edge of Aj5. For the case(A), it is not s35
and for case(B) it is not s35 or syy. Then there exists a great 2-hemisphere (2, pass
through v, y; such that other points y;, y;, yy, lie inside the hemisphere H_ bounded by
Q. Let €2 be the great circle in €5 that contains y; and it orthogonal to si;. By Lemma
B.9.1] there exists a rotation R(y, 2) such that the distance 6, 0;, 6,, decreases, it is a
contradiction. Therefore, degy, = 1, eg € sy is wrong for the s;; is an external edge
of As.

(b) Next, consider the case(A). Suppose degys = 1,¢35 = %, eg € s35. By(a), we
If degy; = 2 for i« = 1,2, 4, then

claim sqo4 is a regular triangle with side length

s
z.
€o € S124 N S35. Since oy = P14 = P12 = ¢35 = 5, by Lemma B.8.6, we have at least
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one distance ¢; ; less than %, it is a contradiction. Therefore, ¢35 > 3.

(c) For the case(B). Suppose degys = 1,¢35 = %, €0 € s35. Then for the point 3,
and ¢p5 = z

and we have

degy, = 1 only if oy = 3 and ey € 524 N 835 ; degyo = 2 only if Poy =

Wl wly

, degys = 3 only if ¢oy = 5, ¢o5 = 5 and @12 = 5. In any case, ¢oy =
two intersection diagonal so4 and s35 of length Z, it is a contradiction by Lemma [3.8.6.
Hence degy; > 2 for all i.

stepb: Finally, we show degy, > 3 for all k. Suppose degyr = 2,0 = ¢n; = 3,
then ey € S”ij We consider the s;j;; be the facet of A; and ey ¢ s;,. By the same
argument as in 4(a), there exists a rotation R(¢p,(2), where {5 contains Sj;; and (2
be the great circle passes through v, v;, then decreases 6;, 6, for two other point
Y1, Yq, it is a contradiction. Next, consider s;;;, is not a facet of A;. There are the
following cases: 124, S135 (case(A) and case(B)), sa3s (case(B)). In si24. Suppose
degyr = 2,12 = 14 = 3, €0 € S124. Consider a small turn of y3 round sy, toward
y1. If eg & so4, then decreases 03. Since Y is irreducible, then ¢35 = 2. If ey € 594 and
doesn’t change 03, but ¢, 3 decreases. It implies ¢35 = 7. By Lemma B.8.6, a regular
triangle s194 can't intersects s35, then ¢4 > %. So degy» = degys = 3. Thus we have
three isosceles triangle s43, 5241 and sa45. Using this and ¢35 = %, then ¢1; < % for
i = 3,5, it is a contradiction. sy35(case(B)) is equivalent to the si94. In the s135(case
(A)), this case has two subcases: S35, S1s5. Suppose degys = 2, ¢15 = P15 = z
ep € s135. If g & s135, then any small turn of y; round s3; decreases ¢ by Lemma
B.8.5. Thus, ey € s135. Consider a small turn of y» round s35 decreases 6y and ¢, o, it
is a contradiction. The subcase S35, where ¢35 = 3, is equivalent to the case s;2.
In the s934(case(B)), this case also has two subcases: Sau3, Sazs. The subcase Ssy3 can
be prove in the same way as the case facet and Sy, is equivalent to the Sj35. This

concludes the proof. |

By Lemma B.9.5, we have the degree of any vertex of I'z(Y') is at least 3. If

all vertices of I'z (Y') are of degree 3, then the sum of the degree equals 15. Thus, at
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Nz

case(A) case(B

Figure 3.9.1: case(A) and case(B)

least one vertex has degree 4. Now, consider the A5, by Lemma [3.9.5, we have the

length of all edges of As are equal to § except ¥y, ysys. We fixed ¢4 =  and if
200 = ¢35 = pou = 5, to = 5, then 0 < cosar < % Therefore, Aj is a 1-parametric

family ps(a) on S3.(Figure B.9.2) Thus from Proposition and Lemma for
P R

o

s &

Figure 3.9.2: ps(«)

n = 4, we have the following theorem.

Theorem 3.9.6. [11] Let Y C S® be anirreducible set, |Y| = 5. Then A,, for2 < m < 4
].

is a regular simplex of edge length % and Aj is isometric to ps(a) for some a € [3,

SIE]

32



3.10 On Calculations of h,, for 2 < m <6

We consider h,,, for 2 < m < 6.

Lemma 3.10.1. Let n = 4, f € ®*(3), Y is a optimal set on S® and |Y| = m for
2 <m < 5. Then h,, < Ay(N, %, 00), where NV is a positive integer and ), is the radius

of the spherical cap.

