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Abstract

In this paper we consider estimating the bivariate observations where one of the com-
ponents is subject to left truncation and right censoring and the other is subject to right
censoring only. Two types of nonparametric estimators are proposed. One is in the form of
inverse-probability-weighted average (Satten and Datta (2001)) and the other is a generaliza-
tion of Dabrowska’s (1988) estimator. The two are then compared based on their empirical

performances.
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1. Introduction

In survival or reliability studies, the observed data is typically censored and/or truncated.
Left truncation and right censoring together naturally occur in cohort follow-up studies (see
van der Laan (1996), Girler and Gijbels (1996)). In this paper we consider the situation of
bivariate observations where one of the components is subject to left truncation and right
censoring and the other is subject to right censoring only. Consider the following application.
In pediatric AIDS cohort studies, a group of pregnant women who are infected with HIV
but have not yet developed AIDS are selected. Suppose that the infection time (denoted
by Ts) can be accurately determined. The recruitment starts at time 7, and the follow-up
is terminated at time T,. Let U; be the incubation time between T, and development of
AIDS and let V; =Ty — T, if T, < Ty and V; = 0 if Ty > Ty. Then only those women for
whom the incubation time U; > V; are observed. Let U, denote the time from birth, T;, to
development of AIDS for babies. Let C; = T,—T, and Cy = T,—T,. Thus (U, Us) constitutes
a bivariate data where U; is subject to left truncation and both U; and U, are subject to
right censoring due to termination of study. This problem is a case of the following bivariate

problem covered in this paper. Let (Uy, Usy, C1,Cy, V}) be ii.d. random vectors such that



(Cy,C4, V1) is independent of (U, Us) and P(V; < C) = 1. Let X; = min{U;,C;} (i = 1,2)
and let d; (i = 1,2) be one if X; = U; (i = 1,2) and zero otherwise. Under left truncation
and right censoring models one observes nothing if U; < V; and observes (Xj, 61, Xs, d9) if

U > V.
Special Case: (; = o

In this case, only one of the components is subject to left truncation and right censoring,
i.e., second component is always observed. Consider the following application. In hemophilia
AIDS-data sets the time of infection T can be quite accurately determined. A database will
cover patients from, say 1978, till 1995, and hence a patient with a longer survival time will
have a larger probability of being part of the sample than a patient with a short survival time.
Let U; be the time between T, and death and let V; = 1978 — T, if T, < 1978 and V; = 0 if
T, > 1978. Then a patient will only be part of the sample if U; > V;. Let C; = 1995 — T
denote the the time from T, to the end of study and U; denote the time between T and
AIDS. All patients are followed until the development of AIDS. However, some patients are
still alive at the end of the study. In this case, only U; is subject to left-truncation and

right-censoring.

In Section 2 and 3, two types of nonparametric estimators are proposed. The first one is
in the form of inverse-probability-weighted (IPW) average (Satten and Datta (2001)). The

second one is a generalization of Dabrowska’s (1988) estimator.

2. Inverse-Probability-Weighted (IPW) Estimators
2.1 The Estimator

For the univariate random censoring model, Satten and Datta (2001) showed that the
Kaplan-Meier (1958) estimator (known as a NPMLE) of survival function can be expressed as
an [IPW average (see Robins (1993, 2000)). For the univariate random truncation and censor-
ing model, Shen (2003) showed that the truncation NPMLE (see Woodroofe (1985)) and the
censoring-truncation NPMLE (see Wang (1987)) of survival function can also be expressed
as IPW averages. Now, let F,,(uy,us), Fee(cy,ca), and Fy.(vy, c2) denote the bivariate dis-
tribution functions of (Uy, Us), (C4, Cy), and (Vi, Cy), respectively. Let (Xi;, 014, Xoi, 094, Vi)
(¢ = 1,...,n) denote the left-truncated and right-censored sample. We consider the IPW
estimator of bivariate distribution functions F,(u1,us) by simultaneously estimating the

three distribution functions as follows:
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Fuu(uh u2) =

