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Abstract

There are two main topics in the present study. The first topic focuses on determining

the parameters of the Vasicek model. Since if we use the zero coupon bond as a price model

to pricing the option value, the simulation of term structure is very important. Before the

bond price is obtained, we have to simulate the short interest rate using Vasicek model. The

likelihood function is used to estimate the parameters of Vasicek model with U.S. Treasury

one year bond rate data.

The asset price in the current market is modeled with Black-Sholes, and Merton construct

a Poisson process into their model to describe if there are some extreme jumps in the asset

price. The second part of present study is to estimate the parameters of Black-Scholes model

and the jump-diffusion mode by using the maximum likelihood approach.

Keywords: Maximum likelihood, Black-Scholes model, jump-diffusion model
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摘 要

本篇論文所要探討的主題有兩個部份：第一部份在評價歐式債券選擇權時，通常利用零息債

券作為評價的工具，並得到選擇權的確解，在這之前必須使用利率模型來模擬零息債券的價格，

若能以實際市場資料來對利率模型的參數做估計，便可帶入選擇權的確解來模擬價格，本文是以

Vasicek 模型做為參數估計的對象。

第二部份是以 Blcak-Scholes 模型作為評價歐式選擇權的工具，但股價有時會有劇烈的大漲或

大跌，Merton 在原本的 Blcak-Scholes 模型中加入了 Poisson 過程，來描述上述現象，稱為跳躍

擴散模型，本文利用最大概似函數估計以上模型的參數。

關鍵字: 最大概似法、Vasicek 模型、Black-Scholes 模型、跳躍擴散模型

11





List of symbols

Symbol Meaning

F -filtration

lnL(θ) -the maximum likelihood estimator

N(t) -Poisson process
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CHAPTER 1

Introduction

In the last twenty years, the option pricing have become increasingly popular, and the

values of European options can be calculated by some pricing models. The estimation of

the associated parameters for interest rate and pricing models for the current market is very

important in pricing the option. Hence this study discuss the parameter estimation of those

models by using the maximal likelihood method.

The first part of the present study is to estimate the parameters of Vasicek model. If we

use the zero coupon bond as a price model to pricing the option value, the simulation of term

structure is very important. Vasicek (1976) was the first to give an explicit characterization

with mean reverting of the term structure. Before we get the bond price, we have to simu-

late the short interest rate using Vasicek model. So the focus of our study on determining

the parameters of the Vasicek model. Now we use the likelihood function to estimate the

parameters of Vasicek model with U.S. Treasury one year bond rate data.

The second part is to estimate the parameters of BSM and JDM models. Black and

Scholes (1973) models the asset price, and Merton (1976) construct a Poisson process in the

BSM to describe if there are some extreme jumps in the asset price which is called jump-

diffusion model (JDM). We also use the likelihood to estimate the two models and compare

which model more fits the data.

The organization of this thesis is as following. In the next chapter we introduce the three

models and their explicit solutions. In Chapter 3, we estimate parameters of Vasicek model.

In Chapter 4, we estimate the parameters of BSM and JDM. Finally, some conclusions are

given.
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CHAPTER 2

Mathematical Preliminary

2.1. Brownian motion

Let (Ω,F ,P) be a probability space, and ξ = {ξ(t) | t ∈ [0, T ]},∀ t ∈ [0, T ], where ξ(t) is

a random variable and ξ is called the stochastic process. Let {F (t)}t∈[0,T ] be the σ−algebra

set F (t) ⊂ F ∀ t and ∀s ≤ t, Fs ⊆ Ft is called the filtration.

Definition 2.1. W = {W (t)|t ∈ [0, T ]} is called a Brownian motion if

• W (0) = 0 a.s..

• t 7→ W (t) is continuous a.s..

• ∀ 0 < t1 < t2 < . . . < tn

W (t1)−W (0) < W (t2)−W (t1) < ... < W (tn)−W (tn−1) are all independent.

