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摘 要

等周不等式主要是說在平面上任意的封閉區域，由固定周長所圍成的面積，其中以圓圍出來

的面積為最大。在此論文中我們介紹傳統微分幾何的等周不等式及多邊形的等周問題，接著從

Brunn-Minkowski不等式與超平面的概念將等周不等式推廣到d維度。另一方面，介紹Steiner不

等式及平行集合的概念來推導相關的等周不等式。
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Abstract

The Isoperimetric inequality says that the area of any region in the plane bounded by

a curve of a fixed length can never exceed the area of a circle whose boundary has that

length. In this paper, we present isoperimetric inequality of classical differential geometry

and polygonal isoperimetric problem. Next, we consider isoperimetric problem in Rd using

Brunn-Minkowski inequality and the concept of hyperplanes. On the other hand, we consider

isoperimetric inequality of Hadiwger using Steiner's Inequality and the concept of the out

t-parallel sets.
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Introduction

Isoperimetric Problem can trace back to Ancient Greece time. It was said that Princess

Dido was forced to leave her house and move to north Africa which was near the coast of the

Mediterranean Sea. Over there, she desired to get a piece of land, and she agreed to pay an

amount of money to exchange the land which could be fenced by a male cowhide. The clever

Dido cut the male cowhide into very thin line, and then she mounted every tip between line

and line. After that, she used the long line to circle a piece of land. The diameter of the land

was just equal to the length of the line. According to the tale, Princess Dido decided to use

these lines to circle a half circle along the coast which was the right shape of the biggest area.

Therefore, isoperimetric problem is called Dido's problem or isoperimetric inequality.

In chapter 1, we introduce what is a simple closed curve and recall isoperimetric inequal-

ity in R2.The isoperimetric inequality is a geometric inequality involving the square of the

circumference of a closed curve in the plane and the area of a plane region it encloses, as well

as its various generalizations. Isoperimetric literally means ''having the same perimeter''.

Let γ be a simple closed curve of length L and area A, we have

L2 − 4πA ≥ 0. (0.0.1)

Equality holds if and only if γ is a circle. There are many inequality which implies (0.0.1),

we used Wirtinger's inequality and Green's Theorem to prove it. In section1.2, we discuss

an elementary proof of the isoperimetric inequality for polygons.
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2 INTRODUCTION

Figure 0.0.1. An elongated shape can be made more round while keeping its
perimeter fixed and increasing its area

In chapter 2,we discuss two parts. First, if the set is optimal, it minimizes the perimeter

given the area and the Minkowski Sum of any two sets. And we introduce the characteristic

of Minkowski sum. Next, we prove the Brunn-Minkowski inequality and used it to prove

isoperimetric inequality in Rd. By the way, in the chapter2, we should known what is the

hyperplane and definitions of convex set and convex function.

Figure 0.0.2. The region K and its convex hull K̂.

By the figure 0.0.2, we see the convex hull ofK, denoted by K̂, is the smallest convex set

such thatK ⊂ K̂. And we have Â ≥ A, L̂ ≤ L. Thus the isoperimetric inequality for convex

sets implies

L̂2 − 4πÂ ≤ L2 − 4πA. (0.0.2)
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If the equality holds, K̂ = K is convex.

In chapter 3, we use Steiner's Inequality and convexity property of equality (0.0.2) to

prove isoperimetric inequality of Hadwiger.





CHAPTER 1

The classical Isoperimetric Inequality

First, we introduce the classical case. We recall isoperimetric inequality in R2. Let γ be

a simple closed curve, and we will used Wirtinger's inequality and Green's Theorem to

prove isoperimetric inequality.

1.1. Isoperimetric Inequality for simple closed curve in the plane

Definition 1.1.1. The curve γ is simple (or call a Jordan arc) if for every x, y in the interval

I, we have

γ(x) = γ(y)⇒ x = y.

Definition 1.1.2. A curve γ is closed (or called a loop) if for the interval I = [a, b] and

γ(a) = γ(b).

Figure 1.1.1

Remark 1.1.3. A simple closed curve is also called a Jordan curve.

Theorem 1.1.4. (Jordan curve Theorem)

Any simple closed curve γ in the plane R2 has an interior and an exterior, denoted by int(γ)

5



6 1. THE CLASSICAL ISOPERIMETRIC INEQUALITY

and ext(γ) with the following properties:

1.int(γ) is bounded;

2.ext(γ) is unbounded;

3.int(γ) and ext(γ) are connected.

Theorem 1.1.5. (Wirtinger's Inequality)

Let f : R→ R be a piecewise C1(R) function with period 2π. Let f denoted the mean value

of f

f =
1

2π

ˆ 2π

0

f(x)dx.

Then ˆ 2π

0

(f(x)− f)2dx ≤
ˆ 2π

0

(f ′(x))2dx,

with equality holds if and only if

f(x) = f + a cosx+ b sinx

for some a, b ∈ R.

