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Abstract

In this paper we study the stability and bifurcation of the trivial solution

of a two-neuron network model with distributed time delays. This model

consists of two identical neurons, each possessing nonlinear instantaneous

self-feedback and connected to the other neuron with continuously dis-

tributed time delays. We first examine the local asymptotic stability of

the trivial solution by studying the roots of the corresponding charac-

teristic equation, and then describe the stability and instability regions

in the parameter space consisting of the self-feedback strength and the

product of the connection strengths between the neurons. It is further

shown that the trivial solution may lose its stability via a certain type

of bifurcation such as a Hopf bifurcation or a pitchfork bifurcation. In

addition, the criticality of Hopf bifurcation is investigated by means of

the normal form theory. We also provide numerical evidences to support

our theoretical analyses.

Keywords. neural network; distributed time delay; characteristic equa-

tion; Hopf bifurcation; pitchfork bifurcation; normal form
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1. Introduction

This work is concerned with the stability and bifurcation of the trivial solution
of a Hopfield-type neural network model which consists of two identical neu-
rons, each possessing nonlinear instantaneous self-feedback and connected to
the other neuron with continuously distributed time delays. The dynamics of
this neural netlet is governed by the following equations:

ẋ(t) = −x(t) + pf(x(t)) + s

∫ L

0

k(θ)f(y(t− θ)) dθ,

ẏ(t) = −y(t) + pf(y(t)) + r

∫ L

0

k(θ)f(x(t− θ)) dθ,

where x and y represent the voltages of the neurons; p is the self-feedback
strength; r and s are the connection strengths; the nonlinear activation function
f is representing the output or firing rate; the continuous density function
k : [0, L] → [0,∞) with L > 0 is prescribed which satisfies

∫ L

0

k(θ) dθ = 1.

As usual, the activation function f we consider is of sigmoidal type. More
specifically, we may assume that f is a smooth function possessing the following
properties:

(H)















f : R → R is an odd function;
f ′(0) = 1;
f(±∞) = ±M,where M is a positive constant;
xf ′′(x) < 0 for all x 6= 0.

A typical example of f is given by f(x) = tanh(x).

It has been widely argued and accepted that for various reasons, time delay
should be taken into account in the modeling for practical problems. For exam-
ple, in models of electronic networks, time delays are likely to be present due
to the finite switching speed of amplifiers. In biological neurons, there are sev-
eral types of delays in their performances commonly known as cellular delays,
transmission delays, and synaptic delays (see [9] and references cited therein).
In practice, although the use of constant discrete time delays in the models
serve as a good approximation in simple electronic circuits consisting of a small
number of neurons, in biological neural networks, it usually has a spatial extent
due to the presence of an amount parallel pathways with a variety of axon sizes
and lengths. Thus, there will be a distribution of transmission delays and it
cannot be modeled with discrete time delays. In such case, a more appropri-
ate way is to incorporate distributed time delays in the models. Therefore, as
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pointed out in [15], the studies of models with distributed time delays have more
important significance than the ones with discrete delays. For the fundamental
theory of delay differential equations, we refer the reader to the book of Hale
and Verduyn Lunel [12].

It is well-known that Hopfield-type neural networks with symmetric connec-
tion strengths but without time delays exhibit no oscillations and possess global
stability (i.e., all trajectories tend to some equilibrium) [13]. Consequently, in
the study of Hopfield-type neural networks with or without time delays, suffi-
cient stability conditions of equilibria for asymmetric connection weights and
the mechanism for the onset of instability of equilibria are widely considered.
See [2]-[9], [14]-[21], [23], and many references therein. Most works mentioned
above considered the network models with discrete time delays. However, as
we have pointed out above, it is of great importance to discuss the model with
distributed time delays. Therefore, in contrast to the two-neuron systems with
discrete time delays examined in [9], [19], and [20], in this paper, we will study
the two-neuron network system with more realistic distributed time delays.

In the following discussion, for simplicity, we will always assume that k(θ) ≡
1 with L = 1, namely,

ẋ(t) = −x(t) + pf(x(t)) + s

∫ 1

0

f(y(t− θ)) dθ,

ẏ(t) = −y(t) + pf(y(t)) + r

∫ 1

0

f(x(t− θ)) dθ.

(1.1)

We remark that most of results obtained in this paper might be generalized to
more general density functions. By inspection, it is obvious that (0, 0) is an
equilibrium of (1.1). We will investigate the local asymptotic stability of the
trivial solution by studying the corresponding characteristic equation. The triv-
ial solution is locally asymptotically stable if all the roots of the characteristic
equation have negative real parts, and whether or not this is true will depend
on the values of the parameters involved in the network, namely, r, p and s.
In this paper, the stability and instability regions can be completely described
in the parameter space. Furthermore, we arrive at the conclusion that similar
to the results obtained in [9, 19, 20], the trivial solution may lose its stability
through a certain type of bifurcations such as a Hopf bifurcation or a pitchfork
bifurcation. We also investigate the criticality of the Hop bifurcation using the
normal form theory.

This paper is organized as follows. In section 2, we introduce some notations
and the characteristic equation associated with the trivial solution of (1.1). The
behaviour of the iω-curves for the characteristic equation are studied in section
3. In section 4, we describe the local asymptotic stability regions of the trivial
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solution on the γp-plane. In section 5, the mechanism of Hopf bifurcation as well
as the change of criticality are investigated. Finally, in section 6, we examine
the steady state bifurcation by studying the existence and local stability of
nontrivial equilibria of (1.1). At each stage, we also provide numerical evidences
to support our theoretical analyses.

2. The characteristic equation

In this section, we will derive the corresponding characteristic equation of the
linearization of (1.1) about the trivial solution (0, 0). Some useful notations will
also be introduced.

The linearization of (1.1) at the trivial point is given by

˙̄x(t) = −x̄(t) + px̄(t) + s

∫ 1

0

ȳ(t− θ) dθ,

˙̄y(t) = −ȳ(t) + pȳ(t) + r

∫ 1

0

x̄(t− θ)) dθ.