Proof. For m = 2. Suppose m = 2 and Ay = yy» is an arc with length Z,
eo € Ay and 0y + 0, = . Then hy = f(1) + f(—cosfy) + f(—cosfy). Assume
01 < 0y, 01 € [5 — 6o, %]. Since 6 = % — 0, is a monotone decreasing function,

f(—cosfy) is a monotone increasing function in 6,. For 0, € [u,v] C [§ — 0o, %], then

he < ®o([u,v]) == F(1) + f(— cosv) + f(—cos(g — ).

66p—m
6N

T _

3
[% — 90, %] fori = 1, 2, Ce ,N + 1. If 01 < [ui,uiﬂ], then hg < @2([U¢,Ui+1]) = f(l) +

f(— COSUZ‘+1) + f(— COS(% — UZ)) Thus h2 < )\2( ,%,60) = 1rpza<>]<v{<1)2([ul,uz+1])}

For m = 3. Suppose m = 3 and Az = y1y-y3 is a regular simplex._Assume D :={e €

Let u; = 0o, uiy1 = w; + €, uny1 = 5, where € = and u; is a point on

Az; 3 —0p <0y <0 <05 <0} Let K(4,0) be a 3-dimension cube with length 6,
K (4,6o) contain A, L(N) is a cube of side length ¢, where e = % and K (4, 6)) consists
of L(N). There exists cube L'(N) in L(N) such that L'(N) (D # 0. Let L(N) be the
subset of L/(N) in L(N), there exist a cube in L(N) such that hs attains its maximum.
Thushy < A\3(N, %,60p) ==  max N){@;;(L’(N, D))}. The case m = 4 can be proven

T3 L/(N,D)ek(
in the same way as the case m = 3.

For m = 5. Suppose m = 5 and Aj; is isometric to ps(a) for some a € [Z, 5]. We
fixed vertices y1, Yo, y3 of ps(«). Then vertices yy, y5 are determined by . The distance
04(cr) := dist(eo, ys) increases and 05(r) decreases in a. Let uy = %, uip1 = u; + ¢,

uyy1 = 5, where € = % and w; is a point on [3, 7] fori = 1,2,...,N + 1. Then
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94(0@) < 94(0&1‘4_1), 95(0[7;) > 95((}Z‘+1), we have f(— COSQ4(O&Z')) > f(— COSH4(OZZ‘+1)),

f(—=cosbs(c;)) < f(—cosOs(a;+1)). And using the proof of the case m = 3, we get

hs < As(N,5,00) == f(1) +  max  {fia3(L'(N)) + max {fis(c)}}. n
L'(N)eL(N) 1<i<N

Lemma 3.10.2. [11] Suppose n = 4, f € ®*(4), |/} > fo > &, 65 € [7.6]. Then
h@ S max{f(— C0596> + )\5(§,90), f(_ji) + )\5(5,96)}

Proof. Let Y be an optimal %—code on S3. Assume ; < 0y < ... < 0. By
the Corollary B.7.4, we have 6y > 65 > 0; > Z. Then we consider two cases: (a)

0o > 05 > 0, (b) 6y > 05 > 7. In the case(a), since f(1) + f(—costy) + ...+
f(=costs) < hs = As(5,00) and 65 > 0, f(—costs) < f(—cost). Thus hs <
hs + f(—costs) < Xs5(%,00) + f(—cost). In the case(b), 6y > 0; fori =1,2,...,6.
Since f(1)+ f(—cosfy)+...+ f(—costs) < hs = Xs5(%,0p) and 0 > T, f(—cosbs) <

J(=5)- Then hg < hs + f (= cosfls) < As(5.65) + f(~5).

By the above lemmas, we have the following theorem.
Theorem 3.10.3. [11] Suppose n =4, f € *(3), \/g >ty >3 > 0and N is a positive
integer. Then
(1) ho = f(1), ha = f(1) + f(=1).
(2) hin < A(5,60) < An(IV, 5, 60) for 2 <m < 5.
(3) he < max{f(—costy) + As(§.60), f(—5) + As(5,00)}, 0 € [§,00].

Now we proof of Lemma B.3.2.

Proof. The polynomial f,(t) is a monotone decreasing function on [—1, —t], to &~
0.60794 and f, < 0fort € [—to, 3].(FigureB10.1) Thus f, € ®*(3). Since ¢y > 0.6058,
then m < 6 by Corollary B.7.4. We calculate h,,, with 6, = arccosty ~ 52.5588°. Then
ho = f(1) = 18.774 and h; = f(1)+ f(—1) = 24.48. The hy achieves its maximum at
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0, = 30°, then hy = f(1)+ f(—cosB)+ f(—cosby) = f(1)+2f(— cos30°) = 24.864.
For m = 3, hs = A3(60°,6p) ~ 24.8435 at 03 = 6y, 01 = 65 ~ 30.0715°. The case
m = 4, we have hy ~ 24.818 at #; = 0y =~ 30.2310°, 05 = 0, =~ 51.6765°. hs attains its
maximum hs ~ 24.6836 at a = 60°, 0; ~ 42.1569°, 0, = 0, ~ 32.3025°, 03 = 05 = ;.
In the case m = 6, let 6, = 50°, f(—cosb50°) ~ 0.0906, f(—cos45°) ~ 0.4533.
As(Z,00) = hs ~ 24.6856, A5(%,50°) ~ 23.9181, then hg < max{f(— cos50°) +
hs, f(—cos45°) + A5(5,50°)} =~ 24.7762. Thus hye, = he < 25 and by the (B.5.1),
we have S(X) < 25M.

