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Abstract

The Isoperimetric inequality says that the area of any region in the plane bounded by
a curve of a fixed length can never exceed the area of a circle whose boundary has that
length. In this paper, we present isoperimetric inequality of classical differential geometry
and polygonal isoperimetric problem. Next, we consider isoperimetric problem in R? using
Brunn-Minkowski inequality and the concept of hyperplanes. On the other hand, we consider
isoperimetric inequality of Hadiwger using Steiner's Inequality and the concept of the out

t-parallel sets.



Introduction

Isoperimetric Problem can trace back to Ancient Greece time. It was said that Princess
Dido was forced to leave her house and move to north Africa which was near the coast of the
Mediterranean Sea. Over there, she desired to get a piece of land, and she agreed to pay an
amount of money to exchange the land which could be fenced by a male cowhide. The clever
Dido cut the male cowhide into very thin line, and then she mounted every tip between line
and line. After that, she used the long line to circle a piece of land. The diameter of the land
was just equal to the length of the line. According to the tale, Princess Dido decided to use
these lines to circle a half circle along the coast which was the right shape of the biggest area.
Therefore, isoperimetric problem is called Dido's problem or isoperimetric inequality.

In chapter 1, we introduce what is a simple closed curve and recall isoperimetric inequal-
ity in R%.The isoperimetric inequality is a geometric inequality involving the square of the
circumference of a closed curve in the plane and the area of a plane region it encloses, as well
as its various generalizations. Isoperimetric literally means '""having the same perimeter''.

Let v be a simple closed curve of length L and area A, we have
L* —47A > 0. (0.0.1)

Equality holds if and only if 7 is a circle. There are many inequality which implies (0.0.1),
we used Wirtinger's inequality and Green's Theorem to prove it. In sectionl.2, we discuss

an elementary proof of the isoperimetric inequality for polygons.



2 INTRODUCTION

Figure 0.0.1. An elongated shape can be made more round while keeping its
perimeter fixed and increasing its area

In chapter 2,we discuss two parts. First, if the set is optimal, it minimizes the perimeter
given the area and the Minkowski Sum of any two sets. And we introduce the characteristic
of Minkowski sum. Next, we prove the Brunn-Minkowski inequality and used it to prove
isoperimetric inequality in R?. By the way, in the chapter2, we should known what is the

hyperplane and definitions of convex set and convex function.

Figure 0.0.2. The region K and its convex hull K.

By the figure 0.0.2, we see the convex hull of K, denoted by K , is the smallest convex set
such that K C K. And we have A > A, L < L. Thus the isoperimetric inequality for convex
sets implies

L? —4A7A < I? — 47 A. (0.0.2)
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If the equality holds, K = K is convex.
In chapter 3, we use Steiner's Inequality and convexity property of equality (0.0.2) to

prove isoperimetric inequality of Hadwiger.






CHAPTER 1

The classical Isoperimetric Inequality

First, we introduce the classical case. We recall isoperimetric inequality in R?. Let v be
a simple closed curve, and we will used Wirtinger's inequality and Green's Theorem to

prove isoperimetric inequality.
1.1. Isoperimetric Inequality for simple closed curve in the plane

Definition 1.1.1. The curve v is simple (or call a Jordan arc) if for every x, y in the interval

I, we have

N N

-.__.-—-—"/

simple closed curve not-simple closed curve

Figure 1.1.1

Remark 1.1.3. A simple closed curve is also called a Jordan curve.

Theorem 1.1.4. (Jordan curve Theorem)

Any simple closed curve 7 in the plane R? has an interior and an exterior, denoted by int(7)

5



1. THE CLASSICAL ISOPERIMETRIC INEQUALITY
and ext(y) with the following properties:
L.int(7y) is bounded;
2.ext(7y) is unbounded;

3.int(7y) and ext(~y) are connected.

Theorem 1.1.5. (Wirtinger's Inequality)

Let f : R — R be a piecewise C''(R) function with period 27. Let f denoted the mean value

of f

Then

with equality holds if and only if

f(z) = f+acosz+bsinx
forsome a,b € R.

