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Abstract

In this paper we consider estimating the bivariate observations where one of the com-

ponents is subject to left truncation and right censoring and the other is subject to right

censoring only. Two types of nonparametric estimators are proposed. One is in the form of

inverse-probability-weighted average (Satten and Datta (2001)) and the other is a generaliza-

tion of Dabrowska’s (1988) estimator. The two are then compared based on their empirical

performances.
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1. Introduction

In survival or reliability studies, the observed data is typically censored and/or truncated.

Left truncation and right censoring together naturally occur in cohort follow-up studies (see

van der Laan (1996), Gürler and Gijbels (1996)). In this paper we consider the situation of

bivariate observations where one of the components is subject to left truncation and right

censoring and the other is subject to right censoring only. Consider the following application.

In pediatric AIDS cohort studies, a group of pregnant women who are infected with HIV

but have not yet developed AIDS are selected. Suppose that the infection time (denoted

by Ts) can be accurately determined. The recruitment starts at time T0 and the follow-up

is terminated at time Te. Let U1 be the incubation time between Ts and development of

AIDS and let V1 = T0 − Ts if Ts < T0 and V1 = 0 if Ts ≥ T0. Then only those women for

whom the incubation time U1 ≥ V1 are observed. Let U2 denote the time from birth, Tb, to

development of AIDS for babies. Let C1 = Te−Ts and C2 = Te−Tb. Thus (U1, U2) constitutes

a bivariate data where U1 is subject to left truncation and both U1 and U2 are subject to

right censoring due to termination of study. This problem is a case of the following bivariate

problem covered in this paper. Let (U1, U2, C1, C2, V1) be i.i.d. random vectors such that
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(C1, C1, V1) is independent of (U1, U2) and P (V1 < C1) = 1. Let Xi = min{Ui, Ci} (i = 1, 2)

and let δi (i = 1, 2) be one if Xi = Ui (i = 1, 2) and zero otherwise. Under left truncation

and right censoring models one observes nothing if U1 < V1 and observes (X1, δ1, X2, δ2) if

U1 ≥ V1.

Special Case: C2 = ∞

In this case, only one of the components is subject to left truncation and right censoring,

i.e., second component is always observed. Consider the following application. In hemophilia

AIDS-data sets the time of infection Ts can be quite accurately determined. A database will

cover patients from, say 1978, till 1995, and hence a patient with a longer survival time will

have a larger probability of being part of the sample than a patient with a short survival time.

Let U1 be the time between Ts and death and let V1 = 1978− Ts if Ts < 1978 and V1 = 0 if

Ts ≥ 1978. Then a patient will only be part of the sample if U1 ≥ V1. Let C1 = 1995 − Ts

denote the the time from Ts to the end of study and U2 denote the time between Ts and

AIDS. All patients are followed until the development of AIDS. However, some patients are

still alive at the end of the study. In this case, only U1 is subject to left-truncation and

right-censoring.

In Section 2 and 3, two types of nonparametric estimators are proposed. The first one is

in the form of inverse-probability-weighted (IPW) average (Satten and Datta (2001)). The

second one is a generalization of Dabrowska’s (1988) estimator.

2. Inverse-Probability-Weighted (IPW) Estimators

2.1 The Estimator

For the univariate random censoring model, Satten and Datta (2001) showed that the

Kaplan-Meier (1958) estimator (known as a NPMLE) of survival function can be expressed as

an IPW average (see Robins (1993, 2000)). For the univariate random truncation and censor-

ing model, Shen (2003) showed that the truncation NPMLE (see Woodroofe (1985)) and the

censoring-truncation NPMLE (see Wang (1987)) of survival function can also be expressed

as IPW averages. Now, let Fuu(u1, u2), Fcc(c1, c2), and Fvc(v1, c2) denote the bivariate dis-

tribution functions of (U1, U2), (C1, C2), and (V1, C2), respectively. Let (X1i, δ1i, X2i, δ2i, V1i)

