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Abstract

Due to the variaties and complexity of Options in the current market, pricing the Option
comes up to be a very difficult task. The common tactic is to discuss the pricing problem
under the framework of the phamous Black-Scholes Model (BSM). The drawback of this
model is quite evident that it does not count the possiblility on the sudden changes in the
option or stock. In this study, we also consider he Jump-Diffusion Model (JDM) right after
the discussion of the BSM model. The PDE representation of JDM is the same as BSM but
with an additional Poisson integral term to model the jump feature, which make this model
more close to the features in pricing the options.

Unlike the popular studies using the Monte-Carlo simulation method or applying the
finite difference method to solve the PDE in Black-Scholes Model, we use finite difference
method and meshfree method with four different types of radial basis functions (RBF), i.e.,
TPS, MQ, Cubic, Gaussian, to compute the numerical solution of the associated PDE for
BSM and PIDE for JDM, resepctively. Based on the numeircal experiment, the MQ and
Cubic RBFs are found to provide more accurate result. We also compare the computational
efficiency between using the finite difference method and meshfree method.

Keywords: Finite difference method, meshfree method, radial basis function, Black-Scholes

Model, Jump-Diffusion Model
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CHAPTER 1

Introduction

Black and Scholes found a close form for evaluating European call options in 1973[2].
They assumed the asset price is risk-neutral and showed that the European call options value
satisfies a lognormal diffusion partial differential equation which is now known as celebrated
Black-Scholes equation.

The meshfree method based on the radial basis function (RBF) is widely used in many
fields within this decade. It is important to choose the basis functions which are multiquadric
(MQ), Gaussian, thin-plate spline (TPS), and cubic. It can approximate well not only high
dimensional scattered datas but derivative values. Franke showed that the MQ function is
better on Accuracy, stability and efficiency in 1982[9]. In 1997 Hon and Mao solved the initial
problem with MQ function and showed that the RBF unlike the finite difference method to
construct the grids[10]. |In 1998 they compared the numerical methods for the finite element
method, the finite difference method and RBF-MQ on burger’s equations[11]. And they
showed that the numerical result of RBF-MQ is better than others. Generally the numerical
methods of pricing option are binomial tree model, the finite difference method and Monte
Carlo method. Recnet the RBF get attention on pricing options. In 1999 Hon and Mao
used the RBF-MQ to approximate the numerical value of European and American options
on Black-Scholes model and had good approximations[12]. Moreover they compared a lot of
methods of radial basis functions with MQ, Gaussian, TPS and cubic functions in 2000[13].
And they chose TPS function in order to selecting parameter.

In this thesis we show how to compute European call option prices in the Black-Scholes
model (BSM) and the Jump-Diffusion model (JDM) using Finite Difference Method (FDM)
and Radial Basis Function (RBF) interpolation techniques. Although there are many studies

on solving the BSM model since 1980 but the JDM related equations such as the Merton
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Model[18]) and the Kou Model[14, 15] have mostly been solved by FDM. In FDM, the
idea is to simply fully discretize the equations on an equidistant grid and use around the
point to be evaluated. In RBF, the idea is to random discretize the equations on a domain
and use the coefficients which are generated by the data points of radial basis function to
be approach. The evident drawback of using FDM method to solve JDM is coming up in
evaluating the integral term, which needs to use the call option prices for the asset that
are located outside the descritization domain of the asset. When using RBF methods, this
drawback is automatically solved.

The organization of this thesis is described below. In the next chapter, we introduce
the European call option exact solution of Black-Scholes model and using FDM and RBF
method to price. In Chapter 3, we show that a brief description of the PIDE of this Jump-
diffusion equation. In Chapter 4 we show our computational results of JDM by FDM and

RBF method. Finally, we give our conclusions.
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CHAPTER 2

The Numerical Solution of the BSM Equations

2.1. Derivation of the Exact Solution for Black-Scholes Equations

Suppose f.(t,S;) be the European option price, it staisfies the Black-Scholes partial dif-

ferential equation in one space dimension with terminal and boundary conditions:

dfe Ofc 1 550%fc B
ot +TSaS + 20' S 952 = cha fc = fc(Sat>7
fe(0,t) =0
. 82fc (2.1.1)
% gg2 =Y

fe(S,T) =max {S(T) — K,0}

where r is the risk-free interest rate, o is the volatility, and over the rectangle 0 < ¢t < T,
S, < 8 < Sy, with various boundary conditions on the top, bottom, and right sides of the
rectangle. The parameters r, o > 0 are arbitrary constants. The interested rectangle is

shown in Figure 2.1.

0 S, 5 S

FIGURE 2.1. Computation at domain in (S,¢) plane

We assume that X; is affected by time of the derivatives. And the strike price K at

terminal time 7" is derived as following. The payoff of the derivative X at time ¢ under the
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probability P can be described by
X, = e "TYE(Xp| F).
From the relation

DSt _ it + odi, (2.1.2)
Sy

and by [to’s formula

) 1
St _ Soe(r 50°)t+owt

or equivalently, we arrive at

Sy = Syer=30")(T—t)+owr—,

(2.1.3)
_ Ste(r—%JQ)(T—t)-&-J\/T—tN(O,l)
Hence
fo(Sut) = eTTIE (ST, T)| F)
1
— e—r(T—t)Evp(fc(Ste(r—5(72)(T—t)—‘,—zrx/T—tN(O,l)7 T) yt)
> 1 ]_ 1
— —r(T—t) S (r—50*)(T—t)+oVT—tz T —§x2d
e -(Sie , e x.
| s I T)

At terminal time the payoff is given by

XT = fC<ST, T) = maX{ST - K, 0} = (ST - K)+ (214)
and hence

fc(sty t) _ e—r(T—t)/ (Ste(r—%ﬂ)(T—t)—i-m/T—m o K)+g0(l‘)dl‘

where p(z) = \/%e_%#. Firstly, compute the payoff when Sy = K:

Ste(rféaz)(Tft)+cr\/Tft:v — K

20



that is

1 K
(r— 502)(T —t)+oVT —tr =In—

St
then
In £ —(r—10?)(T—1)
T = VTl
S et (2.1.5)

ovT—t

2 —ds.
Thus

o

fo(Sp,t) = e77T=Y ( /_ _dQ(ST — K) ' p(z)dz + /

00 —do

(Sy — K)+<p(a:)da:) .

Secondly, by definition

(s )" Sr—K, Sr>K,
T — —

0, Sr < K,
we know that when z < —dy, (Sr — K)™ = 0. Therefore

fe(Se,t) = e "I /_OO (St — K)p(x)dx

d2

_ e—r(T—t) / (Ste(’r’—%o'Z)(T—t)-‘rU\/T—t.Z . K)QO(ZL‘)CZZE

d2
_ St/ 6—%02(T—t)+0\/T—tx(p(x)dx _ Ke—r(T—t)/ o(z)dx.
—ds —d2
We can rewrite the integral term as
- — Lo (T—t)+ov/T—tx 1 —1z? _ 1 /OO —L(z—o/T—1)?
e 2 —e 2 dr = — e 2 dz
/_d2 s V2 J_d,

and by substituting the variable v = © — o/T — t with du = dz, then the above integral

becomes

-

2

0o
12T f)povTie L 1.2 1
/ e 3% (T—t)+ovVT—tx e 2 dy = e 2% du

1 / o
do V2T V2m J_q,

where dy = dy + 0v/T — t. Recapsulate these procedures give us
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< 1 1.2 < 1 1.2
fe(S,t) = St/ e 2" du — KG_T(T_t)/ e 2" dx. (2.1.6)

Denote

1 < 1
N(d) é/ \/%EZxle’ = /d \/—Q_We’ﬁx dx (2.1.7)

whose meaning is shown Figure 2.2. Therefore the payoff of the call European option is given

by
y
41 1 12
1 Yy=5-€e 2
N(d
I ; I — T
—2 —1 d 1 2
FIGURE 2.2. Normal distribution N(d)
fo(t,S)) = S;N(dy) — Ke " TN (dy) (2.1.8)
and the corresponding payoff for the put European option is then becomes
fp(t,S) = Ke " T"YN(—dy) — S,N(—d,) (2.1.9)
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Consider the following parameters:

r=0.10, o0=0.40, T =05, K =50.00,

with S, = 0 and Sy = 100.00. Let M, N be the numbers of partitions in price and time over
the rectangle 0 <t < T, S, <5 < Spy. The exact solution is plotted in Figure 2.3.

