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- 摘 要 -

Gauss-Bonnet 定理是一個美麗的定理， 它把曲面上的曲率和曲面的尤拉特徵數

做一個連結。換句話說，Gauss-Bonnet 定理是幾何和拓樸之間的橋樑。在本論文中，

我們提出 Gauss-Bonnet 定理的發展及証明， 並討論它的一些應用。 例如，龐加萊-霍

普夫指標定理，毛球定理，和代數基本定理。 除此之外，我們還討論 R3 空間中多面體

的離散型 Gauss-Bonnet 定理。
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Abstract

Gauss Bonnet theorem is beautiful because it relates the curvature of a surface

with its Euler characteristic. It links differential geometry with topology. In this paper,

we present some developments on the proof and some applications of Gauss-Bonnet

theorem. For example, the Poincaré-Hopf index theorem, the hairy ball theorem, and

the fundamental theorem of algebra. Moreover, we discuss the discrete Gauss-Bonnet

theorem about a convex polyhedron in R3.
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Chapter 1

Introduction

In this paper, we investigate the Gauss-Bonnet theorem in di�erential geometry, the

discrete Gauss-Bonnet theorem in discrete di�erential geometry and its applications.

The Gauss-Bonnet theorem is probably the most beautiful and deepest theorem in

the di�erential geometry of surfaces. The simplest version of the Gauss-Bonnet theorem

states that the sum of the interior angles of a triangle in the Euclidean plane equals π.

The local Gauss-Bonnet theorem states as follows:

Theorem 1.0.1. [18] Suppose R is a simply connected and regular region with simple,

closed, piecewise regular, and positively oriented boundary in an oriented regular surface

M . If γ = ∂R with length `(γ) has exterior angles εi at the vertices γ(si), i = 1, 2, . . . , n,

then ˆ
∂R

kgds+

¨
R

KdA+
n∑
i=1

εi = 2π. (1.0.1)

Gauss published his formula in 1827 and deal with geodesic triangles on surfaces, and

then Bonnet generalized it in 1848 to any simple connected region enclosed by arbitrary

curves. A few years later, the equation (1.0.1) became:

¨
M

KdA = 2πχ(M), (1.0.2)

where M is an oriented compact surface and χ(M) is the Euler characteristic of M .
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The equation (1.0.2) provides a remarkable relation between the topology of a compact

surface and the integral of its curvature. It is striking that the total curvature does not

change as we deform the surface, for example, as shown in Figure 1.0.1.

÷1. HOLONOMY AND THE GAUSS-BONNET THEOREM 87

Corollary 1.10. The quantity

Z

@M

�gds C
“

M

KdAC
X̀

kD1

�k

is a topological invariant, i.e., does not change as we deform the surfaceM .

In particular, in the event that@M D ;, so the surfaceM is closed, we have

Corollary 1.11. WhenM is a closed, oriented surface without boundary, we have
“

M

KdA D 2��.M/:

It is very interesting that thetotal curvaturedoes not change as we deform the surface, for example, as shown

in Figure 1.9. In a topology course, one proves that any closed, oriented surface without boundary must

FIGURE 1.9

have the topological type of a sphere or of ag-holed torus for some positive integerg. Thus (cf. Exercise

4), the possible Euler characteristics of such a surface are2, 0, �2,�4, ...; moreover, the integral
’

M KdA

determines the topological type of the surface.

We conclude this section with a few applications of the Gauss-Bonnet Theorem.

Example 5. SupposeM is a surface of nonpositive Gaussian curvature. Then there cannot be a geodesic

2-gonR onM that bounds a simply connected region. For if there were, by Theorem 1.6 we would have

0 �
“

R

KdA D 2� � .�1 C �2/ > 0;

which is a contradiction. (Note that the exterior angles must be strictly less than� because there is a unique

(smooth) geodesic with a given tangent direction.)O

Example 6. SupposeM is topologically equivalent to a cylinder and its Gaussian curvature is negative.

Then there is at most one simple closed geodesic inM . Note, first, as indicated in Figure 1.10, that if

there is a simple closed geodesic˛, either it must separateM into two unbounded pieces or else it bounds

a diskR, in which case we would have0 >
’

RKdA D 2��.R/ D 2� , which is a contradiction. On

the other hand, suppose there were two. If they don’t intersect, then they bound a cylinderR and we get

0 >
’

R KdA D 2��.R/ D 0, which is a contradiction. If they do intersect, then we we have a geodesic

2-gon bounding a simply connected region, which cannot happen by Example 5.O

Figure 1.0.1: The total Gaussian curvature is unchanged.

H. Hopf found an application of Gauss-Bonnet theorem in 1885.

Theorem 1.0.2. [12] The sum of the indices of a di�erentiable vector �eld V with isolated

singular points on a compact surface M is equal to the Euler characteristic of M .

We apply the theorem to �nd a interesting statement in meteorology. The statement

is the hairy ball theorem.

Theorem 1.0.3. [9] There does not exist a non-vanishing continuous tangent vector �led

V on a sphere S2.

Moreover, we introduce the fundamental theorem of algebra.

Theorem 1.0.4. [5] Every nonconstant polynomial P (z) ∈ C[z] has at least one complex

root.

In chapter 2, we review some basic de�nitions and theorems in di�erential geometry.

The content of this chapter contains the �rst fundamental form, tangent spaces, the Gauss

map, the second fundamental form, normal curvatures, geodesic curvatures, principal

curvatures and the Gaussian curvature.

In chapter 3, we present a topical subject that is Gauss-Bonnet theorem. In section

3.1 and 3.2, we need some topological de�nitions and prove carefully the local and global

Gauss-Bonnet theorem. Besides, in section 3.3, we �rst discuss a regular complex with a
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triangulation on a sphere S2. Then we de�ne the discrete Gaussian curvature of it, and

�nd the discrete Gauss-Bonnet theorem related to the total curvature.

In chapter 4, we investigate the applications of Gauss-Bonnet theorem: the Poincaré-

Hopf index theorem, the hairy ball theorem, and the fundamental theorem of algebra. In

section 4.1, we list some singular points and their indices with a tangent vector �eld, and

then we prove the Poincaré-Hopf index theorem. In section 4.2, we construct a tangent

vector �eld on a sphere S2 to recheck the hairy ball theorem is true. In addition, we �nd

two tangent vector �elds on a torus T . One is a nowhere zero tangent vector �elds on a

torus T , and the other is not. In section 4.3, we use Gauss-Bonnet theorem to prove the

fundamental theorem of algebra.

In chapter 5, we �nd the generalizations of Gauss-Bonnet theorem and its application.

Besides, we have more topics about discrete di�erentiable geometry in other papers.
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Chapter 2

Preliminaries

In this chapter, we introduce the Gaussian curvature in di�erential geometry.

De�nition 2.0.1. [2] A subset S of R3 is a surface if for every point p ∈ S, there exists an

open set U in R2 and an open setW in R3 containing p such that S∩W is homeomorphic

to U . That is,

∃σ : U → W ∩ S s.t. σ is a homeomorphism.

We call σ surface patches or parametrizations. A surface S should mean a smooth

surface, and a surface patch σ should mean a regular surface patch, i.e., σu × σv 6= 0.