Proof. Since f is bounded and f is continuous, we expressed by Fourier series in [0, 27].

Let
f(z) = % + ; {a, cosnz + b, sinnz}
and
Ay = %fo% f(z) cosmxdz
by = %fo% f(z) sinmxdx

fZQGo

Since the sines and cosines are complete and orthogonal, by Parseval's identity,

/0 T =@ ).

The Fourier series for the derivative f’
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o (e.)
= — E na, sinnx + g nb,, cosnx.
n=1 n=1

Since f’ is square integrable, by Bessel's inequality

- 2/ 2 2 o 2
b "=,
anln (a; +b3) §/0 (f")

Then

2m 2 00 00 [e%S)
L= [0 =T) 2 a8 - w1 = > (= 1)+ 1) 2 0
0 0 n=1 n=1 n=2
If the equality holds, that for n > 2

(n* — 1)(a2 +b2) >0,

then a,, = b,, = 0.

Therefore, f = ag + a1 cosx + by sin x. O

Theorem 1.1.6. (Green's Theorem)
Let £ be a two -dimensional region whose topological boundary OF is a piecewise smooth C*

curve oriented positive. If P, : E — R are C'and ? = (P,Q), then

/6EP(;1:y)da:+Qxy / ___y

Proof. Let
a<z<b . .
E =< (z,y) , g; are continuous functions
g1(z) <y < go(x
hi(y) <z < hao(y
=< (z,9) ) ) , h; are continuous functions
c<y<d
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IN IN
d

x=hu(y) x=ha(y)
C 3 C4

2
W

\
X

Figure 1.1.2. OF = Cl U CQ = 03 U 04 =C

We know
Jo P(z,y)de = [, P(z,y)dz + [, P(z,y)da
= [* P(z, g:(x) dx—f:P(x,gQ(x))dx
= — [V[P(x, ga()) — P(, g1 (2))]dz
== [(2 9 y)dy)dl‘
=[x % (=.y) dA
Similarly,
JeQz.y)dy = [, Qz,y)dy + [, Qz,y)dy
= [1Q(ha(y), y)dy — [* Q(ha(y), y)dy
= [1[Q(ha(y), ) Q(hi(y), y)ldy
= [ ) 52 y)da)dy
= I 52 (@, m)d
So we get

/ mydm+/@xydy—// 5’_69_3_1;

Remark 1.1.7. Recall Green's theorem. If P and () are differential functions on the plane
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and OF is a simple closed C'curve bounding the region E then

P(z,y)dz + | Qz,y)dy a—Q—a—P dzdy.
ot [ = [ G250

If we take Q = x and P = —y then Green's theorem says

/ xdy — ydx = 2Area (F) .
c

(1.1.1)

Theorem 1.1.8. Let v be a simple closed curve, let L be its length and let A be the area of its

interior. Then
L2
A< —
~ A4r

with the equality holding if and only if 7 is a circle.

Proof. Let the curve  : I — R? is defined as v(s) = (z(s),

/()" + 1y (s)]” = 1

with totally length L.

We change to 27 periodic function

£(0) = 2(22),9(0) = y(5)
Then

PP+ = () = 1o
We know

/ " gdo = g(2m) — 9(0) = 0.

By (1.1.1) and Wirtinger's Inequality,

y(s)) that satisfy
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24 = [7 fg' —gf'd6
= 579 +gf'd0—2 [ gf'd6
=2 [77 fg'do
=2 [ fg'd) — 2F [ g'dO
=2 [77(f — F)g'do
= [ (F=P2+ ()P = (f =T —g)%do
< [P+ (g)2d0 = [P Ldh = L.
Then

If the equality holds, then
f(0) = f+acosf + bsind

for some a, beR, f is constant and
2 .
| G=T-gpas-o
0

So that

¢ =f—f=acosf+bsiné.

Hence

g(0) =g+ asinf — bcosb

for g is constant, a, beR.
Then
(f)?+(¢)?* = (a®sin® 0 + b* cos? 0) + (a* cos®  + b* sin® 0)

LQ

T 4n?:

It means 7 is a circle of radius %
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1.2. Polygonal Isoperimetric Problem

The proof of the isoperimetric inequality for general polygons.