Proof. Since f is bounded and f is continuous, we expressed by Fourier series in [0, 2π].

Let

f(x) =
a0
2

+
∞∑
n=1

{an cosnx+ bn sinnx}

and
am = 1

π

´ 2π

0
f(x) cosmxdx

bm = 1
π

´ 2π

0
f(x) sinmxdx

f = 2a0

Since the sines and cosines are complete and orthogonal, by Parseval's identity,

ˆ 2π

0

(
f − f

)2
= π

∞∑
n=1

(a2n + b2n).

The Fourier series for the derivative f ′
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f ′(x) = −
∞∑
n=1

nan sinnx+
∞∑
n=1

nbn cosnx.

Since f ′ is square integrable, by Bessel's inequality

π
∞∑
n=1

n2(a2n + b2n) ≤
ˆ 2π

0

(f ′)2.

Then

ˆ 2π

0

(f ′)2 −
ˆ 2π

0

(
f − f

)2 ≥ π
∞∑
n=1

n2(a2n + b2n)− π
∞∑
n=1

(a2n + b2n) = π
∞∑
n=2

(n2 − 1)(a2n + b2n) ≥ 0.

If the equality holds, that for n ≥ 2

(n2 − 1)(a2n + b2n) ≥ 0,

then an = bn = 0.

Therefore, f = a0 + a1 cos x+ b1 sinx. �

Theorem 1.1.6. (Green's Theorem)

Let E be a two -dimensional region whose topological boundary ∂E is a piecewise smooth C1

curve oriented positive. If P,Q : E → R are C1and
−→
F = (P,Q), then

ˆ
∂E

P (x, y) dx+Q (x, y) dy =

¨
E

(
∂Q

∂x
− ∂P

∂y
)dA.

Proof. Let

E =

(x, y)

∣∣∣∣∣∣ a ≤ x ≤ b

g1(x) ≤ y ≤ g2(x)
, gi are continuous functions


=

(x, y)

∣∣∣∣∣∣ h1(y) ≤ x ≤ h2(y)

c ≤ y ≤ d
, hi are continuous functions
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Figure 1.1.2. ∂E = C1 ∪ C2 = C3 ∪ C4 = C

We know

´
C
P (x, y)dx =

´
C1

P (x, y)dx+
´
C2

P (x, y)dx

=
´ b
a
P (x, g1(x))dx−

´ b

a
P (x, g2(x))dx

= −
´ b

a
[P (x, g2(x))− P (x, g1(x))]dx

= −
´ b
a
(
´ g2(x)

g1(x)
∂P
∂y
(x, y)dy)dx

= −
˜

E
∂P
∂y
(x, y)dA.

Similarly, ´
C
Q(x, y)dy =

´
C3

Q(x, y)dy +
´
C4

Q(x, y)dy

=
´ d

c
Q(h2(y), y)dy −

´ d

c
Q(h1(y), y)dy

=
´ d

c
[Q(h2(y), y)−Q(h1(y), y)]dy

=
´ d

c
(
´ h2(y)

h1(y)
∂Q
∂x
(x, y)dx)dy

=
˜

E
∂Q
∂x
(x, y)dA.

So we get ˆ
C

P (x, y)dx+

ˆ
C

Q(x, y)dy =

¨
E

(
∂Q

∂x
− ∂P

∂y
)dA.

�

Remark 1.1.7. Recall Green's theorem. If P and Q are differential functions on the plane
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and ∂E is a simple closed C1curve bounding the region E then

ˆ
C

P (x, y)dx+

ˆ
C

Q(x, y)dy =

¨
E

(
∂Q

∂x
− ∂P

∂y
)dxdy.

If we take Q = x and P = −y then Green's theorem says

ˆ
C

xdy − ydx = 2Area (E) . (1.1.1)

Theorem 1.1.8. Let γ be a simple closed curve, let L be its length and let A be the area of its

interior. Then

A ≤ L2

4π

with the equality holding if and only if γ is a circle.

Proof. Let the curve γ : I → R2 is defined as γ(s) = (x(s), y(s)) that satisfy

|x′(s)|2 + |y′(s)|2 = 1

with totally length L.

We change to 2π periodic function

f(θ) = x(
Lθ

2π
), g(θ) = y(

Lθ

2π
).

Then

(f ′)2 + (g′)2 = (
L

2π
)2 =

L2

4π2.

We know ˆ 2π

0

g′dθ = g(2π)− g(0) = 0.

By (1.1.1) and Wirtinger's Inequality,
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2A =
´ 2π

0
fg′ − gf ′dθ

=
´ 2π

0
fg′ + gf ′dθ − 2

´ 2π

0
gf ′dθ

= 2
´ 2π

0
fg′dθ

= 2
´ 2π

0
fg′dθ − 2f

´ 2π

0
g′dθ

= 2
´ 2π

0
(f − f)g′dθ

=
´ 2π

0
(f − f)2 + (g′)2 − (f − f − g′)2dθ

≤
´ 2π

0
(f ′)2 + (g′)2dθ =

´ 2π

0
L2

4π2dθ = L2

2π
.