We look at the �rst fundamental form. It allows us to make measurements on the

surface, for instance, lengths of curves, angles of tangent vectors, areas of regions, without

referring back to the ambient space R3 where the surface lies.

De�nition 2.0.2. [2] Let γ(t) = σ(u(t), v(t)) be a curve in a surface patch σ. Then the

�rst fundamental form of σ is

ds2 = g11du
2 + 2g12dudv + g22dv

2,
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where

g11 :=< σu, σu >,

g12 :=< σu, σv >,

g22 :=< σv, σv >,

and < , > is an inner product. It is obvious that g12 = g21 :=< σv, σu >.

De�nition 2.0.3. [2] The tangent space TpS at a point p of a surface S is the set of

tangent vectors at p of all curves in S passing through p.

Proposition 2.0.4. [2] Let σ : U → R3 be a patch of a surface S containing a point

p ∈ S, and let (u, v) be coordinates in U . The tangent space to S at p is the vector

subspace of R3 spanned by the vector σu and σv.

Proposition 2.0.4 shows that a surface patch σ : U → R3 containing p = σ(u0, v0)

leads to a choice,

N(u0, v0) =
σu(u0, v0)× σv(u0, v0)

||σu(u0, v0)× σv(u0, v0)||
.

We can think of N to be a map N : σ(U) → R3. Thus, each point q ∈ σ(U) has a

normal vector associated to it. We say that N is a di�erential �eld of unit normal vectors

on U . A regular surface is oriented if it has a di�erentiable �eld of unit normal vectors

de�ned on the whole surface.

The values ofN at the points of S are recorded by its Gauss map G, as pictured below.

5



De�nition 2.0.5. [2] Let S ⊂ R3 be a surface with an orientation N and S2 ⊂ R3 be the

unit sphere

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}.

The map G : S → S2 is called the Gauss map.

The rate of change of the tangent line to a curve γ is the curvature of γ. We may try

to measure how rapidly a surface S curves from the tangent plane TpS in a neighborhood

of a point p ∈ S. This is equivalent to mearsuring the rate of change at p of a unit normal

vector N on a neighborhood of p.

From Taylor's theorem, we induce the second fundamental form of a surface patch.

De�nition 2.0.6. [2] Let γ(t) = σ(u(t), v(t)) be a unit-speed curve in a surface patch σ.

Then the second fundamental form of σ is

L11du
2 + 2L12dudv + L22dv

2,

where

L11 :=< σuu,N >,

L12 :=< σuv,N >,

L22 :=< σvv,N > .

It is obvious that L12 = L21 :=< σvu,N >.
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Another way to investigate how much a surface curves is to look at the curvature of

various curves on the surface.

De�nition 2.0.7. [2] If γ(t) = σ(u(t), v(t)) is a unit-speed curve in a surface patch σ

and N is the unit normal vector of σ, then

γ′′ = knN + kg(N× γ′).

The scalars kn and kg are called the normal curvature and the geodesic curvature of γ.

De�nition 2.0.8. [2] The principal curvatures of a surface patch are the roots of the

equations:

det


 L11 L12

L21 L22

− k
 g11 g12

g21 g22


 = 0.

We use some notations to simplify the equation. Let

Ψ =

 g11 g12

g21 g22

 and Φ =

 L11 L12

L21 L22

 .

Since we discuss a regular surface patch, by Lagrange's identity, we know g11g22−g2
12 6=

0. Therefore we can solve the equations to �nd the principal curvatures.
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We introduce the Gaussian curvature of a surface.

De�nition 2.0.9. [2] Let k1 and k2 be the principal curvature of a surface patch. Then

the Gaussian curvature of the surface patch is

K = k1k2.

It is easy to get explicit formulas for the Gaussian curvature K.

Proposition 2.0.10. [2] Let σ(u, v) be a surface patch with the �rst and the second

fundamental forms

g11du
2 + 2g12dudv + g22dv

2 and L11du
2 + 2L12dudv + L22dv

2,

respectively. Then

K =
L11L22 − L2

12

g11g22 − g2
12

Proof. By De�nition 2.0.8, we have

(g11g22 − g2
12)k2 − (L11g22 − 2L12g12 + L22g11)k + (L11L22 − L2

12) = 0.

And the Gaussian curvature is the product of roots, we are done.
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Chapter 3

Gauss-Bonnet Theorem

In this chapter, we introduce Gauss-Bonnet theorem in di�erential geometry. The Gauss-

Bonnet theorem is the most beautiful and profound result in theory of surfaces. It connects

the intrinsic di�erential geometry of a surface with its topology.

As we discuss spaces curves, we have an orthonormal basis {t,n,b} of R3. However,

when we discuss the curves on a surface, we should make use of a smooth basis {e1, e2} of

the tangent plane at each point of the surface patch, where "smooth" means that {e1, e2}

are smooth functions of the surface parameters (u, v). Moreover, we construct {e1, e2}

by applying the Gram-Schmidt process to the basis {σu, σv} of the tangent plane. Then

{e1, e2,N} is a right-handed orthonormal basis on a surface, and N is the standard unit

normal of the surface patch σ.

3.1 The Local Gauss-Bonnet Theorem

The simpler version of the Gauss-Bonnet theorem involves simple closed curves on a

surface. To prove the theorem, we may need some lemmas and propositions.

Lemma 3.1.1. [2] For every vector a, b, c, and d ∈ R3

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c).

Proof. We can easily check the result.
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Lemma 3.1.2. [2] N is a unit normal vector of a surface patch, then

(Nu ×Nv) · (e1 × e2) = (Nu · e1)(Nv · e2)− (Nu · e2)(Nv · e1).

Proof. From Lemma 3.1.1, we quickly get the result.

Proposition 3.1.3. [2] Let N be a unit normal vector of a surface patch σ. Then

Nu = aσu + bσv and Nv = cσu + dσv, (3.1.1)

where  a c

b d

 = −

 g11 g12

g21 g22


−1 L11 L12

L21 L22

 = −Ψ−1Φ. (3.1.2)

Proof. Since N is a unit vector, Nu and Nv are perpendicular to N. Therefore, Nu and

Nv are linear combinations of σu and σv. So, we can suppose

Nu = aσu + bσv and Nv = cσu + dσv.

Moreover, σu and σv are tangent vectors to the surface patch, then

N · σu = 0 and N · σv = 0.

Di�erentiating the equation with respect to u and v gives

(N · σu)u ⇒ Nu · σu = −N · σuu = −L11,

(N · σu)v ⇒ Nv · σu = −N · σuv = −L12,

(N · σv)u ⇒ Nu · σv = −N · σvu = −L12,

(N · σv)v ⇒ Nv · σv = −N · σvv = −L22.
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Taking the dot product of each of the equations in (3.1.1) with σu and σv, we have

−L11 = ag11 + bg12,

−L12 = ag12 + bg22,

−L12 = cg11 + dg12,

−L22 = cg12 + dg22.

Thus

−

 L11 L12

L21 L22

 =

 g11 g12

g21 g22


 a c

b d

 ,

and then the equation (3.1.2) is proved.