Theorem 1.2.1. In every polygon with perimeter L and area A we have L? > 47 A.

Figure 1.2.1. Draw a circle with center O and radius R, which R = OC, C'is
a vertex of polygon farthest from O

Proof. Consider any convex polygon ABC' ---Z. From the vertex A of the polygon, we

draw the segment AQ which dividing the polygon in two polygons and satisfied follows:
(1) AB+BC+---+PQ =%,

(2) the area of ABC'--- PQA is A; and A; > 4.

Let O be the mid-point of A and Q). Let C be the vertex of polygon farthest from O and
let OC = R. Draw a circle with center O and radius R. We find the points A’ and Q' in
the circle respectively, such that f@ Lb? and Q<—Q)’J_% By the symmetry, the area
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of the part of circle AA'C'Q'Q A has equal to the area of hemicycle i.e.
1
S == §7TR2.

And outside the polygon ABC' - -- PQ, we can draw parallelograms touching the circle.
Let AB = ay, hy is the altitude of AOAB and d; is the height of the parallelogram
AA'B'B. Solet CD = a;, h; is the altitude of AOCD and d; is the height of the
parallelogram C'C'D’'D, and then h; + d; = R. Therefore,

A, =AOAB+---+ AOPQ

If we denote by A, is the sum of the areas of parallelograms. We have,

Ay = parallelogramAA'B'B + - - - + parallelogramPP'Q'Q

= > _a;d;
= > a; (R —hy)
= ZCLZR — Zazhl
Since
A1+ A > 5,
we have
L 1
—R— A, > -nR%
2R 1 = 27TR
So

TR?— LR+2A, <0

7T|:R2—%R+(%>2i| - L 4924,<0
2 2

m(R-£)" = (£ -24.) <0

L? L? 2

4

4



Since

and

then

We conclude that

as desired.
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L2\ ?
W(R__) >0
2

— > 2A,.

L? > 2A, - 41 > A7 A,

13






CHAPTER 2

Isoperimetric Problem in R?

It is well known that among all regions in the plane with the same area, the circle has

smallest perimeter. In this chapter we always assume that our sets are convex.

2.1. Isoperimetric problem in the plane

Definition 2.1.1. A region  C R? is convex if for every z, y C €2 the line segment 7y C .

Definition 2.1.2. The set S is optimal if it minimizes the perimeter with a given area.

Theorem 2.1.3. Among all convex sets in the plane with a given area, the circle has smallest

perimeter.

Before we proof Isoperimetric Inequality in the plane, we have to known what is Steiner
symmetrization.

Steiner symmetrization. Take a convex set X C R? and any line /. Divide X into interval
[a,b], a,b € 0X, orthogonal to £. Move each interval [a, b] along the line (a, ), so that it
is symmetric with respect to £. Denoted by Y = (X, ¢) the resulting set. The resulting

map f : X — Y is called the Steiner symmetrization.

Remark 2.1.4. Suppose the sets is not convex. We can find two points z, y from the figure
such that connecting segment Ty lie inside our shape. Then reflecting a region between

the segment 77, it would be to increasing its area with the same perimeter.

Figure 2.1.1. It would be possible to increase its area without modifying its perimeter.

15
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Proof. We can split the proof into two steps. Let X C R?be a compact set in the
plane, and X is optimal.
Stepl. Let two opposite points x and y on the boundary P = 90X, and they divide P
in half. Such the interval [zy] is called diameter. We claim [zy] divides the area into two
equal parts. If not, use the bigger part and its reflection to a set Y of bigger area and

equal perimeter. Then X is not optimal.

- W
X X'

i F

y_g_}} XI

r
X X
Figure 2.1.2. Increasing the area with the same perimeter.

Step2. Show that only a circle can be optimal. Let [zy] be a diameter of an optimal set
X and let P = 0X. We claim every point z € P, such that Zzxzy = 7. By stepl, we
know [zy] splits the area into equal parts. If Zzrzy # 7, take segments [zy] and [yz]

and attach them to Ax'y'z" with
|22 = |w2], [2Y] = |2yl

and

™
L'y ==
Y73
We know the area of triangle

1
area(Axyz) = 3 |zz| - |zy| - sin(ZLzzy).
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When Zzzy = 7, the area is maximum.
So

area(Azyz) < area(Ax'y'2").

