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Abstract

There are two main topics in the present study. The first topic focuses on determining
the parameters of the Vasicek model. Since if we use the zero coupon bond as a price model
to pricing the option value, the simulation of term structure is very important. Before the
bond price is obtained, we have to simulate the short interest rate using Vasicek model. The
likelihood function is used to estimate the parameters of Vasicek model with U.S. Treasury
one year bond rate data.

The asset price in the current market is modeled with Black-Sholes, and Merton construct
a Poisson process into their model to describe if there are some extreme jumps in the asset
price. The second part of present study is to estimate the parameters of Black-Scholes model

and the jump-diffusion mode by using the maximum likelihood approach.

Keywords: Maximum likelihood, Black-Scholes model, jump-diffusion model
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CHAPTER 1

Introduction

In the last twenty years, the option pricing have become increasingly popular, and the
values of European options can be calculated by some pricing models. The estimation of
the associated parameters for interest rate and pricing models for the current market is very
important in pricing the option. Hence this study discuss the parameter estimation of those
models by using the maximal likelihood method.

The first part of the present study is to estimate the parameters of Vasicek model. If we
use the zero coupon bond as a price model to pricing the option value, the simulation of term
structure is very important. Vasicek (1976) was the first to give an explicit characterization
with mean reverting of the term structure. Before we get the bond price, we have to simu-
late the short interest rate using Vasicek model. So the focus of our study on determining
the parameters of the Vasicek model. Now we use the likelihood function to estimate the
parameters of Vasicek model with U.S. Treasury one year bond rate data.

The second part is to estimate the parameters of BSM and JDM models. Black and
Scholes (1973) models the asset price, and Merton (1976) construct a Poisson process in the
BSM to describe if there are some extreme jumps in the asset price which is called jump-
diffusion model (JDM). We also use the likelihood to estimate the two models and compare
which model more fits the data.

The organization of this thesis is as following. In the next chapter we introduce the three
models and their explicit solutions. In Chapter 3, we estimate parameters of Vasicek model.
In Chapter 4, we estimate the parameters of BSM and JDM. Finally, some conclusions are

given.

15






CHAPTER 2

Mathematical Preliminary

2.1. Brownian motion

Let (£2,.%#,P) be a probability space, and £ = {{(t) | t € [0,T]},V t € [0,T], where (1) is
a random variable and ¢ is called the stochastic process. Let {F (1)} 1) be the o —algebra

set Z(t) C F Vtand Vs <t F, C.Z is called the filtration.

DEFINITION 2.1. W = {W(¢)|t € [0,T]} is called a Brownian motion if
e W(0)=0as..
e t — W(t) is continuous a.s..
Vi<t <ty<...<t,
W(ty) —W(0) < W(ty) — W(ty) < ...< W(t,) — W(t,_1) are all independent.
e VO<s<tW(t)—W(s)=W((t—s)~N(0,t—2s)
vV Ae BR)

__a2*
e 2(t—s) dx

P(W (t) — W (s

1
) €4 :/A V27 (t — s)

The following figure shows a typical path of the Brownian motion with ¢t —s = 1/250.

Brownian Motion

L L L L L 1 L 1 L
o o1 02 03 04 045 0s 07 08 089 1

FIGURE 2.1. Brownian Motion path with ¢ — s = 1/250
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2.2. Vasicek model

For a suitable choice of the market price of risk, this is equivalent to assume that r
follows an Ornstein-Uhlenbeck process (Vasicek 1976) with constant coefficients under the

risk-neutral probability as well, that is,
dr (t) =a(b—r(t))dt+ cdW (t),

where a is the speed of reversion, and b is long term mean level, ¢ is the instantaneous
e o2 . .
volatility, 2 is long term variance.
a

Integrating equation dr (t) for each s < t, then,
t
r(t)=r(s)e I +b(l—e ) 4o / e~ I qW (u) .

2.3. Black-Scholes model

The Black-Scholes model (Black, Scholes 1973) is

as(t)

under the risk-neutral probability.

And the exact solution:

we can check this by It6 lemma.

2.4. Jump-Diffusion Model

DEFINITION 2.2. N = {N(t)|t > 0} is a Poisson process if

e N(0) =0, as..
e V¢t — N(t) is increasing indicator function, and the jump size is 1.
e VIO<t <ty <... <ty

N(t1) = N(0) < N(t2) — N(t1) < ... < N(t,) — N(t,—1) are all independent.
18



e VO<s<t N(t)— N(s) ~P(A(t—s))

A is the intesity of Poisson process.