In the natation of the proof of Proposition 3.1.3, we have

Lemma 3.1.4. [2] Let N be a unit normal vector of a surface patch σ of the surface S

and K be the Gaussian curvature of σ. Then

Nu ×Nv = Kσu × σv.

Proof. The Gauss map G : S → S2 is de�ned by

G(σ(u, v)) = N(u, v).

Form the equations (3.1.1) and (3.1.2), we see that

Nu ×Nv = (ad− bc)σu × σv

= det(−Ψ−1Φ)σu × σv

= Kσu × σv.

This proves the lemma.
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Lemma 3.1.5. [2] {e1, e2,N} is an orthonormal basis of R3 and K is the Gaussian

curvature of a surface patch σ. Then

(e1)u · (e2)v − (e1)v · (e2)u = K‖σu × σv‖.

Proof. Since e1 and e2 are unit vectors, (e1)u and (e1)v are perpendicular to e1. Similarly,

(e2)u and (e2)v are perpendicular to e2. Thus,

(e1)u = 0e1 + ae2 + bN,

(e1)v = 0e1 + ce2 + dN,

(e2)u = a′e1 + 0e2 + b′N,

(e2)v = c′e1 + 0e2 + d′N,

for some scalars a, b, c, d, a′, b′, c′, d′ which depend on u and v. Moreover, by di�erentiating

the equation e1 · e2 = 0 with respect to u and v, we see that

(e1)u · e2 + e1 · (e2)u = 0,

(e1)v · e2 + e1 · (e2)v = 0.

It implies that a = −a′ and c = −c′, thus

(e1)u = 0e1 + ae2 + bN,

(e1)v = 0e1 + ce2 + dN,

(e2)u = −ae1 + 0e2 + b′N,

(e2)v = −ce1 + 0e2 + d′N.

We compute

(e1)u · (e2)v − (e1)v · (e2)u = bd′ − b′d

= [(e1)u ·N][(e2)v ·N]− [(e2)u ·N][(e1)v ·N].
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By di�erentiating the equations e1 ·N = 0 and e2 ·N = 0 with respect to u and v, we

know that

(e1)u ·N = −e1 ·Nu,

(e1)v ·N = −e1 ·Nv,

(e2)u ·N = −e2 ·Nu,

(e2)v ·N = −e2 ·Nv.

Thus

(e1)u · (e2)v − (e1)v · (e2)u = (−e1 ·Nu)(−e2 ·Nv)− (−e2 ·Nu)(−e1 ·Nv).

By Lemma 3.1.2 and Lemma 3.1.4, we get

(e1)u · (e2)v − (e1)v · (e2)u = (Kσu × σv) · (e1 × e2)

= (Kσu × σv) ·N

= K‖σu × σv‖.

This completes the proof.

We can now state the �rst version of the Gauss-Bonnet Theorem.

Theorem 3.1.6. [2] (The Gauss-Bonnet Theorem for Simple Closed Curve). Let S be

an oriented regular surface in R3. Let σ : U ⊂ R2 → S be a surface patch of S such that

σ(U) is simply connected. Let γ : R → S be a unit-speed, simple, closed and positively

oriented curve on S with length `(γ). Then

ˆ `(γ)

0

kgds = 2π −
¨
int(γ)

KdA.

Proof. Choose a right-handed orthonormal basis {e1, e2,N} at each point of the surface

patch σ which we obtained by applying the Gram-Schmidt process on the basis {σu, σv}.

Along the curve γ : R→ σ(U), let θ : R→ R be the angle between the unit vector e1(s)
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and γ′(s) at the same point. That is,

γ′(s) = cos θ(s)e1(s) + sin θ(s)e2(s).

Then,

N× γ′ =

 cos π
2
− sin π

2

sin π
2

cos π
2


 cos θ(s)

sin θ(s)

 =

 − sin θ(s)

cos θ(s)


= − sin θ(s)e1(s) + cos θ(s)e2(s).

And for the second derivative γ′′ we have

γ′′ = −θ′ sin θe1 + cos θe′1 + θ′ cos θe2 + sin θe′2.

So the geodesic curvature satis�es

kg = γ′′ · (N× γ)

= θ′ − (e1 · e′2) sin2 θ + (e′1 · e2) cos2 θ

= θ′ − e1 · e′2. (3.1.3)
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we integrate the geodesic curvature kg over one period,

ˆ `(γ)

0

kgds =

ˆ `(γ)

0

θ′ds−
ˆ `(γ)

0

e1 · e′2 ds.

Let π = σ−1 ◦ γ : R → U be entirely contained in the simply connected region U . The

curve π is simple, closed and positively oriented. Then

ˆ `(γ)

0

e1(s) · e′2(s) ds =

ˆ `(γ)

0

e1 · [u′(e2)u + v′(e2)v]ds

=

ˆ
π

e1 · (e2)u du+ e1 · (e2)v dv.

By Green's theorem and Lemma 3.1.5

ˆ `(γ)

0

e1(s) · e′2(s) ds =

¨
int(π)

{[e1 · (e2)v]u − [e1 · (e2)u]v}dudv

=

¨
int(π)

{(e1)u · (e2)v − (e1)v · (e2)u}dudv

=

¨
int(π)

K‖σu × σv‖dudv

=

¨
int(γ)

KdA.

Consider ˆ `(γ)

0

θ′ds =

ˆ `(γ)

0

dθ = θ(`(γ))− θ(0).

When σ(U) is simple connected, i.e., σ(U) can be continuously deformed to a point. As

we shrink the curve to a point, e1 becomes almost constant along the curve, but tangent

vector must make one full rotation. Therefore,

ˆ `(γ)

0

θ′ds = 2π.

Hence ˆ `(γ)

0

kgds = 2π −
¨
int(γ)

KdA.

This proves the statement.
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We should begin the details of a local version of the Gauss Bonnet theorem. We need

a few de�nitions. Let S be a regular surface in R3, and γ : [0, l]→ S be a simple, closed,

and piecewise regular curve. That is,

1. γ(0) = γ(l).

2. For all t1, t2 ∈ [0, l], if t1 6= t2, then γ(t1) 6= γ(t2).

3. There exists a subdivision

0 = t0 < t1 < · · · < tn = l

of [0, l] such that γ is di�erentiable and regular on each of the intervals (ti−1, ti) for

i = 1, 2, . . . , n.

Moreover, the one-sided derivatives of γ at the endpoints of each subinterval

γ̇−(ti) = lim
t→t−i

γ(t)− γ(ti)

t− ti
,

γ̇+(ti) = lim
t→t+i

γ(t)− γ(ti)

t− ti

exist, are non-zero and not parallel. The points γ(t1), γ(t2), . . . , γ(tn) are called the ver-

tices of the curve γ.

Let θ±i be the angle between γ̇±(ti) and e1. Typically, εi = θ+
i − θ−i (see the picture

below) is called the exterior angle at the vertex γ(ti) from γ̇−(ti) to γ̇
+(ti), and αi = π−εi

is called the interior angle at the vertex γ(ti).
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The next result generalizes Theorem 3.1.6.