(i = 1, . . . , n) denote the left-truncated and right-censored sample. We consider the IPW

estimator of bivariate distribution functions Fuu(u1, u2) by simultaneously estimating the

three distribution functions as follows:
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F̂uu(u1, u2) =[
n∑
i=1

δ1iδ2i

Ŝcc(X1i−, X2i−)− Ŝvc(X1i, X2i−)

]−1 n∑
i=1

δ1iδ2iI[X1i≤u1,X2i≤u2]

Ŝcc(X1i−, X2i−)− Ŝvc(X1i, X2i−)
, (2.1)

F̂cc(c1, c2) =

[
n∑
i=1

1− δ2i

Ŝuu(V1i−, X2i−)

]−1 n∑
i=1

(1− δ1i)(1− δ2i)I[X1i≤c1,X2i≤c2]

Ŝuu(X1i−, X2i−)
, (2.2)

and

F̂vc(v1, c2) =

[
n∑
i=1

1− δ2i

Ŝuu(V1i−, X2i−)

]−1 n∑
i=1

(1− δ2i)I[Ṽ1i≤v1,X2i≤c2]

Ŝuu(V1i−, X2i−)
, (2.3)

where Ŝk(x, y) = 1− F̂k(x,∞)− F̂k(∞, y) + F̂k(x, y) for k = uu, cc and vc.

The following arguments provide a justification of using F̂uu(u1, u2), F̂cc(c1, c2) and F̂vc(v1, c2).

Let p = P (U1 ≥ V1). Consider the subdistribution function

Wuu(u1, u2) = P (X1i ≤ u1, δ1i = 1, X2i ≤ u2, δ2i = 1)

= P (U1 ≤ u1, U1 ≤ C1, U2 ≤ u2, U2 ≤ C2|U1 ≥ V1)

= p−1

∫ u2

0

∫ u1

0

[Scc(x−, y−)− Svc(x, y−)]Fuu(dx, dy),

where Fuu(dx, dy) = F (x,y)
∂x∂y

dxdy if Fuu is absolutely continuous in both components at (x, y);

Fuu(dx, dy) = F (x,∆y)
∂x

dx if Fuu is continuous in its first, but not its second argument at (x, y)

and a similar definition holds for the other cases. Thus, we have

Fuu(du1, du2) = p
Wuu(du1, du2)

Scc(u1−, u2−)− Svc(u1, u2−)
. (2.4)

When Scc(c1, c2), Svc(v1, c2) and p are known, Fuu(u1, u2) can be estimated by

n−1p
∑n

i=1

δ1iδ2iI[X1i≤u1,X2i≤u2]

Scc(X1i−,X2i−)−Svc(X1i,X2i−)
. Let u1 = u2 = ∞. It follows that p can be estimated

by n
[∑n

i=1
δ1iδ2i

Scc(X1i−,X2i−)−Svc(X1i,X2i−)

]−1

. This justifies the use of the estimator F̂uu(u1, u2).

Similarly, the justification of using Ŝvc can be obtained by considering the subdistribution

function

Wvc(v1, c2) = P (V1i ≤ v1, X2i ≤ c2, δ2i = 0)

= p−1P (C2 ≤ c2, C2 ≤ U2, V1 ≤ v1, V1 ≤ U1) = p−1

∫ c2

0

∫ v1

0

Suu(x−, y−)Fvc(dx, dy).
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Thus, we have

Fvc(dv1, dc2) = p
Wvc(dv1, dc2)

Suu(v1−, c2−)
.

When Suu(u1, u2) and p are known, Fvc(v1, c2) can be estimated by

n−1p
∑n

i=1

(1−δ2i)I[V1i≤v1,X2i≤c2]

Suu(V1i−,X2i−)
. Let v1 = c2 = ∞. It follows that p can be estimated by

n
[∑n

i=1
1−δ2i

Suu(V1i−,X2i−)

]−1

. This justifies the use of the estimator F̂vc(v1, c2). The justification

of using F̂cc(c1, c2) is simlar to that of F̂vc(v1, c1) and is omitted.

