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Abstract

Gauss Bonnet theorem is beautiful because it relates the curvature of a surface
with its Euler characteristic. It links differential geometry with topology. In this paper,
we present some developments on the proof and some applications of Gauss-Bonnet
theorem. For example, the Poincaré-Hopf index theorem, the hairy ball theorem, and
the fundamental theorem of algebra. Moreover, we discuss the discrete Gauss-Bonnet

theorem about a convex polyhedron in R3.
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Chapter 1

Introduction

In this paper, we investigate the Gauss-Bonnet theorem in differential geometry, the
discrete Gauss-Bonnet theorem in discrete differential geometry and its applications.
The Gauss-Bonnet theorem is probably the most beautiful and deepest theorem in
the differential geometry of surfaces. The simplest version of the Gauss-Bonnet theorem
states that the sum of the interior angles of a triangle in the Euclidean plane equals .

The local Gauss-Bonnet theorem states as follows:

Theorem 1.0.1. [18] Suppose R is a simply connected and regular region with simple,
closed, piecewise reqular, and positively oriented boundary in an oriented reqular surface
M. If v = OR with length {(7) has exterior angles €; at the vertices y(s;), i =1,2,...,n,

then
/ kgd8+// KdA+) ¢ =2m (1.0.1)
OR R =1

Gauss published his formula in 1827 and deal with geodesic triangles on surfaces, and
then Bonnet generalized it in 1848 to any simple connected region enclosed by arbitrary

curves. A few years later, the equation (1.0.1)) became:

//M KdA = 2my (M), (1.0.2)

where M is an oriented compact surface and x (M) is the Euler characteristic of M.



The equation (|1.0.2)) provides a remarkable relation between the topology of a compact
surface and the integral of its curvature. It is striking that the total curvature does not

change as we deform the surface, for example, as shown in Figure [1.0.1

=

[oy KdA = 4z

Figure 1.0.1: The total Gaussian curvature is unchanged.

H. Hopf found an application of Gauss-Bonnet theorem in 1885.

Theorem 1.0.2. [12] The sum of the indices of a differentiable vector field V with isolated

singular points on a compact surface M is equal to the Euler characteristic of M.

We apply the theorem to find a interesting statement in meteorology. The statement

is the hairy ball theorem.

Theorem 1.0.3. [9] There does not exist a non-vanishing continuous tangent vector filed

V on a sphere S?.
Moreover, we introduce the fundamental theorem of algebra.

Theorem 1.0.4. [5/ Every nonconstant polynomial P(z) € C[z] has at least one complex

root.

In chapter 2, we review some basic definitions and theorems in differential geometry.
The content of this chapter contains the first fundamental form, tangent spaces, the Gauss
map, the second fundamental form, normal curvatures, geodesic curvatures, principal
curvatures and the Gaussian curvature.

In chapter 3, we present a topical subject that is Gauss-Bonnet theorem. In section
3.1 and 3.2, we need some topological definitions and prove carefully the local and global

Gauss-Bonnet theorem. Besides, in section 3.3, we first discuss a regular complex with a



triangulation on a sphere S?. Then we define the discrete Gaussian curvature of it, and
find the discrete Gauss-Bonnet theorem related to the total curvature.

In chapter 4, we investigate the applications of Gauss-Bonnet theorem: the Poincaré-
Hopf index theorem, the hairy ball theorem, and the fundamental theorem of algebra. In
section 4.1, we list some singular points and their indices with a tangent vector field, and
then we prove the Poincaré-Hopf index theorem. In section 4.2, we construct a tangent
vector field on a sphere S? to recheck the hairy ball theorem is true. In addition, we find
two tangent vector fields on a torus 7. One is a nowhere zero tangent vector fields on a
torus 7', and the other is not. In section 4.3, we use Gauss-Bonnet theorem to prove the
fundamental theorem of algebra.

In chapter 5, we find the generalizations of Gauss-Bonnet theorem and its application.

Besides, we have more topics about discrete differentiable geometry in other papers.



Chapter 2

Preliminaries

In this chapter, we introduce the Gaussian curvature in differential geometry.

Definition 2.0.1. [2] A subset S of R? is a surface if for every point p € S, there exists an
open set U in R? and an open set W in R? containing p such that SNW is homeomorphic
to U. That is,

do:U—=WnNS s.t. oisahomeomorphism.

We call o surface patches or parametrizations. A surface S should mean a smooth
surface, and a surface patch ¢ should mean a regular surface patch, i.e., o, x o, # 0.

We look at the first fundamental form. It allows us to make measurements on the
surface, for instance, lengths of curves, angles of tangent vectors, areas of regions, without

referring back to the ambient space R3 where the surface lies.

Definition 2.0.2. [2] Let v(¢) = o(u(t),v(t)) be a curve in a surface patch 0. Then the

first fundamental form of o is

ds?® = g11du® 4 2g12dudv + goodv?,



where

g11 =< Oy, 0y >,
g12 ‘=< Oy, Oy >,

G22 =< 0y, 0y >,

and <, > is an inner product. It is obvious that g5 = g1 :=< 0,0, >.

Definition 2.0.3. [2] The tangent space 7,S at a point p of a surface S is the set of

tangent vectors at p of all curves in S passing through p.

Proposition 2.0.4. [2] Let o : U — R?® be a patch of a surface S containing a point
p € S, and let (u,v) be coordinates in U. The tangent space to S at p is the vector

subspace of R spanned by the vector o, and o,.

Proposition shows that a surface patch o : U — R? containing p = o (ug, vo)

leads to a choice,
(g, vo) X 0, (uo, Vo)
|| (0, v0) X .y (t, vo)|

N(UO, U0> =

We can think of N to be a map N : o(U) — R3. Thus, each point ¢ € o(U) has a
normal vector associated to it. We say that N is a differential field of unit normal vectors
on U. A regular surface is oriented if it has a differentiable field of unit normal vectors
defined on the whole surface.

The values of N at the points of S are recorded by its Gauss map G, as pictured below.

N(u, v)




Definition 2.0.5. [2] Let S C R® be a surface with an orientation N and S? C R? be the

unit sphere

S?={(z,y,2) eR® | 2® + > +2° =1}
The map G : S — S? is called the Gauss map.