Copy the construction symmetrically on the other side of the diameter. Then X’ has the
same perimeter and bigger area. Thus, an optimal the angle at all points of the boundary
to a fixed diameter must be 5. And we know the center of circumcircle of right-triangle

lies in the mid-point of adjacent side. Therefore, X is a circle. O

Remark 2.1.5. The above proof due to Steiner symmetrization is beautiful, so there are
several ways to get around the problem.

(1) We want to used a general compactness argument to show that the optimal must
exist. Consider all convex sets with area 7, and ask which of them has the smallest
perimeter. We assume the convex sets contain the origin O € R. Let A be a circle with
radius 4. If a set X contains O and point x ¢ A. Since X is a convex set, the perimeter
of X is at least

2|0x| >2-4=8>2m.

So the perimeter of X is bigger than perimeter of a unit circle. If the optimal set X exists,
then X C A. i.e. X isa convex subset of A. By compactness argument, a set X of convex
subset of a compact set is a compact, and a least one minimum must exist. Therefore,
the unit circle is the desired minimum.

(2) Another way to prove the result convergent to a circle. Consider a convex set X, let
P = 0X. By stepl, we find a diameter [xy| divide the area into two equal parts. And by
step2, for any points z € P to a fixed diameter must be 7. Apply stepl and repeatedly
apply step2 to points z € P chosen to split the perimeter into 2" pieces of equal length.
Every piece under the transformation, we can stay the same perimeter but the area
increase. Every piece region increase the area, and totally region converges to a circle.
Finally, the region converges to a circle. That implies the area of convex sets with given

perimeter was smaller than circles.
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2.2. Minkowski Content

Definition 2.2.1. The Minkowski Sum of any two sets A, B C R?, defined as follows:
A+ B:={a+blac A be B}.

Definition 2.2.2. For every A € R, let A\A = {\-a|a € A}. If there exists A # 0, such
that B = AA. Then we call B is an expansion of A. This implies A = %B, A #£0, Aisalso

called an expansion of B.

(1) If Aand B are two intervals starting at the origin O, then (A + B) is a parallelogram
spanned by the intervals.

(2) If A C R is a convex set and B is a closed ball with radius ¢ > 0 centered at the
origin, then every point z € (A + B) such that dist (z, A) < e.

(3) The Minkowski sum of the rectangles is a rectangle.

e.g.([0,a] x [0,b]) + ([0, c] x [0,d]) = [0,a+ ] x [0,0+d].

A+B:
//

Figure 2.2.1. A and B are two intervals, then (A-+B) is a parallelogram
spanned by the intervals.

+.=
B

A

A+B

Figure 2.2.2. Every points z € (A + B) such that dist(z, A) < ¢
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u-fP
A A+B

Figure 2.2.3. Minkowski addition tends to ''round out' the figures being added

Characteristic of Minkowski sum.

(1) The sum is symmetric.

(2) Minkowski addition tends to 'round out' the figures being added, the area of the
figure exceeds the area of the summands.

(3) The sum respects translation.

(4) The sum does not respect rotation.

A+B

N

A’ B’

A'+B

Figure 2.2.4. If A" and B' are (possible different) rotation of A and B, then
(A'+B'") does not have to be a rotation of (A+B).



20

2. ISOPERIMETRIC PROBLEM IN R?

2.3. Brunn-Minkowski Inequality

Before we discuss the subject of Brunn-Minkowski Inequality, we introduce the concept
of hyperplane and define the area of convex sets in R¢.

What is a hyperplane? An n-dimensional generalization of a plane; an affine subspace of
dimension n-1 that splits an n-dimensional space. In one-dimensional space, it is a point;

In two-dimensional space, it is a line; In three-dimensional space, it is an ordinary plane.

Definition 2.3.1. If H; and H, are two parallel hyperplanes. Then

H - )\1H1 —|— )\2[‘[2,)\1,)\2 € R

is yet another parallel hyperplane.