Then

A ≤ L2

4π
.

If the equality holds, then

f(θ) = f + a cos θ + b sin θ

for some a, bϵR, f is constant and

ˆ 2π

0

(f − f − g′)2dθ = 0.

So that

g′ = f − f = a cos θ + b sin θ.

Hence

g(θ) = g + a sin θ − b cos θ

for g is constant, a, bϵR.

Then
(f ′)2 + (g′)2 =

(
a2 sin2 θ + b2 cos2 θ

)
+
(
a2 cos2 θ + b2 sin2 θ

)
= a2 + b2

= L2

4π2 .

It means γ is a circle of radius L
2π
. �
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1.2. Polygonal Isoperimetric Problem

The proof of the isoperimetric inequality for general polygons.

Theorem 1.2.1. In every polygon with perimeter L and area A we have L2 ≥ 4πA.

Figure 1.2.1. Draw a circle with center O and radius R, which R = OC, C is
a vertex of polygon farthest from O

Proof. Consider any convex polygon ABC · · ·Z. From the vertex A of the polygon, we

draw the segment AQ which dividing the polygon in two polygons and satisfied follows:

(1) AB +BC + · · ·+ PQ = L
2
;

(2) the area of ABC · · ·PQA is A1 and A1 ≥ A
2
.

Let O be the mid-point of A and Q. Let C be the vertex of polygon farthest from O and

let OC = R. Draw a circle with center O and radius R. We find the points A′ and Q′ in

the circle respectively, such that
←→
AA′⊥

←→
OC and

←−→
QQ′⊥

←→
OC. By the symmetry, the area
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of the part of circle AA′CQ′QA has equal to the area of hemicycle i.e.

S =
1

2
πR2.

And outside the polygon ABC · · ·PQ, we can draw parallelograms touching the circle.

Let AB = a1, h1 is the altitude of △OAB and d1 is the height of the parallelogram

AA′B′B. So let CD = ai, hi is the altitude of △OCD and di is the height of the

parallelogram CC ′D′D, and then hi + di = R. Therefore,

A1 = △OAB + · · ·+△OPQ

= 1
2

∑
i

aihi.

If we denote by A2 is the sum of the areas of parallelograms. We have,

A2 = parallelogramAA′B′B + · · ·+ parallelogramPP ′Q′Q

=
∑
i

aidi

=
∑
i

ai (R− hi)

=
∑
i

aiR−
∑
i

aihi

= L
2
·R− 2A1.

Since

A1 + A2 ≥ S,

we have
L

2
R− A1 ≥

1

2
πR2.

So

πR2 − LR + 2A1 ≤ 0

⇒ π
[
R2 − L

π
R +

(
L
2π

)2]− L2

4π
+ 2A1 ≤ 0

⇒ π
(
R− L

2π

)2 − (L2

4π
− 2A1

)
≤ 0

⇒ L2

4π
− 2A1 ≥ π

(
R− L2

2π

)2
.
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Since

π

(
R− L2

2π

)2

≥ 0

and

A1 ≥
A

2
,

then
L2

4π
≥ 2A1.

We conclude that

L2 ≥ 2A1 · 4π ≥ 4πA,

as desired. �





CHAPTER 2

Isoperimetric Problem in Rd

It is well known that among all regions in the plane with the same area, the circle has

smallest perimeter. In this chapter we always assume that our sets are convex.

2.1. Isoperimetric problem in the plane

Definition 2.1.1. A region Ω ⊂ R2 is convex if for every x, y ⊂ Ω the line segment xy ⊂ Ω.

Definition 2.1.2. The set S is optimal if it minimizes the perimeter with a given area.

Theorem 2.1.3. Among all convex sets in the plane with a given area, the circle has smallest

perimeter.

Before we proof Isoperimetric Inequality in the plane, we have to known what is Steiner

symmetrization.

Steiner symmetrization. Take a convex set X ⊂ R2 and any line ℓ. Divide X into interval

[a, b], a, b ∈ ∂X, orthogonal to ℓ. Move each interval [a, b] along the line (a, b), so that it

is symmetric with respect to ℓ. Denoted by Y = (X, ℓ) the resulting set. The resulting

map f : X → Y is called the Steiner symmetrization.

Remark 2.1.4. Suppose the sets is not convex. We can find two points x, y from the figure

such that connecting segment xy lie inside our shape. Then reflecting a region between

the segment xy, it would be to increasing its area with the same perimeter.

Figure 2.1.1. It would be possible to increase its area without modifying its perimeter.