(2.1)

The characteristic equation for this linearized system is obtained by looking
for nontrivial solutions of the form (x̄(t), ȳ(t)) = (c1, c2)e

λt where c1 and c2 are
constants. Such solutions will be nontrivial if and only if

P (λ) := det









λ− p+ 1 −s
∫ 1

0

e−λθ dθ

−r
∫ 1

0

e−λθ dθ λ− p+ 1









= 0, (2.2)

which is called the characteristic equation of (1.1) with respect to the trivial
solution (0, 0). Expanding the determinant in (2.2), we obtain

P (λ) = (p− 1 − λ)2 − rs(

∫ 1

0

e−λθ dθ)2 = ∆+(λ)∆−(λ), (2.3)

where

∆±(λ) =















(p− 1 − λ) ± γ

∫ 1

0

e−λθ dθ if rs > 0,

(p− 1 − λ) ± iγ

∫ 1

0

e−λθ dθ if rs < 0,

(2.4)

with γ =
√

|rs| and i =
√
−1. Now, letting λ = µ+ iω for some µ, ω ∈ R and

separating ∆±(λ) into real and imaginary parts, we further have

∆±(λ) = R±(µ, ω) + iI±(µ, ω), (2.5)
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where

R±(µ, ω) =















(p− 1 − µ) ± γ

∫ 1

0

e−µθ cos(ωθ) dθ if rs > 0,

(p− 1 − µ) ± γ

∫ 1

0

e−µθ sin(ωθ) dθ if rs < 0,

(2.6)

I±(µ, ω) =















−ω ∓ γ

∫ 1

0

e−µθ sin(ωθ) dθ if rs > 0,

−ω ± γ

∫ 1

0

e−µθ cos(ωθ) dθ if rs < 0.

(2.7)

It has been known that the local stability of the trivial solution (0, 0) com-
pletely depends on the real parts of the complex roots of (2.2) (cf. [12]). How-
ever, the characteristic equation (2.2) has infinitely many complex roots, and it
is quite difficult to determine the values of the parameters r, p and s such that
the complex roots have positive or negative real parts.

The following is a useful observation for finding the nonzero roots of P (λ) =
0. We note that λ is a nonzero root of ∆±(λ) = 0 if and only if λ is a nonzero
root of

0 = λ∆±(λ) =

{

(p− 1 − λ)λ± γ(1 − e−λ) if rs > 0,
(p− 1 − λ)λ± iγ(1 − e−λ) if rs < 0.

(2.8)

Again, letting λ = µ+ iω for some µ, ω ∈ R and then separating λ∆±(λ) into
real and imaginary parts, we obtain

λ∆±(λ) = Rλ
±(µ, ω) + iIλ

±(µ, ω), (2.9)

where

Rλ
±(µ, ω) =

{

(p− 1)µ− (µ2 − ω2) ± γ(1 − e−µ cosω) if rs > 0,
(p− 1)µ− (µ2 − ω2) ∓ γe−µ sinω if rs < 0,

(2.10)

Iλ
±(µ, ω) =

{

(p− 1)ω − 2µω ± γe−µ sinω if rs > 0,
(p− 1)ω − 2µω ± γ(1 − e−µ cosω) if rs < 0.

(2.11)

In the next section, we are going to describe the solution curves in the parameter
space such that the nonzero complex roots of the characteristic equation (2.2)
have zero real parts.

3. Behaviours of the iω-curves

Although complex roots of P (λ) = 0 always come in complex conjugate pairs,
we may just consider the case of ω > 0 in this section; see (3.1)-(3.2) and (3.4)-
(3.5) below.
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We first consider the case rs > 0. Let λ = iω be a nonzero root of P (λ) = 0.
By (2.10) and (2.11), we have

ω2 = ∓γ(1 − cosω), (3.1)

(p− 1)ω = ∓γ sinω. (3.2)

Since γ > 0 and | cosω| ≤ 1, we only need to consider the plus parts in the
above equations with ω 6= 2kπ, k ∈ N. Thus, we can represent p and γ in terms
of ω and then describe the infinitely many parametric curves in the γp-plane.

Definition 3.1. Assume rs > 0. The jth iω-curve (γj(ω), pj(ω)) is defined by

γj(ω) =
1

2
ω2 csc2(

ω

2
) and pj(ω) = 1 + ω cot(

ω

2
), (3.3)

for j = 0, 1, · · · and ω ∈ (2jπ, (2j + 2)π).

Some properties of the iω-curves follow immediately from elementary com-
putations.

Lemma 3.2. Assume rs > 0.

(1). For each j ∈ {0} ∪ N, pj((2j + 1)π) = 1 and pj(ω) is strictly decreasing

in variable ω.

(2). For each j ∈ N, γj(ω) has a unique minimizer at ω = ωj with ωj cot
ωj

2
= 2

(i.e., pj(ωj) = 3), and γj(ω) is strictly decreasing (resp., strictly increasing)
in variable ω when ω < ωj (resp., ω > ωj).

(3). For j = 0, we have

lim
ω→0+

γj(ω) = 2 and lim
ω→2π−

γj(ω) = ∞,

lim
ω→0+

pj(ω) = 3 and lim
ω→2π−

pj(ω) = −∞.

For each j ∈ N, we have

lim
ω→2jπ+

γj(ω) = ∞ and lim
ω→(2j+2)π−

γj(ω) = ∞,

lim
ω→2jπ+

pj(ω) = ∞ and lim
ω→(2j+2)π−

pj(ω) = −∞.

As a consequence of Lemma 3.2, for j ≥ 1, the jth iω-curve has a unique turning
point at pj = 3 in the γp-plane. In addition, assume that pi(ωi) = pk(ωk) with
ωi ∈ (2iπ, (2i+ 2)π), ωk ∈ (2kπ, (2k + 2)π), and i < k. Then

γi(ωi) =
1

2

(

ω2
i + (pi − 1)2

)

< γk(ωk) =
1

2

(

ω2
k + (pk − 1)2

)

.
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Therefore, all the iω-curves do not intersect each other. The numerical results
of the iω-curves are depicted in Figure 1 that confirm our analysis.

We now consider the case rs < 0. If λ = iω is a nonzero root of P (λ) = 0,
then we have

ω2 = ±γ sinω, (3.4)

(p− 1)ω = ∓γ(1 − cosω). (3.5)

The iω-curves in the γp-plane are defined as follows.

Definition 3.3. Assume rs < 0. The jth iω-curves (γj(ω), pj(ω)) is defined by

γj(ω) = ω2| cscω| and pj(ω) = 1 − ω tan(
ω

2
), (3.6)

for j = 0, 1, · · · and ω ∈ (jπ, (j + 1)π).

Note that pj(ω) < 1 (resp., > 1) when j is even (resp., odd).

Lemma 3.4. Assume rs < 0.