FIGURE 2.2. Poisson Process with A =1

The Jump-Diffusion model can be expressed as the following :

N(t)
%@t; - rdt+adW(t)+d(;(yi—1))-

The asset price jumps from S(t) to y,.5(¢), so the relative price jump size is

ds(t)  wS(t) - S(t)
sEy 0 swy) "

_]_’

N(t)

and the dW (t) is a Brownian motion with mean 0 and variance dt, and Z(y@ —1)is a
i=1

compound poisson process, y; ~ logN (e*7 7277 — 1, e2It75 (75 — 1)).

The exact solution:

N(t)
S(t) = SOV Oy,
1=0

19



, where Y; = Iny;, ~ N (uy,0%).

the asset price jumps from S(¢) to y,5(t), so the relative price jump size is

dsit) _ wSMt) -5 _
Sit-) sy T

if the number of jump time N(t) = 1, the relative price jump size is y; — 1, we suppose
y; = 0.8, that means the asset price falls by 20%.
Now we check the exact solution, Cont and Tankov(2004) gave the It6 lemma for the

JDM in differential notation,

Fxen = HEOD G, IEOL ,  OEX W1,

ot Ox 2 o
+wg(t)dw(t) + X)) +AX(E) — F(X(E)],

where the b(t) is the drift and o(t) is the volatility of a JDM,

N(t)

X(t) =X(0)+ fot b(s)ds + /0 o(s)dW(s) + Z AX (1),

by applying this:

N
dS(t) = St )(rdt+odW(t)+d(> (y 1))
dinS(t) = alnaf ® g rS(t-)ag;i ()t) dt + %Sz(t‘)—a 31;122 ()t)dt
agg(qt gt)aS(t_)dW(t) + [ yS(t) — n S(2)]
= rS(t‘)%dt - %Sz(t‘)s%(t)dt + JS(t_)%dW(t) + Iny,

20



2

dinS(t) = (r— %)dt +odW (1) + Iny,
2

InS(t) —InS(0) = y(r—?t—FJW +Zlnyt

2

N(t)
nS({t) = WnS(0)+ (r— %)t oW () + Y,

N(t)

S(t) = S(0)elrF)How HY

2.5. Maximum Likelihood Estimation

This estimation method assumes that the distribution of an oberved phenomenon is
known, except for a finite number of unknown parameters. Then, the unknown parame-
ters will be estimated by looking at the sample values and then choosing our extimates of
the unknown parameters the values for which the probability of getting the sample values is
a maximum.

Let the probability density function of a random variable z = (x4

.....

6, denote by f(xz]0) = f(x;

.....

distributed then the joint density is the product of the individual densities:

f(xl ..... xn‘e):Hf(xl’9)>
i=1

The likelihood function for the sample data is given by

n

L) =T/ 0.

=1

We take the In of L on both sides first,
InL(0) = Zlnf(a:i | 6),
i=1

since logarithm is a monotonic function then the value of # that maximizes the log-likelihood

function must also maximize the likelihood function.

21



To find the maximum of log-likelihood function, the necessary condition is

0ln L ()
a0

the parameter 0 is the root of the likelihood equation.
In order to get the standard error, first we have to caculate the variance-covariance matrix

of the maximum likelihood estimator 6

Var(o) = (~2(2E o),

the —E(azgéL (0)) is called the expected Fisher information matrix and the standard errors

of the estimator # which is the square root of the diagonal terms in the variance-covariance

matrix.

2.6. Bayesian Information Criterion

To compare the different kth models we defined the Bayesian information criterion(BIC)

as following:

BIC* = —2InL(6%) + d*Inn,

where n is the number of observe datas, d is the number of parameters. We can choose the

smallest value of BIC for each model which is the best fit model.

22



CHAPTER 3

Parameter Estimation in the Vasicek Interest Rate Model

In this chapter, we want to estimate the parameters of the Vasicek model to represent the
following U.S. T-bill daily data 1962/10/02 to 2010/12/31 with its size N = 12000. Figure

3.1 shows the time variation of this data set and some statistical information are listed in
Table 3.1.