2.2 Special Case: C2 = ∞

2.2.1. Equivalence of F̂uu and F̃uu

In this case, one can consider the probability

R(x) = P (V1i ≤ x ≤ X1i) = p−1[G(x)−Q(x−)]Suu(x−, 0), (2.5)

where G(x) = P (V1 ≤ x) and Q(x) = P (C1 ≤ x) denote the distribution function of V1 and

C1, respectively. Expression (2.4) and (2.5) motivate an alternative esimator of Fuu(u1, u2)

as follows.

F̃uu(u1, u2) =
n∑
i=1

δ1iI[U1i≤u1,U2i≤u2][1− F̂pl(U1i−)]

Rn(U1i)
, (2.6)

where F̂pl(u1) is the NPMLE of F (u1,∞) (see Wang (1987)) and given by

F̂pl(u1) = 1−
∏
x≤u1

[
1− NF (dx)

Rn(x)

]
,

where Rn(x) = NG(x) − NF (x−), NF (dx) = NF (x) − NF (x−), NF (x) =
∑n

i=1 δ1iI[U1i≤x]

and NG(x) =
∑n

i=1 I[V1i≤x]. Note that the estimator F̃uu(u1, u2) has the same form as the

estimator proposed by Gijbels and Gürler (1996, 1998). Instead of assuming P (C1 > V1) = 1,

they assumed that V1 and C1 and the vector (U1, U2) are mutually independent. When

C2 = ∞, (2.1), (2.2) and (2.3) are reduced to

F̂uu(u1, u2) =

[
n∑
i=1

δ1i

Ĝ(X1i)− Q̂(X1i−)

]−1 n∑
i=1

δ1iI[X1i≤u1,X2i≤u2]

Ĝ(X1i)− Q̂(X1i−)
, (2.7)

Q̂(c1) =

[
n∑
i=1

1

Ŝuu(V1i−, 0)

]−1 n∑
i=1

(1− δ1i)I[X1i≤c1]

Ŝuu(X1i−, 0)
, (2.8)

and

Ĝ(v1) =

[
n∑
i=1

1

Ŝuu(V1i−, 0)

]−1 n∑
i=1

I[V1i≤v1]

Ŝuu(V1i−, 0)
. (2.9)
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When C2 = ∞, the equivalence of F̃uu(u1, u2) and F̂uu(u1, u2) can be established by consider-

ing the estimation of p. For all x such that Rn(x) > 0, expression (2.5) suggests an estimator

p̂(x) = n[Ĝ(x) − Q̂(x−)][Ŝuu(x−, o)]/Rn(x). Besides, (2.7) and (2.8) suggest two alterna-

tive estimators of p, namely, p̂(Ŝuu) = n

[∑n
i=1

1

Ŝuu(V1i−,0)

]−1

and p̂(Ĥ) = n

[∑n
i=1

δ1i

Ĥ(U1i)

]−1

,

where Ĥ(x) = Ĝ(x)− Q̂(x−). The following Lemma establishes the equivalence of the three

estimators.

Lemma 2.1.

Let Ad = {k : δ1k = 1}. Suppsose that Rn(U1j) > 0 for all j and the largest observation is

not censored, then p̂(U1j) = p̂(Ĥ) = p̂(Ŝuu) for all j ∈ Ad.

Proof:

First, it is easily shown that when the largest observation is not censored∫
[Ĝ(x)− Q̂(x−)]F̂uu(dx,∞) =

∫
(Ŝuu(x−, 0))d[Ĝ(x)− Q̂(x−)].