Exact solution with k=50, M=50

B0
50 -
40 .-
=
=] 'l.
B0~
= ¥
L B Tk
20+ L ““:‘::“‘ll
: Lt
.- LR
100

a0

0.5

0.3
3, stock price

0.2

t, time
FI1GURE 2.3. The exact solution of BSM
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2.2. Finite Difference Method

This section presents the finite difference idea of solving the Black-Scholes partial differ-
ential equation in one space dimension with the boundary and terminal conditions given in

the Equation (2.1.1):

2
Oc | g0 [ 12gn0Je

ot oS 2 052

:rfca fc:fc<t78)a

Let te[0, T, Sie[SL, Sul, we summarize the equations for the finite differences as following:

AS:T, Sl:SL—l-’LAS, i:O,l,"',M
At = ———, t; = jAt, j=0,1,--- N
Let fl] denote the approximation to f.(S5;,¢;), ¢ =1,2,--- ,n — 1. At the terminal condition

T,ie. j= N, fN is described by
N =max{S(T) - K,0} (2.2.1)

7

Applying the boundary condition at S =Sy (i =0) and S = Sy (i = M) to ff leads to

(S,6)=0
el .) (2.2.2)
= fi=0
. D fe
M e =0
fus = 2f0 + fir _ (2.2.3)
AS?

= fjjw = 2ﬁ4—1 - fjj\.4—2
forj=0,1,--- ,N —1
We can rewrite the PDE to be
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1
- e>f5“J + %

J  _ fJ J+1 J+1
+T(ZAS)[0fl+l2Aéfll+(1 )f2+1 fz 1]
1, —2fl+f} oL =2+ 7
+oo PTG+ (1-0) N =0

and so arrive at

[QAt(lm' — l021'2)f.j + (14 0At(0%i2 + 7‘))fJ + 0Nt (— 2m — %0222) H—l]
=[(1 - O)At(=tri+ Lo22) 7 + (1 + (1 - 0)At(—0%® — ) 7T+ (1 — 0)At(3ri + 102i) 1]

(2.2.4)
wheret=1,2,3,--- , M —1and j=0,1,--- , N,
Let
HY, = (3ri — 30%7),
HY, = (0% +7r
2= ) (2.2.5)
H3, = (—3ri — 50%°)
H;z Hfsz;z__H;,wH?;i:_H;;iv
The equation 2.2.4 can be expressed as
OALHT, Ly + (L + OAtHS) f] + 0AtHT, 1] (226)

= [(1 = O)ALH fI5 + (L (L= O)AtH, ) 7 + (1= 0)AtH 5 f1].

But when i =1

00 G — 507 + (14020 + 1) ff + 60K~ 57 — 20%) f]
[0 —e)m<—§r+§a2> S (L (1= 0) At (—0® — 1) [+ (1= 0)At(br + 30?) f1*]

25



i.e.,

[OALHT, f3 + (1 4+ 0AtH) f{ + OAtH, f3]

and for i =M — 1

[9At(%r(M “1)- %UQ(M U f 4 (L BAH G (M — 1) + ) f,_ + 6K

=[(1 = 0)At(—5r(M — 1) + 502 (M = DAL, + (L + (1 - ) At(—0? (M — 1)% - 1))

so it becomes

——=r
2

OALHT yp o flr o+ (L ONHS ) o+ OAtHT ]

(1= O)ALH y y f + (L (L= O)AtH ) f7 + (1= 0)

Putting into the matrix form

where

[ OAtHT, (14 0AtHT )

+
0 OAtHY,
0 0
0 0
0 0

Aef(j) — Al—eﬁjﬂ) +b

= fU) = AJ1 (A,

ONtHT 0

(1+0AtHS,) OAtHY,

OALHY

26

,gf(j—’—l) + b)

0 0
0 0
0

(1+6AtHS,) OAtHT,

j+1
M-1t

=[(1=O)AtH fiT + (14 (1 - 0)AtHy  f 7 + (1= 0)AtH G,

(1 - 0)AK

(2.2.7)

Sr(M = 1) = So*(M = 1)

(2.2.8)

_ i+1
AtH&M—l ﬁ]

+
OALHT

(2.2.9)

(L+0AtHS /)
(2.2.10)

r(M = 1)+ 302(M — 1)) 3]

0

0
OAtHT

3,M—1 J



[ (1-0)AtHT, (1+(1-0)AtHy)  (1-0)AtH;, 0 0

0 (1—-0)AtH, (14+(1—0)AtH5,) (1-0)AtHg, 0
0
(1-0)AtH (1+(1—-0)AtHy,) (1-0)AtHg,
0 0
0 0 (1-0)AtH1y, , (141 —-0)AtH2y, ;) (1—-0)AtH3,, ; |
(2.2.11)

(37— 30%)(0f; + (1= 0)f7")

b— (2.2.12)

(3r(M = 1) = 50*(M = 1*)(0ff + (1= 0)f™)
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Consider the same parameters for the exact one in previous section,

r=0.10, o0=040, T =0.5, K =50,

and select S;, = 0 and Sy

100. When M = 50 i.e., AS = 2, then the computation ae
result of the European call option price for various time steps is described below

For explicit method i.e., § = 0, the selction of N must be greater or equal to 164 in
order to satisfy the CFL condition for obtain stable solution. The corresponding solutions
for various N are plotted in Figure 2.4. For the implicit method # = 1 and Crank-Nicolson

method i.e., # = 0.5 with N = 160 the computational results are given in Figure 2.5 with
comparison to the exact solution and explicit method for N = 160.

Explicit with M=49, N=100

explicit with W=50, N=156

fo payoff
o

fc payoff

100

0.5
0.4 50
50 : 03
. 02
< 0.1
S, stock price 0 o

S, stock price g
t, time

N =100

explicit with M=50, N=158

t, time

N =156

explicit with M=50, N=180

T'c payoff

fc payoff

50

50
S, stock price 00

t, time

S, stock price g

N =158

1, time

N =160
F1GURE 2.4. Computation result for the explicit method
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Exact solution with M=49, N=50

N
\\‘\“t\\\“ AR
‘\‘\}“:‘\‘\\\\\
\\\\‘\“ BRARNY
‘\““‘\ “““““ N
‘\“M““}{m‘:\\t\\\“{‘\‘
T RO R

[AARLEANNY

(LELIREBERRES L LR ULRERANY

R R
N

S\
NRN

S, stock price 0 o t time

Exact Solution

Implicit with M=49, N=50

TUEIRLITSALERTVANAS
LARRS
UASRIIENSNU
\“‘\“‘{““““\‘\\\‘}{{‘\3\\\\\
SR TT ORIy -
SISAN TR ASERRNS
ELL AT AT NROSSSSa,
RIS
RSN
R
“““‘%‘““%ﬁ&“‘&““ O X
T IAASS!
‘e\‘:\\\\‘\“{“\\\

TR LU SRS

AN
PRSI
RCRE
KRS

0.5

0.2
0.1
S, stock price 0 o

t, time

Implicit method

Crank—Nicolson with M=49, N=50

\ IRVIIINON
“‘“‘&&‘“\‘\‘8&3
ALARANANEANN

SN
RNSSICRRNTY
SN
ORISR TIa
RS SS
LIET R TR
SR “\\:“‘\\\\\‘\R\\\\

13y

50"

0.2
0.1
S, stock price 0 0

t, time

Crank-Nicolson method

explicit with M=50, N=160

0.5
]

0.3
02
3, stock price oo t, time

Explicit with N = 160

FIGURE 2.5.