The rate of change of the tangent line to a curve 7 is the curvature of v. We may try
to measure how rapidly a surface S curves from the tangent plane 7,5 in a neighborhood
of a point p € S. This is equivalent to mearsuring the rate of change at p of a unit normal
vector N on a neighborhood of p.

From Taylor’s theorem, we induce the second fundamental form of a surface patch.

P o(u+Au, v+Av)

Definition 2.0.6. [2] Let v(t) = o(u(t),v(t)) be a unit-speed curve in a surface patch o.

Then the second fundamental form of o is

LlldUZ + 2L12dUd’U + LQQdUz,

where

Ly =<0y, N >,
Ly =< 0yp, N >,

Loy =< O'UU,N > .

It is obvious that Ly = Ly :=< 04y, N >.



Another way to investigate how much a surface curves is to look at the curvature of

various curves on the surface.

Definition 2.0.7. [2] If v(¢) = o(u(t),v(t)) is a unit-speed curve in a surface patch o

and N is the unit normal vector of o, then

V" = kN + ky(N x 7).

The scalars k, and k, are called the normal curvature and the geodesic curvature of .

Definition 2.0.8. |2| The principal curvatures of a surface patch are the roots of the
equations:
Ly Ly g1 g12

det —k =0.
Loy Lo g21  Gg22

We use some notations to simplify the equation. Let

T — g1 G2 ond ©— Ly Lo

g21  g22 Loy Lo

Since we discuss a regular surface patch, by Lagrange’s identity, we know g11go2 — ¢35 #

0. Therefore we can solve the equations to find the principal curvatures.



We introduce the Gaussian curvature of a surface.

Definition 2.0.9. [2| Let k; and ko be the principal curvature of a surface patch. Then

the Gaussian curvature of the surface patch is
K = kik,.

It is easy to get explicit formulas for the Gaussian curvature K.

Proposition 2.0.10. [2] Let o(u,v) be a surface patch with the first and the second

fundamental forms
gudu2 ~+ 2g12dudv + gggdv2 and  Lyydu® + 2Lysdudv + Losdv?,

respectively. Then
_ Ly Ly — L7,

K 2
g11922 — 912

Proof. By Definition [2.0.8], we have

(911922 - 9%2)152 — (L11992 — 2L12g12 + Loogi1)k + (L11Log — L%Q) = 0.

And the Gaussian curvature is the product of roots, we are done. O



Chapter 3

Gauss-Bonnet Theorem

In this chapter, we introduce Gauss-Bonnet theorem in differential geometry. The Gauss-
Bonnet theorem is the most beautiful and profound result in theory of surfaces. It connects
the intrinsic differential geometry of a surface with its topology.

As we discuss spaces curves, we have an orthonormal basis {t,n, b} of R3. However,
when we discuss the curves on a surface, we should make use of a smooth basis {e1,e;} of
the tangent plane at each point of the surface patch, where "smooth" means that {e;, ez}
are smooth functions of the surface parameters (u,v). Moreover, we construct {e;,es}
by applying the Gram-Schmidt process to the basis {0,,0,} of the tangent plane. Then
{e1,e2, N} is a right-handed orthonormal basis on a surface, and N is the standard unit

normal of the surface patch o.

3.1 The Local Gauss-Bonnet Theorem

The simpler version of the Gauss-Bonnet theorem involves simple closed curves on a

surface. To prove the theorem, we may need some lemmas and propositions.

Lemma 3.1.1. [2] For every vector a, b, ¢, and d € R?
(axb)-(ecxd)=(a-c)(b-d)—(a-d)(b-c).

Proof. We can easily check the result. O]



Lemma 3.1.2. [2]/ N is a unit normal vector of a surface patch, then

(Ny x N,)-(e1 x e3) = (N, - e1)(N, - ea) — (N, - e2) (N, - e7).

Proof. From Lemma we quickly get the result. m

Proposition 3.1.3. [2] Let N be a unit normal vector of a surface patch o. Then

N, =ao, +bo, and N, = co,+ do,, (3.1.1)
where
1
ac | | gu g Ly Ly _ gl (3.1.2)
b d 921 g22 Loy Lo

Proof. Since N is a unit vector, N, and N, are perpendicular to N. Therefore, N, and

N, are linear combinations of ¢, and o,. So, we can suppose

N, =ao, +bo, and N, =co,+ do,.

Moreover, o, and o, are tangent vectors to the surface patch, then

N:-g,=0 and N-g,=0.

Differentiating the equation with respect to v and v gives

(N : Ju)u = Nu Oy = -N- Ouu = _L117
(N : Uu)v = Nv * Oy = —-N- Ouy = _L127
(N : U’U)u = Nu 0y = —-N- Opy = _L127

(N : UU)U = N,-0,=—-N-0,, = —Lg.

10



Taking the dot product of each of the equations in (3.1.1) with o, and o,, we have

—Ly1 = agn + bgra,

—L12 = agia2 + bgoaa,

|
h
X

I

cg1 + dgia,

—Lyy = cgi2 + dgao.

Thus
Lyy Lyo _ g11 912 a ¢
Loy Lo 921 G22 b d
and then the equation (3.1.2)) is proved. O

In the natation of the proof of Proposition we have

Lemma 3.1.4. [2] Let N be a unit normal vector of a surface patch o of the surface S

and K be the Gaussian curvature of o. Then

N, x N, =Ko, X g,.

Proof. The Gauss map G : S — S? is defined by

G(o(u,v)) = N(u,v).

Form the equations (3.1.1)) and (3.1.2)), we see that

N, x N, = (ad — bc) oy X 0,
= det(—V'®) 0, x 0,

= Ko, X 0,.

This proves the lemma. O]

11



Lemma 3.1.5. [2] {e|, e, N} is an orthonormal basis of R® and K is the Gaussian

curvature of a surface patch o. Then

(e1)u- (€2)y — (€e1)y - (€2)u = Kl[ow X 0,

Proof. Since e; and e, are unit vectors, (e1), and (e;), are perpendicular to e;. Similarly,

(e3), and (ey), are perpendicular to e;. Thus,

(el)u = 061 “+ aeq + bN,
(e1)y, = 0ey + ces + dN,
(eg)u = a’e1 + 062 + b,N,

(eg)v = c’e1 + 062 + d,N,

for some scalars a, b, ¢, d,a’, V', ¢, d which depend on u and v. Moreover, by differentiating

the equation e; - e; = 0 with respect to u and v, we see that

(€1)y-€2+e;-(e), =0,

(el)y ey +eq - (e2)v = 0.