By (2.7)-(2.9), we have
∫

[Ĝ(x)− Q̂(x−)]F̂uu(dx,∞) = (nd/n)p̂(Ĥ) and∫
(Ŝuu(x−, 0))d[Ĝ(x)− Q̂(x−)] = (nd/n)p̂(Ŝuu), where nd =

∑n
i=1 δ1i. Thus, p̂(Ĥ) = p̂(Ŝuu).

Next, by Theorem 3.1 of Shen (2003), for any j ∈ Ad, F̂uu(dU1j,∞) = F̂pl(dU1j) = F̂pl(U1j)−
F̂pl(U1j−). Hence, for any j ∈ Ad, we have[

n∑
i=1

δ1i

Ĝ(U1i)− Q̂(U1i−)

]−1
1

[Ĝ(U1j)− Q̂(U1j−)]
=

[1− F̂pl(U1j−)]

Rn(U1j)
.

Thus, p̂(U1j) = p̂(Ĥ). The proof is completed.

By Lemma 2.1 and (2.6), it follows that

F̃uu(u1, u2) =
n∑
i=1

δ1ip̂(U1i)I[U1i≤u1,U2i≤u2]

n[Ĝ(U1i)− Q̂(U1i−)]
=
p̂(Ĥ)

n

n∑
i=1

δ1iI[U1i≤u1,U2i≤u2]

Ĝ(U1i)− Q̂(U1i−)
= F̂uu(u1, u2).

2.2.2 Asymptotic Properties of F̂uu

Assuming V1 and C1 and the vector (U1, U2) are mutually independent, Gürler and Gijbels

(1996, 1998) derived the asymptotic properties of F̃uu via a strong i.i.d. representation. Using

the weighted average form given in (2.7) and assuming P (C1 > V1) = 1, we can establish

consistent properties of F̂uu. First, we consider the asymptotic properties of Q̂ and Ĝ.
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Lemma 2.2.

(i) Q̂(c1)−Q(c1) = φq1(c1) + φq2(c1) + op(n
−1/2),

where φq1(c1) = pn−1
∑n

i=1 ψq(X1i, V1i, δ1i, c1) and φq2(c1) = pn−1
∑n

i=1 ζq(X1i, δ1i, c1),

ψq(X1i, V1i, δ1i, c1) =
∫∞

0

ξf (X1i,V1i,δ1i,x−)

S2
uu(x−,0)

(Q(c1)dWg(x)− I[x≤c1])dWq(x),

Wq(x) = P (X1i ≤ x, δ1i = 0), Wg(x) = P (V1i ≤ x), ξf (X1i, V1i, δ1i, x)

= −Suu(x, 0)

[
I[X1i≤x,δ1i=1]

R(x)
+

∫ x

0

I[X1i≤s,δ1i=1]

R2(s)
dR(s)−

∫ x

0

I[V1i≤s≤X1i]

R2(s)
Wuu(ds,∞)

]
, and

ζq(X1i, δ1i, c1) =
(1−δ1i)(I[X1i≤c1]−Q(c1))

Suu(X1i−,0)
.

(ii) Ĝ(v1)−G(v1) = φg1(v1) + φg2(v1) + op(n
−1/2),

where φg1(v1) = pn−1
∑n

i=1 ψg(X1i, V1i, δ1i, v1) and φg2(v1) = pn−1
∑n

i=1 ζg(V1i, v1),

where ψg(X1i, V1i, δ1i, v1) =
∫∞

0

ξf (X1i,V1i,δ1i,x)

S2
uu(x−,0)

(G(v1)− I[x≤v1])dWg(x), and

ζg(V1i, v1) =
I[V1i≤v1]−G(v1)

Suu(V1i−,0)
.

Proof:

The proof can be obtained using Lemma 4.1-4.3 of Wang (1991) and is omitted.

Lemma 2.3.