The result comparison for various finite difference methods,

N = 160 for implicit and Crank-Nicolson method.

Figure 2.6 shows the level curve of absolute error which is absolute difference between

exact solution and FDM for Crank-Nicolson method with M = 5,10, 25,50, 75,100 , and we

can see the selction of M must be greater or equal to 25 in order to obtain the numerical

solution with accuracy 4 x 1073,
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Ahsolute Error when M= 510, 25, 80, 75, 100
0.02 T T T T T T T T T

0.013

0.016

0.014

0.M2F

0.01

Ahzolute errar

0.003

0.00&

0.004

0.002

D 1 1 1 1 1 1 1 1 1
0 pos 01 01s 02 025 03 03 04 045 05
1, titme

FIGURE 2.6. The absolute error of Crank-Nicolson method for various M

And we discuss the root mean square error between the exact solution and FDM with
N = 25,50,75,100 and M = 5,50, 100, 150, 200, 250, 300, 350, 400, 450, 500. Obviously in

Figure 2.7, the time steps increase, the error decreases.

EMSE between exact sol and FDM

-2 T T T T T T T T T
gk 4
Ak 4
o 5 -
T3]
=
&
S ]
TFh 4
h=25
gk —— N=50 4
MN=75
— MN=100
9 T 1 1 1 1

I 1 1 1
1.5 2 24 3 34 4 4.5 & 845 B 6.5
log(h), M step (W =5 50 100 150 200 250 300 350 400 450 500 )

FIGURE 2.7. The root mean square error between the exact solution and the
Crank-Nicolson method
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2.3. The Radial Basis Function Method

The Black scholes equation for the evaluation of an call option price equation (2.1.1) is

restated here:

2
9/ + rSafc + 10252& Je

ot a5 2 052

:rfcu fC:fC(S7t)7

Four radial basis functions are used:

TPS : ¢1(S) = || — Skl *log([|S — Sk|)
MQ : 6u(8) = \/C2 + |15 — Sy
Cubic : ¢p(S) = ||S — SkHS

_ _ls=sll?
Gaussian : ¢(S) =€ 2

(2.3.1)

wherel||S — Si||is the Euclidean norm and C' is an arbitrary constant.

Figure 2.8 and 2.9 show the graphs of these four RBF’s centered at Sy, = 0, 20, 40, 60, 80, 100,

respectively.
plot MQ basis function «10° plot Cubic basis function
120 T T T T 10 T T T T T
50 at. 50 i
: : : 5,720 : : : : 5,720 :
100 e ..... ....... e _ , ............. ....... : N _ :
: : : Sk_4[| : B- Sk_4t| P Y S
: : ; 560 . : S 5,760
= = : : : : :
= : : : - - : : 2 : : : _ i
o o
= =
i o 4F
£ £
= =
3
2
1k
i i i L i o i i : i " i i i
40 &0 B0 70 B0 w0 100 o 10 20 30 40 &0 B0 70 80 @0 100
S, stock price S, stock price
MQ Cubic

F1GURE 2.8. The graph of MQ-RBF, Cubic-RBF centered at various S
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plot Gaussiarn basis function
T ] T

plot TPS basis function

phik‘ basis function

T T T T T T
5,=0
=20
3,=40
3,760
3,760

5.=100

3

i i i 1
40 a0 [=in] 70
S, stock price

Gaussian

5 w10
570
=
5,740 s
5,=80
k - 3f
=]
x}
=
=
@ 2
o
=
=
= |
0
i i K] i
60 a0 100 0 10

1 ; i i i i i
20 30 40 a0 [=in] 70 80 a0
S, stock price

100

TPS

F1GURE 2.9. The graph of Gaussian-RBF, TPS-RBF centered at various S

We choose data points £ = {&,&1,82,83, -

{Sg, 51 SL} and At =

expressed by

and the derivatives of f. are computed by

To satisfy the terminal condition

&k, 0=

-, M , and centers S =

7’..

s ti=7-At, j=0,1,--- N . Then the call price, f., can be
L
fo(t.8) = ar(t)pu(S) (2.3.2)
k=0
of, <& ,
L ALIAL)
k=0 (2.3.3)
Pf. < ,
557 = a(t)g;(9)
k=0
L
£S5, T) =Y an(T)di(&)
k=0
(2.3.4)

=max {S(T) — K,0}

and the boundary conditions S are then given by:

l.when t =T and S = &:
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8fc

(507 ) ch(fo,T) =0
!
= Zak‘ gbk 50 - TZ(I}C ¢k 50 —0 (235)
k=0
:Zm®—m@>m
2.when t =T and S = &y
0% f.
aSJ; (€. T) =
(2.3.6)
= Zak V0L (Em) =0
we can finally obtain
[ a6 ail) o) || @ ] | sy
Po(&1) $1(&1) ¢r(&1) ay’ fe(S1)
: : : D | = : (2.3.7)
o(Epi—1) d1(Ep—1) -+ dr(Em-1) ag—l Je(Sr-1)
| o(6u)  d1(ém) o) || af | | fe(Sm) |
Denote
alv) — {aé\77a]1\77... aL 17aL}
and -~ .
do(o)  ¢1(&0) ¢r(%0)
Po(&1)  ¢1(&1) or(61)
M = : : : :
Po(Erpi—1) d1(Ep—1) -+ dr(€m—1)
| Po(6a)  91(ém) PL(én) |
T
b= | flSo) - fulSu) |
then (2.3.7) becomes
M-a™ =b
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thus
a™ =M*".b (2.3.8)

where M is the pseudo inverse of M.

The descritization of the PDE is described below. Substituting the derivatives into PDE,

—rAH(1=0) Y ar(G+1)oe(&) + 0D ar(i)on(&)]

Zak Dér(&) =Y an(j)e
+rGAL(1—0) > ap(j + 1) (&) + 92%(1)%(&)]
k=0 k=0
€11 —0) S auli + Do) + 0D ax(h)eE)] =

= al) {qbk(gi) ~ OAG() + So%ERO(E) — ch(&)]}
= ap(j + 1) {6(&) + (1 = O)AL[r&d (&) + 30%E21(&) — ro ()]}
k=0
we get

[1— OAt(r& 2 + 20262 25 — )] Sio an(i)dw (&)
2 L 2.3.9
=[1+(1— )At(r@—+1 2¢2 a‘; MY an( + Dow(&) (2:3:9)

where 1 =1,2,3,--- , M —1,0 <6 <1, and we define two new operators D and E by

1 ., 0
D—l4(1- Q)At(ré}?s + _a o5z ) (2.3.10)
E=[1—0Alr&ios + 507G 55 = 7))

The operator H, and H_ are applied to the approxnnatlon (2.3.9) to yield:

L L
DY an(j)én(&) = B> ar(j + 1)ew(&)
k=0 k=0
Expressed in matrix form
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- do(&o) di(&) - dr.(&o) - - a% -
do(&1) di(§) - de(&) af
do(fM—ﬁ dl(fM—1) dL(fM—l) ai_l
| @) @) ) || e (23.11)
eo($o) er() - ern(éo) ay™
eo(61) er(&) - en(&) al*!
eo(ém-1) e1(&m-1) -+ er(&m-1) alth
| eolén)  elén) oo en(Muaa) || aj! |
four radial basis functionswhere
(&) = Or(&i) — (1 = 0)At[re) (&) + 50°E7 (&) — 10 (&)]
en(&) = Ou(&) — OAL[re (&) + 50231 (&) — ré(&)]
or equivalently,
D-al) = f.q0+D)
(2.3.12)

= al) = D1 . q0+D)
for j=0,1,2,---, N.