(1). For each j ∈ {0} ∪ N, pj(ω) is strictly decreasing in variable ω.

(2). For each j ∈ N, γj(ω) has a unique minimizer at ω = ωj with ωj cotωj =
2, and γj(ω) is strictly decreasing (resp., strictly increasing) in variable ω
when ω < ωj (resp., ω > ωj).

(3). For j = 0, we have

lim
ω→0+

γj(ω) = 0 and lim
ω→2π−

γj(ω) = ∞,

lim
ω→0+

pj(ω) = 1 and lim
ω→2π−

pj(ω) = −∞.

For each j ∈ N, we have

lim
ω→jπ+

γj(ω) = ∞ and lim
ω→(j+1)π−

γj(ω) = ∞,

lim
ω→2jπ−

p2j−1(ω) = 1 and lim
ω→(2j−1)π+

p2j−1(ω) = ∞,

lim
ω→2jπ+

p2j(ω) = 1 and lim
ω→(2j+1)π−

p2j(ω) = −∞.

By using a similar argument to the case of rs > 0, Lemma 3.4 implies that all
the iω-curves do not intersect each other. The numerical results of the iω-curves
with are illustrated in Figure 2 that confirm our analysis again.
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4. Stability of the trivial solution

In this section, we will investigate the local stability of the trivial solution (0, 0).
An equilibrium solution is locally asymptotically stable if all the roots of the
corresponding characteristic equation have negative real parts, while it is un-
stable if at least one root has positive real part. Our goal is to describe two
regions of the γp-plane, in which the trivial solution (0, 0) is locally asymptot-
ically stable and unstable, respectively. We shall refer to these subsets as the
stability and instability regions of the trivial solution.

First, we consider rs > 0. In this case, the stability and instability regions
of (0, 0) can be clearly determined, even for a more general density function k.

Theorem 4.1. Assume rs > 0.

(1). If γ > 1 − p, then P (λ) = 0 has a root with positive real part.

(2). If γ < 1 − p, then all the roots of P (λ) = 0 have negative real parts.

Proof. Note that γ =
√
rs > 0.

(1). From (2.4), we have

lim
R3λ→0

∆+(λ) = p− 1 + γ > 0 and lim
R3λ→∞

∆+(λ) = −∞.

It follows that there exists a λ∗ > 0 such that ∆+(λ∗) = 0.

(2). According to (2.6), we have

R±(µ, ω) = p− 1 − µ± γ

∫ 1

0

e−µθ cos(ωθ) dθ

≤ p− 1 − µ+ γ

< 0,
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for all µ ≥ 0 and ω ∈ R. Therefore all the roots of ∆±(λ) = 0 have
negative real parts.

Next, we consider the case rs < 0. In this case, the analysis of the stability
and instability regions of the trivial solution relies on the following technical
lemma with the properties of the iω-curves studied in section 3.

Lemma 4.2. Assume rs ≤ 0. As γ and p vary in parameter space, the number

of roots of the characteristic equation P (λ) = 0 with Re(λ) > 0, counting mul-

tiplicities, can change only if a characteristic root passes through the imaginary

axis in complex plane.

Proof. Without loss of generality, we may assume p is fixed, and the charac-
teristic equation Pγ(λ) = 0 indicate that γ is the varying parameter. Denote
by λ(γ) a root of Pγ(λ) = 0. Then λ(γ) is obviously isolated. Let C be a circle
surrounding λ(γ) such that Pγ(λ) never vanishes in the interior of C except at
λ(γ). Furthermore, there exists a ε > 0 such that for λ ∈ C, we have

|Pγ(λ)| > |Pγ′(λ) − Pγ(λ)| whenever |γ − γ′| < ε.

Now, Rouché’s theorem [1] implies that Pγ(λ) and Pγ′(λ) has the same number
of zeros inside C whenever |γ−γ′| < ε. In other words, the multiplicity of λ(γ)
does not change for a small perturbation of γ. Thus as γ varies, the number
of roots of Pγ(λ) = 0 in the right-half plane, counting multiplicity, can change
only in the case that either λ(γ) pass through the imaginary axis or there exists
a sequence λ(γj) with Re(λ(γj)) > 0 satisfying

lim
j→∞

|λ(γj)| = ∞ and lim
j→∞

γj <∞.

However, we can verify that the latter case is impossible. Indeed, the above
implies that

|Pγj
(λ(γj))| =

∣

∣

∣

(

p− 1 − λ(γj)
)2

+ γ2
j

(

∫ 1

0

e−λ(γj )θ dθ
)2
∣

∣

∣

≥
∣

∣p− 1 − λ(γj)
∣

∣

2 − γ2
j → ∞ as j → ∞

which contradicts to Pγj
(λ(γj)) = 0. This completes the proof.

We remark that in Lemma 4.2, we allow the degenerate case rs = 0, i.e.,
γ = 0. Now, the stability analysis of the trivial solution for rs < 0 can be stated
as follows:

Theorem 4.3. Assume rs < 0.
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(1). If p 6= 1 and (γ, p) lies in the right-hand side of the 0th iω-curve, then

P (λ) = 0 has a root with positive real part.

(2). If p < 1 and (γ, p) lies in the left-hand side of the 0th iω-curve, then all

the roots of P (λ) = 0 have negative real parts.

Proof. Keep it in mind that γ =
√

|rs|.

(1). First, from (2.3), we note that P (λ) = 0 have positive real root λ = p− 1
of multiplicity 2, whenever γ = 0 and p > 1. Next, let (γ∗, p∗) be a
given point on some iω-curve and let λ = 0 + iω∗ with ω∗ > 0 be the
corresponding pure imaginary root of P (λ) = 0. According to (2.10) and
(2.11), if Rλ

±(µ, ω) = 0 and Iλ
±(µ, ω) = 0 then we have

(p− 1)µ− (µ2 − ω2) ∓ γe−µ sinω = 0, (4.1)

(p− 1)ω − 2µω ± γ(1 − e−µ cosω) = 0. (4.2)

An implicit differentiation based on (4.1) and (4.2) leads to

dµ

dγ

∣

∣

∣

µ=0,ω=ω∗

=
γ∗(1 − cosω∗)(1 + sin ω∗

ω∗ )

(p∗ − 1 ± γ∗ sinω∗)2 + (2ω∗ ∓ γ∗ cosω∗)2
> 0. (4.3)

Therefore, the real parts of characteristic roots of P (λ) = 0 are always
positive, provided γ > γ∗ and γ ' γ∗. Now, combining the above facts
with Lemma 4.2, we can conclude that if p 6= 1 and (γ, p) lies in the right-
hand side of the 0th iω-curve, then P (λ) = 0 has at least one root with
positive real part.