Definition 2.3.2. Theset B := % (A1 + Ap) is the average of sets A; and A, which A; C H,
and Ay C H,y. Then the set B = {% (a1 +az) | a1 € Ay, aq € AQ} is consisting of
midpoints of the intervals between the sets, and B C Hy = § (H; + H>) is in the middle

between hyperplanes H, and H,.
Definition 2.3.3. (Convex sets) Let C' be a convex set, if for all z,y € C and V¢t € [0, 1].
Then the point (1 —t)z +yisin C.

Fe @y
‘\ x '-u___’._______ f

Figure 2.3.1. Convex set

Definition 2.3.4. Let X C R? be a convex set with the surface S = X, and let B be a
unit ball. Then

area (S) = %UOZ (X +tB) |i=o.
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Figure 2.3.2. %E%UOZ(XHE?_”OI(X) = area(S) = Lvol(X +tB) |i=o

Theorem 2.3.5. (Brunn-Minkowski inequality)

Let A, B C R? be two convex bodies. Then

+vol(B)5.

=

vol(A + B)é > vol(A)
The equality holds, if and only if A is an expansion of B.

The main result in the following inequality used to prove Brunn-Minkowski inequality.
As the reader shall see this is really a disguised form of the arithmetic mean vs.

geometric mean inequality.

Theorem 2.3.6. (The Minkowski inequality)

For every x1,------ ST, Y, ,Yn > 0.Then
n o no no
[H (zi+u)| > Hﬂfl + H%]
i=1 i=1 i=1 |,
Then equality holds, if and only if z; = cy; foralli =1,------ ,n, and some ¢ > 0.

Proof. We use the Arithmetic-Geometric Mean inequality:

forall aq,------ ,a, > 0 and if the equality holds, if and only ifa; = ------ =a,.
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Then
n \NE /n \%
( I1 fcz) ( I1 yi) n 1 n 1
i=1 :H<5L‘z >"+H<yi >”
H (xz“’yz)% i=1 Ti+Yx i=1 Ti+Yi
- 1+ 1o
Ly Yi
n
_ 1 Tityi
o EZ%—HJT - 1’
=1
and if the equality holds, if and only if #* =¢,¢ >0 foralli=1,------ 1 U

Brick-by-Brick proof of Brunn-Minkowski inequality. The proof of Brunn-Minkowski
inequality will proceed by induction, we prove the inequality for brick regions. Defined
as disjoint unions of bricks with edges parallel to the axes. Denote by By is the set of

all brick regions.

Proof. (Proof of Brunn-Minkowski inequality.)
Let A and B be two brick regions. We use induction on the total number £ of bricks in

A and B. Suppose k = 2, assume

for (li,bi >0eR.

Then

A+B ={a+bla€ Abe B}
:{(xl,x% ...... ,l’d>€Rd‘l’l €0,a;,+b;],i=1,------ 7d}_

By Minkowski inequality, then

=

vol (A + B) i = (Haz—i—b) (Hai) (Hb) = vol (A )é +vol (B)? .

Suppose the result holds for brick regions with k£ bricks, k£ > 2. Now take two brick
regions A, B € By with (k + 1) bricks. Suppose A contains at least two bricks. Let P, Q
are two of them, P,Q C A. Since they are disjoint, there exists a hyperplane H C R?

with equation x; = ¢, ¢ is a constant, which separates bricks P and (). Denoted by A;
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and A, are the regions on the two sides of H.

Define
A1:AQ{$ERd|ZL‘iZC}

A2:Aﬂ{w€Rd]xi§c}.

Let 0 = Z‘Zl(é;)). Since the Minkowski sum is independent of translation, we can assume

that hyperplane H' with equation x; = ¢/, such that

BIZBQ{J}GRd|]}iZC/}
BQZBQ{JJGRCI|ZL‘Z‘§C/}.