• ∀ 0 < s < t, W (t)−W (s) = W (t− s) ∼ N (0, t− s)

∀ A ∈ B(R)

P(W (t)−W (s) ∈ A) =

ˆ
A

1√
2π(t− s)

e−
x2

2(t−s)dx

The following figure shows a typical path of the Brownian motion with t−s = 1/250.

Figure 2.1. Brownian Motion path with t− s = 1/250
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2.2. Vasicek model

For a suitable choice of the market price of risk, this is equivalent to assume that r

follows an Ornstein-Uhlenbeck process (Vasicek 1976) with constant coefficients under the

risk-neutral probability as well, that is,

dr (t) = a (b− r (t)) dt+ σdW (t) ,

where a is the speed of reversion, and b is long term mean level, σ is the instantaneous

volatility, σ2

2a
is long term variance.

Integrating equation dr (t) for each s ≤ t, then,

r (t) = r (s) e−a(t−s) + b
(
1− e−a(t−s)

)
+ σ

ˆ t

s

e−a(t−u)dW (u) .

2.3. Black-Scholes model

The Black-Scholes model (Black, Scholes 1973) is

dS(t)

S(t)
= rdt+ σdW (t)

under the risk-neutral probability.

And the exact solution:

S(t) = S(0)e(r−
1
2
σ2)t+σW (t)

we can check this by Itô lemma.

2.4. Jump-Diffusion Model

Definition 2.2. N = {N(t)|t ≥ 0} is a Poisson process if

• N(0) = 0, a.s..

• ∀ t 7→ N(t) is increasing indicator function, and the jump size is 1.

• ∀ 0 < t1 < t2 < . . . < tn,

N(t1)−N(0) < N(t2)−N(t1) < ... < N(tn)−N(tn−1) are all independent.
18



• ∀ 0 < s < t, N(t)−N(s) ∼ P(λ(t− s))

P(N(t)−N(s) = k) =
(λ(t− s))ke−λ(t−s)

k!
,

λ is the intesity of Poisson process.

Figure 2.2. Poisson Process with λ = 1

The Jump-Diffusion model can be expressed as the following :

dS(t)

S(t−)
= rdt+ σdW (t) + d(

N(t)∑
i=1

(yi − 1)).

The asset price jumps from S(t) to ytS(t), so the relative price jump size is

dS(t)

S(t−)
=

ytS(t)− S(t)

S(t−)
= yt − 1,

and the dW (t) is a Brownian motion with mean 0 and variance dt, and
N(t)∑
i=1

(yi − 1) is a

compound poisson process, yi ∼ logN (eµJ+
1
2
σ2
J − 1, e2µJ+σ2

J (eσ
2
J − 1)).

The exact solution:

S(t) = S(0)e(r−
1
2
σ2)t+σW (t)

N(t)∏
i=0

Yi

19



, where Yi = ln yi ∼ N (µJ , σ
2
J).

the asset price jumps from S(t) to ytS(t), so the relative price jump size is

dS(t)

S(t−)
=

ytS(t)− S(t)

S(t−)
= yt − 1,

if the number of jump time N(t) = 1, the relative price jump size is yt − 1, we suppose

yt = 0.8, that means the asset price falls by 20%.

Now we check the exact solution, Cont and Tankov(2004) gave the Itô lemma for the

JDM in differential notation,

df(X(t), t) =
∂f(X(t), t)

∂t
dt+ b(t)

∂f(X(t), t)

∂x
dt+

σ2(t)

2

∂2f(X(t), t)

∂x2
dt

+
∂f(X(t), t)

∂x
σ(t)dW (t) + [f(X(t−) + ∆X(t))− f(X(t−))],

where the b(t) is the drift and σ(t) is the volatility of a JDM,

X(t) = X(0) +
´ t

0
b(s)ds+

ˆ t

0

σ(s)dW (s) +

N(t)∑
i=1

∆X(i),

by applying this:

dS(t) = S(t−)(rdt+ σdW (t) + d(

N(t)∑
i=1

(yi − 1)))

d lnS(t) =
∂ lnS(t)