Daily T-bill farm 1963~2010

0.18

016 -

014 -

012

at1r

T-bill(%)

0.08 -

0.06 -

0.04 -

0.02

D 1 1 1 1
1960 1970 1980 1980 2000 2010
year

FIGURE 3.1. The time variation of U.S. T-bill daily data from 1962/10/02 to 2010/12/31.

] Mean \ Variance \ Rate max \ Rate min \
10.0588 [9.52 x 10~* | 0.1731 | 0.0021 |

TABLE 3.1. Some statistics of the U.S. T-bill daily data from 1962/10/02 to 2010/12/31.

The exact solution of Vasicek model is given by

t
r(t) =r(s)e ) +p (1- e’a(t’S)) + a/ e~ AW (u)

23



with risk-neutral probability, so that r(¢) conditional on % is normally distributed with

mean and variance

Elr(t)|r(s)] = r(s) e=ot=9) 4 p (1 — e_“(t_s))
Varlr (t) | r(s)] = - [L— e

2

r(t) ~ N<r(s)e—“<t—8>+b(1—e—‘l(t—S)),g—a[1—6—2a<t—s>]>

The interest can be discretized as
t+dt
ri1 = rie b (1 — e’“dt) + a/ et gy (u).
t

where dt = ﬁ such that we can obtain a discrete set {r;} corresponding to the U.S. T-
bill daily data. Denote 6 = (a,b,0%) and let @ = e™¥ g = b(1—e "), and V? =

2 [1 — e72e]. The log-likelihood fuction for the discrete data set {r;} is defined by

1 _(Ti+1—0”z'—ﬁ)2

nL(0) — illn [(We o }

n 2
— —%Z [(anW +1InV?) + (ripy — ari = ) ] .
=1

VQ

To determine the maximum of the log-likelihood function, we have to find the parameter

6 such that the zero gradient of In L(6) is achieved. Since

dln L(0) OlnLda 9lnLdB dlnLdV?

9a 0o da 98 da ' OV® da
—a g T 7”1'—0472-2—57“1' —a - Tiy1 — ar; — 3
— (—6 dtdt) Z +1 V2 + (b@ dtdt) Z +1 V2 +

i=1 =1

{

= 0

n 1 - (TH‘l —ar — 5)2 02 —2adt 02 —2ad
—2—W+§Z (V2)2 —@(1—6 )—I——(e tdt)
=1

24



OlnL(¢) _ OlnLdp
ob 0B db
S ri —ar — 15} .
— Z +1 V2 (1 —e dt)
i=1
=0
OlnL()  OlnLdv?
do? oV? do?

—n 1 ml—om B8)°
AP

0

and a # 0, we arrive at the system of equations

r N

2
Tis1Ti — ar; — Br;
} : 2
i=1 4

n
ZTHl—&H—ﬂ
V2

=1

And the parameters a, 3 and V? are then given by

5q (1~

=0,

=0,

(7341 — am )
— s Z = 0.

n n n
nE 7“¢+17"i—5 7"1'+1E T

o =
an (o
=1
DR S
i=1 i=1
= — - :
n
n
Z(TH—I —ar; — 5)2
VQ — =1

n

25
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For the Vasicek model, the expected Fisher information matrix is described by

[ 02InL O0?InL O*InL
a? @a@b 851602

0%In L 0°InL 0°InL 0°InlL
N bo b2 0bOo>
8@ lnaL 828111 L GéanL

| 0020a  0c20b  0(0?)?

where

&?In L 9 L <3a)2+ 9?In L (86>2+ 9?In L (av2)2+
da? da? \ da 0p? \da (0V?2)2 \ Oda
2821nLa_a8_6+2821nL8_a8V2 +2021nLa_ﬁav2
dadB da da ' “0adV2da da | OBIV2da da

921n L 0*InL (98 2
b2 052\ db

9*InL 821nL8_a+@2lnL8_ﬁ+821nL8_V2 8_5
dadb 0adf da 082 0a  0BOVZ2 Oa ) Ob

9?InL 0*InL O N 0?InL 08 N O?In L oV?\ oV?
Jado? 0adV?20o?  0poV?2 002  IJ(V?)?2 do? ) 0o?

0?In L 0%In L 8_1/2 8_6
0020b 0BOV2 o2 Ob”

The estimate parameters and its standard errors (computed by using Fisher matrix)
corresponding to the Vasicek model are listed in Table 3.2. And the plot of the orginal
data versus the simulated Vasicek behavior is shown in Figure 3.2. The trend in the figure

represents the long term average of the given data set but it does not fit the entire data curve

26



very well and hence we can also see that the simulated behavior of the Vasicek model is not

consistent to the time trajectory of the data set.