- 6 7/5 1 5 7»5 ] u U
Z _ 1492 _ Z _ 1292 Xlzg 1/:X2Z§ 2] , (21)
— See(X1i—, Xoi—) — Spe(X14, Xoi—) = See(Xii—, Xoi—) — Spe(X14, Xoi—)

=1
- 1—6 I (101 = o)
Fcc(clac2> = - =z ( IZA)( 2 [XUSCI’X”SCQ], (2.2)
i=1 Suu(‘/h_’XQZ_) i=1 Suu(Xli_aXQi_)
and
. u 1 — b, 2 (1= 0y) o X<
FUC(Ulj CQ) = Z — 2 2 Vl <v1,X9;< 2]’ (23)
i=1 Suu(‘/li_7X2i_> i=1 uu(‘/lz X2i_)

where Si(z,y) = 1 — Fy(z,00) — Fi(00,y) + Ei(z,y) for k = uu, cc and ve.

~

The following arguments provide a justification of using Fuu(uh us), Fee(cq,cy) and Fm(vl, 2).
Let p = P(U; > V;). Consider the subdistribution function

Waa(ur, ug) = P(X1; < ug, 61 =1, Xo; < ug, g = 1)

=P(U; <wy, Uy < C Uy < g, Uy < ColUy > V)

=p° // See(®—,y=) = Svel@, y=)| Fuu(dz, dy),

where F,,(dz, dy) = Téydxdy if F,,, is absolutely continuous in both components at (z,y);
Fuu(dz,dy) = %dz if F,,, is continuous in its first, but not its second argument at (z, y)

and a similar definition holds for the other cases. Thus, we have

Wuu (du1 s dUQ)

Scc(ul_a u2_) - Svc(“lu u2_> '

Fuu(duy,dus) = p (2.4)

When S..(c1,¢2), Spe(vi,c2) and p are known, F,,(uy,us) can be estimated by

nfl Z 51i52iI[X1i§u1,X2iSU2]
P2lii=1 See(X1i—,Xo2;—)—Sve(X14,X2:—

by n|>>i, Sec (X1 X2i61§62§vc(xu | - This justifies the use of the estimator Fuu(ul,uQ).

7 Let u; = uy = oo. It follows that p can be estimated

Similarly, the justification of using S, can be obtained by considering the subdistribution
function
Wae(vi, c2) = P(Vii < v, Xoy < ¢2,02 = 0)

=p 'P(Cy < ¢3,Cy < Uy, Vi <y, Vi <Uh) = / / wu(T—, y—)Fye(dx, dy).



Thus, we have
ch(dvl, dCQ)

- pSuu(U1_7 02_) .

When Sy, (u1,u2) and p are known, F,.(v1, c2) can be estimated by

Fvc(dvl, ng)

—d2; v <e .
n~ipyor, (- Siu ‘Zlf)l(;_(f)g 2l Let v; = ¢ = oo. It follows that p can be estimated by

-1 R
n [ZZL . W‘SZX%)] . This justifies the use of the estimator F,.(v1, cz). The justification

of using Fcc(cl, ¢2) is simlar to that of Fvc(vl, c¢1) and is omitted.

2.2 Special Case: Cy = o0

2.2.1. Equivalence of Fuu and Fuu

In this case, one can consider the probability

where G(x) = P(V} < ) and Q(z) = P(C; < z) denote the distribution function of V; and
(', respectively. Expression (2.4) and (2.5) motivate an alternative esimator of F,,(uy, us)

as follows.