(2). According to (2.6), if µ+ iω is a root of P (λ) = 0 with non-negative real
part, we have

0 ≤ µ = p− 1 ± γ

∫ 1

0

e−µθ sin(ωθ) dθ

≤ p− 1 + γ,

which implies that if γ < 1−p then all the roots of P (λ) = 0 have negative
real parts. Next, it is easy to check that if γ < 1 − p then (γ, p) lies in
the left-hand side of the 0th iω-curve (cf. Figure 2). Furthermore, based
on the principle of Lemma 4.2, one can verify that, for (γ, p) lying in the
left-hand side of the 0th iω-curve, the number of characteristic roots with
positive real parts is zero. This completes the proof.
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5. Hopf bifurcations

In this section, we will investigate the mechanism for Hopf bifurcation of the
trivial equilibrium (0, 0) of (1.1). We first consider the case rs > 0. Let λ =
µ + iω 6= 0. In virtue of (2.10) and (2.11), if Rλ

±(µ, ω) = 0 and Iλ
±(µ, ω) = 0

then we have

(p− 1)µ− (µ2 − ω2) ± γ(1 − e−µ cosω) = 0, (5.1)

(p− 1)ω − 2µω ± γe−µ sinω = 0. (5.2)

Theorem 5.1. Assume rs > 0. Let (γc, pc) = (γj(ωc), p(ωc)) for some j and

ωc > 0. Then for fixed p = pc 6= 3, (1.1) undergoes a Hopf bifurcation at γ = γc.

Furthermore, If f ′′′(0)(γc cosωc − 2 < 0) (> 0, resp.), then the Hopf bifurcation

is supercritical (subcritical, resp.).

Proof. According to the definition of iω-curves, (2.2) has the purely imaginary
root iωc when (γ, p) = (γc, pc). To prove the assertion, it suffices to show that
the iωc is simple, the roots of (2.2) are transversal to the imaginary axis as γ
varies near γc, and no other characteristic root is an integral multiple of iωc

except −iωc (cf. [12]).

First, from (2.8), we can verify that iω 6= 0 is a root of P (λ) = 0 if and only
if ∆−(iω) = 0. A simple computation shows

∆′

−(iωc) = −1 − γ
((λ+ 1)e−λ − 1

λ2

)

λ=iωc

= −1 +
γc(cosωc + ωc sinωc − 1)

ω2
c

+ i
γc(ωc cosωc − sinωc)

ω2
c

. (5.3)

The imaginary part of (5.3) is equal to zero if and only if sinωc = ωc cosωc,
which together with (3.1) and (3.2) will force the real part to be

Re∆′

−(iωc) = pc − 3.

Hence if pc 6= 3 then iωc is simple.

Secondly, at λ = iωc, the derivative of real part of the characteristic root
with respect to γ may be obtained by implicit differentiation based on (2.10)
and (2.11). Indeed, we can derive

dµ

dγ

∣

∣

∣

λ=iωc

=
1

γc

ω2
c (γc − pc + 1)

(pc − 1 − γc cosωc)2 + (2ωc − γc sinωc)2
> 0. (5.4)

Hence the complex roots of (2.2) are transversal to the imaginary axis as γ
varies near γc.
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Thirdly, Lemma 3.2 (1) shows that pj is strictly decreasing in variable ω.
Therefore, it is not even possible to have another pure imaginary characteristic
root except −iωc for p = pc and γ = γc. Thus, Hopf Bifurcation occurs at
(γc, pc).

According to [6, 7] and the computations in the Appendix, it can be shown
that for p = pc and γ ≈ γc the dynamics of (1.1) for (x, y) near (0, 0) is
determined by the following differential equations in polar coordinates

ṙ = µ′(γc)r + ar3,

θ̇ = ωc.

If a < 0 (a > 0 resp.), the Hopf bifurcation is supercritical (subcritical resp.).
The sign of a is determined as follows:

sign(a) = sign
(

f ′′′(0)(γc cosωc − 2)
)

.

This completes the proof.

Next, we are going to investigate the Hopf bifurcation for the case of rs < 0
that can be treated by a similar argument.

Theorem 5.2. Assume rs < 0. Let (γc, pc) = (γj(ωc), p(ωc)) for some j and

ωc > 0. Then for fixed p = pc, (1.1) undergoes a Hopf bifurcation at γ = γc.

Furthermore, If f ′′′(0)( ωc

sinωc
−2−ω2

c ) < 0 (> 0, resp.), then the Hopf Bifurcation

is supercritical (subcritical, resp.). In particular, if (γc, pc) lies in the 0th iω-

curve and f ′′′(0)( ωc

sin ωc
− 2 − ω2

c < 0), then the periodic solution induced by the

Hopf bifurcation is attracting.

Proof. The proof is similar to Theorem 5.1.

First, a direct computation shows that

∆′

±(iωc) = −1 ± iγ
((λ+ 1)e−λ − 1

λ2

)

λ=iωc

= −1 ± γc

(ωc cosωc − sinωc)

ω2
c

∓ iγc

(cosωc + ωc sinωc − 1)

ω2
c

.

Suppose ∆′
±(iωc) = 0. Applying (3.4) and (3.5), we have

sinωc =
ωc

2 + ω2
c

and cosωc =
2

2 + ω2
c

, (5.5)

which implies ωc = 0. This leads to a contradiction and iωc is therefore simple.
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Secondly, for λ = iωc, from (4.3) we obtain

dµ

dγ

∣

∣

∣

µ=0,ω=ωc

=
γc(1 − cosωc)(1 + sin ωc

ωc
)

(pc − 1 ± γc sinωc)2 + (2ωc ∓ γc cosωc)2
, (5.6)

and since the numerator of (5.6) is always positive, the complex roots of (2.2)
are transversal to the imaginary axis as γ varies near γc.

According to Lemma 3.4 (1), we have
dpj

dω
< 0. Therefore, no other charac-

teristic root is an integral multiple of iωc except −iωc. Thus, Hopf Bifurcation
occurs at (γc, pc).

Similar to the proof of Theorem 5.1, the sign of a is determined as follows:

sign(a) = sign
(

f ′′′(0)(
ωc

sinωc

− 2 − ω2
c )
)

.

This completes the proof.