It implies that a = —a’ and ¢ = —¢/, thus

(1), = Oe; + aey + DN,
(e1)y, = 0e; + ces + dIN,
(eg)u = —ae; + 062 + b/N,

(€3), = —ce; + Oey + d'N.

We compute

(e1)y - (€2), — (€1)y - (€2), = bd — ¥'d

= [(e1)u - NJ[(e2). - N] — [(e2)u - N][(e1), - NJ.

12



By differentiating the equations e; - N = 0 and e, - N = 0 with respect to v and v, we

know that
(e1>u N = —€1 Nu7
(el)v N = —€; Nm
(eQ)u N = —€9 Nu>
(eg)v . N = —€9 NU
Thus

(el)u ’ (92)11 - (el)v ’ (e2)u = (_el ' Nu)(_e2 ’ Nv) - (_eQ ’ NU)(_el ’ Nv)'
By Lemma and Lemma we get

(el)u : (eQ)v - (el)v : (e2)u - (Kau X O_v) : (el X 62)
= (Ko, X 0,)-N

= Kl|ow X o,]|.

This completes the proof. n

We can now state the first version of the Gauss-Bonnet Theorem.

Theorem 3.1.6. [2/ (The Gauss-Bonnet Theorem for Simple Closed Curve). Let S be
an oriented reqular surface in R®. Let o : U C R? — S be a surface patch of S such that
o(U) is simply connected. Let v : R — S be a unit-speed, simple, closed and positively

oriented curve on S with length (7). Then

£()
/ kyds = 21 — / KdA.
0 int(y)

Proof. Choose a right-handed orthonormal basis {e;, ey, N} at each point of the surface
patch o which we obtained by applying the Gram-Schmidt process on the basis {0y, 0, }.

Along the curve v : R — o(U), let 6 : R — R be the angle between the unit vector e;(s)

13



and 7/(s) at the same point. That is,

7' (s) = cosB(s)ei(s) + sinH(s)ez(s).

Then,

cosy —sing cosB(s) —sinf(s)

siny  cosj sin 6(s) cos f(s)

= —sinf(s)ei(s) + cosO(s)es(s).
And for the second derivative v we have
7" = —6'sin fe; + cos fe] + 6’ cos fey + sin fe.

So the geodesic curvature satisfies

kg:”Y”'(NX’Y)

— 0/ — (e - €))sin” 6 + (¢} - e2) cos”

0 — e - €. (3.1.3)

14



we integrate the geodesic curvature k, over one period,

1769 £(v) £(7)
/ kyds = / 0'ds — / e - e ds.
0 0 0

Let 7 =0 lov:R — U be entirely contained in the simply connected region U. The

curve 7 is simple, closed and positively oriented. Then

£(7) £(v)
/0 ei(s) - ey(s)ds = /0 er - [u'(ez), +v'(es),]ds

= /e1 . (eg)u du +e- (eg)v dv.

s

By Green’s theorem and Lemma [3.1.5

/Oe('y) ei(s) - ey(s)ds = //mt(ﬂ){[el (€2)u]u — [e1 - (€2)u]y bludy
- //W(ﬂ)“el)“ “(e2)y — (e1)y - (e2)u fdudv

= / K||oy x oy||dudv
int(m)

= / KdA.
int(y)

Consider

/ s / = 0(¢(7)) — 6(0).

When o(U) is simple connected, i.e., o(U) can be continuously deformed to a point. As
we shrink the curve to a point, e; becomes almost constant along the curve, but tangent

vector must make one full rotation. Therefore,

£(v)
/ 0'ds = 2m.
0

£()
/ kyds = 2m — / KdA.
0 int(y)

This proves the statement. [

Hence

15



We should begin the details of a local version of the Gauss Bonnet theorem. We need
a few definitions. Let S be a regular surface in R3, and ~ : [0,1] — S be a simple, closed,

and piecewise regular curve. That is,

2. For all tl,tg € [O, l], if tl # tQ, then ’}/(tl) # ’Y(tg)

3. There exists a subdivision

O=to<t1 <---<t,=1

of [0,1] such that v is differentiable and regular on each of the intervals (¢;_1,¢;) for

1=1,2,...,n.

Moreover, the one-sided derivatives of v at the endpoints of each subinterval

£) — (t;
) — o 20 =20)
tot; =1
t) _ ’Y<t1)
“(t) = tim
V() v a—
exist, are non-zero and not parallel. The points (1), v(t2),...,7(t,) are called the ver-

tices of the curve ~.
Let 6F be the angle between 4*(t;) and e;. Typically, ¢; = ;" — 6, (see the picture
below) is called the exterior angle at the vertex y(¢;) from 4~ (¢;) to 47 (¢;), and «; = m—¢;

is called the interior angle at the vertex ~(¢;).

16



The next result generalizes Theorem [3.1.6]

Theorem 3.1.7. [2/ (The Local Gauss-Bonnet Theorem). Suppose R is a simply con-
nected region with simple, closed, piecewise regular, and positively oriented boundary in
an oriented reqular surface S. If v = OR with length ((~y) has exterior angles €; at the

vertices ¥(s;), 1 = 1,2,...,n, then

kds+//KdA+ € = 2m.
/6R ! R ;

Note, as pictured above, that we measure exterior angles so that |¢;| < 7 for all i.

Proof. Tf OR is smooth, then from our easier discussion we infer that

£(v)
/ kqds + / KdA =27 = 0'ds.
0 nt(vy) OR

But OR is piecewise smooth, then our goal is to prove that

n

()
/ 0'ds =21 — ZQ‘ (3.1.4)
0

=1

To establish the equation (3.1.4]), we image "smoothing" each vertex of v as shown in

the following diagram.