∂t
dt+ rS(t−)

∂ lnS(t)

∂S(t)
dt+

σ2

2
S2(t−)

∂2 lnS(t)

∂S2(t)
dt

+
∂ lnS(t)

∂S(t)
σS(t−)dW (t) + [ln ytS(t)− lnS(t)]

= rS(t−)
1

S(t)
dt− σ2

2
S2(t−)

1

S2(t)
dt+ σS(t−)

1

S(t)
dW (t) + ln yt

20



d lnS(t) = (r − σ2

2
)dt+ σdW (t) + ln yt

lnS(t)− lnS(0) = yt(r −
σ2

2
)t+ σW (t) +

N(t)∑
i=1

ln yt

lnS(t) = lnS(0) + (r − σ2

2
)t+ σW (t) +

N(t)∑
i=1

Yi

S(t) = S(0)e(r−
σ2

2
)t+σW (t)

N(t)∏
i=0

Yi.

2.5. Maximum Likelihood Estimation

This estimation method assumes that the distribution of an oberved phenomenon is

known, except for a finite number of unknown parameters. Then, the unknown parame-

ters will be estimated by looking at the sample values and then choosing our extimates of

the unknown parameters the values for which the probability of getting the sample values is

a maximum.

Let the probability density function of a random variable x = (x1,...,xn) with parameter

θ, denote by f (x | θ) = f (x1,...,xn | θ). If the observations are independent and identically

distributed then the joint density is the product of the individual densities:

f (x1,...,xn | θ) =
n∏

i=1

f (xi | θ) ,

The likelihood function for the sample data is given by

L (θ) =
n∏

i=1

f (xi | θ) .

We take the ln of L on both sides first,

lnL (θ) =
n∑

i=1

ln f (xi | θ) ,

since logarithm is a monotonic function then the value of θ that maximizes the log-likelihood

function must also maximize the likelihood function.
21



To find the maximum of log-likelihood function, the necessary condition is

∂ lnL (θ)

∂θ
= 0

the parameter θ is the root of the likelihood equation.

In order to get the standard error, first we have to caculate the variance-covariance matrix

of the maximum likelihood estimator θ

V ar(θ) = (−E(
∂2 lnL

∂θ2
(θ)))−1,

the −E(∂
2 lnL
∂θ2

(θ)) is called the expected Fisher information matrix and the standard errors

of the estimator θ which is the square root of the diagonal terms in the variance-covariance

matrix.

2.6. Bayesian Information Criterion

To compare the different kth models we defined the Bayesian information criterion(BIC)

as following:

BICk = −2 lnL(θk) + dk lnn,

where n is the number of observe datas, d is the number of parameters. We can choose the

smallest value of BIC for each model which is the best fit model.

22



CHAPTER 3

Parameter Estimation in the Vasicek Interest Rate Model

In this chapter, we want to estimate the parameters of the Vasicek model to represent the

following U.S. T-bill daily data 1962/10/02 to 2010/12/31 with its size N = 12000. Figure

3.1 shows the time variation of this data set and some statistical information are listed in

Table 3.1.

Figure 3.1. The time variation of U.S. T-bill daily data from 1962/10/02 to 2010/12/31.

Mean Variance Rate max Rate min
0.0588 9.52× 10−4 0.1731 0.0021

Table 3.1. Some statistics of the U.S. T-bill daily data from 1962/10/02 to 2010/12/31.