’ \ a \ b \ o \ InL ‘
Parameters | 0.07837 | 0.05219 0.01407 67264.11
Standard error | 0.06573 | 0.02660 | 2.56 x 10~°

TABLE 3.2. Corresponding arameters for the Vasicek model

Daily T-bill form 1863~2010

0.18 T

Trend

Real rate
OB | ———Simulation

014

012

0.1

0.05

T-hill(%)

0.06

0.04

0.0z2

.02

FiGurkg 3.2. The Vasicek behavior to simulate the data

1
1960 1970

1
15980

year

|
1950

1
2000

2010

Figure 3.3 shows the annaul inflation rate of USA from 1963 to 2010. In comparing the

time series shown in Figures 3.1 and 3.3, it is observed that increasing or decreasing of the

interest rate concides with the change of the inflation rate, i.e., when the inflaction rate is

increasing then the corresponding interest rate is also increasing, and vice verse. Thus we

divide the US T-bill daily data into several intervals according to the increasing/decreasing

behavior of the annual inflation rate.

27



Annual inflation rate form 1963~2010

inflation rate (%)

2 1 1 1 1
1960 1970 1980 1990 2000 2010
year

FIGURE 3.3. The annual inflation rate of USA from 1963 to 2010

Therefore we divide the data into 4 intervals, from 1962 to 1972, from 1973 to 1981,
from 1982 to 1990, and from 1991 to 2010, because of the annual inflaction rate rises up or
falls down rapidly. The estimated parameters with their standard errors are listed in Table
3.3 and Figure 3.4 shows that the trend of each interval now captures the data trend more
well than the trend given in Figure 3.2. Also the simulated behavior of the Vasicek model
shows in Figure 3.5 is more consistent with the given data. From this example, a proper

segmentation of the time history is a very important step in the parameter estimation.

TABLE 3.3. The estimated parameters for 4 intervals
N ‘ a ‘ b o Mean | Variance %
1962 ~ 1972 | 0.26506 | 0.06056 0.00707 | 0.05055 | 0.00016 | 0.9 x 107>
Std error | 0.17229 | 0.01060 | 1.40 x 107°
1973 ~ 1981 | 0.25162 | 0.12294 0.02420 0.08894 | 0.00095 | 0.00116
Std error | 0.26304 | 0.04793 [ 1.75 x 10~°
1982 ~ 1990 | 0.59362 | 0.07653 0.01741 0.08853 | 0.00045 | 0.00025
Std error | 0.29075| 0.01198 |9.66 x 10~°
1991 ~ 2010 | 0.07790 | —0.00560 | 0.00805 0.04004 | 0.00042 | 0.00042
Std error | 0.08517 | 0.05476 | 1.26 x 1075
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Daily T-bill farm 1963~2010
D1B T T T T

Trend
016 | Real rate .

014 - .

012 .

0.1

T-bill(%)

0.0
0.068

0.04

0.02 M k«

D 1 1 1 1
1960 1970 1980 19490 2000 2010
year

FIGURE 3.4. The trend of each interval of the US T-bill daily data.

Daily T-bill form 1983~2010

018 T T T T
Simulation
0.16 Real rate R
0.14 + E
|
012+ | 1
Y
= 01} il .
= | h\ !
E Nl
— 0.03F i \ R
0.06 - ‘ t N i
! ‘
0.04 A ' ‘ ]
0.02r B
by
D 1 1 1 1
1960 1970 1980 1990 2000 2010

FI1GURE 3.5. The simulated behavior of the Vasicek model consisting of four intervals.
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CHAPTER 4

Parameter Estimation in Black-Scholes and Jump Diffusion

It is interesting to use the asset price model to estimate the stock price variation in the
current market. We choose the HT'C and Acer stock-price daily data and estimate parameters
which are used in BSM and JDM for European option pricing. The statisctical properties of

the stock-price data for two companies are listed in Table 4.1. And the time variation of two

companies are shown in Figure 4.1.

Models

TABLE 4.1. Some statistics of log-return data of two companies

Mean Variance | Max. Val. | Min Val. skewness kurtosis
HTC | 0.001251627 | 0.000835238 | —0.1347 0.0677 | —0.133728006 | 3.585435315
Acer | 0.000150829 | 0.000551879 | —0.0854 0.0676 | —0.0598493832 | 4.201222636

In the BSM model, the unknown parameters are r and o, and denote them by 6 = (r, o).