If the "smoothed" curve 7 is smooth, then

‘)
/ 0 ds =2,
0

17



where 6 is the angle between the unit tangent vector e, and 7' (s) at the same point. Since

~v and 7 are the same except near the vertices of v, the difference is

«) _ o) n s
/ eds—/ G’ds—Z(/ eds—/ Q’ds).
0 0 i=1 Si—1 Si—1

K3

Consider the situation, near v(s;), the picture is

i.e. v and 7 agree except when s belongs to a small interval (s; — ¢, s; +6), for some § > 0,

so the contribution from the 7th vertex is

;40 - S; 8;+0
/ 0ds — (/ & ds + / 9’ds>
$;—0 8;—0 Si

i i

= 0(s;+6) —0(s; — ) — (0(s;) — O(s; — 6) 4+ 0(s; + ) — 0(s;)).

As ¢ | 0, the first integral is the angle between 47 (s;) and 5~ (s;), i.e., €. On the
other hand, since 7(s) is smooth on each interval (s; — 0, s;) and (s;, s; + 9), the last two

integrals become zero when ¢ | 0. So

«“) () n
/ Hds—/ 0'ds =) €.
0 0

=1

This completes the proof. O

18



3.2 The Global Gauss-Bonnet Theorem

To globalize the Gauss-Bonnet theorem, we need further topological preliminaries.
Let S be a regular surface. A region R C S is said to be regular if R is compact and
its boundary OR is the union of a finite number of simple closed piecewise regular curves

that do not intersect to each other. The region in Figure [3.2.1]is not regular.

Figure 3.2.1: The situation is not allowed.

For convenience, we should consider a compact surface as a regular region, and its
boundary is empty.
A simple region which has only three vertices with external angles o; # 0, i = 1,2, 3,

is called a triangle.

Definition 3.2.1. [I2] A triangulation of a regular region R C S is a finite family ¥ of

triangles T;, ¢ = 1,2, ..., n, such that

2. I T,NT; # 0, then T; NTj is either a common edge of T; and 7); or a common vertex
of T; and Tj.

Can every regular region of a regular surface be triangulated? The next theorem tells

us the answer.

Theorem 3.2.2. [12] Every regular region of a regular surface admits a triangulation.

19



This proof was first proven in 1924 by Tibor Radé. His proof is provided rigorously in
Chapter 1 of the text [10] by Ahlfors and Sario, and a relatively shorter proof is given in
Doyle and Moran [14]. We will continue to use the fact to prove the global Gauss-Bonnet
Theorem.

Given a triangulation T of a regular region R C S of a surface S, we should consider
the relation of the number of vertices, the number of edges, and the number of faces of

the triangulation.

Definition 3.2.3. [I12] The Euler characteristic x(S) of a triangulation of a compact
surface S' is

X(S)=V—-E+F,

where V, E, and F' are the number of vertices, edges, and faces respectively of the

triangulation.

Figure 3.2.2: A triangulation on a regular region R.

We have proven the local case of this theorem, and the global theorem tells us similar

information. We prove this generalization by using the local theorem in each triangular

20



region of our triangulation for the given surface. The beautiful result to which we have

been headed is now the following.

Theorem 3.2.4. [I (The Global Gauss-Bonnet Theorem). Let R C S be a regular
region of an oriented reqular surface S with simple, closed, piecewise regular and positively

oriented boundary OR. If ey, k = 1,2,...,p are exterior angles of OR, then

P
/ kgds+// KdA+Zek = 2mx(R).
OR R P

Proof. Since every regular region of a regular surface admits a triangulation. Let T be a
triangulation of R such that every triangular region 7; in ¥ is contained in a coordinate
neighborhood of one of a family of patches (see Figure [3.2.2)).

We give the position orientation to each triangular region 7; € T. In this way, adjacent

triangular region give opposite orientations to their common edge, as pictured below.

Suppose ¥ = {T11,T5,...,Tr} is a triangulation of the region region R. We obverse

//RKdA:ZZ;//TinA

F
kydA = / kyds.
/c’)R ? ; oT; !

and

21



Let €5, j = 1,2,3, denote the exterior angles of the triangle 7;. Then applying the

local Gauss-Bonnet theorem to 7T}, we have

3
/ kyds + // KdA+) e =2r. (3.2.1)
aT; T; 1

The equation (3.2.1)) can be written as

3
/ kyds + // KdA=-m+) oy,
oT; T; j=1

where o;;, 7 = 1,2, 3, is the interior angles of 7;.

We go on the process to every triangular region in ¥ and add up the result. Then

F3

/ kgds + // KdA = —7F + Z Qg (322)
OR R

ij=1

F3 . . .
where ;% «;; is the sum of all interior angles.

Suppose

V. = number of exterior vertices of T,
V; = number of internal vertices of T,
E. = number of exterior vertices of ¥,

E; = number of internal vertices of .

Moreover, the angles around each internal vertex add up to 27 (see Figure [3.2.2)); hence
the sum of all internal interior angles is 27V;. A similar calculation computes the sum of

the external interior angles, and so

F3 p
Z Q5 = 271"/2 —|—7T‘/e — ZGk.
k=1

ij=1
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Thus the equation (3.2.2)) can be written as

P
/ kqds + // KdA + Zek = —mF + 27V, + 7V.. (3.2.3)
R R P

We still need some relations
Ve=E., V=V.+V, E=FE+FL.
Furthermore, by mathematical induction,
3F =2FE; + E..

Thus the equation (3.2.3) can be written as

p
/ k‘gds—i-//KdA+ch:27rF—37TF+27TVi+7TV€
OR R =1

=2nF —n(2E; + E.) + 27V, + 7V,
=2rF - 27K, — 7wk, + 27V, 4+ 27V, — 7V,
=2V —2nE + 27 F

= 2mx(R)

which is exactly what we wanted to prove. O]
We now derive some conclusions:

Corollary 3.2.5. [18] The Euler characteristic x(R) does not depend on the triangulation

T of a reqular region R of an oriented surface S.