Theorem 3.1.7. [2] (The Local Gauss-Bonnet Theorem). Suppose R is a simply con-

nected region with simple, closed, piecewise regular, and positively oriented boundary in

an oriented regular surface S. If γ = ∂R with length `(γ) has exterior angles εi at the

vertices γ(si), i = 1, 2, . . . , n, then

ˆ
∂R

kgds+

¨
R

KdA+
n∑
i=1

εi = 2π.

Note, as pictured above, that we measure exterior angles so that |εi| < π for all i.

Proof. If ∂R is smooth, then from our easier discussion we infer that

ˆ `(γ)

0

kgds+

¨
int(γ)

KdA = 2π =

ˆ
∂R

θ′ds.

But ∂R is piecewise smooth, then our goal is to prove that

ˆ `(γ)

0

θ′ds = 2π −
n∑
i=1

εi. (3.1.4)

To establish the equation (3.1.4), we image "smoothing" each vertex of γ as shown in

the following diagram.

If the "smoothed" curve γ̃ is smooth, then

ˆ `(γ̃)

0

θ̃
′
ds = 2π,

17



where θ̃ is the angle between the unit tangent vector e1 and γ̃
′
(s) at the same point. Since

γ and γ̃ are the same except near the vertices of γ, the di�erence is

ˆ `(γ̃)

0

θ̃
′
ds−

ˆ `(γ)

0

θ′ds =
n∑
i=1

(ˆ si

si−1

θ̃
′
ds−

ˆ si

si−1

θ′ds

)
.

Consider the situation, near γ(si), the picture is

i.e. γ and γ̃ agree except when s belongs to a small interval (si−δ, si+δ), for some δ > 0,

so the contribution from the ith vertex is

ˆ si+δ

si−δ
θ̃
′
ds−

(ˆ si

si−δ
θ′ds+

ˆ si+δ

si

θ′ds

)
= θ̃(si + δ)− θ̃(si − δ)− (θ(si)− θ(si − δ) + θ(si + δ)− θ(si)).

As δ ↓ 0, the �rst integral is the angle between γ̇+(si) and γ̇−(si), i.e., εi. On the

other hand, since γ(s) is smooth on each interval (si − δ, si) and (si, si + δ), the last two

integrals become zero when δ ↓ 0. So

ˆ `(γ̃)

0

θ̃
′
ds−

ˆ `(γ)

0

θ′ds =
n∑
i=1

εi.

This completes the proof.
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3.2 The Global Gauss-Bonnet Theorem

To globalize the Gauss-Bonnet theorem, we need further topological preliminaries.

Let S be a regular surface. A region R ⊂ S is said to be regular if R is compact and

its boundary ∂R is the union of a �nite number of simple closed piecewise regular curves

that do not intersect to each other. The region in Figure 3.2.1 is not regular.

Figure 3.2.1: The situation is not allowed.

For convenience, we should consider a compact surface as a regular region, and its

boundary is empty.

A simple region which has only three vertices with external angles αi 6= 0, i = 1, 2, 3,

is called a triangle.

De�nition 3.2.1. [12] A triangulation of a regular region R ⊂ S is a �nite family T of

triangles Ti, i = 1, 2, . . . , n, such that

1.
n⋃
i=1

Ti = R.

2. If Ti∩Tj 6= ∅, then Ti∩Tj is either a common edge of Ti and Tj or a common vertex

of Ti and Tj.

Can every regular region of a regular surface be triangulated? The next theorem tells

us the answer.

Theorem 3.2.2. [12] Every regular region of a regular surface admits a triangulation.
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This proof was �rst proven in 1924 by Tibor Radó. His proof is provided rigorously in

Chapter 1 of the text [10] by Ahlfors and Sario, and a relatively shorter proof is given in

Doyle and Moran [14]. We will continue to use the fact to prove the global Gauss-Bonnet

Theorem.

Given a triangulation T of a regular region R ⊂ S of a surface S, we should consider

the relation of the number of vertices, the number of edges, and the number of faces of

the triangulation.

De�nition 3.2.3. [12] The Euler characteristic χ(S) of a triangulation of a compact

surface S is

χ(S) = V − E + F,

where V , E, and F are the number of vertices, edges, and faces respectively of the

triangulation.

Figure 3.2.2: A triangulation on a regular region R.

We have proven the local case of this theorem, and the global theorem tells us similar

information. We prove this generalization by using the local theorem in each triangular
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region of our triangulation for the given surface. The beautiful result to which we have

been headed is now the following.

Theorem 3.2.4. [1] (The Global Gauss-Bonnet Theorem). Let R ⊂ S be a regular

region of an oriented regular surface S with simple, closed, piecewise regular and positively

oriented boundary ∂R. If εk, k = 1, 2, . . . , p are exterior angles of ∂R, then

ˆ
∂R

kgds+

¨
R

KdA+

p∑
k=1

εk = 2πχ(R).

Proof. Since every regular region of a regular surface admits a triangulation. Let T be a

triangulation of R such that every triangular region Ti in T is contained in a coordinate

neighborhood of one of a family of patches (see Figure 3.2.2).

We give the position orientation to each triangular region Ti ∈ T. In this way, adjacent

triangular region give opposite orientations to their common edge, as pictured below.

Suppose T = {T1, T2, . . . , TF} is a triangulation of the region region R. We obverse

¨
R

KdA =
F∑
i=1

¨
Ti

KdA

and ˆ
∂R

kgdA =
F∑
i=1

ˆ
∂Ti

kgds.
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Let εij, j = 1, 2, 3, denote the exterior angles of the triangle Ti. Then applying the

local Gauss-Bonnet theorem to Ti, we have

ˆ
∂Ti

kgds+

¨
Ti

KdA+
3∑
j=1

εij = 2π. (3.2.1)

The equation (3.2.1) can be written as

ˆ
∂Ti

kgds+

¨
Ti

KdA = −π +
3∑
j=1

αij,

where αij, j = 1, 2, 3, is the interior angles of Ti.

We go on the process to every triangular region in T and add up the result. Then

ˆ
∂R

kgds+

¨
R

KdA = −πF +

F,3∑
i,j=1

αij, (3.2.2)

where
∑F,3

i,j=1 αij is the sum of all interior angles.

Suppose

Ve = number of exterior vertices of T,

Vi = number of internal vertices of T,

Ee = number of exterior vertices of T,

Ei = number of internal vertices of T.

Moreover, the angles around each internal vertex add up to 2π (see Figure 3.2.2); hence

the sum of all internal interior angles is 2πVi. A similar calculation computes the sum of

the external interior angles, and so

F,3∑
i,j=1

αij = 2πVi + πVe −
p∑

k=1

εk.
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Thus the equation (3.2.2) can be written as

ˆ
∂R

kgds+

¨
R

KdA+

p∑
k=1

εk = −πF + 2πVi + πVe. (3.2.3)

We still need some relations

Ve = Ee, V = Ve + Vi, E = Ee + Ei.

Furthermore, by mathematical induction,

3F = 2Ei + Ee.