Finally, we provide an example with rs < 0 to demonstrate the occurrence
of the Hopf bifurcation.

Example 5.3. We consider the system (1.1) with f(x) = tanh(x) and rs < 0.
Choosing ω = π

6
and j = 0 in (3.6), then we have a point (γ0(

π
6
), p0(

π
6
)) located

on the 0th iω-curve. According to Theorem 5.2, for such fixed p0(
π
6
), a Hopf

bifurcation should be occurred for γ = γ0(
π
6
) and the induced periodic solution

is attracting. We choose rL = −sL = γ0(
π
6
) − 0.1 and rR = −sR = γ0(

π
6
) + 0.1.

Then we have γL :=
√

|rLsL| . γ0(
π
6
) . γR :=

√

|rRsR|. For the case
(γ, p) = (γL, p0(

π
6
)), the trivial solution (0, 0) is locally asymptotically stable

which can be confirmed numerically (cf. Figure 3), while for (γ, p) = (γR, p0(
π
6
)),

a periodic solution occurs (cf. Figure 4). All numerical simulations in this ex-
ample are mainly based on the Matlab codes provided by [22].

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x(t)

y(
t)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x(t)

y(
t)

Fig. 3. (0, 0) is loc. asympt. stable Fig. 4. a periodic solution occurs
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6. Steady state bifurcations

Following the results obtained in sections 4 and 5, we conclude that the local
stability of the trivial solution (0, 0) might be changed when the parameter val-
ues varied. In this section, we attempt to explore the steady state bifurcation
of the trivial solution by studying the existence and local stability of nontrivial
equilibria of (1.1).

6.1. Existence and multiplicity of nontrivial equilibria

Notice that an equilibrium (x∗, y∗) of (1.1) must satisfy the following system of
equations:

x∗ − pf(x∗) = sf(y∗),
y∗ − pf(y∗) = rf(x∗).

(6.1)

First, we investigate the existence with multiplicity of the nontrivial equilibria.
To this aim, the following two observations are useful in our analyses and their
proofs are straightforward.

Lemma 6.1. (x∗, y∗) is an equilibrium of (1.1) if and only if (−x∗,−y∗) is an

equilibrium of (1.1).

Lemma 6.2. Let h(x) := x − pf(x). Then h(x) is a C2 odd function with

h(0) = 0. Moreover, we have

(1). If p < 1, then h(x) is a strictly increasing function.

(2). If p > 1, then there exist constants B > A > 0 such that the minimum

value of h(x) for x ∈ (0,∞) occurs at x = A, h(B) = 0, and h(x) is

negative on (0, B) while positive on (B,∞).

For the case rs > 0, we have the following results:

Theorem 6.3. Assume rs > 0.

(1). Let p < 1.

(1-1). If γ < 1 − p and p > 0, then there is no nontrivial equilibrium of

(1.1).

(1-2). If γ < 1 − p and max{|s|, |r|} < 1 − p, then there is no nontrivial

equilibrium of (1.1).

(1-3). If γ > 1−p, then there are nontrivial equilibria of (1.1). In addition,

if p > 0 then there are exactly two nontrivial equilibria of (1.1).
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(2). Let p > 1. Then there are at least two nontrivial equilibria of (1.1).
Furthermore, we have

(2-1). If min{|s|, |r|} > p−1, then there are exactly two nontrivial equilibria

of (1.1).

(2-2). If γ < p−1, then there are at least eight nontrivial equilibria of (1.1).

Proof. We will focus on the case of r > 0 and s > 0. The case of r <0 and
s < 0 can be treated in a similar way. By Lemma 6.1, we only need to consider
the equilibrium (x∗, y∗) with x∗ ≥ 0. For convenience, we rewrite the isoclines
of (1.1) as y = Y (x) and x = X(y), i.e., Y (x) and X(y) satisfies

x− pf(x) = sf(Y (x)), (6.2)

y − pf(y) = rf(X(y)). (6.3)

Differentiating equations (6.2) and (6.3) with respect to x and y respectively,
we have

1 − pf ′(x) = sf ′(Y (x))Y ′(x), (6.4)

1 − pf ′(y) = rf ′(X(y))X ′(y), (6.5)

−pf ′′(x) = sf ′′(Y (x))Y ′2(x) + sf ′(Y (x))Y ′′(x), (6.6)

−pf ′′(y) = rf ′′(X(y))X ′2(y) + rf ′(X(y))X ′′(y), (6.7)

and thus

m1 := Y ′(0) =
1 − p

s
, m2 := X ′(0) =

1 − p

r
.

On the other hand, due to the boundedness of f , there exist x− < 0 < x+ and
y− < 0 < y+ such that

x± − pf(x±) = ±sM, lim
x→x±

Y (x) = ±∞,

y± − pf(y±) = ±rM, lim
y→y±

X(y) = ±∞.

(1). Under the assumption p < 1, it follows from Lemma 6.2 (1) that the
two isoclines y = Y (x) and x = X(y) lie in the first and third quadrants.
Thus, we are allowed to consider the nontrivial equilibrium (x∗, y∗) in first
quadrant only.

(1-1). (cf. Figure 5) If p > 0, then (6.6) and (6.7) imply that

Y ′′(x) > 0 for x > 0 and X ′′(y) > 0 for y > 0.

It immediately follows that

Y (x) > m1x for x > 0 and X(y) > m2y for y > 0.

The assumption γ < 1−p implies m1m2 > 1. Therefore, the two isoclines
y = Y (x) and x = X(y) do not intersect in the first quadrant. This proves
the assertion (1-1).
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(1-2). (cf. Figure 5) If (s+p) < 1 and (r+p) < 1, then Y ′(0) > 1 and X ′(0) > 1.
We claim that

Y (x) > x for x > 0 and X(y) < y for y > 0.

Suppose it is not true, say Y (x) > x for x > 0 is not true. Then there
must exist x0 > 0 such that Y (x0) = x0 and Y ′(x0) ≤ 1. From (6.4), we
obtain

1 − pf ′(x0) = sf ′(Y (x0))Y
′(x0) ≤ sf ′(x0),

i.e., (p+ s)f ′(x0) ≥ 1. However, this contradicts to our assumptions (H),
since 0 < f ′(x0) <. Hence, the two isoclines are separated by y = x, i.e.,
there is no nontrivial equilibrium of (1.1).