F̂uu(u1, u2)− Fuu(u1, u2) = φf1(u1, u2) + φf2(u1, u2) + op(n
−1/2),

where φf1(u1, u2) = p2n−1
∑n

i=1 ψf (X1i, X2i, V1i, δ1i, u1, u2), and

φf2(u1, u2) = p2n−1
∑n

i=1 ζf (X1i, X2i, δ1i, u1, u2),

where ψf (X1i, X2i, V1i, δ1i, u1, u2) =
∫∞

0

∫∞
0

{
[ψg(X1i,V1i,δ1i,x)+ζg(V1i,x)]

H2(x)
−

[ψq(X1i,V1i,δ1i,x−)+ζq(X1i,δ1i,x−)]

H2(x)

}
(Fuu(u1, u2)− I[x≤u1,y≤u2])Wuu(dx, dy),

and ζf (X1i, X2i, δ1i, u1, u2) =
I[X1i≤u1,X2i≤u2]δ1i−Fuu(u1,u2)δ1i

H(X1i)
.
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Proof:

The proof can be obtained using Lemma 2.1 and 2.2 and is omitted.

It can be easily shown that E[ζq(X1i, δ1i, c1)] = E[ζf (X1i, X2i, δ1i, u1, u2] =

= E[ζg(V1i, v1)] = E[ψq(X1i, V1i, δ1i, c1)] = E[ψg(X1i, V1i, δ1i, v1)] = 0.

By Lemma 2.2 and 2.3, we have E[ψf (X1i, X2i, V1i, δ1i, u1, u2)] = 0. By the multivariate

central limit theorem, it follows that the finite-dimensional distribution of
√
n(F̂ (u1, u2) −

F (u1, u2)) converges weakly to the multivariate normal distribution N(0,Σf ).

3. Dabrowska’s Estimatior

In this Section, motivated by Dabrowska (1988), we propose an alternative estima-

tor of Fuu(u1, u2). In the univariate models, it is well known that the hazard function

and the distribution function determine each other in a unique way. In the bivariate

case, however, there have been several definitions of the hazard function or failure rate.

Dabrowska (1988) presented a nice representation of the bivariate distribution function

in terms of the three component bivariate hazard vector. The hazard vector is given by

Λ(u1, u2) = (Λ10(du1, u2),Λ01(u1, du2),Λ11(du1, du2)), where Λ11(du1, du2) = Suu(du1,du2)
Suu(u1−,u2−)

,

Λ10(du1, u2) = −Suu(du1,u2)
Suu(u1−,u2)

, and Λ01(u1, du2) = −Suu(u1,du2)
Suu(u1,u2−)

. By Propositon 2.1 of Dabrowska

(1988), for (u1, u2) such that Suu(u1, u2) > 0, we have

Suu(u1, u2) = Suu(u1, 0)Suu(0, u2)
∏
y≤u2

∏
x≤u1

[1− L(dx, dy)],

where L(dx, dy) = Λ10(dx,y−)Λ01(x−,dy)−Λ11(dx,dy)
[1−Λ10(dx,y−)][1−Λ01(x−,dy)] .DefineR(u1−, u2−) = P (V1i ≤ u1 ≤ X1i, u2 ≤

X2i). Hence,

Suu(u1−, u2−) = p
R(u1−, u2−)

Scc(u1−, u2−)− Svc(u1, u2−)
. (3.1)

By (2.4) and (3.1), we have Λ11(du1, du2) = Fuu(du1,du2)
Suu(u1−,u2−)

= Wuu(du1,du2)
R(u1−,u2−)

. Similarly, Λ10(du1, u2) =
−Suu(du1,u2)
Suu(u1−,u2)

= Wu0(du1,u2)
R(u1−,u2)

, whereR(u1−, u2) = P (V1i ≤ u1 ≤ X1i, u2 < X2i) andWu0(u1, u2) =

P (X1i ≤ u1, δ1i = 1, X2i > u2), and Λ01(u1, du2) = −Suu(u1,du2)
Suu(u1,u2−)

= W0u(u1,du2)
R(u1,u2−)

, whereR(u1, u2−) =

P (V1i < u1 < X1i, u2 ≤ X2i) and W0u(u1, u2) = P (X2i ≤ u2, δ2i = 1, X1i > u1 > V1i).