Thus the equation (3.2.3) can be written as

ˆ
∂R

kgds+

¨
R

KdA+

p∑
k=1

εk = 2πF − 3πF + 2πVi + πVe

= 2πF − π(2Ei + Ee) + 2πVi + πVe

= 2πF − 2πEi − πEe + 2πVi + 2πVe − πVe

= 2πV − 2πE + 2πF

= 2πχ(R)

which is exactly what we wanted to prove.

We now derive some conclusions:

Corollary 3.2.5. [18] The Euler characteristic χ(R) does not depend on the triangulation

T of a regular region R of an oriented surface S.

Proof. The left-hand side of the equality in Theorem 3.2.4 has nothing whatsoever to do

with the triangulation.

It is therefore legitimate that the Euler characteristic has no reference to the trian-

gulation. It is proved in a course in algebraic topology that the Euler characteristic is a
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"topological invariant". In other words, if we deform the surface R in a bijective, contin-

uous manner (so as to obtain a homeomorphic surface), the Euler characteristic does not

change. We therefore deduce:

Corollary 3.2.6. [18] The quantity

ˆ
∂R

kgds+

¨
R

KdA+

p∑
k=1

εk

is a topological invariant, i.e., does not change as we deform the surface S.

By taking into account that a closed surface can be considered as a region without

boundary, we obtain

Corollary 3.2.7. [12] Let S be an oriented compact surface, then

¨
S

KdA = 2πχ(S).
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3.3 The Discrete Gauss-Bonnet Theorem

In this section, we are interested in the discrete curvatures related to the integral Gaussian

curvature. Before discussing it, we have some de�nitions.

The Euler characteristic is obtained by counting vertices, edges, and faces, but it

applies to structure much more general than polyhedra. We will focus on the notation of

a cell complex.

De�nition 3.3.1. [17] Cells are de�ned to be those topological objects whose interiors

are homeomorphic to disks of some dimension. Looking at the �rst few dimensions we

obtain:

0-cell (vertex) point

1-cell (edge) interior homeomorphic to an open interval

2-cell (face) interior homeomorphic to an open disk in R2

A cell complex is a union of �nitely many 0-cells, 1-cells, and 2-cells so that the

interior of the cells are pairwise disjoint and the boundary of each cell is the union of

other lower-dimensional cells.

De�nition 3.3.2. [17] If the cell complex is homeomorphic to a surface S, we say it is a

cell decomposition of S.

We continue our study of some special types of cell complexes: regular and b-valent.

The valency of a vertex is simply the number of edges emanating from it.

De�nition 3.3.3. [17] A regular complex on a surface S is a cell decomposition of S

where

1. Each face has the same number of edges a with a ≥ 3.

2. Each vertex has the same valency b with b ≥ 3.

3. Two faces meet along a single edge, at a single vertex, or not at all.

4. No face meets itself.
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We denote a regular complex on S that has all faces a-sided polygons and all vertices

of valency b by (a, b)S.

Our task is to determine all possible regular complexes of a given surface S. The key

is the following:

2E = aF and 2E = bV.

Since each face has a edges, this gives aF . We note that each edge bounds precisely

two faces, so we have counted each edge exactly twice. Hence, aF = 2E.

The second equation is similar. Since each vertex has b edges, this counting gives a

total of bV edges. Noticing that each edge has exactly two vertex ends, we have bV = 2E.

Therefore, the Euler characteristic χ(S) can be denoted by

χ(S) = 2E

(
1

a
+

1

b
− 1

2

)
,

where a, b ∈ N and a, b ≥ 3.

Theorem 3.3.4. [10] All Platonic solids−the tetrahedron, cube, octahedron, dodecahe-

dron, and icosahedron−are the only regular complexes of S2.

Figure 3.3.1: The Platonic solids give regular complexes of the sphere.
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Proof. Since χ(S2) = 2, then

2 = 2E

(
1

a
+

1

b
− 1

2

)
, a, b ∈ N, a, b ≥ 3.

It implies that

1

a
+

1

b
>

1

2
, a, b ∈ N, a, b ≥ 3. (3.3.1)

We will analyze each possible case separately:

Case1 a = 3 (faces are triangles).

From the equation (3.3.1), we know

1

6
<

1

b
≤ 1

3
.

The only possibilities are b = 3, 4, or 5.

(1) If b = 3, then 2 = 2E(1
3

+ 1
3
− 1

2
). So E = 6, F = 2E

a
= 4, and V = 2E

b
= 4. This is

the tetrahedron (3, 3)S2.

(2) If b = 4, then 2 = 2E(1
3

+ 1
4
− 1

2
). So E = 12, F = 2E

a
= 8, and V = 2E

b
= 6. This

is the octahedron (3, 4)S2.

(3) If b = 5, then 2 = 2E(1
3

+ 1
5
− 1

2
). So E = 30, F = 2E

a
= 20, and V = 2E

b
= 12. This

is the icosahedron (3, 5)S2.

Case2 a = 4 (faces are squares).

From the equation (3.3.1), we know

1

4
<

1

b
≤ 1

3
.

The only possibility is b = 3. If b = 3, then 2 = 2E(1
4

+ 1
3
− 1

2
). So E = 12, F = 2E

a
= 6,

and V = 2E
b

= 8. This is the cube (4, 3)S2.

Case3 a = 5 (faces are pentagons).
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From the equation (3.3.1), we know

3

10
<

1

b
≤ 1

3
.

The only possibility is b = 3. If b = 3, then 2 = 2E(1
5

+ 1
3
− 1

2
). So E = 30, F = 2E

a
= 12,

and V = 2E
b

= 20. This is the dodecahedron (5, 3)S2.

Case4 a = 6 (faces are hexagons or bigger).

From the equation (3.3.1), we know

1

b
>

1

3
.

This can not happen.

Hence there are only �ve solutions.

What are the regular complexes on the torus T ? We know χ(T ) = 0. A similar

discuss is the following:

χ(T ) = 0 = 2E

(
1

a
+

1

b
− 1

2

)
,

⇒ (a− 2)(b− 2) = 4,

where a, b ∈ N, a, b ≥ 3.

There are only three possibilities, they are (3, 6)T , (4, 4)T , and (6, 3)T .

We begin the study of polyhedral surfaces with one of the most important results: the

Gauss-Bonnet theorem. Here is a lemma which will prove useful.

Lemma 3.3.5. [15] Every simplicial polyhedron with n vertices has 3n − 6 edges and

2n − 4 faces. More generally, this holds for every triangulated surface homeomorphic to

a sphere S2.

Proof. By Theorem 3.2.2, we suppose the simplicial polyhedron has F faces. Since

2E = 3F.
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Then the number of edges is 3
2
F , and by Euler's formula

χ(S2) = n− 3

2
F + F = 2.

It implies

F = 2n− 4 and E =
3

2
F = 3n− 6.

This lemma is proved.

We now de�ne the discrete Gaussian curvature of a convex polyhedron P .

De�nition 3.3.6. [15] Let P ⊂ R3 be a convex polyhedron with the set of vertices

X = {v1, v2, . . . , vn}. Denote by αi = α(vi) the sum of the face angles around vi and let

wi = 2π − αi

be the Gaussian curvature of vi. The sum of Gaussian curvatures at all vertices is called

the total curvature of the polyhedron.