(1-3). (cf. Figure 6) It suffices to show that the isoclines intersect exactly once
in the first quadrant. If γ > 1−p, we have m1m2 < 1. This together with
Y (x+) = +∞ and X(y+) = +∞ implies that the two isoclines intersect
in the first quadrant. In addition, if p > 0 then both Y (x) and X(y)
are increasing and convex for x > 0 and y > 0, respectively. Hence, the
intersection is unique.

(2). (cf. Figure 7) By Lemma 6.2 (2), if p > 1 then

Y (x) > 0 for x > B and X(y) > 0 for y > B.

This together with Y (x+) = +∞ and X(y+) = +∞ implies that the two
isoclines intersect in the first quadrant. Moreover, form (6.4) - (6.7), Y (x)
and X(y) are increasing and convex for x > 0 and y > 0, respectively.
Hence, the intersection is unique in the first quadrant.

(2-1). (cf. Figure 7) It suffices to show that the isoclines never intersect in the
four quadrant. By the assumptions, it is obvious that −1 < m1 < 0 and
−1 < m2 < 0. By the same arguments as the proof of (1-2), we have

Y (x) > −x for 0 < x < A and X(y) < −y for − A < y < 0.

Since Y (A) is the minimum for 0 < x < B and X(A) is the maximum
for 0 < x < B, the isoclines are separated by y = −x in the fourth
quadrant. Hence, there are no nontrivial equilibria in the second and
fourth quadrants.

(2-2). (cf. Figure 8 and Figure 9) By the assumptions, it is obvious that m1m2 >
1. Our goal is to prove that the isoclines Y (x) and X(y) intersect at least
once in the second and fourth quadrants. According to Lemma 6.2 (2),
we have

Y (x) < 0 for 0 < x < B and X(y) > 0 for −B < x < 0,
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Y (A) is the minimum for 0 < x < B and X(−A) is the maximum for
−B < x < 0. It may happen that Y (x+) = −∞ or X(y+) = +∞ (cf.
Figure 11). However, no matter they are finite or not, the two isoclines
intersect at least at three points in the fourth quadrant.

The proof of Theorem 6.3 is complete.

x

y

0

0

y = m1x

x = m2y

y = Y (x)

x = X(y)

x

y

0

0

y = Y (x)

y = m1x

x = m2y

x = X(y)

Fig. 5. Theorem 6.3 (1-1) and (1-2) Fig. 6. Theorem 6.3 (1-3)

x

y

0

0

y = m1x

x = m2y

B

B

A

−A

y = Y (x)

x = X(y)

x

y

0

0
B

B

A

−A

y = m1x

x = m2y

−Bx = X(y)

y = Y (x)

Fig. 7. Theorem 6.3 (2) and (2-1) Fig. 8. Theorem 6.3 (2-2)

x

y

0

0
B

B

A

y = m1x

x = m2y

−A

−B

y = Y (x)

x = X(y)

x

y

0

0

y = Y (x)

x = X(y)

Fig. 9. Theorem 6.3 (2-2) Fig. 10. Theorem 6.4 (1)
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x

y

0

0
B

B

A

−A

(A,

x = X(y)

y = Y (x)

δ
s
)

x

y

0

0

(A,

BA

B

−A

x = X(y)

y = Y (x)

δ
s
)

Fig. 11. Theorem 6.4 (2-1) Fig. 12. Theorem 6.4 (2-2)

Next, we study the existence and multiplicity of nontrivial equilibria of (1.1)
when rs < 0.

Theorem 6.4. Assume rs < 0.

(1). Let p < 1. Then there is no nontrivial equilibrium of (1.1).

(2). Let p > 1.

(2-1). If min{|r|, |s|} ≥ p

B
(pf(A) − A), then there is no nontrivial equilib-

rium of (1.1).

(2-2). Define δs := f−1(
1

s
(A− pf(A))) and δr := f−1(

1

r
(A− pf(A))). If

|δs| > |r|f(A) +
p

|s| |A− pf(A)|

or |δr| > |s|f(A) +
p

|r| |A− pf(A)|,
(6.8)

then there are at least four nontrivial equilibria of (1.1).

Proof. Without loss of generality, we may assume that r > 0 > s.

(1). (cf. Figure 10) If p < 1, then it follows from Lemma 6.2 that the isocline
y = Y (x) lies in the second and fourth quadrants, while another isocline
x = X(y) lies in the first and third quadrants. Thus there is no nontrivial
equilibrium of (1.1).

(2-1). (cf. Figure 11) The proof of this part can be found in [14]. We omit the
details.

(2-2). (cf. Figure 12) As r > 0 > s, (6.8) becomes

δs > rf(A) +
p

s
(A− pf(A)).
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By the definition of δs and A, it is obvious that (A, δs) lies on the first
isocline. Furthermore, the isocline has maximum value at this point.
Hence, if condition (6.8) holds, then

δs − pf(δs) > rf(A), (6.9)

and the two isoclines defined by (6.2) and (6.3) will intersect exactly at
two points in the first quadrant.

We conclude this subsection with the following example.

Example 6.5. Consider the example that f(x) = tanh(x). Then we have

A = ln(
√
p+

√

p− 1), f(A) =
√

(p− 1)/p,

δs =
1

2
ln
s+ ln(

√
p+

√
p− 1) −

√

p(p− 1)

s− ln(
√
p+

√
p− 1) +

√

p(p− 1)
,

δr =
1

2
ln
r + ln(

√
p+

√
p− 1) −

√

p(p− 1)

r − ln(
√
p+

√
p− 1) +

√

p(p− 1)
.

6.2. Local stability of the nontrivial equilibria

In this subsection, we will provide some sufficient conditions for ensuring the
stability of the nontrivial equilibria.

Lemma 6.6. Let (x∗, y∗) be a nontrivial equilibrium of (1.1).

(1). If (1 − pf ′(x∗))(1 − pf ′(y∗)) < rsf ′(x∗)f ′(y∗), then (x∗, y∗) is unstable.

(2). Assume |(1−pf ′(x∗))(1−pf ′(y∗))| > |rs|f ′(x∗)f ′(y∗). If pf ′(x∗) < 1 and

pf ′(y∗) < 1, then (x∗, y∗) is locally asymptotically stable; If pf ′(x∗) > 1
or pf ′(y∗) > 1, then (x∗, y∗) is unstable.

Proof.