The exact solution of Vasicek model is given by

r (t) = r (s) e−a(t−s) + b
(
1− e−a(t−s)

)
+ σ

ˆ t

s

e−a(t−u)dW (u) ,

23



with risk-neutral probability, so that r(t) conditional on Fs is normally distributed with

mean and variance

E [r (t) | r(s)] = r (s) e−a(t−s) + b
(
1− e−a(t−s)

)
V ar [r (t) | r(s)] =

σ2

2a

[
1− e−2a(t−s)

]
r (t) ∼ N

(
r (s) e−a(t−s) + b

(
1− e−a(t−s)

)
,
σ2

2a

[
1− e−2a(t−s)

])
The interest can be discretized as

ri+1 = rie
−adt + b

(
1− e−adt

)
+ σ

ˆ t+dt

t

e−a(t−u)dW (u) .

where dt = 1
250

such that we can obtain a discrete set {ri} corresponding to the U.S. T-

bill daily data. Denote θ = (a, b, σ2) and let α = e−adt, β = b
(
1− e−adt

)
, and V 2 =

σ2

2a

[
1− e−2adt

]
. The log-likelihood fuction for the discrete data set {ri} is defined by

lnL(θ) =
n∑

i=1

ln
[
(

1√
2πV 2

e−
(ri+1−αri−β)2

2V 2

]

= −1

2

n∑
i=1

[
(ln 2π + lnV 2) +

(ri+1 − αri − β)2

V 2

]
.

To determine the maximum of the log-likelihood function, we have to find the parameter

θ such that the zero gradient of lnL(θ) is achieved. Since

∂ lnL(θ)

∂a
=

∂ lnL

∂α

dα

da
+

∂ lnL

∂β

dβ

da
+

∂ lnL

∂V 2

dV 2

da

= (−e−adtdt)
n∑

i=1

ri+1ri − αr2i − βri
V 2

+ (be−adtdt)
n∑

i=1

ri+1 − αri − β

V 2
+{[

− n

2V 2
+

1

2

n∑
i=1

(ri+1 − αri − β)2

(V 2)2

] [
− σ2

2a2
(1− e−2adt) +

σ2

a
(e−2adtdt)

]}
= 0

24



∂ lnL(θ)

∂b
=

∂ lnL

∂β

dβ

db

=
n∑

i=1

ri+1 − αri − β

V 2
(1− e−adt)

= 0

∂ lnL(θ)

∂σ2
=

∂ lnL

∂V 2

dV 2

dσ2

=

[
−n

2V 2
+

1

2

n∑
i=1

(ri+1 − αri − β)2

(V 2)2

]
1

2a

(
1− e−2adt

)
= 0

= 0

and a ̸= 0, we arrive at the system of equations

n∑
i=1

ri+1ri − αr2i − βri
V 2

= 0,

n∑
i=1

ri+1 − αri − β

V 2
= 0,

−n

2V 2
+

1

2

n∑
i=1

(ri+1 − αri − β)2

(V 2)2
= 0.

And the parameters α, β and V 2 are then given by

α =

n
n∑

i=1

ri+1ri −
n∑

i=1

ri+1

n∑
i=1

ri

n
n∑

i=1

r2i − (
n∑

i=1

ri)
2

,

β =

α
n∑

i=1

ri −
n∑

i=1

ri+1

n
,

V 2 =

n∑
i=1

(ri+1 − αri − β)2

n
.
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For the Vasicek model, the expected Fisher information matrix is described by