Given the following and parameters: r = 0.10, ¢ =040, T =0.5, K = 50.00, and
selecting S;, = 0 and Sy = 100.00 with appropriate initial and boundary conditions. We
adapte the collocated method i.e. £ = Sk, £k =0,---, L, in our computation. Let M = 25,
ie., At = 0.005 and AS = 0.4975, ¢ = 2.9- AS then the computation result of the basic stock
call option price and the error at the terminal condition are described in Figure 2.10-2.12.
For MQ-RBF and Cubic-RBF with M = 5,10, 15, 20, 25,30 , we can know the selction of M
must be greater or equal to 15 in order to obtain accurate solution with max error < 0.1.
For Gaussian-RBF with M = 5,10, 15,20, 25,30, we can know the solution is worse than
MQ and Cubic. The reason is the matrix D for Gaussian by collocation method is nearly

singular. Because we are using the collcation method, the TPS-RBF can not form a matrix.
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MQ RBF Result when c=9.B667 , M=30

al

ns

M REF Update Result when c=9.6667, M=30

0s

50 03

0z

Absolute Error

S, stock price 0o t time 5, stock price 0o t time
MQ result MQ update result
Termial condition verification, C=9.6667 , =30 Absolute Error when c=9.6667 , M=30
60 T T T T T T T T T 100
—TC(EKR
(3-K) - i
sl —FREBF
50 1
0.2
40 70 ]
= 93 g o 3
=S =
z E 50 b 0.15
om =
v 40 1
10 30 1
0.1
20 1
]
10 b
10 1 1 1 L 1 1 1 L 1 ] . . . . nos
10 20 30 40 a0 B0 70 50 a0 100 0 0.1 02 0.3 0.4 0.5
S, stock price t, time
Termial condition verification Absolute Error
Absolute Error when c=9.6667, M=20 Absgolute Error with REF-MQ when M= 510,15 20, 25, 30 , C=29%ds
0.08 T T T T T T T T T T T T T T T T T T
— =5
09k — =10 i
0.045 — =15
o8y ——— M= 7
— W=25
0.04 s =30
8 5 06
b b
£ 003 £ 08
] ]
@ @
= =04
0.03
0.3
0.2F
0.025
01F
I =
o 005 01 015 02 025 03 035 04 045 05 o 005 01 015 02 025 03 035 04 045 05
t, tirme t, tirme

Error withM = 5,10, 15, 20, 25, 30

FiGure 2.10. Computation ae result and error of using MQ-RBF

36




Cubic RBF Result when ¢=0.33333, M=30 Cubic RBF Update Result when £=0.33333, M=30
&0
]
. L 4n
) & 30
S e
20
10
0
100 :
0s
50 50 03
02
S, stock price 0o 1 time 5, stock price 0o t time
Cubic result Cubic update result
Termial condition verification, C=0.33333, M=30 Absolute Error when c=0.33333, M=30
50 T T T T T T T T T 100
—TC(EKR
—REF o0 il
40
50 1
0.2
70 1
30
. = 1
£ s
T W % & % 0.15
- @ 40 1
10
30 1
0.1
20 1
1]
10 b
10 1 1 1 L 1 1 1 L 1 ] . . . . nos
0 10 20 30 40 a0 B0 70 50 a0 100 0 0.1 02 0.3 0.4 0.5
S, stock price t, time
Termial condition verification Absolute Error
Absgolute Error when ¢=0.33333, M=30 Absolute Error with REF-Cubic when M= 510,15, 20,25 30 , C = 2.97ds
0.023 T T T T T T T T T 9 T T T T T T T T T
— =5
0er — =10 g
0.022 — W=15
07k — M=20 s
0.021 ]
06E Wi=30
] ]
g 0o £ osf
2 2
= =
RNk g 0dr
=L =L
03f
0.ome
0.7
0016 1 1 1 I 1 1 1 I 1 ] T 1 1 1 - 1 1 I 1
o 005 01 015 02 025 03 035 04 045 05 o 005 01 015 02 025 03 035 04 045 05
t, tirme t, tirme
Absolute Error Error withM = 5,10, 15, 20, 25, 30

FiGure 2.11. Computation

ae result and errors of using Cubic-RBF
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T'C‘ payoff

80~

B0

40

204

Gaussian RBF Result when c=9 BBE7 M=30

ns

50 03

02

S, stock price oo t, time

Gaussian result

Gaussian REF Update Result when c=5.68667, M=30

0s

50 03

0z

5, stock price oo t, time

Gaussian update result

Termial condition verification, C=9.6667 , =30

Absolute Error when c=9.6667 , M=30

Absolute error

01 015 02 025

t, tirme

Absolute Error

03 03 04 045 05

Absolute error
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40+ 70 1
£ 30f 3 E
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0 10 20 30 40 a0 B0 70 50 a0 100 0 0.1 02 0.3 0.4 0.5
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Termial condition verification Absolute Error
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FiGure 2.12. Computation ae result and errors of using Gaussian-RBF
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The conparison errors of MQ-RBF when M = 15,17,19 are described on Figure 2.13.

We can know that the max error are reduced.

Absolute Error when c=19.3333, M=15 Absolute Error when c=19.3333, M=15
100 0.6 0.07 T T T T T
90 1 0.55
0.065
80 1 0.5
70 ] 045 0.08
& 80 ] 04 g noss
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] !
w40 g 0.3 £ 0m
30 b 0.25 0.045
20 b 0.2
0.04
10 1 0.15
0 L L . . 0.1 L . I . I . I L .
0 o1 nz 03 0.4 05 0 o005 01 015 02 025 03 035 04 045 05
1, time t, time
MQ-RBF when M=15 MQ-RBF when M=15
Absolute Error when c=17.0588, M=17 Ahsolute Error when c=17 0588, M=17
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. i -1
w A0 0.2 =
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MQ-RBF when M=17 MQ-RBF when M=17
Absolute Error when c=15.2632, M=19 Absolute Error when c=15.2632, M=19
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t, time t, time
MQ-RBF when M=19 MQ-RBF when M=19

FI1GURE 2.13. The absolute error of MQ-RBF for various stock price partition

M =15,17,19
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Figure 2.14 shows the European call options for exact solution, FDM and RBF methods

at t = 0 with N = 200 and M = 50. We can see only the explicit method lower than the

exact solution at the price of 30. At the price of 50 all of finite difference methods relatively

low than the exact solution. Finally, after the price of 70 just Gaussian and MQ functions

are greater than the exact solution.
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F1GURE 2.14. The European Call Options at t =0
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We discuss the root mean square error between the exact solution and FDM with N =
25,50,75,100 and M = 5,10, 15,25. Obviously, the partition number of times is bigger, the

error is smaller. And we can know from the Figure 2.15 that

RMSE ~ M™2 ~ (AS)?

EMSE between exact sal and FOM with B =510 15 25

'1 T T T T T T T T T

log(RMSE)

5 | | |
16 1.8 2 22 24 2B 28 3 32 34 38
lag(h1), M step an price

FIGURE 2.15. The root mean square error between the exact solution and RBF
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CHAPTER 3

Pricing a European Call in a Jump Diffusion Model

In this chapter we show the exact solution of a double exponential jump-diffusion model.

3.1. A Jump Diffusion Model for European Call options pricing

In this section we present the Kou’s analytical option price formula [15]. The following
dynamics is proposed to model the asset price, S; , under the physical probability measure
P:

dS(t) a0

S - rdt + odW (t) + d(;(m —1)) (3.1.1)

where W (t) is a standard Brownian motion, N () is a Poisson process with rate A, and {V;} is
a sequence of independent identically distributed (i.i.d.) nonnegative random variables such

that Y = log V' has an asymmetric double exponential distribution with the density

fy(y) ~ pme™ ™ Loy + qnae™? Iy <oy (3.1.2)

where p,q = 0 and p + ¢ = 1, represent the probabilities of upward and downward jumps.