~ 5111U11<u1 Usi<us [ F l(Ulz )]
Fuu<U1,UQ) Z [ R (](]1 ) P s (26)

i=1

where Fy(us) is the NPMLE of F(uy,00) (see Wang (1987)) and given by

Fu(w)=1-]] [1 _ ﬁ(gﬁ)],

o<u;
where R,(z) = Ng(xz) — Np(z—), Np(dz) = Np(z) — Np(z—), Np(z) = D0 01iljin,<q
and Ne(x) = > Iy,<e). Note that the estimator F,(u1, u2) has the same form as the
estimator proposed by Gijbels and Giirler (1996, 1998). Instead of assuming P(C; > V;) = 1,
they assumed that V; and C; and the vector (Up,Us) are mutually independent. When
Cy =00, (2.1), (2.2) and (2.3) are reduced to

n n

5 51z][xh<u1 Xgi<us)] (2.7)
pa G(Xh G(X1) — Q(Xu—)

A -~ 1 = 1 - 511 [[Xl <ei]
Q1) = —— =, (2.8)
i ZZI uu Xlz 70)

and
n

I[V1i<1)1]

R n 1 - <
Gl = [Z G (Vi o>] D3 ) 29



When Cy = oo, the equivalence of ﬁ’w(ul, ug) and ﬁuu(ul, ug) can be established by consider-

ing the estimation of p. For all z such that R, (z) > 0, expression (2.5) suggests an estimator

p(z) = n[G(z) — Q(z—)][Suu(z—, 0)]/Rn(z). Besides, (2.7) and (2.8) suggest two alterna-

A ~

-1 -1
tive estimators of p, namely, p(S,,) = n [2?4 m] and p(H) =n {Z?_l 1:1(6;;1'):| :

where H(z) = G(z) — Q(z—). The following Lemma establishes the equivalence of the three

estimators.

Lemma 2.1.
Let Ay = {k : 61, = 1}. Suppsose that R,,(Uy;) > 0 for all j and the largest observation is

A

not censored, then p(Uy;) = p(H) = p(S.,) for all j € Ag.
Proof:

First, it is easily shown that when the largest observation is not censored

~ N

/ (G (z) — Q(z=)| Fyu(dr, 00) = / (Suu(z—, 0))d[G(z) — Qz—)].
By (2.7)-(2.9), we have [[G(z) — Q(z—)]Fyu(dx, 00) = (ng/n)p(H) and

f(guu(x—, O))d[@(m) — Q(x—)] = (nd/n)ﬁ(guu), where ng = Y 01;. Thus, }5(]:.1) = ﬁ(ﬁuu)
Next, by Theorem 3.1 of Shen (2003), for any j € Ag, Fy,(dUy;,00) = Ey(dUy,) = Eyu(Uy;) —

F,i(Uyj—). Hence, for any j € A,, we have

-1

2”: i 1 1= Fu(Uy-)]
— G(Uy) - QU—) | [G(Uy) — Q(U;-)] R, (Uyy)

Thus, p(Uy;) = p(H). The proof is completed.

By Lemma 2.1 and (2.6), it follows that

Fuu(uh u2) — i 51iﬁA(Uli)[[U1i§U17U2i§U2] _ ﬁ(H) i 51i[[U1iSU1,U2¢§u2}

~ ~ ~ :Fuu<ulau2>-

= nlG(Un) — Q(Un—)] n = GUu) — QUy—)

2.2.2 Asymptotic Properties of I

Assuming V; and C and the vector (Uy, Us) are mutually independent, Giirler and Gijbels
(1996, 1998) derived the asymptotic properties of F,, viaa strong i.i.d. representation. Using
the weighted average form given in (2.7) and assuming P(C; > Vi) = 1, we can establish

consistent properties of Fo. First, we consider the asymptotic properties of Q and G.



Lemma 2.2.