−E(
∂2 lnL

∂θ2
(θ)) = −E




∂2 lnL

∂a2
∂2 lnL

∂a∂b

∂2 lnL

∂a∂σ2

∂2 lnL

∂b∂a

∂2 lnL

∂b2
∂2 lnL

∂b∂σ2

∂2 lnL

∂σ2∂a

∂2 lnL

∂σ2∂b

∂2 lnL

∂(σ2)2




where

∂2 lnL

∂a2
=

∂2 lnL

∂α2

(
∂α

∂a

)2

+
∂2 lnL

∂β2

(
∂β

∂a

)2

+
∂2 lnL

(∂V 2)2

(
∂V 2

∂a

)2

+

2
∂2 lnL

∂α∂β

∂α

∂a

∂β

∂a
+ 2

∂2 lnL

∂α∂V 2

∂α

∂a

∂V 2

∂a
+ 2

∂2 lnL

∂β∂V 2

∂β

∂a

∂V 2

∂a

∂2 lnL

∂b2
=

∂2 lnL

∂β2

(
∂β

∂b

)2

∂2 lnL

∂(σ2)2
=

∂2 lnL

∂(V 2)2

(
∂V 2

∂σ2

)2

∂2 lnL

∂a∂b
=

(
∂2 lnL

∂α∂β

∂α

∂a
+

∂2 lnL

∂β2

∂β

∂a
+

∂2 lnL

∂β∂V 2

∂V 2

∂a

)
∂β

∂b

∂2 lnL

∂a∂σ2
=

(
∂2 lnL

∂α∂V 2

∂α

∂σ2
+

∂2 lnL

∂β∂V 2

∂β

∂σ2
+

∂2 lnL

∂(V 2)2
∂V 2

∂σ2

)
∂V 2

∂σ2

∂2 lnL

∂σ2∂b
=

∂2 lnL

∂β∂V 2

∂V 2

∂σ2

∂β

∂b
.

The estimate parameters and its standard errors (computed by using Fisher matrix)

corresponding to the Vasicek model are listed in Table 3.2. And the plot of the orginal

data versus the simulated Vasicek behavior is shown in Figure 3.2. The trend in the figure

represents the long term average of the given data set but it does not fit the entire data curve

26



very well and hence we can also see that the simulated behavior of the Vasicek model is not

consistent to the time trajectory of the data set.

a b σ lnL

Parameters 0.07837 0.05219 0.01407 67264.11
Standard error 0.06573 0.02660 2.56× 10−6

Table 3.2. Corresponding arameters for the Vasicek model

Figure 3.2. The Vasicek behavior to simulate the data

Figure 3.3 shows the annaul inflation rate of USA from 1963 to 2010. In comparing the

time series shown in Figures 3.1 and 3.3, it is observed that increasing or decreasing of the

interest rate concides with the change of the inflation rate, i.e., when the inflaction rate is

increasing then the corresponding interest rate is also increasing, and vice verse. Thus we

divide the US T-bill daily data into several intervals according to the increasing/decreasing

behavior of the annual inflation rate.
27



Figure 3.3. The annual inflation rate of USA from 1963 to 2010

Therefore we divide the data into 4 intervals, from 1962 to 1972, from 1973 to 1981,

from 1982 to 1990, and from 1991 to 2010, because of the annual inflaction rate rises up or

falls down rapidly. The estimated parameters with their standard errors are listed in Table

3.3 and Figure 3.4 shows that the trend of each interval now captures the data trend more

well than the trend given in Figure 3.2. Also the simulated behavior of the Vasicek model

shows in Figure 3.5 is more consistent with the given data. From this example, a proper

segmentation of the time history is a very important step in the parameter estimation.

Table 3.3. The estimated parameters for 4 intervals
N a b σ Mean Variance σ2

2a

1962 ∼ 1972 0.26506 0.06056 0.00707 0.05055 0.00016 0.9× 10−5

Std error 0.17229 0.01060 1.40× 10−6

1973 ∼ 1981 0.25162 0.12294 0.02420 0.08894 0.00095 0.00116
Std error 0.26304 0.04793 1.75× 10−5

1982 ∼ 1990 0.59362 0.07653 0.01741 0.08853 0.00045 0.00025
Std error 0.29075 0.01198 9.66× 10−5

1991 ∼ 2010 0.07790 −0.00560 0.00805 0.04004 0.00042 0.00042
Std error 0.08517 0.05476 1.26× 10−6
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Figure 3.4. The trend of each interval of the US T-bill daily data.

Figure 3.5. The simulated behavior of the Vasicek model consisting of four intervals.
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CHAPTER 4

Parameter Estimation in Black-Scholes and Jump Diffusion

Models

It is interesting to use the asset price model to estimate the stock price variation in the

current market. We choose the HTC and Acer stock-price daily data and estimate parameters

which are used in BSM and JDM for European option pricing. The statisctical properties of

the stock-price data for two companies are listed in Table 4.1. And the time variation of two

companies are shown in Figure 4.1.