Solving the stochastic differential equation gives the dynamics of the asset price:

N(t)
S(T) = S(t)e{(r—%ch)(T—t)—l-aW(T—t)} H v, (3.1.3)
i=1

Hence

fe(t,S) = e T E(f(T, Sr)| F)

= S(t)T(?“ + %0-2 - )\§, g, 5‘7 pa ﬁla 772) 10g<%)7 T— t) (314)

—Ke " T=O7(r — %02 — AS, 0, AP, 1, 1o 10%(%% T-1)
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where P = = m—qi—l,?ﬁ = =1 =m4+1A=Ac+1)c= p@ -+ q@, and for any given

T T2
probability P, the notation T define:
T(/*L)O-u )‘Pa 7717772;0’7T) = P{Z(t) z CL} (315>
N(t)
where Z(t) = pt + oW (t) + ZV}, V has a double exponential distribution with density
i=1

Ty (y) ~ pme™™Y1>01 + qnae™Y 1, <01, and N(t) is a Poisson process with rate .

50-step version of Brownian motion and its mean
T T T T T T T 06
0ar
nar
0&f
04} g 0.2r
ok
02
-0.4
04k
06
0EF
. L . L L L L L L 0s L . . . I . . L .
0 01 02 03 04 05 0B 07 08 03 1 02 03 04 05 0B 07 08 08 1 1.1 1.2
Drift 0.075556, difusion coeflicient 0.4
Brownian Poisson
double exponential distribution with number = 5000
o7 T T T T T
= 04
o
c
T
=
L= 03
02
il i H i .
-2 -1.5 -1 a5 0 05 1
y, random variahle
double exponential distribution

FIGURE 3.1. Brownian, Poisson and double exponential distribution
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Consider the following and parameters

r=010, 0=040, T=1 K=5000, A=1 p=04 ,n =10,
and selecting Sp

T2 = 57
0 and SU

100.00 with initial and boundary conditions

. We apply
various numbers of Brownian motion W (t) to evaluate the exact solution by the equation
(3.1.4) whose result is shown in Figure 3.2. It is evident that there exists no diffusion effect

when the time is decreasing from 0.5 to 0 which means that our computation of the exact

solution in this way is not correct and we will not refer to this result for verification in the
numerical solution of PIDE

JOM exact sol with number =5

JDM exact sol with number = 50

i
i ‘\‘2‘\“\\\'\' ,“.‘i“kl i

-.\\\‘\“ e
"l':

i ' \\\\
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fc' payoff
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0o t, time 5, stock price (U] 1, time
number = 5 number = 50
JOM exact sol with number = 500 JDM exact sol with number = 50000

fc, payoff

\
\\\\\\ .
\\\\\\\“ A
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\\ \ \ \ \
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R \\Q\\\\\\\““\‘\‘\\\\\\\\\“\‘“\
\\\ \\ ATy
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\\“‘ \\\\\\‘Q\‘Q\‘\\\\\\ g \\\\\\\\\Q\‘\\\\“\\\\\\ )
e

fc' payoff

o
\\\\\\\\\\\\\\\\\\\\\\\\\\

03

50
0.2
5, stock price

0.5
t, time

0.4

number = 500 number = 50000
FIGURE 3.2. The exact solution of JDM for various numbers of Brownian
motion W(t) to be 5, 50,500, 50000
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3.2. A Jump Diffusion Model in PIDE Form

In this section we present the Shreve’s approach[22] to set up the PIDE for the JDM
model. The exact solution of the Jump-Diffusion partial differential equation in one space

dimension with terminal and boundary conditions:

o ac 1 _,0f.

_<>‘+T)fc+ atc +(T_)‘)Sﬁ+55288 +)‘fooop<n)c(t77]8(t))dn:07 fc:fc(svt)
%—rfcz(),S—H)

ap

0 °=0,9 = o

05z

fe(S,T) =max{S(T) — K,0}
(3.2.1)
On the probability space (€2,.%, P), there are M independent Poisson Processes

Ni(t), Not), -, Ny(t), 0<t<T

and A, > 0 denotes the intensity of the m-th Poisson process. Define W () to be a Brownian
motion, and .Z(t) to be the filtration generated by the Brownian motion and M Poisson

processes. Let 0 < n; <my < --- < ny be constant, and

Q)= D nulNn(t)

where N is a Poisson process with instensity A = Z Am and @ is a compound Poisson
m=1

process consisting from M independent Poisson Processes Ni(t), No(t),--- , Nay(t) Let Y;

denote the size of the i-th jump of () . The random variables V; , 1 < i < m take values in

the set {m1,m2, -+ ,nu} and Q(t) can be written as
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N()

Q) => Vi (3.2.2)

=1

A
with the probability of intensity of the m-th Poisson process given by P(7,,) = N The
random variables Vi, V5, - -+ | V,, are indenpendent and identically distributed, with
Viii.dg P{V; = 1} = P(1hm)-
Set 3 to denote the expectation of the random variables, i.e.,
M L M
B=E,(Vi) = anp(nm) = XZ)‘mnm (3.2.3)
m=1 m=1
then
M
Q) = BA = Q1) = DAt (3.2.4)
m=1

is a martingale.

In the following, the stock will be modeled by the stochastic differential equation

Sy = i+ odW () +d@() — BN (3.2.5)

= (u— BN)dt + odW (t) + dQ(t)

and we let § =1, then it’s asset price.

S = pdt+ odW () + d(Q(t) — At)
N (3.2.6)
= (u—N)dt +odW(t) +d>_ V)

under the original probability measure P where the mean rate on the stock is p and ¢~

denotes the moment just before the time ¢. The assumption that n; > 0 forv=1,2,--- /M

Y
guarantees that although the stock price can jump down, it cannot jump frome a positive to
a negative value or to zero. Denote the set S = {S; | t € [0,T]} to be the collection of the

stock satisfying

47



N(#)
%(t)) = (u—N)dt + odW(t) + d(; Vi) (3.2.7)

Because the mean rate of return of the stock under P is p which is not equal to the interset
rate r, we must chang it by now constructing a risk-neutral measure.

Let 0 be a constant and 5\1, 5\2, e ,S\M be positive constants. Define

—OW (t) — %9215

ZO(t) =e€ ’
Zon(t) = Am = Am”(i—’”)f“n“’, m=1,2,3-- M,
and
M
Z(t) = Zo(t) [ [ Zm(®)
m=1

for all A € .. Under the probability measure P, the following facts hold:

e the process W (t) = W(t) 4 0t is a brownian motion,
e cach N,, is a Poisson process with intensity \,

o W and N1, No,--- , N, are independent of each other.
Denoting

I -
A= Z A P(v,,) = Tm

m=1

M
and under the measure P, the process N(t) = Z N,,(t) is Poisson with intensity A , the
-1

jump-size random variables Vi, Vs, -+ are indepg;iient and identically distribution with
Vi iid, PV =} = P(n).

The corresponding expectation of jump-size becomes
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M ~
Z AmNm =1
m=1

Since the probability measure P is risk-neutral if and only if the mean rate of return of the

> =

~ M -~
B = Eﬁ(Vz) = Z nmp(nm) =
m=1

stock under P is the interest rate r, we need to examine the stock model under new measure

which gives us

)
%(_t% = (u—N)dt + odW(t) + d(Z Vi)
o (3.2.8)
= (r—Ndt+odW(t)+d> V)
with its solution given by _
7 5o Loy
s(t) = 5(0)e TV D F = A= 5 v (3.2.9)

We can verify that S(t) satisfy the stochastic differential equation.