(1) Q1) — Q(er) = dga(er) + dgaler) + 0p(n7112),
where ¢q1(01) = pn—l Z?:l 1/1q(X11', Vli; (511', Cl) and ¢q2(cl) = pn_l Z?:l Cq(Xli’ 611’7 Cl);
Vo(X1i, Vi, 01iy 1) = [ M(Q(Cl)dwg(x) — Ty ) AW, (),

0 S2.,(z—,0)

Wy(x) = P(X1; < 2,61, =0), Wy(x) = P(Vi; < x), &(Xus, Vis, 014, @)

— —Suu(l',o) [XMEEHHZ 1] _|_f0 X17,<3517, dR( ) fol’ I[VlRZEX“]W (ds,oo) ,and

1— 61 <c _QC
C <X12551’M01) d g(uu)((;éi—lvlo) : 1))

(i) G(v1) — G(v1) = dg1(v1) + dg2(v1) + 0p(n"2),
where ¢g1(v1) = pn =t D00 y(Xai, Vi, 014, v1) and ggo(v1) = prn=t Y00 Co(Vag, v1),
Where d}g(Xli, ‘/11', 51i,'l}1) = foo M(G(’Ul) — [[xgvl})de(.T), and

0 S2.,(z—,0)

Iy, . <y 1—G(v1)
G(Vaion) = T80y
Proof:
The proof can be obtained using Lemma 4.1-4.3 of Wang (1991) and is omitted.

Lemma 2.3.
Fuu(u1>u2) - Fuu(”la“?) - ¢f1(U1,U2) + ¢f2(U1,U2) + Op(n71/2),
where ¢f1(U1, ug) = p*n! 2?21 ’lﬁf(Xu, Xoi, Vai, 014, ur, ug), and

Gra(ur,ug) = p*nt ZZ 1 Cr(Xag, Xog, 014, 11, ug),

where (X1, Xo, Vis, 014, 1, u2) = fo fo { S Vhf?zz(x))%g(vmx)} -

[wq(Xliavlmdli}ﬂ;g()ggq(Xuﬁu,at—)] }(Fuu (UI; U2) - I[xgul,ygug})Wuu(d.T; dy)7

Iix ;g X <ug)01i—Fuu(u1,u2)d1
and Cf(Xh,XQZ,(SM,Ul,Ug) 1 L2 H2(Xlz) .



Proof:
The proof can be obtained using Lemma 2.1 and 2.2 and is omitted.

It can be easily shown that E[(,(X1;, 014, ¢1)] = E[Cr( X4, Xai, 014, ur, ug) =
= E[¢(Vii, v1)] = Elog(X1i, Vi, 014, €1)] = Elthg (X1, Vs, 01, 01)] = 0.

By Lemma 2.2 and 2.3, we have E[¢(X1;, Xos, Vi, 014, u1, u2)] = 0. By the multivariate
central limit theorem, it follows that the finite-dimensional distribution of v/n(F (uy,us) —

F(uy,uy)) converges weakly to the multivariate normal distribution N (0, Xy).
3. Dabrowska’s Estimatior

In this Section, motivated by Dabrowska (1988), we propose an alternative estima-
tor of F,,(ui,us). In the univariate models, it is well known that the hazard function
and the distribution function determine each other in a unique way. In the bivariate
case, however, there have been several definitions of the hazard function or failure rate.
Dabrowska (1988) presented a nice representation of the bivariate distribution function

in terms of the three component bivariate hazard vector. The hazard vector is given by
A(U1,U2) = (Alo(dulaU2)7A01(U1,dUQ),An(dUl,dUz)), where A11(dU1,dU2) = Duuldu,duy)

Suu(u1_7u2_) )

Ajo(duy, ug) = %, and Agi(ug, dug) = %ﬂffﬂ) By Propositon 2.1 of Dabrowska

(1988), for (u1,us) such that Sy, (ui, uz) > 0, we have

Sun(u,12) = Suas(u1,0) S0 (0,u) T T 11 = L(d, dy)],

y<ug r<ui

where L(dz, dy) = Alﬁ(ﬁlf\ﬁ)aﬁ,zl_(:;ﬁ%z0_1](\;1_(,?1:;7)0]@)' Define R(ui—, us—) = P(Vi; < up < Xyj,up <
Xo;). Hence,