15



16 2. ISOPERIMETRIC PROBLEM IN Rd

Proof. We can split the proof into two steps. Let X ⊂ R2be a compact set in the

plane, and X is optimal.

Step1. Let two opposite points x and y on the boundary P = ∂X, and they divide P

in half. Such the interval [xy] is called diameter. We claim [xy] divides the area into two

equal parts. If not, use the bigger part and its reflection to a set Y of bigger area and

equal perimeter. Then X is not optimal.

Figure 2.1.2. Increasing the area with the same perimeter.

Step2. Show that only a circle can be optimal. Let [xy] be a diameter of an optimal set

X and let P = ∂X. We claim every point z ∈ P , such that ∠xzy = π
2
. By step1, we

know [xy] splits the area into equal parts. If ∠xzy ̸= π
2
, take segments [xy] and [yz]

and attach them to △x′y′z′ with

|x′z′| = |xz| , |z′y′| = |zy| ,

and

∠x′z′y′ =
π

2
.

We know the area of triangle

area(△xyz) =
1

2
· |xz| · |zy| · sin(∠xzy).
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When ∠xzy = π
2
, the area is maximum.

So

area(△xyz) < area(△x′y′z′).

Copy the construction symmetrically on the other side of the diameter. Then X ′ has the

same perimeter and bigger area. Thus, an optimal the angle at all points of the boundary

to a fixed diameter must be π
2
. And we know the center of circumcircle of right-triangle

lies in the mid-point of adjacent side. Therefore, X is a circle. �

Remark 2.1.5. The above proof due to Steiner symmetrization is beautiful, so there are

several ways to get around the problem.

(1) We want to used a general compactness argument to show that the optimal must

exist. Consider all convex sets with area π, and ask which of them has the smallest

perimeter. We assume the convex sets contain the origin O ∈ R. Let Λ be a circle with

radius 4. If a set X contains O and point x /∈ Λ. Since X is a convex set, the perimeter

of X is at least

2 |Ox| ≥ 2 · 4 = 8 > 2π.

So the perimeter ofX is bigger than perimeter of a unit circle. If the optimal setX exists,

thenX ⊂ Λ. i.e. X is a convex subset of Λ. By compactness argument, a setX of convex

subset of a compact set is a compact, and a least one minimum must exist. Therefore,

the unit circle is the desired minimum.

(2) Another way to prove the result convergent to a circle. Consider a convex set X, let

P = ∂X. By step1, we find a diameter [xy] divide the area into two equal parts. And by

step2, for any points z ∈ P to a fixed diameter must be π
2
. Apply step1 and repeatedly

apply step2 to points z ∈ P chosen to split the perimeter into 2n pieces of equal length.

Every piece under the transformation, we can stay the same perimeter but the area

increase. Every piece region increase the area, and totally region converges to a circle.

Finally, the region converges to a circle. That implies the area of convex sets with given

perimeter was smaller than circles.
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2.2. Minkowski Content

Definition 2.2.1. The Minkowski Sum of any two sets A,B ⊂ Rd, defined as follows:

A+B := {a+ b |a ∈ A, b ∈ B } .

Definition 2.2.2. For every λ ∈ R, let λA = {λ · a |a ∈ A}. If there exists λ ̸= 0, such

that B = λA. Then we call B is an expansion of A. This implies A = 1
λ
B, λ ̸= 0, A is also

called an expansion of B.

(1) IfA andB are two intervals starting at the originO, then (A+B) is a parallelogram

spanned by the intervals.

(2) If A ⊂ Rd is a convex set and B is a closed ball with radius ε > 0 centered at the

origin, then every point z ∈ (A+B) such that dist (z, A) ≤ ε.

(3) The Minkowski sum of the rectangles is a rectangle.

e.g. ([0, a]× [0, b]) + ([0, c]× [0, d]) = [0, a+ c]× [0, b+ d] .

Figure 2.2.1. A and B are two intervals, then (A+B) is a parallelogram
spanned by the intervals.

Figure 2.2.2. Every points z ∈ (A+B) such that dist(z, A) ≤ ε
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Figure 2.2.3. Minkowski addition tends to ''round out'' the figures being added

Characteristic of Minkowski sum.

(1) The sum is symmetric.

(2) Minkowski addition tends to ''round out'' the figures being added, the area of the

figure exceeds the area of the summands.

(3) The sum respects translation.

(4) The sum does not respect rotation.

Figure 2.2.4. If A' and B' are (possible different) rotation of A and B, then
(A'+B') does not have to be a rotation of (A+B).



20 2. ISOPERIMETRIC PROBLEM IN Rd

2.3. Brunn-Minkowski Inequality

Before we discuss the subject of Brunn-Minkowski Inequality, we introduce the concept

of hyperplane and define the area of convex sets in Rd.

What is a hyperplane? An n-dimensional generalization of a plane; an affine subspace of

dimension n-1 that splits an n-dimensional space. In one-dimensional space, it is a point;

In two-dimensional space, it is a line; In three-dimensional space, it is an ordinary plane.