Define Ŵuu(u1, u2) = n−1
∑n

i=1 I[X1i≤u1,δ1i=1,X2i≤u2,δ2i=1],

Ŵu0(u1, u2) = 1
n

∑n
i=1 I[X1i≤u1,δ1i=1,X2i≥u2], Ŵ0u(u1, u2) = 1

n

∑n
i=1 I[X2i≤u2,δ2i=1,X1i≥u1]
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and R̂(u1−, u2−) = n−1
∑n

i=1 I[V1i≤u1≤X1i,Xi2≥u2]. A natural candidate for an estimaor of

Suu(u1, u2) is provided by

ŜDuu(u1, u2) = Ŝ1
uu(u1)Ŝ

2
uu(u2)

∏
y≤u2

∏
x≤u1

[1− L̂(dx, dy)],

where

L̂(dx, dy) =
Λ̂10(dx, y−)Λ̂01(x−, dy)− Λ̂11(dx, dy)

[1− Λ̂10(dx, y−)][1− Λ̂01(x−, dy)]
,

Λ̂11(dx, dy) =
Ŵuu(dx, dy)

R̂(x−, y−)
, Λ̂10(dx, y−) =

Ŵu0(dx, y−)

R̂(x−, y−)
, Λ̂01(x−, dy) =

Ŵ0u(x, dy)

R̂(x−, y−)
,

Ŝ1
uu(u1) =

∏
x≤u1

[1− Λ̂10(dx, 0)], Ŝ2
uu(u2) =

∏
y≤u2

[1− Λ̂01(0, dy)].

Note that Ŝ1
uu(u1) is the univariate product limit estimate for left-truncated and right-

censored data (see Tsai, Jewell and Wang (1987), Lai and Ying (1991)) and Ŝ2
uu(u2) is

the Kaplan-Meier (1958) estimate. By proposition 4.1 of Dabrowska (1988) and the uniform

consistency of Ŝ1
uu (Gijbels and Wang (1993)) and Ŝ2

uu, it is enough to show the consistency

of ŜDuu.

4. Simulation Results

In this section, a simulation study is conducted to examine the performances of the

Ŝuu(u1, u2) and ŜDuu(u1, u2). The (U1, U2)’s are i.i.d. bivariate exponential distributed with

survival function: Suu(u1, u2) = e−(u1+u2)−max(u1,u2). The V1’s are i.i.d. exponential dis-

tributed with survival function Ḡ(v1) = 1 − G(v1) = e−λgv1 . We consider the following two

cases:

Case 1:

The U1’s are subject to left truncation and right censoring and the U2 is subject to right

censoring only. The C1’s are defined as C1 = D + V1 + C2, such that P (V1 < C1) = 1,

where D’s and C2 are both exponential distributed with survival function SD(x) = e−λdx

and Q̄(c2) = e−λqc2 , respectively. With the choice of λd = 1.0, λg = 2, 7 and λq = 0.5, 1, it

covers a wide range from heavy to light truncation, and light to heavy censoring.

Case 2 (C2 = 0):

Only the U1’s are subject to left truncation and right censoring. The C1’s are defined

as C1 = D + V1 such that P (V1 < C1) = 1. With the choice of λd = 1.0, 5.0, and
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λg = 1.0, 2.0, 4.0, it covers a wide range from heavy to light truncation, and light to heavy

censoring.