R(Ul_, Uz_)

Scc(u1_7 u2_) - Svc(ula u2_) '

By (2.4) and (3.1), we have Ay (duy, dug) = Leldurdua) _ Wouldurdus) iy ijarly, Ayg(duy, ug) =

Suu(ul_auQ_) R(u1_7u2_)

ulduy)  Paoldnb2) where R(uy—,up) = P(Viy < ur < Xy, up < Xog) and Wog(us, uz) =

Sy (U1 —,u2) R(u1—,u2)

P(Xlz S Uy, (511' = 1, XQZ‘ > UQ), and A()l(ul, du2> = —Suu(u1,dus) = Wou(ul’du2)7 where R(ul,u2—) =

Suu(ul,ugf) R(UJ,’!LQ*)

P(Vu <y < Xpj,up < X2i) and WOu(UhUQ) = P(XQi < U, b9 = 1, Xy; > ug > Vu’)-

Suu(U1—,ug—) =p (3.1)

A "
Define Wuu(ul’ UQ) =n Zizl ][Xligul7611':17X2i§u2»52i:1]7

1 _ 1 n 1 _ 1 n
Wuo(ula ’LL2) I Ei:l I[Xligul,éli:LXQiZUﬂ’ WOU(UD uQ) " Zi:l [[X2¢Su2,52¢:1,X1i2u1]



and R(ui—,us—) = 0 3" | Ivi,<ui <X, Xio>us]- A natural candidate for an estimaor of

Suu (U1, ug) is provided by

~

S (un, uz) = S, (un) 52, (u2) TT TT 1t — Lda, dy)).

y<uz r<uy
where . . .
i(daj‘, dy) _ Alo(dxiy—)/\(n (ZE-, dy) A— All(dl’, dy)
[1 — Aso(dz, y=)][1 — Ao (z—, dy)]
. Wou(dz, dy) - Waoldz,y—) -+ Wou(z, d
Ayi(do, dy) = M7 Ayo(dz,y—) = M , Aor(z—, dy) = M;
R(l’—,y—) R(l’—7y—) R(l’—,y—)
Sau(wn) = [T 1t = Avo(de, 0], 2, (us) = T] [1 = Aar (0, dy)].
r<uj y<ug

Note that S! (uy) is the univariate product limit estimate for left-truncated and right-
censored data (see Tsai, Jewell and Wang (1987), Lai and Ying (1991)) and 52, (uy) is
the Kaplan-Meier (1958) estimate. By proposition 4.1 of Dabrowska (1988) and the uniform
consistency of S1 (Gijbels and Wang (1993)) and S2,, it is enough to show the consistency
of S{Z‘

4. Simulation Results

In this section, a simulation study is conducted to examine the performances of the
Suu(tr, uz) and SP (uy,uy). The (Uy,U,)’s are ii.d. bivariate exponential distributed with
survival function: Sy, (uy,ug) = e~ (watuz)—max(uiuz) — The V)’s are ii.d. exponential dis-
tributed with survival function G(v;) = 1 — G(v;) = e~*"1. We consider the following two

cases:
Case 1:

The U;y’s are subject to left truncation and right censoring and the Us is subject to right
censoring only. The C}’s are defined as C; = D + Vj 4+ Cy, such that P(V} < C}) = 1,
where D’s and Cy are both exponential distributed with survival function Sp(z) = e *4®
and Q(cy) = e, respectively. With the choice of Ay = 1.0, A\, = 2, 7 and \, = 0.5, 1, it

covers a wide range from heavy to light truncation, and light to heavy censoring.
Case 2 (Cy =0):

Only the U;’s are subject to left truncation and right censoring. The C)’s are defined
as C; = D+ V; such that P(V; < C;) = 1. With the choice of \; = 1.0, 5.0, and



Ag = 1.0,2.0,4.0, it covers a wide range from heavy to light truncation, and light to heavy

censoring.