Definition 2.3.1. If H1 and H2 are two parallel hyperplanes. Then

H = λ1H1 + λ2H2, λ1, λ2 ∈ R

is yet another parallel hyperplane.

Definition 2.3.2. The setB := 1
2
(A1 + A2) is the average of setsA1 andA2 whichA1 ⊂ H1

and A2 ⊂ H2. Then the set B =
{

1
2
(a1 + a2) | a1 ∈ A1, a2 ∈ A2

}
is consisting of

midpoints of the intervals between the sets, and B ⊂ H3 =
1
2
(H1 +H2) is in the middle

between hyperplanes H1 and H2.

Definition 2.3.3. (Convex sets) Let C be a convex set, if for all x, y ∈ C and ∀t ∈ [0, 1] .

Then the point (1− t)x+ y is in C.

Figure 2.3.1. Convex set

Definition 2.3.4. Let X ⊂ Rd be a convex set with the surface S = ∂X, and let B be a

unit ball. Then

area (S) =
d

dt
vol (X + tB) |t=0.
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Figure 2.3.2. lim
t→0

vol(X+tB)−vol(X)
t

= area(S) = d
dt
vol(X + tB) |t=0

Theorem 2.3.5. (Brunn-Minkowski inequality)

Let A,B ⊂ Rd be two convex bodies. Then

vol(A+B)
1
d ≥ vol(A)

1
d + vol(B)

1
d .

The equality holds, if and only if A is an expansion of B.

The main result in the following inequality used to prove Brunn-Minkowski inequality.

As the reader shall see this is really a disguised form of the arithmetic mean vs.

geometric mean inequality.

Theorem 2.3.6. (The Minkowski inequality)

For every x1, · · · · · · , xn, y1, · · · · · · , yn > 0.Then[
n∏

i=1

(xi + yi)

] 1
n

≥

[
n∏

i=1

xi

] 1
n

+

[
n∏

i=1

yi

] 1
n

.

Then equality holds, if and only if xi = cyi for all i = 1, · · · · · · , n, and some c > 0.

Proof. We use the Arithmetic-Geometric Mean inequality:

a1 + · · · · · ·+ an
n

≥ (a1 · · · · · · an)
1
n

for all a1, · · · · · · , an > 0 and if the equality holds, if and only if a1 = · · · · · · = an.
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Then (
n∏

i=1
xi

) 1
n
+

(
n∏

i=1
yi

) 1
n

n∏
i=1

(xi+yi)
1
n

=
n∏

i=1

(
xi

xi+yx

) 1
n
+

n∏
i=1

(
yi

xi+yi

) 1
n

≤ 1
n

n∑
i=1

xi

xi+yx
+ 1

n

n∑
i=1

yi
xi+yx

= 1
n

n∑
i=1

xi+yi
xi+yx

= 1,

and if the equality holds, if and only if xi

yi
= c, c > 0 for all i = 1, · · · · · · , n. �

Brick-by-Brick proof of Brunn-Minkowski inequality. The proof of Brunn-Minkowski

inequality will proceed by induction, we prove the inequality for brick regions. Defined

as disjoint unions of bricks with edges parallel to the axes. Denote by Bd is the set of

all brick regions.

Proof. (Proof of Brunn-Minkowski inequality.)

Let A and B be two brick regions. We use induction on the total number k of bricks in

A and B. Suppose k = 2, assume

A =
{
(x1, x2, · · · · · · , xd) ∈ Rd | xi ∈ [0, ai] , i = 1, · · · · · · , d

}
B =

{
(x1, x2, · · · · · · , xd) ∈ Rd | xi ∈ [0, bi] , i = 1, · · · · · · , d

}
for ai, bi > 0 ∈ R.

Then

A+B = {a+ b | a ∈ A, b ∈ B}

=
{
(x1, x2, · · · · · · , xd) ∈ Rd | xi ∈ [0, ai + bi] , i = 1, · · · · · · , d

}
.

By Minkowski inequality, then

vol (A+B)
1
d =

(
d∏

i=1

ai + bi

) 1
d

≥

(
d∏

i=1

ai

) 1
d

+

(
d∏

i=1

bi

) 1
d

= vol (A)
1
d + vol (B)

1
d .

Suppose the result holds for brick regions with k bricks, k ≥ 2. Now take two brick

regions A,B ∈ Bd with (k + 1) bricks. Suppose A contains at least two bricks. Let P,Q

are two of them, P,Q ⊂ A. Since they are disjoint, there exists a hyperplane H ⊂ Rd

with equation xi = c, c is a constant, which separates bricks P and Q. Denoted by A1
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and A2 are the regions on the two sides of H.

Define
A1 = A ∩

{
x ∈ Rd | xi ≥ c

}
A2 = A ∩

{
x ∈ Rd | xi ≤ c

}
.