Before we estimate the parameters, we have to take the logarithm of the stock price and

4.1. Parameter Estimation and Simulation in BSM

calculate the return of the BSM model which is given by

RP(t + dt)

= InS(t+dt)—InS(t)

1
= (r— 502)dt + adW (t),
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HTC stock price frorm 200204529~2011407 711 Acer stock price frorm 2002/04729~20110741
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FIGURE 4.1. Time variation of two companies’ daily data

where s = 1,y =1r — %az,dt = 1, RP(t + dt) it is alss a Geometric Brownian motion. The

conditional mean and conditional variance are:

E[RP(t+dt)| R®(t)] = p

Var [RP(t+dt) | R°(t)] = o°

and RP(t + dt) ~ N (u,0?).
The log-likelihood function is defined by

n

1
InL(0) = —gln27rs—nlna— 52

t=1

(RE(t + dt) — pdt)
o2dt

and the zero derivatives are
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OlnL() i(RB(H—dt) — pdt)

= =0
or — o?dt ’
Oln L(6 “~ (RB(t + sdt) — pdt)?
NLO) _n s (R )
do o = o3dt
where the extrema value of In L(#) occurs. The close-form solutions for j and o2 are then
given by
= RE(t+ sdt)
po= ndt
t=1
2 "L (RE(t + dt) — pdt)?
ndt ’

t=1
and the expected Fish information matrix is

0?InL 0*InlL

82 InL 2 8 a
—E( 062 (0)) = 0 lnL 82 In L
doOr do?

where

PInL  RE(t+dt)—dt
or2 o2dt ’
t=1
9*In L " RE(t 4 dt) — "L (RB(t + dt) — pdt)?
_ -3

002 ; dt Z otdt ’
L ~RP(t+dt) —dt

ordo odt ’

t=1

Table 4.2 lists all the parameters for use in the BSM model for the data of HTC and Acer
and the simulated behavior for each company is shown in Figures 4.2 and 4.3, respectively.
From the figures, we can see that the trend and time variation that are represented by the

estimated model fit well with the real data.
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’ HTC \ L \ o \ InL ‘
Parameters 0.001669072 | 0.028894464 | 5100.400
Standard Error | 0.000590298 | 0.000417056
Acer 1 o In L
Parameters 0.00039218 | 0.023552301 | 5594.757
Standard Error | 0.000480854 | 0.000339948

TABLE 4.2. Associated estimated parameters for the BSM model of two companies
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FIGURE 4.2. The simulated variation of the HTC by the BSM model.
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FIGURE 4.3. The simulated variation of theAcerby the BSM model.
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4.2. Estimation Parameter and Simulation in JDM

We use the similar procedures in Section 4.1 for estimating the paramters corresponding

to the JDM model. The log-return of JDM is calcuated to be

J B S(t+ dt)
R (t+dt) = lant)

) N(t)
_ 2
= (r—5o%)dt+odW (1) + d;}g

N ()
= RP(t+dt)+d> Y,

=1

where X denotes the Geometric Brownian motion ~ N (up, o) with pp = r — 502

The log-return contains two components

BRI+ dt) — R5(t + dt), N(t) =0,

RB(t+dt)+ Y1+ Yo+ ..+Y,,  N(t)>1,
where Y; ~ N (j17,02) and the distribution of R/(t + dt) is the sum of i.i.d random variable.
If the number & is the jump times, the probability density of R’(t + dt) is
N(up + kpy, 0%+ ko?). Let P(N(t) = k) = %, so the probability density of

log-return is described by

> )\ke—A 1 7(RJ(t+sgt)7ug7kuJ)2
FR'(t+dt) = ]
— k! 21 (0% + ko?)

The unconditional mean and unconditional variance of the JDM equal to

E(R'(t+dt)) = pp+ M,

Var(R'(t +dt)) = o% + \u%+02)

and the skewness and kurtosis are also given by
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A(p5 + 3ps07)
(0% + Ao + Auf)3/2
A(Baj + 6p50% + 1)

kurtosis = . 4.2.1
urtosis (03 + 202 + N2)? ( )

skewness =

The maximum likelihood function is defined to be

Nt) )\j 1 *(RJ<t+d2t)*MB2*kMJ)2
InL#) = —nA— —ln 2r)+ Y Iny ——x——c Hopthey) (4.2.2)
; Z I ok + ko?

where the 0 = (\, ug, i1y, 08,07).