Define the continuous stochastic process

X(t) =S(0)e 2
and the pure jump process
N(t)
It =[] v
i=1

then S(t) = X (¢t)J(t). The Ité formula gives us the differential forms of the continuous

process

dX(t) = (r — )X ()dt + o X (t)dW (t)

and the pure jump process

It6 product rule for jump process implies that
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S(t) = X (1) / X (u”)dJ (u / J(u)dX (u) + [X, J](t)

Since J(t) is a pure process and X (t) is continuous with [X, J] = 0, thus

S() = X0
~ S0)+ /O X (u ) )dO(w) + (r — X) /0 J(w)X (u)du + o /0 () X (u)dW (x)

in which the differential form is

dS(t) = d(X()J(t)) = X(t)Jt)dQ(t) + (r — NJ ()X (t)dt + o J ()X (t)dW (t)

= S(t7)dQ(t) + (r — N)S(t)dt + o S(t)dW (t)

For 0 <t < T, the risk-neutral price of a call

fu(5,6) = Bl T =(s(1) — K)* | Z(1) (3.2.10)

~ ~ 1 N(T)
oW(T —t)+ (r—X—=0*)(T —t
{ ( )+ 2 A } H V;. The call price satis-
i=N(t)+1
fies the following differential-difference equation. From the differential form of stock price
ds(t) (r — \)Sdt + odW (t) +d % Vi), the It6 fi 1 li
(= o e [t0 formula implies
(i) P

=1

where S(T) = S(t)e

e_rth(S(t),t) — 1(8(0),0) _1_/0 e_ruo[—ch(S(u)7 u) + an;C (S(u),u) + (r — \)S(u) ZJ;S(S(U), u)
#2058 2 e st wau + f e e
+ > e TS (u),u) — fo(S(uT),u)]

0<u<t

(S(u), w)dW (u)

We examine the last term. If w is the time where a jump occurs in the m-th Poisson

process N,,, the stock price satisfies S(u) = 1,,S(u~). Therefore,
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S TS ) w) = (S ), )]

<u<t

o
A

o

> e M FelnS () uT) = fel(S(u) 1) AN (u)

0<u<t

Jo e " felnmS (), um) = fo(S(um), u)d(Npn (1) — Au)

Il
—

m

p”qg

3
I

+ Jo "““ZAmfc TS — £(S(w), w)]Adu
—Zfo U fo (S (), u) = fuol (), u)]d(No () — Au)

+ fo e TN ZP () fo(nmS (1), 1) — £.(S(u), w)]du.

Substituting and taking derivatives, we arrive at

d(e™ " f(S(8), 1))

- e‘rt]{w—rfc(S(t), 0+ SES(0.0) + = DSOTHSO.0) + 5002 TL (500
+:\[Zp<nm)fc(nm5<u>7 u) — fo(S(u),u)]dt + e "o S(t) ?;f (S(t), t)dW (t)

3T LS () 17) = Fo(SE) 1) d(Non (1) = M)

The integrators N, (1) — Au and dW (t) are martingales under P which implies the coefficient

in dt term must be equal to zero. Thus, the call price f.(S(t),t) of the stock

sy - . e
S0 = (r — A)dt + odW (t) + d(; V)
must satisfy the equation
PL(S(),1) + %ﬁ( (6).0)+ (= DSl >Z§<s<t> "
L ach M (3.2.11)
+50757(t) 555 (S + A Pm) fo(mS(8),1) = fo(S(t),t) = 0

m=1
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where 0 < ¢ <T,5(t) > 0, and the terminal condition

f(S,T) = (S(T) — K)©,S(T) > 0.

Consider the last term of the equation (3.2.11) by taking the jump size M — oo, and

then we can obtain

NS P )ClmS ()0 = 3 [ PO nS(0), )

therefore the associated PIDE can be written as

dfe o 0fe
5 +(r—2A)S

1
+ _SQafc

—(A+r)fe+ 55 T~ 3° 39

+ A /0 h P()f.(nS(t),)dn =0  (3.2.12)

where 0 <t <T,S(t) > 0, and the terminal condition

fe(8,T) = (S(T) = K)*, 5(T) = 0.

On the probability space (€2,.%, P), we can write the equation (3.2.12) to be

of. oCc 1 _,0f.
at—l—(r )\>885+25 8S+

—(A+r)fe+ )\/OO P(n)C(nS(t),t)dn =0 (3.2.13)

for convenience.
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CHAPTER 4

Th Numerical Solution of the Jump Diffusion Model

4.1. Truncation of Integration Domain

We rewrite the integral term in equation (3.2.13) so that it is formulated form for com-

putational purpose. Consider the change of variables:
y = logn, x = logS

then the integral term becomes

o0

A [ Pas©.0d= A [ PEene e nay (411)

— 00

1 y2
and where P(e¥)e’ = (=2 Tt is refered to Zemanian [23] for more detail disussion.

V276

The integral term in (4.1.1) is defined on an infinite interval and we must truncate this to
a finite interval such that we can compute its approximation value. In general, the procedure
is to choose two finite values A and B such that the difference between the infinite and

truncated integrals is less than a given tolerance e:

00 B
‘/ P(ey)eyfc(eyex,t)dy—/ P(e¥)e? fo(e’e”, t)dy| < €

A

In the our problem we have a specific type of integrand (kerne), namely a probability density

function, of the form

1 22
\ 21

P(e¥)e¥ = e"257
This function goes to zero very quickly and we only look at this when it values are greater than

a given tolerance e. Following the suggestion by Chioma [?] then we have the inequalities:
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P(e?)e? > ¢ »
= —\/—2(52 log(edv2m) <y < \/_252 log(e0v/27) 1.

Therefore

A OOP(ey)eny(eyex,t)dy
[t
(—553)

e 20% f.(eve® t)d
T fe( )dy
—262 log(e6v/27) 1 2

(—%5) P
e 22 fo(e¥e” t)dy
—1/ =282 log(8v/27) V 27

Transform back to original (5, 7) domain, where A = e~

~ A
—262 log(e6v/2m) B=c¢ —262 log(£6v2m)
, = .

A / " P 1(nS(0). )

\/726 log(ed+/27)
1 e <1og 77))

=\ (nS,t)—dn
/m\/zﬂ f(?? )77

e <log<n>>2 St
/A oo’ ) fo(nS,t)dn

Thus the PIDE is approximately the following PIDE:

(log

0f. 1,00t |

dfe
— (A7) fe+ ]; (T—A)Sas 85’2 . Vaon fc(nS t)dn =0 (4.1.3)

e

Together with the boundary condition

afc—7’fC:0,S—>0

8, (4.1.4)
557 = 0, S — o0
and the terminal condition
fe(T,S7) = max{Sy — K,0} (4.1.5)
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4.2. Finite difference Method
Fixed te[0, T, Sie[Sy, Sy], and ne[A, B]. Define w! = f.(S;,t,) with

SU - SL

T—-0

At=—— t = jAt, j=0,1,--- N
B-A

An:T7 nl:A+kAn7 k:Oa]-?"'aL

and the terminal condition is modeled at j = N, for i = 1,2,--- , M — 1 are described by

N =max {S(T) - K,0}

The boundary condition: = Oandt = M,5 =0,1,--- | N

eati =0

Ofe
S—0 85
N
AS fO_O

= (14+rAS)f] = f

j_o 1 j
== as

=0

e ati =M

d*f.
mae =0 .
fia =2+ F
952

= fJJ\Z = 2ﬁ4—1 - f}{4—2

The integral part is computed by Simpson’s rule:

B 1 log(n
)\/ (( <>> fc(nSt)

AA 27T1677 1 2 1 1
n (logA) (log 1)? log 79)2
A= JAS; )+ A= 2t fo(mSit;) +2—e 2t fo(n2Si,t;
3 \/%5[14 f( ) ™ f (771 ) s f (772 )
1 _ (ogny)? 1 Gosmy_1)? 1 _(oen)?
+4_€ 262 fc(773Sz>t ) + 4 € 262 fc(nnflsiatj) + Ee 267 fC(BS’Ht )]
73 Tn—1
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We let