Let θ = vol(A1)
vol(A)

. Since the Minkowski sum is independent of translation, we can assume

that hyperplane H ′ with equation xi = c′, such that

B1 = B ∩
{
x ∈ Rd | xi ≥ c′

}
B2 = B ∩

{
x ∈ Rd | xi ≤ c′

}
.

The hyperplane H ′ divided B into two sets B1 and B2, with the same ratio θ = vol(B1)
vol(B)

.

Moreover,

A1 +B1 ⊂
{
x ∈ Rd | xi ≥ c+ c′

}
and

A2 +B2 ⊂
{
x ∈ Rd | xi ≤ c+ c′

}
(A1 +B1) and (A2 +B2) lie on different sides of H with the equation xi = c+ c′ and

they are not intersect. We have

vol (A+B) ≥ vol (A1 +B1) + vol (A2 +B2)

≥
[
vol (A1)

1
d + vol (B1)

1
d

]d
+
[
vol (A2)

1
d + vol (B2)

1
d

]d
≥
[
(θvol (A))

1
d + (θvol (B))

1
d

]d
+
[
((1− θ) vol (A))

1
d + ((1− θ) vol (B))

1
d

]d
≥ [θ + (1− θ)] ·

[
vol (A)

1
d + vol (B)

1
d

]d
≥
[
vol (A)

1
d + vol (B)

1
d

]d
.

Thus

vol (A+B)
1
d ≥ vol (A)

1
d + vol (B)

1
d ,

and we are done.
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�

2.4. Isoperimetric Inequality for Rd

We need slicing polytopes with hyperplane to solve the isoperimetric problem in Rd.

Definition 2.4.1. Let A,B ⊂ Rd be two convex bodies and let Xt = (1− t)A+ tB where

t ∈ [0, 1].

Theorem 2.4.2. LetX be a convex body and letH1, H2 andH3 be three parallel hyperplanes

in Rd intersectingX. Suppose Ai = X ∩Hi, i = 1, 2, 3. Then

vol(A2) ≥ min {vol (A1) ; vol (A3)} .

Figure 2.4.1. X is a convex body but X' is not

Proof. LetD = λA1+(1− λ)A3 where λ = dist(H1,H2)
dist(H1,H3)

is the ratio of the distance between

hyperplanes. Then

D = dist(H1,H2)
dist(H1,H3)

A1 +
(
1− dist(H1,H2)

dist(H1,H3)

)
A3

= dist(H1,H2)
dist(H1,H3)

A1 +
dist(H2,H3)
dist(H1,H3)

A3.

So D lies in H2. By the Minkowski sum, we have

D ⊂ conv {A1, A3} ⊂ X.
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Thus D ⊂ A2 (By the Brunn Theorem, A2 = X ∩H2). And by the definition

vol (A2) ≥ vol (D) = vol(λA1 + (1− λ)A3)

= λvol (A1) + (1− λ) vol (A3)

= λ [vol (A1)− vol (A3)] + vol (A3) .

Since λ ∈ [0, 1]. Then

vol (D) ≥ vol (A1)

or

vol (D) ≥ vol (A3) .

Therefore,

vol (A2) ≥ vol (D) ≥ min {vol (A1) ; vol (A3)} ,

and the proof is complete. �

Proposition 2.4.3. Suppose A,B ⊂ Rd be two convex bodies and letXt = (1− t)A+ tB,

where t ∈ [0, 1]. Then the function φ (t) = vol (Xt)
1
d is concave downward on [0, 1].

Moreover,

φ′ (0) ≥ vol (B)
1
d − vol (A)

1
d ,

and the equality holds, if and only if A is an expansion of B.

Proof. First, we claim the function φ (t) is concave downward for t ∈ [0, 1].

For every three values 0 ≤ a < t < b ≤ 1, consider A = Xa, B = Xb and C = Xt.

We have C = (1− t)A+ tB, where 0 ≤ t ≤ 1.

We Know

φ (0) = vol (X0)
1
d = vol (A)

1
d

φ (1) = vol (X1)
1
d = vol (B)

1
d

And
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vol (C)
1
d = vol ((1− t)A+ tB)

1
d

≥ (1− t) vol (A)
1
d + t · vol (B)

1
d = (1− t)φ (0) + tφ (1) ,

therefore vol (A)
1
d ≤ vol (C)

1
d and vol (B)

1
d ≤ vol(C)

1
d for t ∈ [0, 1].

Figure 2.4.2. φ (t) is concave downward for t ∈ [0, 1]

Without loss of generality, φ (t) is concave downward for t ∈ [0, 1].

Observe that

φ

(
1

2

)
= vol

(
X 1

2

) 1
d
= vol

(
1

2
A+

1

2
B

) 1
d

=
1

2
vol (A+B)

1
d .