Theorem 3.3.7. [15] (The Discrete Gauss-Bonnet Theorem). Let w1, w2, . . . , wn be the

Gaussian curvatures of vertices of a convex polyhedron P ⊂ R3. Then

w1 + w2 + · · ·+ wn = 4π.

Proof. Suppose the polyhedron P has n vertices, then we triangulate the faces of P . By

Lemma 3.3.5, the resulting triangulation has 2n − 4 faces. Then, the total sum of face

angle A = (2n− 4)π. We conclude:

w1 + w2 + · · ·+ wn = 2πn− A = 4π

which �nishes the proof of the discrete Gauss-Bonnet theorem.

We try to generalize the Theorem 3.3.7. Consider the situation that we triangulate

on di�erent compact surfaces.
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surface S χ(S) vertex edge face total Gaussian curvature

S2 2 n 3n− 6 2n− 4 4π

T 0 n 3n 2n 0

T2 −2 n 3n+ 6 2n+ 4 −4π

Tg 2− 2g n 3n+ 6(g − 1) 2n+ 4(g − 1) −4π(g − 1)

We de�ne the genus of an oriented surface to be the number of handles we add to the

sphere to get the surface. So if the surface S = Tg, the genus is g. Moreover, the table

above tells us the discrete total curvature on a di�erent compact surface is the same as

the smooth total curvature on it.
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Chapter 4

The Applications of Gauss-Bonnet

Theorem

In this chapter, we will present some applications of the Gauss-Bonnet theorem below:

the Poincaré-Hopf index theorem, the hairy ball theorem and the fundamental theorem

of algebra.

4.1 The Poincaré-Hopf Index Theorem

Before introducing the statement of the Poincaré-Hopf index theorem, we need some

de�nitions related to vector �elds are provided.

De�nition 4.1.1. [12] A tangent vector �eld V on a surface S is a correspondence which

assigns to each p ∈ S a vector V(p) ∈ TpS. The tangent vector �eld V is di�erentiable at

p ∈ S if, for some parametrization σ(u, v) at p, the functions α(u, v) and β(u, v) given by

V(σ(u, v)) = α(u, v)σu(u, v) + β(u, v)σv(u, v)

are di�erentiable functions at p.

De�nition 4.1.2. [12] If V is a di�erentiable tangent vector �eld on a surface S, a point

p ∈ S at which V = 0 is called a singular point of V.
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By the existence and uniqueness theorem of di�erentiable equations, if p ∈ S, there is

a unique γ(t) on S such that γ′ = V and γ(0) = p; γ is called an integral curve on V.

De�nition 4.1.3. [12] A singular point p is said to be isolated if there exists an open set

containing the point p that contains no other singular points.

Then we de�ne the index of V at p.

De�nition 4.1.4. [2] The index of the singular point p of the tangent vector �eld V is

µ(p) =
1

2π

ˆ `(γ)

0

dψ

ds
ds,

where γ(s) is any unit-speed, simple, closed, and positively oriented curve of length `(γ)

in S with p ∈ int(γ), and ψ(s) is the angle between a nowhere vanishing di�erentiable

tangent vector �eld ξ on S and V at the point γ(s).

From De�nition 4.1.4, it is clear that µ(p) is an integer.

Example 4.1.5. We show some examples of indices of the tangent vector �elds in the xy

plane which have (0, 0) as singular point. The curves that appear in the drawings are the

trajectories of the tangent vector �elds.

(1) V(x, y) = (x, y); µ = +1

(2) V(x, y) = (−x,−y); µ = +1

(3) V(x, y) = (y,−x); µ = +1

(4) V(x, y) = (x,−y); µ = −1

The singular point in examples (1), (2), (3), and (4) is called a course, sink, center,

and saddle, respectively.
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(a)

(b)

Figure 4.1.1: (a) Course, Sink (b) Center, Saddle

Let us verify the index in case (4). Choose the "reference" tangent vector �eld to be

the constant vector �eld ξ = (1, 0). Then, the angle ψ is given by

(cosψ, sinψ) =
V

‖V‖
=

(
x√

x2 + y2
,− y√

x2 + y2

)
.

Taking γ(s) = (cos s, sin s) to be the unit circle, at γ(s) the angle ψ satis�es

(cosψ, sinψ) = (cos s,− sin s).
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So ψ = 2π − s, and hence

µ(0, 0) =
1

2π

ˆ 2π

0

d

ds
(2π − s)ds = −1.

Similarly, in case (1), (2), and (3), ψ = π, ψ = π + s, and ψ = 3π
2

+ s respectively.

Hence, we get the results that we want.

Now, let S ⊂ R3 be an oriented, compact surface and V is a di�erentiable tangent

vector �eld with only isolated singular points. We remark that they are �nite in number.

Otherwise, if there are in�nitely many singular points, then the Bolzano-Weierstrass the-

orem implies that they have a limit point in S. By continuity of the tangent vector �eld,

this point is also a singular point, and hence the singular point is not isolated.

Theorem 4.1.6. [2] (The Poincaré-Hopf Index Theorem). Let V be a di�erentiable

tangent vector �eld on a compact surface S which has only �nitely many isolated singular

points p1, p2, . . . , pn. Then
n∑
i=1

µ(pi) = χ(S),

where χ(S) is the Euler characteristic of S.

Proof. Let γi be a unit-speed, simple, closed, and positively oriented curve contained in a

patch σi of S with pi ∈ int(γi). Since pi is isolated, then we assume that the γi are chosen

so small that their interiors are disjoint. Let

S1 = int(γ1) ∪ int(γ2) ∪ · · · ∪ int(γn) and S2 = S \ S1.

By Theorem 3.2.2, we can choose a triangulation T of S2. Note that the edges of some

of these triangular region Γj ∈ T will be segments of the curve γi (see the picture below,

in which the arrows indicate the sense of the positive orientation). Moreover, when these

triangular regions are positively oriented, we obverse that

1. the induced orientation of the γi is opposite to their positive orientation.

34



2. any common edge of the two triangular regions Γj appears twice with opposite

orientations.

From Corollary 3.2.7, we know

¨
S

KdA =
n∑
i=1

¨
int(γi)

KdA+

¨
S2

KdA = χ(S). (4.1.1)

On S2, because of V 6= 0, we de�ne

u1 =
V

‖V‖
, u1⊥u2, and ‖u2‖ = 1,

then {u1,u2} is an orthonormal basis of the tangent plane of S at each point. Arguing

as in the proof of Theorem 3.1.6, we get

¨
S2

KdA =
∑
j

ˆ `(Γj)

0

u1 · u′2 ds =
n∑
i=1

−
ˆ `(γi)

0

u1 · u′2 ds (4.1.2)

On S1, for the sake of V = 0 at pi, we choose an orthonormal basis {w1,w2} of the

tangent plane of S on each patch σi. By the proof of Theorem 3.1.6, we get

¨
S1

KdA =
n∑
i=1

ˆ `(γi)

0

w1 ·w′2 ds (4.1.3)
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Combining the equations (4.1.1), (4.1.2), and (4.1.3), we see that

n∑
i=1

ˆ `(γi)

0

(w1 ·w′2 − u1 · u′2)ds = 2πχ(S). (4.1.4)

However, from the proof of Theorem 3.1.6,

w1 ·w′2 = ϕ′ − kg and u1 · u′2 = θ′ − kg,

where kg is the geodesic curvature of γi, ϕ is the angles between w1 and γ′ at the same

point, and θ is the angles between u1 and γ′ at the same point. Then ψ ≡ ϕ − θ is the

angle between w1 and u1. That is, the angle is between the "reference" tangent vector

�eld ξ on σi and V. Hence the equation (4.1.4) can be written as

n∑
i=1

ˆ `(γi)

0

dψ

ds
ds = 2πχ(S),

as we want.