. _ 1 (lognzk)
I= 3?/%:5[,}16 £ fc (AS,t)) Z 77— T2 fo(narS, )
k= (4.2.1)
(logﬁzk 1?2 (log B)?
+4Z M Fo(nox1S,t;) + Le 52 £,(BS,1;)]
and f.(S;,t;) = f/, so the PIDE becomes
afc afc 2 Qanc / ,(log(n))Q)
—(A . —A)S S + A —_— 262 f.(nS,t)dn =0
ket Ty T = NSG5 1575 550 PA [ Vamey© S
ie.,
, G+l gj
Ol + (- o)+ B
g J+1 7+1
+(T—A)(2AS)[9 fl-i—lesz—l +(1_91)fz+1 fz 1]
1 50 _2fJ i Z+1 f]-i-l 2fj+1 +fj+1
+§O' 1 [91 AS2 (1 — 91) ASz ]

+ALOT + (1 — 0,)PT] =0

Since we don’t know the value f7 in advance, we choose 6, = 0 for simplicity:

[HAt(%(r i %U%Z‘) I (14 0AHPE 1+ ) F
OAH-Lr— Vi = b)) o)
=[(1—-0)At(—1(r—A)i+ 10212)f]+1 +(1+ (1 =0)At(—0%2 —r —N\) I
+(1— ) AHE(r — N)i + 20%?) f11]] + AT
where:=1,2,3,--- ,M —land j =0,1,--- | N,
Define HY; = 3(r — A\)i — 50%* , Hy, = 0®® +r+ X, Hf, = —4(r — \)i — $0* , and

Hy,=—-Hi,, Hy,=—Hj, , Hy, = —Hj, then (4.2.2) becomes

[OAtHT L f] + (14 0ALHS,) + 0AtHT, 1]

= (L= O)AtH f2 + (14 (L= 0)AtHy ) 77 + (1= ) AtHy 1] + APt
(4.2.3)
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The boundary condition at ¢ = 1

OALHT f] + (1 + 0AtHS ) f] + 0AtHT, f]]

4.2.4
. — i+l _ -\ pitl _ — pjtl J+1 ( )
[(1 G)AtHL1 T+ (1+(1 G)AtHll) 7T+ (1 G)AtHy,,l 5+ At

and the boundary condition at ¢ = M — 1 gives

OAtHT i far o+ (L4 OALHS ) f oy + OALH S 1 f]
= (1= OALH y  fiF + (L+ (L= DAty VA + (1= O AtH i)+ At

(4.2.5)
Thus we can recapulate into the matrix form:
AgfD = Ay _ofUTD 4 AT b £26)
= ) = A7 (A_ofTD 4 At 4 b)
where
T
O =[5 B i (127)
1+ OALHE,  OALHT, 0 0 0
ONtHT, 1+0AtH3, OAtH3, 0
0
Ap = 0 ONtHY, 14 0AtH;, OALHY, 0
0
0 ONtHY y_, 1+OAtHT, o, OALHS,,
I 0 0 0 ONtH ) 1T4+OAtHS
(4.2.8)
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1+0AtH;,  OAtH3, 0 0 0

OAtHT, 1+60AtH;, 0AtH;, 0
0
0 OAtHY, 1+0AtH,,  OAtH;, 0
0
0 ONtH yyy 1+0AtHy o OAtH;
_ 0 0 0 OALH| 1+ 0AtHy, | |
(4.2.9)
[ oAtHT f (1 -0 At T
0
b=
0
| 0Nt Sl (L= OAH Gy fi7 (4.2.10)
ALHT (0 + (1= 6) )
0
=b=
0
i AtHg 1 (0f,+ (1= 0)fi7) |
T
I
vo| (4.2.11)
]gh—z
]%4—1
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with the component Il-j given by

L

. _ (log A) (log TIQIC)
Iz] = 3?/2*:5[1 fc(ASzat + 22 Ee 262 fC(n%SZ’t )
L k=1 (4.2.12)
(logn2k71)2 1 _ (o g B)2
Z 22 fo(Mw—15i,t;) + 5e= 27 fo(BS;,t))
oy 2k 1
Since substitute A =0
of, af. <1og<n))
—(A . —A)S - (t,nS)d
Ot Be g (x5 4 L2ty mw fult,S)d
becomes
3fc dfe 22 fe
rf.+ +7r S@S o°S 357 = 0

i.e., the PDE of the BSM model, we can use this to verify the implementation of our code

for PIDE and is gualified after.

r=010, =040, T=05 K =50.00

Given select S, = 0 and Sy = 100.00 with appropriate initial and boundary conditions
compaired with the BSM exact one. The computation results with M = 100 for JDM with

A = 0 is shown in Figure 2.12.
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Crank-Micolson with M=50, N=100
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FIGURE 4.1. Computate the JDM result with A =0

After setting the following parameters for jump behavior:

A=1, p=04, q=

0.6,

T

10,

M2 =9

the numerical solution of FDM is depicted in Figure 4.2
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Crank-Micolzon with WM=50, N=100
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FIGURE 4.2. Numerical solution of the JDM via FDM
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4.3. Meshfree RBF Method

We choose data points £ = {&1,&,&5,-- , &}, © = 0,1,--- , M and basis functions
or(S) = 67%% = 67‘376‘732’6‘2 where centers S = {Sy,S1---,S.},k=0,1,---, L and At =
t;=jAt, j=0,1,--- ,N and Anp =2 ,nh_hAn,h:O,l,---,P

The derivatives of the call function are approximated the same in Chapter 2. Since

L
S) = Z ar(t)pr(S), the integral part in PIDE is computed by using Simpson rule:

(- (log(n)? )

262 fo (&, t;)dn

V 27r<5776

L
(—%) t: N
\/%5776 ;00'/6( ])gbk’(nSZ) n

L B (_<log<n>>2) J

— — 252 .
P_

ff () A"[ el Mﬂﬁw(Af)mz Lty e
=~ 252 i —e i

P V216 3 ’ — Tan kTp2h

=,
= 1

To satisfy the terminal condition

FolSi,T) =Y ar(T) (&)

=max {S(T) — K, 0} (43.2)
= fe(Si)
and the boundary conditions S are then given by:
(1) when t = Tand S = &:
8fc (foa T)=rfe(&,T)=0
!
= Z ar(T)¢5 (%) =r)_an(T)én(&) _ (4.3.3)

= Z(%(fe) —r¢r(&0))ar(T) = 0
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(2) when t = Tand S = &y

0? 0" fe
852 (€M7 )

jzak V0L (Em) =0

we can finally obtain

w(&) &) o o) || a¥ | | £
$o(&1) $1(&) - (&) ay’ fe(Sh)
do(Enm—1) d1(€nr—1) - or(&ar—1) ap fe(Sm-1)
| do(6n)  d(6n) o onlém) || ar | | fe(Sum) |
Denote
alv) — {a(),a]l\/’... aL 17aL}
and
bo(%o) ¢1(&) - o)
Po(&1) o1(&1) 0 on(&)
M = : : : : ;
o(Enic1) d1(Em—r) - On(€m-1)
| Po(6m) (€)oo dw(Cu) |
T
b = [fc(SO)a 7fc(SM)] ’
then (4.3.5) becomes
M-a®™ —p
thus
a™ = M*t.b

where M™ is the pseudo inverse of M.

The PIDE to
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of. 0% f. _ Gout)?