The hyperplane H' divided B into two sets By and By, with the same ratio § = 1;0;1(%))'
Moreover,

A1+ B, C {Z‘ERd | Z; ZC+C/}
and

A2+BQC{IEERd|l’i§C+C/}

(Ay + By) and (A; + By) lie on different sides of H with the equation z; = ¢ + ¢/ and

they are not intersect. We have

vol (A+ B) > wol (A; + By) +vol (As + By)
[vol (A,)7 + vol (Bl)ﬂ "4 [vol (An) + vol (By)
(6vol (A))F + (Bvol (B))#]" + (1 = 0) vol (4))
0+ (1= 0)] - [vol (4)* + vol (B)?]°

§

=

Vv

=

=
| IS
ISH

v

+ ((1 —0)vol (B))

v

=
=

v

_vol (A)? 4 vol (B)

Thus

e
=

vol (A+ B)< > wol (A)% +vol (B)4,

and we are done.
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2.4. Isoperimetric Inequality for R?

We need slicing polytopes with hyperplane to solve the isoperimetric problem in R€.

Definition 2.4.1. Let A, B C R? be two convex bodies and let X; = (1 — ) A + tB where
€ [0, 1].

Theorem 2.4.2. Let X be a convex body and let H;, H, and H3 be three parallel hyperplanes
in R? intersecting X . Suppose A; = X N H;,i = 1,2,3. Then

vol(Asg) > min{vol (A1) ;vol (A3)} .

Hi H: Hs H1 H2 Hs
— | ] B
p - S — P“‘\
" A A \
1 2 .
Al | A | As X . . Az X J
\‘-h-._.-r—/ -\\ !
A _/!’
N —— | T

Figure 2.4.1. X is a convex body but X' is not

Proof. Let D = AA;+ (1 — \) A3 where \ = % is the ratio of the distance between

hyperplanes. Then

_ dZSt Hl,HQ) o d’Lst(Hl,Hg)

D - d’LSt(Hl,H3)A 1 dlst(Hl,Hg) A
o dlst(Hl,Hg)A dlst HQ,Hg)A
— dist(H,,H3) 1+ dist(Hy,H3)

So D lies in Hy. By the Minkowski sum, we have

D C conv{A;, A3} C X.
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Thus D C A, (By the Brunn Theorem, Ay = X N Hy). And by the definition

vol (Az) > wvol (D) = wvol(AA; + (1 — \) A3)
= Mol (A1) + (1 — N vol (A3)
= A vol (A1) —vol (A3)] + vol (A3) .

Since A € [0, 1]. Then
vol (D) > wvol (Ay)

or
vol (D) > wvol (A3) .
Therefore,
vol (Ag) > wvol (D) > min{vol (A1) ;vol (A3)},
and the proof is complete. O

Proposition 2.4.3. Suppose A, B C R? be two convex bodies and let X; = (1 —t)A +tB,

1

where t € [0,1]. Then the function ¢ (t) = vol (X;)4 is concave downward on [0, 1].

Moreover,

=

o' (0) > vol (B)4 — ol (A)1

and the equality holds, if and only if A is an expansion of B.

Proof. First, we claim the function ¢ (¢) is concave downward for ¢ € [0, 1].

For every three values 0 < a <t <b <1, consider A = X,, B= X, and C = X,.
Wehave C = (1 —t) A+tB, where 0 <t < 1.

We Know

And
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vol (C)é =wvol (1 —t)A+ tB)i
> (1 —t)vol (A)7 + ¢ - vol (B)

=

= (1=t (0)+tp(1),

< wol(C)a for t € [0,1].

-
=
=

therefore vol (A)? < wol (C)4 and vol (B)

=

vo ( ‘i 1303(_8)& | |

. ! |

: tvo!(ﬂﬁ 4 : !
|

| | 1

|
|
|
|
| . ,
0 t 1 0 t 1

vol(A)a > vol(B)a L‘OliA)& < t-'r)l{B)é

Figure 2.4.2. ¢ (t) is concave downward for ¢ € [0, 1]

Without loss of generality, ¢ (t) is concave downward for ¢ € [0, 1].

Observe that

1 3 1 1.\7 1
¢(§>—UOZ<X;> —vol(§A+§B) —§v0l(A+B) .