The sample sizes are set at n = 100 and 200, and the replication is 5000 times. Tables 1

thruogh 4 show the biases, standard deviations (denoted by std), and the ratio of the squared

root of mean squared error of ŜDuu to that of Ŝuu (denoted by

√
mse(ŜD

uu)

mse(Ŝuu)
) at Suu(0.25, 0.193) =

0.5 and Suu(0.708, 0.193) = 0.2. Tables 1 and 2 (case 1) also list the probability of truncation

(denoted by q = 1−p) and probability of censoring pc = 1−P (U1 ≤ C1, U2 ≤ C2). Similarly,

Tables 3 and 4 (case 2) list the probability of truncation q and probability of censoring

pc = P (C1 ≤ U1). Besides, Table 5 (case 2) lists the ratio

√
mse(ŜD

uu)

mse(Ŝuu)
at a 3× 3 grid of values

of (u1, u2) for parameter values, λg = λd = 1.0 and λg = 4.0, λd = 5.0.

Table 1. Simulation results for bias, std. and
√
mse (case 1:Ŝuu(0.25, 0.193) = 0.5)

bias std

λg λq q pc n Ŝuu ŜDuu Ŝuu ŜDuu

√
mse(ŜD

uu)

mse(Ŝuu)

2.0 0.5 0.50 0.29 100 -0.0614 0.0623 0.2034 0.1169 0.624
2.0 0.5 0.50 0.29 200 0.0429 0.0613 0.1385 0.0595 0.589
2.0 1.0 0.50 0.48 100 -0.0388 0.0657 0.2164 0.0817 0.477
2.0 1.0 0.50 0.48 200 0.0209 0.0565 0.1477 0.0763 0.636
7.0 0.5 0.22 0.27 100 -0.0584 0.0695 0.1306 0.0756 0.718
7.0 0.5 0.22 0.27 200 -0.0080 0.0596 0.0819 0.0447 0.905
7.0 1.0 0.22 0.43 100 -0.0627 0.0707 0.1280 0.1074 0.902
7.0 1.0 0.22 0.43 200 -0.0112 0.0605 0.0849 0.0388 0.840
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Table 2. Simulation results for bias, std. and
√
mse (case 1:Ŝuu(0.708, 0.193) = 0.2)

bias std

λg λq q pc n Ŝuu ŜDuu Ŝuu ŜDuu

√
mse(ŜD

uu)

mse(Ŝuu)

2.0 0.5 0.50 0.29 100 -0.0408 0.0588 0.2055 0.0632 0.412
2.0 0.5 0.50 0.29 200 -0.0312 0.0359 0.1347 0.0338 0.357
2.0 1.0 0.50 0.48 100 -0.0194 0.0498 0.2119 0.0669 0.392
2.0 1.0 0.50 0.48 200 0.0137 0.0585 0.1758 0.0349 0.385
7.0 0.5 0.22 0.27 100 -0.0126 0.0703 0.1047 0.0379 0.757
7.0 0.5 0.22 0.27 200 -0.0091 0.0598 0.0722 0.0242 0.886
7.0 1.0 0.22 0.43 100 -0.0470 0.0579 0.0851 0.0459 0.760
7.0 1.0 0.22 0.43 200 -0.0338 0.0520 0.0669 0.0340 0.828

Table 3. Simulation results for bias, std. and
√
mse (case 2:Ŝuu(0.25, 0.193) = 0.5)

bias std

λg λq q pc n Ŝuu ŜDuu Ŝuu ŜDuu

√
mse(ŜD

uu)

mse(Ŝuu)

1.0 1.0 0.67 0.11 100 0.0011 0.0483 0.0940 0.0998 1.169
1.0 1.0 0.67 0.11 200 0.0071 0.0697 0.0764 0.0829 1.412
1.0 5.0 0.67 0.24 100 -0.0158 0.0596 0.1166 0.1078 1.049
1.0 5.0 0.67 0.24 200 0.0083 0.0481 0.1034 0.0984 1.056
2.0 1.0 0.50 0.17 100 0.0152 0.0743 0.0770 0.1074 1.664
2.0 1.0 0.50 0.17 200 0.0076 0.0694 0.0721 0.0955 1.629
2.0 5.0 0.50 0.36 100 -0.0040 0.0645 0.1125 0.0879 0.969
2.0 5.0 0.50 0.36 200 0.0053 0.0608 0.1004 0.0844 1.035
4.0 1.0 0.33 0.22 100 -0.0112 0.0707 0.0788 0.0667 1.221
4.0 1.0 0.33 0.22 200 0.0073 0.0615 0.0594 0.0516 1.341
4.0 5.0 0.33 0.48 100 -0.0400 0.0529 0.1144 0.0937 0.888
4.0 5.0 0.33 0.48 200 -0.0167 0.0715 0.1037 0.0619 0.901
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Table 4. Simulation results for bias, sd. and
√
mse (case 2:Ŝuu(0.708, 0.193) = 0.2)