Consider the right-hand derivative of φ′ (0) is well-defined,
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Figure 2.4.3. Convexity of φ (t) = vol (Xt)
1
d

then
φ
(
1
2

)
≤ φ (0) + φ′ (0) ·

(
1
2
− 0
)

φ′ (0) ≥ φ( 1
2)−φ(0)

1
2

By the Brunn-Minkowski inequality, if the equality holds, we get

vol (A+B)
1
d = vol (A)

1
d + vol (B)

1
d ,

which A is an expansion of B.

Thus

φ′ (0) ≥
1
2

[
vol (A)

1
d + vol (B)

1
d

]
− vol (A)

1
d

1
2

= vol (B)
1
d − vol (A)

1
d .

Therefore, the equality holds, if and only if A is an expansion of B. �

Theorem 2.4.4. (Isoperimetric inequality in Rd)

Among all convex sets in Rd with a given volume, the ball has the smallest surface area.

Proof. Let A be a convex set, and let B be a unit ball in Rd. By the proposition2.4.4,
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φ (t) = vol ((1− t)A+ tB)
1
d is convex on [0, 1]. Then

area (A) = d
dt
vol (A+ tB) |t=0

= d
dt

[
(1 + t)d vol

(
1

1+t
A+ t

1+t
B
)]
|t=0

= d
dt

[
(1 + t)φ

(
t

1+t

)]d |t=0

= d
(
(1 + t)φ

(
t

1+t

))d−1 ·
[
1 · φ

(
t

1+t

)
+ (1 + t) · φ′ ( t

1+t

)
· 1·(1+t)−t·1

(1+t)2

]
|t=0

= dφ (0)d−1 [φ (0) + φ′ (0)] .

(2.4.1)

We know φ′ (0) ≥ vol (B)
1
d − vol (A)

1
d , and the equality holds, if and only if A is an

expansion of B. In other words, for every λ ∈ R, A = λB, λ ̸= 0.

Then

φ (0) = vol (A)
1
d = vol (λB)

1
d = λvol (B)

1
d .

Therefore, the equality (2.4.1) can be expressed as

area (A) ≥ dφ (0)d−1
[
vol(A)

1
d + vol (B)

1
d − vol (A)

1
d

]
= dφ (0)d−1

[
vol (B)

1
d

]
= d

[
λ · vol (B)

1
d

]d−1

·
[
vol (B)

1
d

]
.

If A has the smallest area, when the equality holds. Thus, A is an expansion of B implies

A is a ball. �



CHAPTER 3

Applications

3.1. Steiner's Inequality

Steiner's Inequality for Parallel Sets. Let D ⊂ R2 be a closed and bounded region. For

t ≥ 0 and let B be the closed unit ball, then the out t-parallel set is

Dt = D × tB =
{
x ∈ R2 | dist (x,D) ≤ t

}
the set of points whose distance to D is at most t.

Theorem 3.1.1. ( Steiner's Inequality)

LetD ⊂ R2 be a closed and bounded set whose area is A and whose boundary has length L.

For t ≥ 0, the out t-parallel set satisfies the inequalities

Area (Dt) ≤ A+ Lt+ πt2,

L (∂Dt) ≤ L+ 2πt.

Remark 3.1.2. If D is convex, then the inequalities are equalities. The inequalities can

be written as

Area (Dt) = A+ Lt+ πt2,

L (∂Dt) = L+ 2πt,

which be called Steiner's formulas.
29
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Figure 3.1.1. The out t-parallel set of a convex polygon.

Proof. By the figure3.1.1, we see for each segment of D of length l, derive from an l × t

rectangle of Dt consists of sectors of circles with radius t, and which add up exactly

one complete circle. Therefore, the total length of ∂Dt is

L (∂Dt) = Length (rectangle) + Length (circle) = L+ 2πt

and the total area is

Area (Dt) = Area (D) + Area (rectangle) + Area (circle) = A+ Lt+ πt2.

�

Figure 3.1.2. The out t-parallel set of a nonconvex polygon and Steiner's Inequality.
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Proof. (Proof of the Steiner's Inequality)

By the figure3.1.2, we see nonconvex curves is that the out t-parallel set has extra

overlap. Therefore, Area (Dt) ≤ A+ Lt+ πt2 and L (∂Dt) ≤ L+ 2πt still holds.

We omitted from the details. (see [2]) �

The proof of Hadwiger depends on Steiner's Inequality. For the purpose, we need to define

the circumradius and inradius of a compact set Ω ⊂ R2.

Definition 3.1.3. Let Ω be the region bounded by K. The radius of the smallest circular

disk containingΩ is called the circumradius, denotedRI . The radius of the largest circular

disk contained in Ω is called the inradius, denoted rI .

rI = sup {r ≥ 0 | there is p ∈ R2 such that Br (p) ⊂ Ω}

RI = inf {r ≥ 0 | there exists p ∈ R2 such that Ω ⊂ Br (p)}

Figure 3.1.3. The disk realizing the circumradius,RI and inradius, rI of K.