Consider the right-hand derivative of ¢ (0) is well-defined,

=
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-z.lol(B)ﬁ

aul=

vol(A)

\ 4

i
1
2

Figure 2.4.3. Convexity of ¢ (t) = vol (X;)

=

then

By the Brunn-Minkowski inequality, if the equality holds, we get

-
=

vol (A+ B)? = vol (A)é +wvol (B)?,

which A is an expansion of B.

Thus
3 [vol (A)% + vol (B)é —vol (A)% B )
¢ (0) > - =wvol (B)d —vol (A)4.
2
Therefore, the equality holds, if and only if A is an expansion of B. O

Theorem 2.4.4. (Isoperimetric inequality in R?)

Among all convex sets in R? with a given volume, the ball has the smallest surface area.

Proof. Let A be a convex set, and let B be a unit ball in R?. By the proposition2.4.4,
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p(t)=wvol (1 —t)A+ tB)é is convex on [0, 1]. Then

area(A) = 4vol (A+tB) |
—d [(1 + 1) vol (254 + ILHB)] oo
= & [0+ 00 (2] o
—d (100 ()" 1o (i) + (0 of (i) - 25851 |

= dp (0)"" ¢ (0) + ¢ (0)].
(2.4.1)

We know ¢’ (0) > vol (B)% — vol (A)é, and the equality holds, if and only if A is an

expansion of B. In other words, for every A € R, A = AB, A # 0.

Then
¢ (0) = vol (A) = vol (\B) = vol (B)7 .
Therefore, the equality (2.4.1) can be expressed as
area (A) > de (0)"" |vol(A)d + vol (B)% — vol (A)%] = dyp (0)*" |vol (B)4

If A has the smallest area, when the equality holds. Thus, A is an expansion of B implies

A is a ball. O



CHAPTER 3

Applications

3.1. Steiner's Inequality

Steiner's Inequality for Parallel Sets. Let D C R? be a closed and bounded region. For

t > 0 and let B be the closed unit ball, then the out t-parallel set is

D, =D x tB = {z € R*| dist (z,D) < t}

the set of points whose distance to D is at most ¢.

Theorem 3.1.1. ( Steiner's Inequality)
Let D C R? be a closed and bounded set whose area is A and whose boundary has length L.

Fort > 0, the out t-parallel set satisfies the inequalities

Area (Dy) < A+ Lt + 7t?,
L(dD,) <L+ 2at.

Remark 3.1.2. If D is convex, then the inequalities are equalities. The inequalities can

be written as

Area (Dy) = A+ Lt + 7t?,
L(dD,) =L+ 2nt,

which be called Steiner's formulas.

29
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Figure 3.1.1. The out t-parallel set of a convex polygon.

Proof. By the figure3.1.1, we see for each segment of D of length [, derive from an [ x ¢
rectangle of D, consists of sectors of circles with radius ¢, and which add up exactly

one complete circle. Therefore, the total length of 0D; is

L (0D,) = Length (rectangle) + Length (circle) = L + 2nt

and the total area is

Area (D;) = Area (D) + Area (rectangle) + Area (circle) = A + Lt + t>.

Figure 3.1.2. The out t-parallel set of a nonconvex polygon and Steiner's Inequality.
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Proof. (Proof of the Steiner's Inequality)
By the figure3.1.2, we see nonconvex curves is that the out t-parallel set has extra
overlap. Therefore, Area (D;) < A+ Lt + wt? and L (0D;) < L + 2t still holds.

We omitted from the details. (see [2]) O

The proof of Hadwiger depends on Steiner's Inequality. For the purpose, we need to define

the circumradius and inradius of a compact set 2 C R2.

Definition 3.1.3. Let €2 be the region bounded by K. The radius of the smallest circular
disk containing € is called the circumradius, denoted R;. The radius of the largest circular

disk contained in €2 is called the inradius, denoted r;.

r; =sup{r > 0| thereis p € R? such that B, (p) C Q}
Ry =inf{r > 0| there exists p € R? such that Q C B, (p)}

Figure 3.1.3. The disk realizing the circumradius,?; and inradius, r; of K.