The sample sizes are set at n = 100 and 200, and the replication is 5000 times. Tables 1
thruogh 4 show the biases, standard deviations (denoted by std), and the ratio of the squared

root of mean squared error of S2. to that of Sy, (denoted by 1 / %EE”;) at Sy, (0.25,0.193) =

0.5 and S,,(0.708,0.193) = 0.2. Tables 1 and 2 (case 1) also list the probability of truncation
(denoted by ¢ = 1 —p) and probability of censoring p. = 1— P(U; < C;,Uy < Cy). Similarly,
Tables 3 and 4 (case 2) list the probability of truncation ¢ and probability of censoring

pe = P(C1 < Uy). Besides, Table 5 (case 2) lists the ratio 4/ %ﬁfug at a 3 x 3 grid of values

of (uy,us) for parameter values, A\, = A\q = 1.0 and A\, = 4.0, \; = 5.0.

Table 1. Simulation results for bias, std. and /mse (case 1:5,,(0.25,0.193) = 0.5)

bias std

g )‘q q Dc n ‘guu Sﬁ guu gﬂ %
20 0.5 0.50 0.29 100 -0.0614 0.0623 0.2034 0.1169  0.624
2.0 0.5 0.50 0.29 200 0.0429 0.0613 0.1385 0.0595  0.589
20 1.0 0.50 0.48 100 -0.0388 0.0657 0.2164 0.0817  0.477
2.0 1.0 0.50 0.48 200 0.0209 0.0565 0.1477 0.0763  0.636
7.0 0.5 0.22 0.27 100 -0.0584 0.0695 0.1306 0.0756  0.718
7.0 0.5 0.22 0.27 200 -0.0080 0.0596 0.0819 0.0447  0.905
7.0 1.0 0.22 0.43 100 -0.0627 0.0707 0.1280 0.1074  0.902
7.0 1.0 0.22 0.43 200 -0.0112 0.0605 0.0849 0.0388  0.840




Table 2. Simulation results for bias, std. and /mse (case 1:5,,(0.708,0.193) = 0.2)

bias std

)‘g )‘q q Pe n guu gzﬁ guu gﬂ %
2.0 0.5 0.50 0.29 100 -0.0408 0.0588 0.2055 0.0632 0.412
20 0.5 050 0.29 200 -0.0312 0.0359 0.1347 0.0338 0.357
2.0 1.0 0.50 048 100 -0.0194 0.0498 0.2119 0.0669 0.392
20 1.0 050 0.48 200 0.0137 0.0585 0.1758 0.0349 0.385
7.0 0.5 0.22 0.27 100 -0.0126 0.0703 0.1047 0.0379 0.757
7.0 0.5 0.22 0.27 200 -0.0091 0.0598 0.0722 0.0242 0.886
7.0 1.0 0.22 043 100 -0.0470 0.0579 0.0851 0.0459 0.760
7.0 1.0 0.22 043 200 -0.0338 0.0520 0.0669 0.0340 0.828

Table 3. Simulation results for bias, std. and /mse (case 2:5,,(0.25,0.193) = 0.5)