(1). Our goal is to show that the corresponding characteristic equation of
(1.1) at (x∗, y∗) has roots with positive real parts. Similar to (2.2), the
characteristic equation at (x∗, y∗)

P ∗(λ) = (λ+ 1 − pf ′(x∗))(λ+ 1 − pf ′(y∗))

−rsf ′(x∗)f ′(y∗)(

∫ 1

0

e−λθ dθ)2 = 0. (6.10)
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Since

lim
λ→0

P ∗(λ) = (1 − pf ′(x∗))(1 − pf ′(y∗)) − rsf ′(x∗)f ′(y∗) < 0,

lim
λ→∞

P ∗(λ) = ∞,

there must exist a real λ∗ > 0 such that P ∗(λ∗) = 0.

(2). Let Γ be the half-circle in the right-half complex plane with sufficient large
radius and center at origin. If λ ∈ Γ or λ is a pure imaginary number, we
have

|(λ+ 1 − pf ′(x∗))(λ+ 1 − pf ′(y∗))| ≥ |1 − pf ′(x∗)||1 − pf ′(y∗)|

and

|rsf ′(x∗)f ′(y∗)(

∫ 1

0

e−λθ dθ)2| ≤ |rs|f ′(x∗)f ′(y∗).

Therefore, for λ ∈ Γ or λ is a pure imaginary number, we have

|(λ+ 1 − pf ′(x∗))(λ+ 1 − pf ′(y∗))| > |rsf ′(x∗)f ′(y∗)(

∫ 1

0

e−λθ dθ)2|.

According to Rouche’s theorem [1], P ∗(λ) and (λ + 1 − pf ′(x∗))(λ + 1 −
pf ′(y∗)) must have the same number of zeros in the right-half complex
plane. Thus the assertions follow immediately.

According to Lemma 6.6, a classification of local stability for the nontrivial
equilibrium (x∗, y∗) is given in Table 1.

sufficient conditions signs of (1 − p1, 1 − p2) rs stability

(1 − p1)(1 − p2) < rsa1a2 (+, +) + unstable
(1 − p1)(1 − p2) < rsa1a2 (+, −) + unstable
(1 − p1)(1 − p2) < rsa1a2 (−, +) + unstable
(1 − p1)(1 − p2) < rsa1a2 (−, −) + unstable

|(1 − p1)(1 − p2)| > |rs|a1a2 (+, +) ± stable
|(1 − p1)(1 − p2)| > |rs|a1a2 (+, −) ± unstable
|(1 − p1)(1 − p2)| > |rs|a1a2 (−, +) ± unstable
|(1 − p1)(1 − p2)| > |rs|a1a2 (−, −) ± unstable

Table 1. a classification of local stability for the nontrivial equilibrium (x∗, y∗)
with (a1, a2) := (f ′(x∗), f ′(y∗))
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Finally, if r = s then the stability of the nontrivial equilibria can be exam-
ined in detail.

Theorem 6.7. Assume r = s. Let (x∗, y∗) be a nontrivial equilibrium of (1.1).

(1). If |x∗| 6= |y∗| then (x∗, y∗) is unstable.

(2). Assume |x∗| = |y∗|. If sf ′(x∗) > 1 − pf ′(x∗), then (x∗, y∗) is unstable; If

sf ′(x∗) < 1 − pf ′(x∗), then (x∗, y∗) is locally asymptotically stable.

Proof. Since r = s, by (6.2) and (6.3), the isoclines Y (x̄) and X(ȳ) are sym-
metric with respect to the curves: ȳ = ±x̄. Therefore, if (x∗, y∗) belongs to the
first or the third quadrant, then we have |x∗| = |y∗|.

(1). If |x∗| 6= |y∗| then (x∗, y∗) belongs to the second or the fourth quadrants
and the proof of part (2-2) of Theorem 5.3 implies that either |x∗| <
A < |y∗| or |y∗| < A < |x∗|. Since f ′(A) = 1/p, in either case, we have
f ′(x∗) > 1/p > f ′(y∗) or f ′(y∗) > 1/p > f ′(x∗). Therefore, the inequality
in Lemma 5.6 (1) holds. Hence, (x∗, y∗) is an unstable equilibrium.

(2). The proof is similar to that for Theorem 4.1 by replacing P (λ) with

P ∗(λ) = (pf ′(x∗) − 1 − λ)2 − rsf ′(x∗)
2
(

∫ 1

0

e−λθ dθ)2.

Figure 13 is the bifurcation diagram of the equilibria of (1.1) with f(x) =
tanh(x) and r = s = 0.5. We note that pitchfork bifurcations appear.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

p

x∗

· · ·◦ · · ·stable
· · ·× · · ·unstable

Fig. 13. bifurcation diagram of equilibria of (1.1)
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Appendix

Rewrite (1.1) as

u̇(t) = −u(t) + pf(u(t)) + M
∫ 0

−1

f(u(t+ θ))dθ (6.11)

where u = (x, y)T , M is the coupling matrix and f(u) stands for (f(x), f(y))T .
Let

f(u) = u+ g(u) with g(u) :=
f ′′′(0)u3

3!
+O(u4).

Denote by C the Banach space of all continuous functions from [−1, 0] to the
2-dimensional space of column vectors and ut ∈ C with ut(θ) = u(t + θ) for
θ ∈ [−1, 0]. Splitting the right-hand side of (6.11) into linear and nonlinear
parts, we have

u̇(t) = Lut + F (ut), (6.12)

where L is the linear functional on C defined by

Lu := (p− 1)u(0) + M
∫ 0

−1

u(θ)dθ,

and

F (u) := pg(u(0)) + M
∫ 0

−1

g(u(θ))d(θ).

Following the notations of [12], we may write

Lu =

∫ 0

−1

dη(θ)u(θ),

where η(θ) is a function of bounded variation from [−1, 0] to the space of 2× 2
matrices. The eigenvalue λ of the infinitesmall generator of the C0-semigroup
A, which is defined by the solution of (6.11), satisfies

det ∆(λ) = 0

with

∆(λ) := λI − (p− 1)I −M
∫ 0

−1

eλθdθ.

