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Abstract

This project focuses on the
investigations of the Dirichlet
eigenvalue problem in Riemannian
manifolds, especially for the estimate of
higher eigenvalues of Laplace operator
and its applivations. By the methods in
P.Li and Yau’s work about studying the
Dirichlet problem and the estimate of
higher eigenvaluesin abounded domain
of Euclidean space, we investigate the
possibility of extending their work to
general Riemannian manifolds.
Meanwhile, we also discuss the related
problems about the stochastic geodesic
on Riemannian manifolds. By
S.Helgason’s results about Fourier
transforms on symmetric spaces, we

give partial results about the stochastic
geodesic equations on these manifolds.
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Consider the Dirichlet problem for
bounded domains Q in the standard

Euclidean space’R" . Then the Dirichlet
eigenvalue problem is as follows:

{A(p = —A¢
¢ |aQ =0
, Where A denote the Laplacian

operator.

By use of heat kernel and
Tauberian theorem, H. Weyl proved in
1912 the asymptotic formula
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, Where C, :(2”)2/(0);]1j :

o, = Area(S"") and V =Vol(Q).

Based on thisformula, Polya
conjectured in 1960 that for each k
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Inthecase n= 2, Polyaproved
that the conjecture holds for some
specia planar domains. In 1980, E. Leib



proved that there exists a constant
C, <C, suchthat

The most recent result on this conjecture
is the following theorem shown by Li
and Yau (c.f. [LY]).

Theorem (Li-Yau): For any k>0, we
have

Sinced, <A, <---<4,, 854
corollary of the above theorem, one
has
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The main tool in the proof of Li
and Yau’s theorem is the theory of
Fourier transforms. Especialy, the proof
depends heavily on the Planchel
theorem. Here we mention them as

follows: Let {¢,

¥, bean orthonormal
family of eigenfunctions corresponding

to {x},,andlet
B(x, ) = iqsi(xm (y).

Denote by (ﬁ(z, y) theFourier

transform of @(X,Yy),i.e.

~
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Then the Planchd theorem shows that

L6 F dx=] 1§(xDF dz.

A~

That is, the Fourier transform ¢ of ¢

keepsthe L? —norm.

Our god isto extend these results
from the Euclidean spaces to
Riemannian manifolds and then to
estimate the higher eigenvalues of the
Laplacian operator A . Here

1 0 i 0
A=—> —|JG . g"—
ST (Ve )
, where (x',---,x") is a locd

coordinate and then the metric can be

expressed as ds® =) gdx'dx’ with

(gij):(gij)_l and G=det(g;) . To

our end, we will follow a similar
method as in Li-Yau’s
Therefore, it is necessary to develop the
related tools and then investigate their
application.

In fact, Chung, Grigor’yan and Yau
gave in [CGY] the estimation of
eigenvalues on Riemannian manifolds.
However, they used the method of
studying the isoperimetric inequalities
instead of considering the Fourier
transforms on Riemannian manifolds.
Thelr result is
Theorem: ([CGY])

theorem.



Let M be a complete Riemannian
manifolds of dimension >1. Let pe(x
be a distance functiononM  such that,
for some R.e(0,«] and all :eM the

inequalities  |Vpsz| and Ape? = 2n

hold inside the ball B:¢(Ro). If Q<M
iIs a precompact and with smooth
boundary and there exists a positive
integer suchthat Vol (QQ) <¢R."K

, where ¢=¢(n)>0 is a constant,

then Ak(g)za( k j”
vol (Q)

with some a=a(n) >0.

Although the problem about the
estimation of higher eigenvalues of
Laplace operator on Riemannian
manifolds has been done, the
investigation of Fourier transforms on
Riemannian manifolds is still important
and interest. In the next paragraph, we
will state our observation about
stochastic geodesic  equations  on
symmetric spaces.
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We consider the problem about
how to define the “stochastic” geodesic
equations on Riemannian manifolds. As
we know, for a given Riemannian
manifold (M, g) with induced
Riemannian connectionV , acurve
y(s)withy(0) = x,and y'(0) =vis
caled ageodesicin (M,qg) ifit

satisfies the geodesic equationV,y"=0.

Now we add stochastic effects
on(M,qg) . In[P], the author considered

the stochastic Riemannian geodesic
y(t,x) on (M,g) withinitia data
(7(0,%),v(0,x)) , where y(0,x)isa
random variable with variance 0 and
v(0, X) isarandom variable with
transition density u(y) . Then it can be
shown that the stochastic geodesic
eguation is

a' :drift vector of v(t,x)
BY : diffusion matrix of v(t,x)

du 11 0 i Ou
ra [&VGu]+ 276 (VGB o)
, Where a = a—Ta—(\/_B”) and

G =detg; asabove. However, this

result only holds locally since the main
tool in [Pa] isto use Fourier transform
to solve the corresponding Fokker-Plank

eguation on Euclidean spaces. Therefore,

anecessary work to establish a theory of
stochastic Riemannian geodesic isto
develop a suitable Fourier transform
theory on Riemannian manifolds.
S.Helgason showed in [S] atheory

of aFourier transform f ——f ona

symmetric space of the noncompact
type and investigated its operational
properties. Let G be a connected
semisimple Lie group with finite center

_G ;
and X = A be the associated

symmetric space. The Fourier transform



on R" in polar coordinate is

F(lo) = jRn F (g™ *"dx,[w{ =11 e R.

Geometrically, the scalar product

(%, w) represents the signed distance
from the origin to the hyperplane
passing through x , having unit normal
w . In the symmetric space, the scalar
product isthe vector A(x,b) e a which

Is the composite distance from the
origin 0={k} in x tothe horocycle
E(x,b) throughx e X with normal

_K ;
beB= A/I . Then he defined the

Fourier transformon X by
Definition: If f isafunctionon X ,

then the Fourier transform  f s
defined by
F(A,b)= [ (x4 for all

lea beB forwhichthisintegral
exists.

Moreover, he gave the Plancherel
formulain this case. Let

a, ={1 ea |A ea'} bethe preimage of

the positive Weyl chamber a’. Here
B(A,H)=AH for Hea .Then,

Theorem: The Fourier transform

f(x)—> f(1,b) extendstoan
isometry of  L*(x) onto L?(a, x B)

(With the measure ‘c(ﬂ)'z‘dldb on

a, x B). Moreover,

j fl(x)mdx=i j f,(A,0) T, (2,b)|c(1)|* dAdb
X In) B

By use of the above definition and
formula, we may extend the local
stochastic geodesic equation to a global
one on symmetric spaces. It result from
that Helgason’s theory provides us an
ideato slove the corresponding
Fokker-Plan equation on symmetric
spaces. Thisresult isin preparation.
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Initially, we expect to find the
estimation of higher eigenvalues of
Laplace operator on Riemannian
manifold. We want to extend Professors
Li and You’s method to obtained some
results. Although this estimation is done
in [CGY] by another method, it is still
important to study the Fourier transform
on Riemannian manifolds. We discuss
the stochastic Riemannian geometry and
give an idea about the stochastic
geodesic equations on symmetric spaces
by Helgason’s theory. We look forward
to finding a good way to definded the
Fourier transform on Riemannian
manifolds and then extending our results
to general Riemannian manifolds.
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