Figure 3.10.1: The graph of f,
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B 4E Applications

The kissing number problem in three dimension has applications in geometry,
error correcting codes in telecommunications, string theory, sphere packing, chemistry

and crystallography.

The kissing number problem is the foundation of sphere packing problem, sphere
packing problem are a class of optimization problems. It is a obviously real and the
important issue. In mathematics, sphere packing problems concern arrangements of

nonoverlapping identical spheres which fill a space.

In chemistry and crystallography, the coordination number of a central atom in a
molecule or crystal is the number of its nearest neighbors. This number is determined
somewhat differently for molecules and for crystals. The highest bulk coordination
number is 12, two most common arrangements are called cubic close packing (or face
center cubic) and hexagonal close packing. This value of 12 corresponds to the theo-
retical limit of the kissing number problem when all spheres are identical. For example,
the two most common allotropes of carbon have different coordination numbers. In
diamond each carbon atom is at the center of a tetrahedron formed by four other car-
bon atoms, so the coordination number is four as for methane. Graphite is made of
two-dimensional layers in which each carbon is covalently bonded to three other car-
bons. Atoms in other layers are much further away and are not nearest neighbors, so

the coordination number of a carbon atom in graphite is 3 as in ethylene. And in recent
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year, the carbon 60 (C60) study shows the geometry in chemistry.
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55 % Conclusion

The kissing number has a rich history. In 1694, Isaac Newton and David Gregory
has a famous discussion about the kissing number in three dimension. Newton believed
the answer was 12, while Gregory thought that 13 might possible. The problem was
solved until 1953.

We use Fejes Toth's lemma to estimate the area of spherical triangles and prove
k(3) = 12. Kissing number problem in three dimension has applications in chemistry,
crystallography and sphere packing problem. In chemistry and crystallography, the co-
ordination number of a central atom in a molecule or crystal is the number of its nearest
neighbors. This number is determined somewhat differently for molecules and for crys-
tals. In recent year, the carbon 60 study shows the geometry in chemistry. The kissing
number problem is a foundation of sphere packing problem concern arrangements of
nonoverlapping identical spheres which fill a space. If tangent to the ball whose radius
are not different. This is complexification. The sphere packing problem is one of the

problems in geometry.

In four dimension, Delsarte developed a method to determine the upper bounds
for the kissing number based on linear programming. Delsarte showed the bound is 25,
in fact, kissing number in four dimension is 24. Musin proved it in 2003 and extension

the method to high dimension.
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Appendix. An algorithm for polynomials f(¢).[11]

In this paper, the polynomial f(¢) is a monotone decreasing function on the in-
terval [—1, —to] and f(t) < 0 for t € [to, 1], to > 1 > 0. f(¢) satisfy the following
conditions: ¢ > 0, 1 < k < d(cl), f(a) > f(b) for =1 < a < b < —tp(c2), f(t) <0
for —tg < t < %(c3). We do not know ey where H,, attains its maximum, so for
evaluation of h,, let us use ey = y., where . is the center of A,,. All vertices y, are at
the distance of p,, from ., where

cos . — \/(1 +(m—1)2)

m

When m = 2n — 2,A\,,, presumably is a regular (n — 1)-dimensional crosspolytope. In
this case cosp,, = /z. Let I,, = {1,2,...,n} U{2n — 2}, m € I,, by, = — cos py,
then H,,(y.) = f(1) + mf(by). If Fy is such that H(yo;Y) < F = Fy + f(1), then
f(by) < £ m e I,. And f(t) can be found by the following.

Algorithm
Input: n, z,t5,d, N.
Output: cq,...,¢cq, Fy, E.
First replace (c2) and (c3) by a finite set of inequality at the points a; = —1 + €7,
0<j<N,e=42
Second use linear programming to find Fy, ¢y, ..., ¢4 so as to minimize £ — 1 = Fy +

ZZ=1 ¢y, subject to the constraintsc, >0 for 1<k <d, and Zzzl ckG,(gn)(aj) >
S aG (), aj € =1, —to]y 1+30_ aGy (a;) <0, a; € [to,2]; 1+
ZZZI ckG,(:)(bm) < %, m € I,. Let us note that F < h,,42, and E = hy,q, only if

himaz = Hpmo(ye) for some mqg € 1,,.
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