Proof. The left-hand side of the equality in Theorem has nothing whatsoever to do

with the triangulation. O

It is therefore legitimate that the Euler characteristic has no reference to the trian-

gulation. It is proved in a course in algebraic topology that the Euler characteristic is a
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"topological invariant". In other words, if we deform the surface R in a bijective, contin-
uous manner (so as to obtain a homeomorphic surface), the Euler characteristic does not

change. We therefore deduce:

Corollary 3.2.6. [18/ The quantity

P
kds—i—//KdA—i— €
/81-2 ! R ; *

s a topological invariant, i.e., does not change as we deform the surface S.

By taking into account that a closed surface can be considered as a region without

boundary, we obtain

Corollary 3.2.7. [12] Let S be an oriented compact surface, then

//S KdA = 2my(S).
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3.3 The Discrete Gauss-Bonnet Theorem

In this section, we are interested in the discrete curvatures related to the integral Gaussian
curvature. Before discussing it, we have some definitions.

The Euler characteristic is obtained by counting vertices, edges, and faces, but it
applies to structure much more general than polyhedra. We will focus on the notation of

a cell complex.

Definition 3.3.1. [I7] Cells are defined to be those topological objects whose interiors
are homeomorphic to disks of some dimension. Looking at the first few dimensions we

obtain:

0-cell (vertex) | point

1-cell (edge) | interior homeomorphic to an open interval

2-cell (face) interior homeomorphic to an open disk in R?

A cell complex is a union of finitely many O-cells, 1-cells, and 2-cells so that the
interior of the cells are pairwise disjoint and the boundary of each cell is the union of

other lower-dimensional cells.

Definition 3.3.2. [17] If the cell complex is homeomorphic to a surface S, we say it is a

cell decomposition of S.

We continue our study of some special types of cell complexes: regular and b-valent.

The valency of a vertex is simply the number of edges emanating from it.

Definition 3.3.3. [17] A regular complex on a surface S is a cell decomposition of S

where
1. Each face has the same number of edges a with a > 3.
2. Each vertex has the same valency b with b > 3.
3. Two faces meet along a single edge, at a single vertex, or not at all.

4. No face meets itself.
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We denote a regular complex on S that has all faces a-sided polygons and all vertices
of valency b by (a,b)S.

Our task is to determine all possible regular complexes of a given surface S. The key
is the following:

2F =aF and 2F =0bV.

Since each face has a edges, this gives aF'. We note that each edge bounds precisely
two faces, so we have counted each edge exactly twice. Hence, aF' = 2F.

The second equation is similar. Since each vertex has b edges, this counting gives a
total of bV edges. Noticing that each edge has exactly two vertex ends, we have bV = 2F.

Therefore, the Euler characteristic x(S) can be denoted by

where a,b € N and a,b > 3.

Theorem 3.3.4. [10] All Platonic solids—the tetrahedron, cube, octahedron, dodecahe-

dron, and icosahedron—are the only regular complexes of S>.

“| Qctahedron

Tetrahedron

Icosahedron Dodecahedron

Figure 3.3.1: The Platonic solids give regular complexes of the sphere.
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Proof. Since x(S5?%) = 2, then

1 1 1
2=2F|l-+-—-—=], a,beN,a,b>3.
a b 2
It implies that
Lol beNab>3 (33.1)
i U ,a,b> 3. 3.

We will analyze each possible case separately:

Casel a = 3 (faces are triangles).

From the equation ({3.3.1]), we know

1 < 1 < 1
6 b~ 3
The only possibilities are b = 3,4, or 5.
(1) fb=3,then2=2E(1+1—1). S0 E=6, F =22 =4 and V =28 = 4. This is
the tetrahedron (3,3)S2.
(2) Ifb=4,then 2=2E(3+1+—13). So E=12, F =22 =8 and V = 2% = 6. This
is the octahedron (3,4)S2.
(3) If b=5, then 2=2E(3 ++ —1). So E =30, F = 22 =20, and V = 22 = 12. This
is the icosahedron (3,5)52.
Case2 a = 4 (faces are squares).
From the equation ({3.3.1]), we know
1 - 1 < 1
4 b~ 3

The only possibility is b=3. If b =3, then 2=2E(X +1 —1). So E =12, F = 2£ =,
and V = 2E = 8. This is the cube (4,3)5

Case3 a = 5 (faces are pentagons).
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From the equation ({3.3.1]), we know

[a—y
(@n)
@‘I»—t
VA
wl»—t

The only possibility is b= 3. If b = 3, then 2 =2E(+ 4+ £ — 3). So E =30, F = 2£ =12,

L
5
and V = 2£ = 20. This is the dodecahedron (5, 3)5?.

Case4 a = 6 (faces are hexagons or bigger).

From the equation ({3.3.1]), we know

S
W

This can not happen.

Hence there are only five solutions. O]

What are the regular complexes on the torus 7 7 We know x(7) = 0. A similar

discuss is the following:

1 1 1
T)=0=2E|—-4+—+-—=

a

= (a—2)(b—2) =4,

where a,b € N, a,b > 3.
There are only three possibilities, they are (3,6)7T, (4,4)T, and (6,3)7T.
We begin the study of polyhedral surfaces with one of the most important results: the

Gauss-Bonnet theorem. Here is a lemma which will prove useful.

Lemma 3.3.5. [I5] Every simplicial polyhedron with n vertices has 3n — 6 edges and
2n — 4 faces. More generally, this holds for every triangulated surface homeomorphic to

a sphere S2.

Proof. By Theorem [3.2.2 we suppose the simplicial polyhedron has F' faces. Since

2F = 3F.
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Then the number of edges is %F, and by Euler’s formula
2 3
X(S):n—§F+F:2.
It implies
3
F=2n—-4 and E:§F:3n—6.
This lemma is proved. O
We now define the discrete Gaussian curvature of a convex polyhedron P.
Definition 3.3.6. [I5] Let P C R® be a convex polyhedron with the set of vertices
X ={v1,v2,...,v,}. Denote by a; = a(v;) the sum of the face angles around v; and let
w; = 2T — oy
be the Gaussian curvature of v;. The sum of Gaussian curvatures at all vertices is called
the total curvature of the polyhedron.
Theorem 3.3.7. [IJ] (The Discrete Gauss-Bonnet Theorem). Let wy, ws,...,w, be the
Gaussian curvatures of vertices of a convex polyhedron P C R3. Then

w1+w2—|—---+wn:47r.