Theorem 3.1.4. ( Isoperimetric Inequality of Hadwiger)

Suppose 2 is a compact set with piecewise C'* boundary of area A and boundary length L.
There is a line M through the incenter X of the convex hull K of Q anda = L (K N Q) the
length of chord passing through the center. Then

2 2
L2—47TA27TZ(a—27’1) .
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If the equality holds, all chords through X; of K agree with the diameter of the incircle implies

K is acircle.

Figure 3.1.4. Diagram for the Hadwiger's proof.

Proof. Let Area (K) = Aand Length (K) = L. By convexity property of equality (0.0.2),
we know Area (Q) < Area (K) implies L2 — 47 A < L% — 4w A. Choose R > 0 such that
K C Bgr(X7). Let v be the annular region between the ball B (X;) and K,

v = Bgr (X)) — K°. And the line v — M splits the annulus into two equal parts F' and G.
Let P and () be the disjoint line segments PUQ = M N~. Let [; and l5 be the two lengths
of 0K in F and G respectively, and L; and Ly be the two lengths of 0F N Br (X;) and
0G N Bg (X7) respectively. Now, we know

~

L= L+ 1y
mR*= Area(F)+ Area (G) + A

Choose a number r, such that 2r; < 2r < a. Consider the out r-parallel set of the ring

domain 7,. Since r > r; the all region is covered. So

Area (y,) =n (R+71)*. (3.1.1)
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The length of P and @) denoted by p and ¢ respectively.
By the Steiner's Formula,

Area (P,) = 2pr + nr?

Area (Q,) = 2qr + mr?.

Finally, we apply Steiner's Inequality to F, and G,

Area (F,) < Area (F)+ (p+ Ly + ¢+ 7R) r + 71,

Area (G,) < Area (G) + (p+ Ly + g+ TR) 7 + 7r°.

For any point x € 7, C (F, UG,.). Also any points z € (P, UQ,) C (F.NG,).
If any points z € 7. U (P.-UQ,) C (F,. UG,) U (F, NG,). Hence

Area (y,) + Area (P,) + Area (Q,) < Area (F,) + Area (G,)

by equalities (3.1.1), (3.1.2), (3.1.3), (3.1.4), (3.1.5) which implies

33

(3.1.2)

(3.1.3)

(3.1.4)

(3.1.5)

T(R+7)°4+2(p+ q)r+2rr? < Area (F) + Area (G) + (2p + Ly + 2q + Ly + 27R) r 4 2772,

We can reduced the inequality to
A+ 2 <(Ly+ Ly)r < Lr
which is equivalent to
~ ~ ~ 2 1 /~ 2 1 s/~ 2
I*—4nd > (L - 2mr) - = (L -2mr) +5 (L-2m) .

Choose some r, such that r; < r < % , which implies
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~ 1/~ 2 1 /- 2
L* — 4w A > 5 (L - 27rr[> + 3 (L - 7m> . (3.1.6)
Since 242 4+ 2B% > (A — B)” multiples by Lis

1 1 1
A+ -B*> —(A-B). 1.
AR > (A~ B) (317)
Therefore, by the inequality (3.1.7), the inequality (3.1.6) can be written as

22—47r;1>1 L—2mr;)+ (L —7a 2—12(@—27")2
27 I =7 1)

Then

71_2

4
as desired. 0

L? —4rA > 1% — 47 A > (a — 27’1)2



Conclusions

The isoperimetric problem is to determine a plane figure of the largest possible area whose
boundary had a specified length. In other words, given a fixed perimeter L of a closed curve

and the area A of the region, satisfies
ArA < L?

and the equality holds if and only if the curve is a circle.

In the three-dimension Euclidean space, among all simple closed surfaces with given sur-
face area, the sphere enclosed a region of maximal volume. An analogous statement holds
in Euclidean space of any dimension. We consider Brunn-Minkowski Inequality to prove
isoperimetric problem in R¢. Finally, using Steiner's Inequality to prove isoperimetric in-
equality of Hadwiger.

In addition, there are analogs of isoperimetric inequality for domain on surfaces, for ex-
amples: Bonnesen inequalities, minimal surfaces and inequalities depending on Gauss cur-

vature. If you are interested in the topics, you can see the paper [9].
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