O G = NS5+ T [ D )y
—(A+r)Ate Z(g + 1)r(&) + (1 6) a(7) k(&)
Hé k(7 + Den(&) + 2_; ar(5) k(&)
§ZAt91§ak (G + 1)gi(&) + (1 —6y) iak (7). (&)]
+§o— 2¢2(9, ZL:ak(; + 1R (&) + (1 —6y) ZL:ak ; HL(EN] + At[(1 — o)1 + 6,171 = 0
par par
:»Z 1) {06) — (1= (7 = Neh(6) + 3°20H(6) ~ -+ Now(&] } + a1 = o)1
- kzﬁ;aku + 1) {or(&) — OAL(r — AB)1(&) + 30°E27(E) — (r + Nw(&)]} + Ao

so the equation can been rewritten

(9fc afc a fC

_ (log(m)~ g(n))

SO G S +5S g t [ dE s)y
=Y al) {m(&) (1 A - NE) + 30%(E) — A>¢k<@->1} +AH(1— 0)P
k=0
= D+ 1) {0ul&) — AL~ (&) + 2oPEHE) — (r+ Nou(E)]} + Ao T
e (4.3.7)
where 1 =1,2,3,--- , N — 1 and let
d6(&) = 0x(8) — (1= 0)Mr = NGLE) + BoPGE) — (- Nou&)]

er(&i) = dr(&) — OA[(r — N (&) + 30°E765(&) — (r + A (&)

Therefore
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| do(&o) di1(&o) dr(01) ] | a% -
do(&1) di(&1) e dr(&1) al
: : - : : +
do(fM—ﬁ d1(fM—1) ce dL(fM—ﬂ CL]L_l
| do(&m) &) oo difém) | | a), N
Yo(&o)  ¥i(&) - (o) a}
At(l _02) wo('fl) %(.51) wLF&) (1]1 _
[ Wl&n) nilEa) e gnen) | |6 |
eo(6o) e1(6o) er (%) ap
eo(§1) e1(§1) er(&1) al™!
. . .
60(5M71) 61(5M71) s eL(fol) a];i
] eo(_ﬁM) er(€ar) - er(ém) | ] aj! _
Yo(o) i) - vr(éo) ap
At z/zo@ wl@ wL@ a{fl
(&) i) o v || el |
where
(&) = éﬁ”[l g ) 123 D )
h=1
+4Z o 1 lg(?‘g = ¢k(772h—1fi) + ; = i(ﬁ)) )¢ (B&)]
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do(So)  du(&%) - dr(01)
do(&1)  du(&) - dr (&)
D = : : : (4.3.10)
do(€n-1) di(€ar-1) -+ di(Em-1)
| do(€)  da(Em) e di(€nr) |
eo(é%)  el) - en(éo)
co(&)  el&) - en(&)
E = : : : (4.3.11)
co(Em-1) ei(&u-1) -+ er(§m-1)
| eo(€u)  elén) - enléu) |

with i:071727”'7M7 k:071727"'JL7 h:O71727”'7P

Denote as:

D-a% 4+ At-(1—0y)-1-a¥) =E-at*t) £ At-0,-1-abt+h
= [D+At-(1—6,)-1]-a¥) = [E+ At-0,-1]-altD (4.3.12)
=al) = [D+At-(1—0y)-I7' - [E+At-0y-1]-al+h

where j =0,1,2,--- /N

For the parameters are

r=0.10, 0=040, T=05K=5000, A=1 p=04, ¢g=06 mn =10, 1 =05,

with S = 0 and Sy = 100.00, the numerical solution computed by RBF’s are presented in
Figure4.3, and their difference to FDM is given in Figure 4.3. Thus, we know the Cubic and
MQ RBF have better performace than TPS and Gaussian RBF. Also the Cubic RBF can

avoid the open question of choosing an optimal shape parameter c.
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MO REF Update Result when C=14.5, M=20

T ."?\‘

i
Hm‘i\l“‘“\\“ N“.

1111\11\\\1'11‘1‘}{{'\‘}!mm}\]_"}“\‘amn \}}\‘h‘t\n \\R“:{.‘.“‘ o

\\'}‘:N"
ikt

“ ﬂ
‘\'J‘- 1'-\\‘ 1\\\ \“}\S‘ it 0

i gt
‘“m'.l'-\“‘“}u\ “‘“‘\'“3\\“:“:“\“:,‘.-‘:;‘-\“.«
..‘\\\" \.u"‘.u-\‘

al

S, stock price

RBF-MQ

t, time

5, stock price

The difference between FOM and MO when C=14 5, M=20

4
35
3
25
50 1
4 1 2
«a 1 15
0 1
}
10 1
0 . . . . _
o 0.1 0z 03 0.4 05 08

t, time

The difference between FDM and MQ

Gaussian RBF Update Result when C=14.5, M=20

il ﬂ\“\\“‘ \\“.:“.‘
ot

ni

'um““l\':":' “\ o
il “\\\‘“\l\“l.‘:n\

\“ll.'l‘n\\ .‘.-‘n

\M\u\lﬂ“‘l‘“‘%\mﬂ\q\\u n"“"“‘l}:t‘“““‘?l\“‘ i s :1'“

““ 11\1'-‘ l\\\"“‘ \\‘ \\‘:‘\1\"\""

\'.1 “\‘m \\‘}“‘“ |3g“..‘\"
1\“ “ “
\‘at\\ ‘:\l“.m'\“m‘ e

a0

S, stock price

0.3
02

t, time

RBF-Gaussian

5, stock price

The difference between FDM and Gaussian

The difference between FOM and Gaussian when C=14.5, =20

100 = 4

an

a5
g0
70 ] 3
&0 g

25
50 g
40 — 2

w
=]
L
5]

20 4
1
10 B
; . . . . = .
i 0.1 0z 03 0.4 05

t, time

fc, payoff

Cubic RBF Update Result when C=14.5, M=20

I 1‘
\-“.“
i \11\ \n\\‘:‘\‘\.\-“"

\“‘,‘n
ey
.\l‘:\‘:r““

i) ﬂ“‘du\ it

l\
\mu“““}{“h‘}‘u‘mﬂ\“““\\uﬁw“““ﬂ““\“"“
H l.

i
“‘\“\.m‘

il

u \\\
\‘ Y
T,
‘\n‘\

i,
1 1

\ oo
\t “\\\n\x s .\“"‘ iy

50

S, stock price

RBF-Cubic

05
0.4
03
02

t, tirme

S, stock price

The difference between FDM and Cubic when C=14.5, M=20

100 — 4
35
&0 -
70 g 3
B0 —
25
50 -
40 - 2
a0 1 15
20 -
1
10 —
0 . . . . _
0 0. 02 03 04 05 03

t, tirme

The difference between FDM and Cubic

FIGURE 4.3. The numerical result and the difference between FDM of three RBFs







CHAPTER 5

Conclusion

The aim of this paper is to compute that European call option prices in Black-Scholes
and Jump-Diffusion models via Finite Difference Method and meshfree methods based on
Radial Basis Functions.

In Chapter 2 we present the follow things. First, derive that exact solution of the Black-
Scholes partial differential equation in one space dimension. Secondly using explicit, implicit
and Crank-Nicolson of Finite difference Method to compute the Black-Scholes European call
option prices. Thirdly four radial basis functions are used to pricing compute the Black-
Scholes European call option numerically.

In Chapter 3 we disscuss the exact solution on the problem of pricing a European call when
the underlying asset is dirven by a Brownian motion and a compound Poisson process. In
the model, one should notice that the price jump process V; is i.i.d so for each ie{1,2,3,---},
V; has the same mean and variance. PIDE consists of a 'classical’ Black Scholes part and an
intergral part. Starting with the jump-diffusion model for the underlying asset we motivate
how to find the corresponding PIDE that models a derivative quantity on that asset.

In Chapter 4 we discuss numerical methods that approximate the solution of the PIDE
that models contingent claims with jumps. And a partial integral difference equation is
obtained to describe the JDM model. We define a finite integral of integration for improper
integral and propose simple numerical algorithms for finding a finite computational range of
an improper integral term in the PIDE so that the accuracy of approximation of the integral
can be improved. And final we use FDM and RBF to propose for numerically solving initial
value and free boundary problem for the Jump-Diffusion model.

In summery, two different approaches, i.e., FDM and meshfree method with RBF are
use to numerically solve the PDE of BSM and PIDE of JDM with appropriate buondary
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conditions for pricing European call options. In general, the RBF meshfree method is faster
than FDM with the same tolerance, and it is obviously the Cubic and M function have
better performance than Gaussian and TPS functions. Beside, the Cubic function can avoid
the open question of choosing an optimal shape parameter c.

In the future, we can suggest to extend the present method in two assets. Alternatively,
the maximal likelihood method can be used to obtain the appropriate parameters from the
market informations instead of using historical information. And then we can use these

parameters into our numerical model to pricing the options.
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