Proof. Suppose the polyhedron P has n vertices, then we triangulate the faces of P. By
Lemma the resulting triangulation has 2n — 4 faces. Then, the total sum of face
angle A = (2n — 4)m. We conclude:

wy +wy + -+ w, =2mn — A=4dnr

which finishes the proof of the discrete Gauss-Bonnet theorem. O

We try to generalize the Theorem [3.3.7] Consider the situation that we triangulate

on different compact surfaces.

29



surface S | x(S) | vertex | edge face total Gaussian curvature
S? 2 n 3n—6 2n — 4 47

T 0 n 3n 2n 0

T, -2 n 3n + 6 2n +4 —47

T, 2—2g|n 3n+6(g—1)|2n+4(g—1) | —4dn(g—1)

We define the genus of an oriented surface to be the number of handles we add to the

sphere to get the surface. So if the surface S =T,

, the genus is g. Moreover, the table

above tells us the discrete total curvature on a different compact surface is the same as

the smooth total curvature on it.
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Chapter 4

The Applications of Gauss-Bonnet

Theorem

In this chapter, we will present some applications of the Gauss-Bonnet theorem below:
the Poincaré-Hopf index theorem, the hairy ball theorem and the fundamental theorem

of algebra.

4.1 The Poincaré-Hopf Index Theorem

Before introducing the statement of the Poincaré-Hopf index theorem, we need some

definitions related to vector fields are provided.

Definition 4.1.1. [I2] A tangent vector field V on a surface S is a correspondence which
assigns to each p € S a vector V(p) € T,,S. The tangent vector field V is differentiable at

p € S if, for some parametrization o(u,v) at p, the functions a(u,v) and §(u,v) given by
V(o(u,v)) = alu,v)o,(u,v) + B(u, v)o,(u,v)

are differentiable functions at p.

Definition 4.1.2. [12] If V is a differentiable tangent vector field on a surface S, a point

p € S at which V = 0 is called a singular point of V.
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By the existence and uniqueness theorem of differentiable equations, if p € S, there is

a unique 7(¢) on S such that v/ =V and ~(0) = p; v is called an integral curve on V.

Definition 4.1.3. [12] A singular point p is said to be isolated if there exists an open set

containing the point p that contains no other singular points.
Then we define the index of V at p.

Definition 4.1.4. [2] The index of the singular point p of the tangent vector field V is

1 £(v) di
= “Ca
wp) = o /0 75 s,

where 7(s) is any unit-speed, simple, closed, and positively oriented curve of length ¢(~)
in S with p € int(y), and v (s) is the angle between a nowhere vanishing differentiable

tangent vector field £ on S and V at the point 7(s).
From Definition [4.1.4} it is clear that u(p) is an integer.

Example 4.1.5. We show some examples of indices of the tangent vector fields in the xy
plane which have (0,0) as singular point. The curves that appear in the drawings are the

trajectories of the tangent vector fields.
(1) V(z,y) = (.9): p=+1
(2) V(z,y) = (—z,—y); p=+1
(3) V(z,y) = (y,—x); p=+1
(4) V(z,y) = (z,—y); p=—1

The singular point in examples (1), (2), (3), and (4) is called a course, sink, center,

and saddle, respectively.
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PARNEN

WA/

Figure 4.1.1: (a) Course, Sink (b) Center, Saddle

(b)

Let us verify the index in case (4). Choose the "reference" tangent vector field to be

the constant vector field £ = (1,0). Then, the angle 1 is given by

: vV T Y
(ot ®) = v = <¢xz+y2’ WW) |

Taking v(s) = (cos s,sin s) to be the unit circle, at v(s) the angle 1 satisfies

(cos,sinyh) = (cos s, —sin s).
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So 1 = 2w — s, and hence

1 [ d
1(0,0) = %/0 %(QW —s)ds = —1.

Similarly, in case (1), (2), and (3), ¥ = m, ¥ = 7+ s, and P = 57” + s respectively.

Hence, we get the results that we want.

Now, let S C R? be an oriented, compact surface and V is a differentiable tangent
vector field with only isolated singular points. We remark that they are finite in number.
Otherwise, if there are infinitely many singular points, then the Bolzano-Weierstrass the-
orem implies that they have a limit point in S. By continuity of the tangent vector field,

this point is also a singular point, and hence the singular point is not isolated.

Theorem 4.1.6. [2/ (The Poincaré-Hopf Index Theorem). Let V be a differentiable
tangent vector field on a compact surface S which has only finitely many isolated singular

points pi,pPa, ..., Pn. LThen

> ulpi) = x(9),
i=1
where x(S) is the Euler characteristic of S.

Proof. Let 7; be a unit-speed, simple, closed, and positively oriented curve contained in a
patch o; of S with p; € int(7;). Since p; is isolated, then we assume that the ~; are chosen

so small that their interiors are disjoint. Let
S =int(y1) Uint(yp) U--- Uint(y,) and Sy =S5\ 5.

By Theorem we can choose a triangulation T of S5. Note that the edges of some
of these triangular region I'; € T will be segments of the curve v; (see the picture below,
in which the arrows indicate the sense of the positive orientation). Moreover, when these

triangular regions are positively oriented, we obverse that

1. the induced orientation of the ~; is opposite to their positive orientation.
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2. any common edge of the two triangular regions I'; appears twice with opposite

orientations.