Theorem 3.1.4. ( Isoperimetric Inequality of Hadwiger)

Suppose Ω is a compact set with piecewise C1 boundary of area A and boundary length L.

There is a lineM through the incenterXI of the convex hullK of Ω and a = L (K ∩ Ω) the

length of chord passing through the center. Then

L2 − 4πA ≥ π2

4
(a− 2rI)

2

.
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If the equality holds, all chords throughXI ofK agree with the diameter of the incircle implies

K is a circle.

Figure 3.1.4. Diagram for the Hadwiger's proof.

Proof. LetArea (K) = Â andLength (K) = L̂. By convexity property of equality (0.0.2),

we know Area (Ω) ≤ Area (K) implies L̂2 − 4πÂ ≤ L2 − 4πA. Choose R > 0 such that

K ⊂ BR (XI). Let γ be the annular region between the ball BR (XI) and K,

γ = BR (XI)−Ko. And the line γ −M splits the annulus into two equal parts F and G.

Let P andQ be the disjoint line segments P ∪Q = M ∩γ. Let l1 and l2 be the two lengths

of ∂K in F and G respectively, and L1 and L2 be the two lengths of ∂F ∩BR (XI) and

∂G ∩BR (XI) respectively. Now, we know

L̂ = l1 + l2

πR2 = Area (F ) + Area (G) + Â.

Choose a number r, such that 2rI ≤ 2r ≤ a. Consider the out r-parallel set of the ring

domain γr. Since r ≥ rI the all region is covered. So

Area (γr) = π (R + r)2 . (3.1.1)
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The length of P and Q denoted by p and q respectively.

By the Steiner's Formula,

Area (Pr) = 2pr + πr2 (3.1.2)

Area (Qr) = 2qr + πr2. (3.1.3)

Finally, we apply Steiner's Inequality to Fr and Gr

Area (Fr) ≤ Area (F ) + (p+ L1 + q + πR) r + πr2, (3.1.4)

Area (Gr) ≤ Area (G) + (p+ L2 + q + πR) r + πr2. (3.1.5)

For any point x ∈ γr ⊂ (Fr ∪Gr). Also any points x ∈ (Pr ∪Qr) ⊂ (Fr ∩Gr).

If any points x ∈ γr ∪ (Pr ∪Qr) ⊂ (Fr ∪Gr) ∪ (Fr ∩Gr). Hence

Area (γr) + Area (Pr) + Area (Qr) ≤ Area (Fr) + Area (Gr)

by equalities (3.1.1), (3.1.2), (3.1.3), (3.1.4), (3.1.5) which implies

π (R + r)2+2 (p+ q) r+2πr2 ≤ Area (F )+Area (G)+ (2p+ L1 + 2q + L2 + 2πR) r+2πr2.

We can reduced the inequality to

Â+ πr2 ≤ (L1 + L2) r ≤ L̂r

which is equivalent to

L̂2 − 4πÂ ≥
(
L̂− 2πr

)2
=

1

2

(
L̂− 2πr

)2
+

1

2

(
L̂− 2πr

)2
.

Choose some r, such that rI ≤ r ≤ a
2
, which implies
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L̂2 − 4πÂ ≥ 1

2

(
L̂− 2πrI

)2
+

1

2

(
L̂− πa

)2
. (3.1.6)

Since 2A2 + 2B2 ≥ (A−B)2 multiples by 1
4
is

1

2
A2 +

1

2
B2 ≥ 1

4
(A−B)2 . (3.1.7)

Therefore, by the inequality (3.1.7), the inequality (3.1.6) can be written as

L̂2 − 4πÂ ≥ 1

4

[(
L̂− 2πrI

)
+
(
L̂− πa

)]2
=

π2

4
(a− 2rI)

2 .

Then

L2 − 4πA ≥ L̂2 − 4πÂ ≥ π2

4
(a− 2rI)

2

as desired. �



Conclusions

The isoperimetric problem is to determine a plane figure of the largest possible area whose

boundary had a specified length. In other words, given a fixed perimeter L of a closed curve

and the area A of the region, satisfies

4πA ≤ L2

and the equality holds if and only if the curve is a circle.

In the three-dimension Euclidean space, among all simple closed surfaces with given sur-

face area, the sphere enclosed a region of maximal volume. An analogous statement holds

in Euclidean space of any dimension. We consider Brunn-Minkowski Inequality to prove

isoperimetric problem in Rd. Finally, using Steiner's Inequality to prove isoperimetric in-

equality of Hadwiger.

In addition, there are analogs of isoperimetric inequality for domain on surfaces, for ex-

amples: Bonnesen inequalities, minimal surfaces and inequalities depending on Gauss cur-

vature. If you are interested in the topics, you can see the paper [9].

35
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