This is a remarkable result. It implies that
∑n

i=1 µ(pi) does not depend on V but

only on the topology of S. For instance, in any surface homeomorphic to a sphere S2,

all tangent vector �elds with isolated singular points must have the sum of their indices

equal to 2.
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4.2 The Hairy Ball Theorem

An interesting application of the Poincaré-Hopf index theorem which �nds application in

meteorology is the hairy ball theorem.

Theorem 4.2.1. [10] (The Hairy Ball Theorem). There does not exist a non-vanishing

continuous tangent vector �led V on a sphere S2. Or, you can not comb a hairy ball

straight.

Proof. Goal: There is at least one isolated singular point p such that V(p) = 0.

Suppose to the contrary! Then there exists a tangent vector �eld F on S2 such that F

has no isolated singular points, the sum of indices is zero. However, by the Poincaré-Hopf

index theorem, we know the sum of the indices on S2 equal to 2. This is a contradiction.

Hence, we can not comb a hairy ball straight.

We now give some examples of vector �elds on surfaces.

Example 4.2.2. A tangent vector �eld on a sphere S2 with 1 source and 1 sink: χ = 2

A tangent vector �eld on the sphere S2 is obtained by parametrizing the meridian

of S2 and de�ning V(p) as the velocity vector of the meridian through p. We know the

parametrization of S2 cam be denoted by

σ(θ, ϕ) = (cos θ cosϕ, cos θ sinϕ, sin θ),
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where −π
2
≤ θ ≤ π

2
and 0 ≤ ϕ ≤ 2π.

The meridians of S2 is that ϕ is �xed, therefore

σθ(θ, ϕ) = (− sin θ cosϕ,− sin θ sinϕ, cos θ).

Let

x = cos θ cosϕ⇒ cosϕ =
x

cos θ
,

y = cos θ sinϕ⇒ sinϕ =
y

cos θ
,

z = sin θ,

where (x, y, z) ∈ S2, and we have

cos θ =
√

1− z2 (∵ −π
2
≤ θ ≤ π

2
),

− sin θ cosϕ =
−xz√
1− z2

,

− sin θ sinϕ =
−yz√
1− z2

.

So the velocity of the meridian is

F(x, y, z) =

(
−xz√
1− z2

,
−yz√
1− z2

,
√

1− z2

)
, ∀(x, y, z) ∈ S2 \ (0, 0,±1).

In order to obtain a tangent vector �eld de�ned in the whole sphere, we de�ne

V(x, y, z) =


0 , (x, y, z) = (0, 0, 1)

F(x, y, z) , (x, y, z) ∈ S2 \ (0, 0,±1)

0 , (x, y, z) = (0, 0,−1)

Indeed, there exists two isolated singular point with the tangent vector �eld on S2.
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Example 4.2.3. We construct a nowhere zero tangent vector �led V on a torus T : χ = 0

A similar procedure with Example 4.2.2, the nowhere zero tangent vector �eld V can

be constructed. The parametrization of T can be denoted by

σ(θ, ϕ) = ((a+ b cos θ) cosϕ, (a+ b cos θ) sinϕ, b sin θ),

where a > b and 0 ≤ θ, ϕ ≤ 2π.

The meridians of T is that ϕ is �xed, therefore

σθ(θ, ϕ) = (−b sin θ cosϕ,−b sin θ sinϕ, b cos θ).

Let

x = (a+ b cos θ) cosϕ⇒ cosϕ =
x

(a+ b cos θ)
,

y = (a+ b cos θ) sinϕ⇒ sinϕ =
y

(a+ b cos θ)
,

z = b sin θ ⇒ sin θ =
z

b
,
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where (x, y, z) ∈ T , and we have

b cos θ = ±
√
b2 − z2,

−b sin θ cosϕ = −z cosϕ =
−xz

a±
√
b2 − z2

,

−b sin θ sinϕ = −z sinϕ =
−yz

a±
√
b2 − z2

.

Since a > b, a−
√
b2 − z2 > 0. Then we de�ne the tangent vector �eld

V(x, y, z) =

(
−xz

a±
√
b2 − z2

,
−yz

a±
√
b2 − z2

,±
√
b2 − z2

)
.

Indeed, there exists no isolated singular point with tangent vector �eld on T .

Example 4.2.4. Here is another tangent vector �eld on a torus T : χ = 0

From Example 4.1.5, the level sets of the height function on this upright torus give a

tangent vector �eld with two saddles and two centers. Indeed, the sum of the indices of

a di�erentiable vector �eld V with isolated singular points on a torus T is equal to the

Euler characteristic of T .
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4.3 The Fundamental Theorem of Algebra

In this section, we need some de�nitions and theorems in Riemannian geometry and

complex analysis to prove the fundamental theorem of algebra.

De�nition 4.3.1. [13] A di�erentiable manifold of dimension n is a set M and a family

of injective mappings xα : Uα ⊂ Rn →M of open sets Uα of Rn into M such that:

1.
⋃
α

xα(Uα) = M .

2. For any pair α and β with xα(Uα)∩xβ(Uβ) = W 6= ∅, the sets x−1
α (W ) and x−1

β (W )

are open sets in Rn and the mappings x−1
β ◦ xα are di�erentiable.

3. The family {(Uα,xα)} is maximal relative to the conditions 1 and 2.

The pair (Uα,xα) (or the mapping xα) with p ∈ xα(Uα) is called a parametrization

of M at p. A 2-manifold is often called a surface. We would like to be able to measure

the lengths of and the angles between tangent vectors. In a vector space such a notion of

measurement is usually given by a scalar product. We thus de�ne

De�nition 4.3.2. [13] A Riemannian metric (or Riemannian structure) on a di�erentiable

manifold M is a correspondence which associates to each point p of M an inner product

< , >p on the tangent space TpM , which varies di�erentiablely in the following sense : If

x : U ⊂ Rn → M is a system of coordinates around p with x(x1, x2, . . . , xn) = q ∈ x(U)

and ∂
∂xi

(q) = dxq(0, . . . , 1, . . . , 0), then

<
∂

∂xi
(q),

∂

∂xj
(q) >q= gij(x1, . . . , xn)

is a di�erentiable function on U .

We still need a little de�nitions and theorems in complex analysis, and will not prove

he following theorems in this pater. The details of the proof can be found in the books

[4] and [8].