From Corollary we know

//SKdA:i//mt( ,)KdAJF/SQ KdA = x(8). (4.1.1)

On S, because of V # 0, we define

v
= ——, wluy, and |uf =1,

then {uj,us} is an orthonormal basis of the tangent plane of S at each point. Arguing

as in the proof of Theorem [3.1.6) we get

£(Ty) n (i)
// KdA:Z/ ul-u’QdSZZ—/ u; - uyds (4.1.2)

On Sy, for the sake of V = 0 at p;, we choose an orthonormal basis {w;, wa} of the

tangent plane of S on each patch o;. By the proof of Theorem [3.1.6] we get
n £(v3)
/ KdA:Z/ wi - Whds (4.1.3)
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Combining the equations (4.1.1]), (4.1.2), and (4.1.3)), we see that

n

£(7i)
Z/ (w1 -wh —uy -us)ds = 2mx(S). (4.1.4)
0

=1

However, from the proof of Theorem

wy-wy=¢ —k, and u;-u,=0 -k,

where k, is the geodesic curvature of 7;, ¢ is the angles between w; and +' at the same
point, and @ is the angles between u; and +' at the same point. Then ¢ = ¢ — 6 is the
angle between w; and u;. That is, the angle is between the "reference" tangent vector

field £ on o; and V. Hence the equation (4.1.4) can be written as

n £(i)
Z/ %ds = 2mx(9),
0

, ds
=1
as we want. O

This is a remarkable result. It implies that Y " | u(p;) does not depend on V but
only on the topology of S. For instance, in any surface homeomorphic to a sphere S2,
all tangent vector fields with isolated singular points must have the sum of their indices

equal to 2.
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4.2 The Hairy Ball Theorem

An interesting application of the Poincaré-Hopf index theorem which finds application in

meteorology is the hairy ball theorem.

Theorem 4.2.1. [I0/ (The Hairy Ball Theorem). There does not exist a non-vanishing
continuous tangent vector filed V on a sphere S*. Or, you can not comb a hairy ball

straight.

Proof. Goal: There is at least one isolated singular point p such that V(p) = 0.

Suppose to the contrary! Then there exists a tangent vector field F on S? such that F
has no isolated singular points, the sum of indices is zero. However, by the Poincaré-Hopf
index theorem, we know the sum of the indices on S? equal to 2. This is a contradiction.

Hence, we can not comb a hairy ball straight. O]
We now give some examples of vector fields on surfaces.

Example 4.2.2. A tangent vector field on a sphere S? with 1 source and 1 sink: y = 2

A tangent vector field on the sphere S? is obtained by parametrizing the meridian
of 5% and defining V(p) as the velocity vector of the meridian through p. We know the

parametrization of S? cam be denoted by

o(0,¢) = (cos b cos p, cosfsin g, sin ),
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where —5 <0 < 7 and 0 < p < 27,

The meridians of S? is that ¢ is fixed, therefore

09(0, @) = (—sin b cos ¢, — sin O sin @, cos ).

Let
x
T = cosf cosp = cosp = ,
cos 6
y = cosfsinp = sinp = ,
cosf
z =sin6,
where (z,y,z) € 5%, and we have
cosf =vV1—22 (- —g <f< g),
- —xz
—sinfcos p = ——,
4 V1— 22
. . —Yyz
—sinfsinp =

V=22
So the velocity of the meridian is

—xz —Yz

V1—22"1=22

F(x,y,z2) = ( V1— 22) . Y(z,y,2) € S*\ (0,0,£1).

In order to obtain a tangent vector field defined in the whole sphere, we define

0 ) (a:,y,z) = <O707 1)
V(m,y,z) - F(ZE,y,Z) ’ (l‘,y,Z) S 82 \ (Oa 07:t1)
0 ) (xawa) - (0707 _1)

Indeed, there exists two isolated singular point with the tangent vector field on S2.
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Example 4.2.3. We construct a nowhere zero tangent vector filed V on a torus T: x =0

A similar procedure with Example the nowhere zero tangent vector field V can

be constructed. The parametrization of T" can be denoted by

a(0,¢) = ((a+ bcosh) cos p, (a+ bcosh)sin p, bsin ),

where a > b and 0 < 0, ¢ < 27.

The meridians of 7" is that ¢ is fixed, therefore

o9(0, ) = (—bsinf cos p, —bsinfsin p, bcos ).

Let

x = (a+bcosh)cosp = cosp = (a—l—;m’
y=(a+bcosf)sinyp = sinp = (a—i—+cos€)’

2z ="bsinf = sinf = %,
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where (z,y,z) € T, and we have

bcosl = £Vb2 — 22,

—bsinfcosp = —zcosp =

a:l:\/b2 — 22
ai\/b2 — 22

—bsinfsinp = —zsinp =

Since a > b, a — v/b?> — 22 > 0. Then we define the tangent vector field

_ d P2 _ o2
V(x’%z)_(ai\/iﬁ 22 aj:\/b2 EV z)

Indeed, there exists no isolated singular point with tangent vector field on T

Example 4.2.4. Here is another tangent vector field on a torus 7: y =0

From Example |4.1.5 the level sets of the height function on this upright torus give a
tangent vector field with two saddles and two centers. Indeed, the sum of the indices of
a differentiable vector field V with isolated singular points on a torus 7' is equal to the

Euler characteristic of T
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4.3 The Fundamental Theorem of Algebra

In this section, we need some definitions and theorems in Riemannian geometry and

complex analysis to prove the fundamental theorem of algebra.

Definition 4.3.1. [I3] A differentiable manifold of dimension n is a set M and a family

of injective mappings x, : U, C R" — M of open sets U, of R™ into M such that:

L | Jxa(U) = M.

2. For any pair « and 8 with x,(U,) Nx5(Uz) = W # ), the sets x_* (W) and Xgl(W)

are open sets in R™ and the mappings xgl o X, are differentiable.

3. The family {(U,,x,)} is maximal relative to the conditions 1 and 2.

The pair (U,,x,) (or the mapping x,) with p € x,(U,) is called a parametrization
of M at p. A 2-manifold is often called a surface. We would like to be able to measure
the lengths of and the angles between tangent vectors. In a vector space such a notion of

measurement is usually given by a scalar product. We thus define

Definition 4.3.2. [I3] A Riemannian metric (or Riemannian structure) on a differentiable
manifold M is a correspondence which associates to each point p of M an inner product

<, >, on the tangent space T,M, which varies differentiablely in the following sense : If

x: U CR" — M is a system of coordinates around p with x(z1,zs,...,2,) = q € x(U)
and a‘zi (q) = dx4(0,...,1,...,0), then
0 0
< a.. >q= Gij N
oz, (q), o, (@) >¢= gij(z1 )

is a differentiable function on U.

We still need a little definitions and theorems in complex analysis, and will not prove
he following theorems in this pater. The details of the proof can be found in the books

4] and [8].

Definition 4.3.3. [4] The complex function f is analytic at the point zy, provided there

exists € > 0 such that f'(z) exists for all z € B.(zy), where B.(z) is a neighborhood of
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zo. In other words, f must be differentiable not only at 2y, but also at all points in some

¢ neighborhood of zj.