Tables 4.3and 4.4 give us the estimated parameters for the JDM model of the HTC and
Acer data, respectively. The simuated behavior of the stock price variation of the JDM model
for HTC is shown in Figure 4.4. Figure 4.5 shows the comparision between the simulated
behavior for the BSM and JDM model, and it is obviously that the result for JDM is much
closer to the original data than the result of BSM. For the Acer company, the similar result
of the simulated behavior is given in Figure 4.6 and its comparison with BSM is given in
Figure 4.7. The comparison between different types of model is introduced in Chapter 2 with
the BIC criterion. For our computation the BIC' criterion is listed in Table 4.5 for the two
companies and it indicates that the JDM is more fit than BSM for both companies’ stock

price variation.
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TABLE 4.3. The estimated parameters for the JDM model of the HTC data

’ HTC ‘ UB ‘ OB ‘ 125 ‘ gJ ‘ )\ ‘ h’l L ‘
parameter 0.00420 | 0.02608 | —0.05391 | 3.65 x 10~® | 0.05468 | 5114.12
Standard Error | 0.0008 | 0.0006 0.0052 0.0057 0.0132
Mean | Variance | Skewness | kurtosis
Data 0.00125 | 0.00083 | —0.13372 3.58544
Parameter 0.00125 | 0.00084 | —0.35270 3.65654

TABLE 4.4. The estimated parameters for the JDM model of the HTC data

| Acer | ps | o | ws | oy | X | InL |
parameter 0.00194 | 0.02128 | —0.05660 | 0.00001 | 0.03166 | 5624.022
Standard Error | 0.00050 | 0.00038 | 0.00417 | 0.00469 | 0.00654
Mean | Variance | Skewness | kurtosis
Data 0.00015 | 0.00055 | —0.05985 | 4.20122
Parameter 0.00015 | 0.00055 | —0.43994 | 4.05762
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FIGURE 4.4. The simulated stock price variation for the JDM model of the
HTC data

HTC Stock price simulation in JOB & BSM
2DDD T T T T T T T T

Real stock price I
1800 - — — — Stock price in BSM
Stock price in JOM i '

1600 -

1400 -

1200

1000

a00 -

Stock Price (NTD)

B00 -

400 -

200 -

e, R

)= 1 1 1 1 1 L L
2002 2003 2004 2005 2006 2007 2O0S 2009 2010 20M
Year

FIGURE 4.5. The simulated stock price variation for the BSM and JDM models
of the HTC data
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FIGURE 4.6. The simulated stock price variation for the JDM model of the
HTC data
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FI1GURE 4.7. The simulated stock price variation for the BSM and JDM models
of the HTC data
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TABLE 4.5. The value of BIC of two models for two companies
BIC | HTC Acer

BSM | —10185 | —11174
JDM | —10189 | —11209
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CHAPTER 5

Conclusion

The aim of this paper is to estimate parameters of stochastic model, Vasicek model,
Black-scholes model and Jump- diffusion model by using maximum likelihood estimation.

In chapter 2 we present three stochastic models and thier exact solusion by using It
lemma for JDM. Finally we introduce our estimation method, maximum likelihood estima-
tion.

In Chapter 3 we use the one year U.S. treasury data to estimate the parameter and
simulate in Vasicek model. We find the trend of simulation result is bad when we use the
whole data, so we divide the data and re-estimate the parameter. In this paper we divide
the data into 4 intervals and the trend is more fit the data then the local trend.

In Chapter 4 we estimate the parameters in BSM and JDM. In BSM model there are
expilit solution, we can easily estimate the parameters, standard error, but in JDM it be-
came more difficult, so we use the matlab code then give some initial value to estimate the
parameters, standard error, and the mean, variance, skewness and kurtosis between data and
simulation are. very close.

This thesis use the maximum likelihood function to estimete the parameters in interest
rate model, BSM and JDM which are often used to price the European option. The furture
study are that in Vasicek model we find it is not good if we use the entire data, so we use the
annual inflation rate when the rate rise or down rapidly, so we can add the jump diffusion
in the model (Baz and Das 1996). In JDM model, we can change the jump size to the

double-exponential distribution (Kou 2002).
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