Table 4.1. Some statistics of log-return data of two companies
Mean Variance Max. Val. Min Val. skewness kurtosis

HTC 0.001251627 0.000835238 −0.1347 0.0677 −0.133728006 3.585435315
Acer 0.000150829 0.000551879 −0.0854 0.0676 −0.0598493832 4.201222636

4.1. Parameter Estimation and Simulation in BSM

In the BSM model, the unknown parameters are r and σ, and denote them by θ = (r, σ).

Before we estimate the parameters, we have to take the logarithm of the stock price and

calculate the return of the BSM model which is given by

RB(t+ dt) ≡ lnS(t+ dt)− lnS(t)

= (r − 1

2
σ2)dt+ σdW (t),
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Figure 4.1. Time variation of two companies’ daily data

where s = 1,µ = r − 1
2
σ2,dt = 1, RB(t + dt) it is alss a Geometric Brownian motion. The

conditional mean and conditional variance are:

E
[
RB(t+ dt) | RB(t)

]
= µ

V ar
[
RB(t+ dt) | RB(t)

]
= σ2,

and RB(t+ dt) ∼ N (µ, σ2).

The log-likelihood function is defined by

lnL(θ) = −n

2
ln 2πs− n lnσ − 1

2

n∑
t=1

(RB(t+ dt)− µdt)

σ2dt

and the zero derivatives are
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∂ lnL(θ)

∂r
=

n∑
t=1

(RB(t+ dt)− µdt)

σ2dt
= 0,

∂ lnL(θ)

∂σ
= −n

σ
+

n∑
t=1

(RB(t+ sdt)− µdt)2

σ3dt
= 0.

where the extrema value of lnL(θ) occurs. The close-form solutions for µ and σ2 are then

given by

µ =
n∑

t=1

RB(t+ sdt)

ndt

σ2 =
n∑

t=1

(RB(t+ dt)− µdt)2

ndt
,

and the expected Fish information matrix is

−E(
∂2 lnL

∂θ2
(θ)) = E

 ∂2 lnL

∂r2
∂2 lnL

∂r∂σ
∂2 lnL

∂σ∂r

∂2 lnL

∂σ2


where

∂2 lnL

∂r2
=

n∑
t=1

RB(t+ dt)− dt

σ2dt
,

∂2 lnL

∂σ2
=

n∑
t=1

RB(t+ dt)− dt

dt
+

n

σ2
− 3

n∑
t=1

(RB(t+ dt)− µdt)2

σ4dt
,

∂2 lnL

∂r∂σ
= −

n∑
t=1

RB(t+ dt)− dt

σdt
.

Table 4.2 lists all the parameters for use in the BSM model for the data of HTC and Acer

and the simulated behavior for each company is shown in Figures 4.2 and 4.3, respectively.

From the figures, we can see that the trend and time variation that are represented by the

estimated model fit well with the real data.
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HTC µ σ lnL

Parameters 0.001669072 0.028894464 5100.400
Standard Error 0.000590298 0.000417056

Acer µ σ lnL
Parameters 0.00039218 0.023552301 5594.757

Standard Error 0.000480854 0.000339948

Table 4.2. Associated estimated parameters for the BSM model of two companies
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Figure 4.2. The simulated variation of the HTC by the BSM model.

Figure 4.3. The simulated variation of theAcerby the BSM model.
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4.2. Estimation Parameter and Simulation in JDM

We use the similar procedures in Section 4.1 for estimating the paramters corresponding

to the JDM model. The log-return of JDM is calcuated to be

RJ(t+ dt) = ln S(t+ dt)

S(dt)

= (r − 1

2
σ2)dt+ σdW (t) + d

N(t)∑
i=1

Yi

= RB(t+ dt) + d

N(t)∑
i=1

Yi,

where X denotes the Geometric Brownian motion ∼ N (µB, σ
2
B) with µB = r − 1

2
σ2.