bias std

)‘g )‘q q DPe n guu Sﬁ guu gﬂ Ziigi;
1.0 1.0 0.67 0.11 100 0.0011 0.0483 0.0940 0.0998 1.169
1.0 1.0 0.67 0.11 200 0.0071 0.0697 0.0764 0.0829 1.412
1.0 5.0 0.67 0.24 100 -0.0158 0.0596 0.1166 0.1078 1.049
1.0 5.0 0.67 0.24 200 0.0083 0.0481 0.1034 0.0984 1.056
20 1.0 050 0.17 100 0.0152 0.0743 0.0770 0.1074 1.664
20 1.0 050 0.17 200 0.0076 0.0694 0.0721 0.0955 1.629
20 5.0 050 0.36 100 -0.0040 0.0645 0.1125 0.0879 0.969
2.0 5.0 0.50 0.36 200 0.0053 0.0608 0.1004 0.0844 1.035
40 1.0 0.33 0.22 100 -0.0112 0.0707 0.0788 0.0667 1.221
4.0 1.0 033 0.22 200 0.0073 0.0615 0.0594 0.0516 1.341
4.0 5.0 033 048 100 -0.0400 0.0529 0.1144 0.0937 0.888
4.0 50 033 048 200 -0.0167 0.0715 0.1037 0.0619 0.901
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Table 4. Simulation results for bias, sd. and y/mse (case 2:5,,(0.708,0.193) = 0.2)

bias std

)‘g )‘q q Pe n guu gzﬁ guu ,SA'EU Ziigﬁ;
1.0 1.0 0.67 0.11 100 -0.0048 0.0506 0.0837 0.0794 1.124
1.0 1.0 0.67 0.11 200 0.0097 0.0463 0.0535 0.0321 1.034
1.0 5.0 0.67 0.24 100 0.0052 0.0447 0.1203 0.1052 0.949
1.0 5.0 0.67 0.24 200 0.0014 0.0401 0.1013 0.0825 0.905
20 1.0 050 0.17 100 -0.0012 0.0647 0.0812 0.0605 1.091
20 1.0 0.50 0.17 200 0.0052 0.0505 0.0747 0.0581 1.028
20 5.0 050 0.36 100 -0.0043 0.0493 0.1126 0.0689 0.752
2.0 5.0 0.50 0.36 200 0.0070 0.0476 0.0979 0.0672 0.833
40 1.0 0.33 0.22 100 -0.0199 0.0897 0.0913 0.0503 0.836
40 1.0 033 0.22 200 0.0085 0.0598 0.0861 0.0382 0.821
40 50 033 048 100 -0.0238 0.0672 0.1294 0.0813 0.784
4.0 5.0 033 048 200 -0.0075 0.0569 0.1170 0.1014 0.916

Table 5. Simulation results of \/mse(gﬁb)/mse(é’w)
(A, = Ag = 1.0, \, = 4.0&)\; = 5.0) for n = 100

uy = 0.193 uy = 0.250 uy = 0.708
u; = 0.193 1.039, 0.627  0.935, 0.745 1.321, 1.019
up = 0.250 1.169, 0.888 1.052, 0.783 1.003, 0.840
u; = 0.708 1.124, 0.754  0.851, 0.602  0.745, 0.568

Based on the results of Tables 1 and 2 (case 1), we conclude that:
(i) The bias of Sy, is smaller than that of SP. for all the cases considered.

(ii) The standard deviation of S’ﬁt is smaller than that of S’ﬁt for all the cases considered.
In terms of y/mse, SP is dominating. One explanation for the results is that the estimator

A

Suu 1s based on the data with d;; = do; = 1, which makes the estimator less efficient.

Based on the results of Tables 3 through 5 (case 2), we conclude that:
(i) The bias of S, is smaller than that of S2 for all the cases considered.

(ii) In most of the simulated cases, the \/mse of Sy, is larger than that of SP.. When
censoring is light and truncation is severe (e.g., A\, = A\¢g = 1.0, p. = 0.11, ¢ = 0.67), the std

and y/mse of Sy, can be smaller than those of 5”7% However, when censoring is not light
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(e.g., Ay = 4.0, Ay = 5.0, p. = 0.48), the situation is reverse and the estimator 5’3 is a better

choice than the S’uu estimator.

The results of Table 3 through 5 agree with those of Giirler (1996, 1997), where he
proposed several nonparametric estimators for the special case of C7 = Cy = oo. The
estimator that performed best (better than gﬂ) has the same form as S, which is equivalent
to S’uu
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