If f is analytic at each point in the region R, then we say that f is analytic on R. Is
there some criterion that we can use to determine whether f is differentiable? Theorem

helps us obtain an important result.

Theorem 4.3.4. [/ (Cauchy-Riemann Equations). Suppose that

f(z) = f(z +iy) = u(z,y) +iv(z,y)

18 differentiable at the point zy = xo + iyg. Then the partial derivatives of u and v exist

at the point xo + iyo = (zo,yo), and

f/(Z) - um(x07y0) +ivm(x07y0) (431)

I'(2) = vy(zo, yo) — iuy (o, Yo). (4.3.2)

Equating the real and imaginary parts of the equations and gives

uac(x07 yO) = Uy(IO» yO) and uy(x()a yO) = _Uac(x(b ?JO) (433)

The equations are the Cauchy-Riemann equations.

However, the mere satisfaction of the Cauchy-Riemann equations is not sufficient to
guarantee the differentiability of a function. The following theorem gives the conditions
that guarantee the differentiability of f at 2z, so we can use the equation and
to compute f’(zp).

Theorem 4.3.5. [J] (Cauchy-Riemann Conditions for Differentiability). Let f(z) =
u(z,y) + iv(z,y) be a continuous function that is defined in some neighborhood of the
point zo = o + iyo. If all the partial deriatives u,, u,, vy, and v, are continuous
at the point (xo,yo) and if the Cauchy-Riemann equations u,(xo,yo) = vy(zo,y0) and

uy (To,Yo) = —vz(T0, Yo) hold at (x0,y0), then f is differentiable at 2y, and the derivative

f'(z0) can be computed with either the equation (4.3.1) or (4.3.4).
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Using z = re? in the expression of a complex function f may be convenient. It gives

us the polar representation

f(2) = f(re®) = u(r,0) + iv(r,6).

We can now restate the Theorem using polar coordinates.

Theorem 4.3.6. [/ Let f(z) = u(r,0) +iv(r,0) be a continuous function that is defined

in some neighborhood of the point zy = 1.

If all the partial derivatives u,, ug, vy,
and vy are continuous at the point (ro,00) and if the polar form of the Cauchy-Riemann
equations,

rou, (1o, 00) = ve(ro,00) and  we(ro, o) = —rov.(ro, bp). (4.3.4)
holds, then f s differentiable at z.

We now introduce harmonic functions. Let ¢(z,y) be a real-valued function of the
two real variables x and y defined on a connected open region D. The partial differential

equation
0? 0?
_¢ _|_ _¢ — 0'
ox?  0y?

is called as Laplace’s equation. If ¢, ¢,, ¢y, Orzs Guys Pya, and ¢y, are all continuous, and

if ¢(z,y) satisfy Laplace’s equation, then ¢(z,y) is harmonic on D. We begin with an

important theorem relating analytic and harmonic functions.

Theorem 4.3.7. [J] Let f(z) = u(z,y) + w(z,y) be an analytic function on a connect
open region D. Then both u and v are harmonic functions on D. In other words, the real

and 1maginary parts of an analytic function are harmonic.

Now, we return to our topics: the fundamental theorem of algebra. Here we have

stronger condition about it.

Theorem 4.3.8. [J/ (The Fundamental Theorem of Algebra). Every nonconstant poly-

nomial P(z) € Clz] has at least one complex root.
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Proof. As it is well known, the stereographic projection is a mapping 7 : S? — C =
CU{oo}. Let us take

p(z) =ap+arz+ -+ a,z"

with ag, a, # 0 and suppose that p(z) # 0 for all z € C. In addition, we set
p*<Z) =ap + ap12+ -+ aozn;

and we observe that

L p(z) =="p G)

2. . (%) = Zinp(Z)-

1
3. 20 # 0 is a root of p(z) & — is a root of p.(z).
20

Put
f(2) = p(2)p.(2),

for all z € C. Then f satisfies the functional equation

()] = ool

for all z € C\ {0}. Tt follows that there exists a Riemannian metric g on C, such that

1
= ~|dz|* forz € C
ARTTE
and
1 ~
= —— _|d(1/2)]* for ze€ C\ {0}.
9= AP for €€\ 0)

And we have Gaussian curvature (see the book [16] pp. 4)

Ky(2) = —5|(2) [ 2 log (W; ) ,

where A = 2 + 2 denotes the standard Laplace operator.
ox oy
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Consider if z = x + iy, then we have

zZ+ZzZ Z2—Z
and y =

Tr =

Use the chain rule, we get

D (DN (P F
02 \0z/) 4\0z2 0y2)’
Consider

- Ky(2) = - Mlog | £(2)])

£
— 17 (52 1osl 2

— 4% (% Re 1og(f(2)))

= %ARe log(f(2)).

By Theorem [4.3.6] we know log(f(z)) is analytic. And then from Theorem we get

Since f(z) # 0 for all z € C, then it follows that K, = 0 over all sphere S?. However,
Gauss-Bonnet theorem, when applied to any Riemannian metric g on the sphere S2,

claims that

/ K,dA, = 4r.
SQ

It is a contradiction, and hence the proof is complete. O
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Chapter 5

Conclusion

The Gauss-Bonnet theorem is probably the most beautiful and deepest theorem in the
differential geometry of surfaces. It connects the intrinsic differential geometry of a surface
with its topology.

Higher dimensional versions of the Gauss-Bonnet theorem were given, for submanifolds
of higher dimensional Euclidean space, by C. B. Allendoerfer (1940) and W. Fenchel
(1940). The first intrinsic proof of the higher dimensional Gauss-Bonnet theorem was
given by S.S. Chern (1944).

In section 3.3, we discuss the discrete Gauss-Bonnet theorem. In addition, the paper
[6], John M. Sullivan provide more topics about discrete differentiable geometry. In section
4.2, we discuss the hairy ball theorem by the application of Gauss-Bonnet theorem. In
the paper [7], John Milnor offer an analytic proof of the hairy ball theorem.

Gauss-Bonnet theorem has many applications in other fields. Moreover, it presents

the beauty of mathematics.
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