The log-return contains two components

RJ(t+ dt) =


RB(t+ dt),

RB(t+ dt) + Y1 + Y2 + ...+ Yk,

N(t) = 0,

N(t) ≥ 1,

where Yi ∼ N (µJ , σ
2
J) and the distribution of RJ(t+ dt) is the sum of i.i.d random variable.

If the number k is the jump times, the probability density of RJ(t+ dt) is

N (µB + kµJ , σ
2
B + kσ2

J). Let P(N(t) = k) = (λs)ke−λs

k!
, so the probability density of

log-return is described by

f(RJ(t+ dt)) =
∞∑
k=0

λke−λ

k!

1√
2π(σ2

B + kσ2
J)
e

−(RJ (t+sdt)−µB−kµJ )2

2(σ2
B

+kσ2
J
) .

The unconditional mean and unconditional variance of the JDM equal to

E(RJ(t+ dt)) = µB + λµJ ,

V ar(RJ(t+ dt)) = σ2
B + λ(µ2

J + σ2
J)

and the skewness and kurtosis are also given by
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skewness =
λ(µ3

J + 3µJσ
2
J)

(σ2
B + λσ2

J + λµ2
J)

3/2
,

kurtosis =
λ(3σ4

J + 6µ2
Jσ

2
J + µ4

J)

(σ2
B + λσ2

J + λµ2
J)

2
. (4.2.1)

The maximum likelihood function is defined to be

lnL(θ) = −nλ− n

2
ln(2π) +

n∑
t=1

ln
Nt)∑
k=0

λj

j!

1√
σ2
B + kσ2

J

e
−(RJ (t+dt)−µB−kµJ )2

2(σ2
B

+kσ2
J
) (4.2.2)

where the θ = (λ, µB, µJ , σB, σJ).

Tables 4.3and 4.4 give us the estimated parameters for the JDM model of the HTC and

Acer data, respectively. The simuated behavior of the stock price variation of the JDM model

for HTC is shown in Figure 4.4. Figure 4.5 shows the comparision between the simulated

behavior for the BSM and JDM model, and it is obviously that the result for JDM is much

closer to the original data than the result of BSM. For the Acer company, the similar result

of the simulated behavior is given in Figure 4.6 and its comparison with BSM is given in

Figure 4.7. The comparison between different types of model is introduced in Chapter 2 with

the BIC criterion. For our computation the BIC criterion is listed in Table 4.5 for the two

companies and it indicates that the JDM is more fit than BSM for both companies’ stock

price variation.
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Table 4.3. The estimated parameters for the JDM model of the HTC data
HTC µB σB µJ σJ λ lnL

parameter 0.00420 0.02608 −0.05391 3.65× 10−8 0.05468 5114.12
Standard Error 0.0008 0.0006 0.0052 0.0057 0.0132

Mean Variance Skewness kurtosis
Data 0.00125 0.00083 −0.13372 3.58544

Parameter 0.00125 0.00084 −0.35270 3.65654

Table 4.4. The estimated parameters for the JDM model of the HTC data
Acer µB σB µJ σJ λ lnL

parameter 0.00194 0.02128 −0.05660 0.00001 0.03166 5624.022
Standard Error 0.00050 0.00038 0.00417 0.00469 0.00654

Mean Variance Skewness kurtosis
Data 0.00015 0.00055 −0.05985 4.20122

Parameter 0.00015 0.00055 −0.43994 4.05762
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Figure 4.4. The simulated stock price variation for the JDM model of the
HTC data

Figure 4.5. The simulated stock price variation for the BSM and JDM models
of the HTC data

39



Figure 4.6. The simulated stock price variation for the JDM model of the
HTC data

Figure 4.7. The simulated stock price variation for the BSM and JDM models
of the HTC data
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Table 4.5. The value of BIC of two models for two companies
BIC HTC Acer
BSM −10185 −11174
JDM −10189 −11209
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CHAPTER 5

Conclusion

The aim of this paper is to estimate parameters of stochastic model, Vasicek model,

Black-scholes model and Jump- diffusion model by using maximum likelihood estimation.