bias std

λg λq q pc n Ŝuu ŜDuu Ŝuu ŜDuu

√
mse(ŜD

uu)

mse(Ŝuu)

1.0 1.0 0.67 0.11 100 -0.0048 0.0506 0.0837 0.0794 1.124
1.0 1.0 0.67 0.11 200 0.0097 0.0463 0.0535 0.0321 1.034
1.0 5.0 0.67 0.24 100 0.0052 0.0447 0.1203 0.1052 0.949
1.0 5.0 0.67 0.24 200 0.0014 0.0401 0.1013 0.0825 0.905
2.0 1.0 0.50 0.17 100 -0.0012 0.0647 0.0812 0.0605 1.091
2.0 1.0 0.50 0.17 200 0.0052 0.0505 0.0747 0.0581 1.028
2.0 5.0 0.50 0.36 100 -0.0043 0.0493 0.1126 0.0689 0.752
2.0 5.0 0.50 0.36 200 0.0070 0.0476 0.0979 0.0672 0.833
4.0 1.0 0.33 0.22 100 -0.0199 0.0897 0.0913 0.0503 0.836
4.0 1.0 0.33 0.22 200 0.0085 0.0598 0.0861 0.0382 0.821
4.0 5.0 0.33 0.48 100 -0.0238 0.0672 0.1294 0.0813 0.784
4.0 5.0 0.33 0.48 200 -0.0075 0.0569 0.1170 0.1014 0.916

Table 5. Simulation results of

√
mse(ŜDuu)/mse(Ŝuu)

(λg = λd = 1.0, λg = 4.0&λd = 5.0) for n = 100

u2 = 0.193 u2 = 0.250 u2 = 0.708
u1 = 0.193 1.039, 0.627 0.935, 0.745 1.321, 1.019
u1 = 0.250 1.169, 0.888 1.052, 0.783 1.003, 0.840
u1 = 0.708 1.124, 0.754 0.851, 0.602 0.745, 0.568

Based on the results of Tables 1 and 2 (case 1), we conclude that:

(i) The bias of Ŝuu is smaller than that of ŜDuu for all the cases considered.

(ii) The standard deviation of ŜDuu is smaller than that of ŜDuu for all the cases considered.

In terms of
√
mse, ŜDuu is dominating. One explanation for the results is that the estimator

Ŝuu is based on the data with δ1i = δ2i = 1, which makes the estimator less efficient.

Based on the results of Tables 3 through 5 (case 2), we conclude that:

(i) The bias of Ŝuu is smaller than that of ŜDuu for all the cases considered.

(ii) In most of the simulated cases, the
√
mse of Ŝuu is larger than that of ŜDuu. When

censoring is light and truncation is severe (e.g., λg = λd = 1.0, pc = 0.11, q = 0.67), the std

and
√
mse of Ŝuu can be smaller than those of ŜDuu. However, when censoring is not light
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(e.g., λg = 4.0, λd = 5.0, pc = 0.48), the situation is reverse and the estimator ŜDuu is a better

choice than the Ŝuu estimator.

The results of Table 3 through 5 agree with those of Gürler (1996, 1997), where he

proposed several nonparametric estimators for the special case of C1 = C2 = ∞. The

estimator that performed best (better than ŜDuu) has the same form as S̃uu, which is equivalent

to Ŝuu.
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