Let (γc, pc) be the parameter where Hopf bifurcation occurs (cf. Theorem 5.1
or Theorem 5.2) and Mc be the coupling matrix corresponding to γc, then the
eigenvector υ of ∆(iωc) satisfies

Mc

∫ 0

−1

eλθdθυ = −(pc − 1 − iωc)υ. (6.13)
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Let
φ1(θ) := eiθωc

υ, φ2(θ) := e−iθωc
υ. (6.14)

Then P := span(φ1, φ2) is the eigenspace corresponding to ±iωc. According to
the adjoint system theory developed by Hale (cf. [13]), C admits a direct sum
decomposition associated with P . Indeed, denote by C ′ the Banach space of all
continuous functions from [0, 1] to the 2-dimensional space of row vectors. Let
w

T be a left eigenvector of ∆(iωc), i.e.

w
TMc

∫ 0

−1

eiθωcdθ = −(pc − 1 − iωc)w
T (6.15)

and
ψ1(ξ) := w

T e−iξωc and ψ2(ξ) := w
T eiξωc , ξ ∈ [0, 1],

then ψi ∈ C ′. Consider the adjoint bilinear form on C ′ × C given by

(ψ, φ) := ψ(0)φ(0) −
∫ 0

−1

∫ θ

0

ψ(ξ − θ)dη(θ)φ(ξ)dξ,

and define the subspace Q := {φ ∈ C|(ψi, φ) = 0, i = 1, 2}, then we have

C = P ⊕Q.

For convenience, let

Ψ :=

(

ψ1

ψ2

)

and Φ := (φ1, φ2).

Reset the coefficient of ψi by

ψ1 :=
(

(wT (I −Mcα)υ
)−1

w
T e−iξωc and ψ2 := ψ1 with α :=

∫ 0

−1

θeiθωcdθ.

Then ((ψi, φj)) is an identity matrix and the projection operator of C on P is
given by

π : C → P with π(u) = Φz,

where z := (Ψ, u) is the coordinates of u with respect to the basis {φ1, φ2} of P .
Furthermore, by considering (6.12) as an abstract ordinary differential equation
in C (cf. [7]), we have the following differential equations for variables Φz ∈ P
and y := u− Φz ∈ Q respectively,

ż = Bz + Ψ(0)F (Φz + y), (6.16)

dy

dt
= Ay + (I − π)X0F (Φz + y), (6.17)
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where B = diag(iωc,−iωc) and

X0(θ) =

{

0, θ ∈ [−1, 0),

1, θ = 0.

Thus, (6.16) and (6.17) are equal to

ż = Bz + Ψ(0)
f ′′′(0)

3!

(

pc(Φ(0)z + y)3 + Mc

∫ 0

−1

(Φz + y)3dθ + · · ·
)

,

(6.18)

dy

dt
= Ay + (I − π)X0

f ′′′(0)

3!

(

pc(Φ(0)z + y)3 + Mc

∫ 0

−1

(Φz + y)3dθ + · · ·
)

.

(6.19)

The nonlinear terms in (6.18) and (6.19) are of order ≥ 3, therefore the center
manifold near (0, 0) can be identified approximately.

Lemma A.1. Let (γc, pc) be described in Theorem 5.1 or 5.2, then there is a
2-dimensional center manifold near (0, 0) given by y = h(Φz) := 0+O((z, y)3).

According Lemma A.1, the projection of the vector field (6.18) and (6.19)
on the center manifold into the center space is

ż = Bz + Ψ(0)
f ′′′(0)

3!

(

pc(Φ(0)z)3 + Mc

∫ 0

−1

(Φz)3dθ

)

,

where the terms of order > 3 are ignored. Notice that the power of a vector
in the above equations stands for the power of each component in this vector.
The vector z can be replaced by (z, z̄)T with z ∈ C and it suffices to consider
the dynamics of z,

ż = iωz + ψ1(0)
f ′′′(0)

3!

(

pc(φ1(0)z + φ2(0)z̄)3 +

∫ 0

−1

(φ1z + φ2z̄)
3dθ

)

. (6.20)

The coefficient of z2z̄ in (6.20) are concerned. Indeed, it can be shown that for
γ ≈ γc and p = pc, the dynamics of (6.11) for (x, y) near (0, 0) is determined by
the differential equations in polar coordinates,

ṙ = µ′(γc)r + ar3, (6.21)

θ̇ = ωc, (6.22)

where a is the real part of the coefficient of z2z̄ in (6.20) and µ′(γc) is the
derivative of the real part of the root of ∆(λ) = 0 with respect to γ at γc. Since

(φ1z + φ2z̄)
3 =

((

υ1

υ2

)

eiθωcz +

(

ῡ1

ῡ2

)

e−iθωc z̄

)3

=

(

υ1|υ1|2
υ2|υn|2

)

3eiθωcz2z̄ + · · · ,
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the coefficient of z2z̄ in (6.20) is

f ′′′(0)

2

(

(wT (I −Mcα)υ
)−1

w
T

(

pcI + Mc

∫ 0

−1

eiθωcdθ

)(

υ1|υ1|2
υ2|υn|2

)

z2z̄

=
f ′′′(0)

2
(1 + iωc)

(

(wT (I −Mcα)υ
)−1

w
T

(

υ1|υ1|2
υ2|υn|2

)

z2z̄

=
f ′′′(0)

2
(1 + iωc)

(

(wT (I −Mcα)υ
)−1

(

2
∑

j=1

wjvj|vj |2
)

z2z̄.

Thus, we have

a = Re

(

f ′′′(0)

2
(1 + iωc)

(

(wT (I −Mcα)υ
)−1

2
∑

j=1

wjvj|vj |2
)

. (6.23)

From (6.13) and (6.15), υ is an eigenvector of Mc and w
T is a left eigenvector

of Mc, we obtain

υ± = (±
√
rs

r
, 1)T with Mcυ± = ±

√
rsυ±, (6.24)

and

w
T
± = (±

√
rs

s
, 1) with w

T
±Mc = ±

√
rswT

±. (6.25)

Therefore,

w
T
±(I −Mc)α)υ± = w

T
±υ±(1 ∓ α

√
rs) =

{

2(1 ∓ γcα), rs > 0,

2(1 ∓ iγcα), rs < 0.
(6.26)

Substituting (6.24)∼(6.26) into (6.23) and simplifying for the case rs > 0 and
rs < 0 respectively, we obtain

a =











f ′′′(0)(γc cosωc − 2)(1 +
s

r
)(

1

4|1 + γcα|2
|), rs > 0,

f ′′′(0)(
ωc

sinωc

− 2 − ω2
c )(1 −

s

r
)(

1

4|1 ∓ iγcα|2
|), rs < 0.

Notice that for the case rs > 0, only the υ− and w
T
− in (6.24)∼(6.26) need to

be substituted into (6.23) since υ+ corresponds to the equation ∆+(λ) = 0 (cf.
(2.4) and (6.13)), which have no purely imaginary roots (cf. Section 3).
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