In chapter 2 we present three stochastic models and thier exact solusion by using Itô

lemma for JDM. Finally we introduce our estimation method, maximum likelihood estima-

tion.

In Chapter 3 we use the one year U.S. treasury data to estimate the parameter and

simulate in Vasicek model. We find the trend of simulation result is bad when we use the

whole data, so we divide the data and re-estimate the parameter. In this paper we divide

the data into 4 intervals and the trend is more fit the data then the local trend.

In Chapter 4 we estimate the parameters in BSM and JDM. In BSM model there are

expilit solution, we can easily estimate the parameters, standard error, but in JDM it be-

came more difficult, so we use the matlab code then give some initial value to estimate the

parameters, standard error, and the mean, variance, skewness and kurtosis between data and

simulation are. very close.

This thesis use the maximum likelihood function to estimete the parameters in interest

rate model, BSM and JDM which are often used to price the European option. The furture

study are that in Vasicek model we find it is not good if we use the entire data, so we use the

annual inflation rate when the rate rise or down rapidly, so we can add the jump diffusion

in the model (Baz and Das 1996). In JDM model, we can change the jump size to the

double-exponential distribution (Kou 2002).

43





Bibliography

[1] F. Black and M. Scholes, The Pricing of Options and Corporate Liabilities, Journal of Political

Economy, 1973, Vol. 81, No.3 , p.637-654.

[2] D. Brigo and A. Dalessandro and M. Neugebauer and F. Triki, A Stochastic Processes Toolkit

for Risk Management, The Journal of Risk Management for Financial Institutions,2007.

[3] D. Brigo and F. Mercurio, Interest Rate Models-Theory and Practice, Springer, 2006.

[4] R.Craine and L. A. Lochstoer and K. Syrtveit, Estimation of a Stochastic-Volatility Jump-

Diffusion Model, ftp://128.32.105.3/pub/users/craine/Homepage.old/SVJD.pdf, 2000.

[5] P. Jorion, On Jump Processes in the Foreign Exchange and Stock Markets, The Review of

Financial Strdies 1998, Vol. 1, issue 4, p.427-445.

[6] K. Matsuda, Introduction to Merton Jump Diffusion Model,

www.maxmatsuda.com/Papers/Intro/Intro%20to%20MJD%20Matsuda.pdf, 2004.

[7] R. C. Merton,Option pricing when underlying stock returns are discontinuous, Journal of Fi-

nancial Economics, 1976, Vol. 3, Issues 1-2, p.125-144.

[8] B. J. T. Morgan, Applied Stochastic Modelling, Chapman & Hall/CRC, 2009.

[9] C. A. Ramezani and Y. Zeng, Maximum likelihood estimation of the double exponential jump-

diffusion process, Annals of Finance, 2007, Vol. 3, Issue 4, p.487-507.

[10] C. Tankov, Financial Modelling With Jump Processes, Chapman & Hall/CRC, 2004.

45


	誌謝
	Abstract
	List of Figures
	摘  要
	List of symbols
	Chapter 1. Introduction
	Chapter 2. Mathematical Preliminary
	2.1. Brownian motion
	2.2. Vasicek model
	2.3. Black-Scholes model
	2.4. Jump-Diffusion Model
	2.5. Maximum Likelihood Estimation
	2.6. Bayesian Information Criterion

	Chapter 3. Parameter Estimation in the Vasicek Interest Rate Model
	Chapter 4. Parameter Estimation in Black-Scholes and Jump Diffusion Models
	4.1. Parameter Estimation and Simulation in BSM
	4.2. Estimation Parameter and Simulation in JDM

	Chapter 5. Conclusion
	Bibliography