De�nition 4.3.3. [4] The complex function f is analytic at the point z0, provided there

exists ε > 0 such that f ′(z) exists for all z ∈ Bε(z0), where Bε(z0) is a neighborhood of
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z0. In other words, f must be di�erentiable not only at z0, but also at all points in some

ε neighborhood of z0.

If f is analytic at each point in the region R, then we say that f is analytic on R. Is

there some criterion that we can use to determine whether f is di�erentiable? Theorem

4.3.5 helps us obtain an important result.

Theorem 4.3.4. [4] (Cauchy-Riemann Equations). Suppose that

f(z) = f(x+ iy) = u(x, y) + iv(x, y)

is di�erentiable at the point z0 = x0 + iy0. Then the partial derivatives of u and v exist

at the point x0 + iy0 = (x0, y0), and

f ′(z) = ux(x0, y0) + ivx(x0, y0) (4.3.1)

f ′(z) = vy(x0, y0)− iuy(x0, y0). (4.3.2)

Equating the real and imaginary parts of the equations (4.3.1) and (4.3.2) gives

ux(x0, y0) = vy(x0, y0) and uy(x0, y0) = −vx(x0, y0). (4.3.3)

The equations (4.3.3) are the Cauchy-Riemann equations.

However, the mere satisfaction of the Cauchy-Riemann equations is not su�cient to

guarantee the di�erentiability of a function. The following theorem gives the conditions

that guarantee the di�erentiability of f at z0, so we can use the equation (4.3.1) and

(4.3.2) to compute f ′(z0).

Theorem 4.3.5. [4] (Cauchy-Riemann Conditions for Di�erentiability). Let f(z) =

u(x, y) + iv(x, y) be a continuous function that is de�ned in some neighborhood of the

point z0 = x0 + iy0. If all the partial derivatives ux, uy, vx, and vy are continuous

at the point (x0, y0) and if the Cauchy-Riemann equations ux(x0, y0) = vy(x0, y0) and

uy(x0, y0) = −vx(x0, y0) hold at (x0, y0), then f is di�erentiable at z0, and the derivative

f ′(z0) can be computed with either the equation (4.3.1) or (4.3.2).
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Using z = reiθ in the expression of a complex function f may be convenient. It gives

us the polar representation

f(z) = f(reiθ) = u(r, θ) + iv(r, θ).

We can now restate the Theorem 4.3.5 using polar coordinates.

Theorem 4.3.6. [4] Let f(z) = u(r, θ) + iv(r, θ) be a continuous function that is de�ned

in some neighborhood of the point z0 = r0e
iθ0. If all the partial derivatives ur, uθ, vr,

and vθ are continuous at the point (r0, θ0) and if the polar form of the Cauchy-Riemann

equations,

r0ur(r0, θ0) = vθ(r0, θ0) and uθ(r0, θ0) = −r0vr(r0, θ0). (4.3.4)

holds, then f is di�erentiable at z0.

We now introduce harmonic functions. Let φ(x, y) be a real-valued function of the

two real variables x and y de�ned on a connected open region D. The partial di�erential

equation

∂2φ

∂x2
+
∂2φ

∂y2
= 0.

is called as Laplace's equation. If φ, φx, φy, φxx, φxy, φyx, and φyy are all continuous, and

if φ(x, y) satisfy Laplace's equation, then φ(x, y) is harmonic on D. We begin with an

important theorem relating analytic and harmonic functions.

Theorem 4.3.7. [4] Let f(z) = u(x, y) + iv(x, y) be an analytic function on a connect

open region D. Then both u and v are harmonic functions on D. In other words, the real

and imaginary parts of an analytic function are harmonic.

Now, we return to our topics: the fundamental theorem of algebra. Here we have

stronger condition about it.

Theorem 4.3.8. [5] (The Fundamental Theorem of Algebra). Every nonconstant poly-

nomial P (z) ∈ C[z] has at least one complex root.
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Proof. As it is well known, the stereographic projection is a mapping π : S2 → Ĉ =

C ∪ {∞}. Let us take

p(z) = a0 + a1z + · · ·+ anz
n

with a0, an 6= 0 and suppose that p(z) 6= 0 for all z ∈ C. In addition, we set

p∗(z) = an + an−1z + · · ·+ a0z
n,

and we observe that

1. p∗(z) = znp

(
1

z

)
.

2. p∗

(
1

z

)
=

1

zn
p(z).

3. z0 6= 0 is a root of p(z)⇔ 1

z0

is a root of p∗(z).

Put

f(z) = p(z)p∗(z),

for all z ∈ C. Then f satis�es the functional equation

∣∣∣∣f (1

z

)∣∣∣∣ =
1

|z|2n
|f(z)|,

for all z ∈ C \ {0}. It follows that there exists a Riemannian metric g on Ĉ, such that

g =
1

|f(z)| 2n
|dz|2 for z ∈ C

and

g =
1

|f(1/z)| 2n
|d(1/z)|2 for z ∈ Ĉ \ {0}.

And we have Gaussian curvature (see the book [16] pp. 4)

Kg(z) = −1

2
|f(z)|

2
n4 log

(
1

|f(z)| 2n

)
,

where 4 = ∂2

∂x2
+ ∂2

∂y2
denotes the standard Laplace operator.
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Consider if z = x+ iy, then we have

x =
z + z̄

2
and y =

z − z̄
2i

.

Use the chain rule, we get

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

Moreover, use the chain rule again

∂

∂z

(
∂

∂z̄

)
=

1

4

(
∂2

∂x2
+

∂2

∂y2

)
.

Consider

1

|f(z)| 2n
Kg(z) =

1

n
4(log |f(z)|)

= 4
∂

∂z

(
∂

∂z̄
log |f(z)|

)
= 4

∂

∂z

(
∂

∂z̄
Re log(f(z))

)
=

1

n
4Re log(f(z)).

By Theorem 4.3.6, we know log(f(z)) is analytic. And then from Theorem 4.3.7, we get

1

|f(z)| 2n
Kg(z) = 0.

Since f(z) 6= 0 for all z ∈ C, then it follows that Kg = 0 over all sphere S2. However,

Gauss-Bonnet theorem, when applied to any Riemannian metric g on the sphere S2,

claims that ¨
S2

KgdAg = 4π.

It is a contradiction, and hence the proof is complete.
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Chapter 5

Conclusion

The Gauss-Bonnet theorem is probably the most beautiful and deepest theorem in the

di�erential geometry of surfaces. It connects the intrinsic di�erential geometry of a surface

with its topology.

Higher dimensional versions of the Gauss-Bonnet theorem were given, for submanifolds

of higher dimensional Euclidean space, by C. B. Allendoerfer (1940) and W. Fenchel

(1940). The �rst intrinsic proof of the higher dimensional Gauss-Bonnet theorem was

given by S.S. Chern (1944).

In section 3.3, we discuss the discrete Gauss-Bonnet theorem. In addition, the paper

[6], John M. Sullivan provide more topics about discrete di�erentiable geometry. In section

4.2, we discuss the hairy ball theorem by the application of Gauss-Bonnet theorem. In

the paper [7], John Milnor o�er an analytic proof of the hairy ball theorem.

Gauss-Bonnet theorem has many applications in other �elds. Moreover, it presents

the beauty of mathematics.
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