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Abstract

The purpose of this paper is to give a systematic explanation of the �ducial

distribution. Unlike many of the writings on this topic, it is written with the

conviction that the controversial �ducial argument does make sense. We re-

view some literatures on the �ducial argument, give a general de�nition of the

�ducial distribution and propose a method of constructing the �ducial distri-

bution for continuous parameter space. As demonstrations, we present some

applications of the �ducial distribution in solving some problems in current

statistical inference.

1. INTRODUCTION

Let us start with a simple example of "post-data probability". If X is a continuous

random variable with an unknown median �; then

Pr (X < �) = Pr (X > �) = 1=2: (1)
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The above statement says that it is equally likely that the value of the observable

random variable X; when realized, is on the left or on the right of the unobservable

parameter �. Now suppose that X = 3:45 is observed, can we still claim that

Pr (3:45 < � j X = 3:45) = Pr (3:45 > � j X = 3:45) = 1=2? (2)

Most people would �nd the statement (2) odds, because unlike (1) which can be

mechanically calculated using the distribution of X; (2) can not. We need a little bit

of patience here. Doesn�t (2) simply say that if X is observed to be 3:45; then with

even chance the unobservable parameter � is either on the left or on the right of 3:45?

Which is just a slight rewording of the statement (1) : The di¢ culty here is that

in (2) the statements "3:45 < �" and "3=45 > �" involve no random elements, and

therefore their "probabilities" can not be calculated in the conventional manner. We

shall show later in this paper that there do have a way to calculate the probabilities

in (2) using a "posterior" distribution of � conditional on X = 3:45: This posterior

distribution is the �ducial distribution which we shall explain in detail in this paper.

1.1. Fisher�s "Inverse Probability"

William Sealy Gosset changed the course of statistics when he published the paper

Student (1908) in which he derived the t-distribution. That paper o¤ered for the

�rst time in statistics history a small-sample exact inference on a parameter of a

population. What he was possibly not aware of was that his paper became the

cause of a great mystery in statistics, unrelated to the t-distribution, concerning

construction of the posterior distributions of unknown parameters in the absence of

prior distributions.

A short paragraph in that paper reads:

"If two observations have been made and we have no other information, it

is an even chance that the mean of the population will lie between them."
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In modern notation and a slightly more general fashion, let X1 and X2 be a random

sample of size 2 from a continuous population with median � and Y1 = min fX1; X2g

and Y2 = max fX1; X2g be the corresponding order statistics: Denote y1 and y2 to

be realizations of Y1 and Y2. Then what Gosset meant is that

Pr (y1 � � � y2) = 1=2: (3)

Since � is the median of a continuous distribution, we have

Pr (Y1 � � � Y2) = 1=2: (4)

The probability (4) holds for all continuous distributions with the median �: Since

Gosset was speci�cally dealing with the normal (�; �2) population; � is the mean as

well as the median, (4) certainly holds for all variance �2 > 0. As in the previous

example, the problem is the meaning of the word �probability� in (3) : If � is a

random variable with a prior distribution of its own, then it can be interpreted as

a posterior probability conditional on Y1 = y1 and Y2 = y2: But in the context of

the paper, � is clearly a constant. The usual interpretation of "probability" that

fy1 � � � y2g is �shy, if not impossible.

But Fisher obviously saw that there could be a plausible interpretation of the

�probability� in (3) even in the absence of a prior distribution of �: He published

his idea in Fisher (1930) in which he introduced the term ��ducial � into statistics

and presented an argument, later known as ��ducial argument�, to construct a �pos-

terior distribution�of an unknown parameter � sans prior distributions. The title

of his paper is "Inverse Probability". The term "inverse probability" in modern

terminology is a synonym of "post-data or posterior probability". The terms such

as �ducial inference, �ducial probability, �ducial interval, etc. are derivatives of the

�ducial argument. Even the widely accepted frequentist (pre-data) con�dence in-

terval, generally attributed to Jerzy Neyman, was initially intended as a clari�cation
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and development of �ducial argument. In Fisher (1939 and 1945) he revealed that

Gosset�s short paragraph was the origin of his �ducial argument. (See also Edwards

(1983).)

While the pre-data probability (4) is true, unfortunately, in Section 3, we shall

show that the post-data probability (3) is false. In other words, Fisher started his

�ducial argument with the misinterpretation of the post-data probability (3) :

The �ducial argument has since become a very controversial issue in statistics. That

� ... the �ducial inference as put forward by R.A. Fisher is not so much a theory

as a collection of examples.� (Buehler (1983).) �Fiducial inference stands as R.A.

Fisher�s one great failure.� (Zabell (1992).) It is �no more than a misconception born

out of an early mistake.� (Neyman (1961).) �Among R.A. Fisher�s many important

contributions to statistics the �ducial argument has had a very limited success and

is now essentially dead.� (Pedersen (1978).) �It seems never to occur to Fisher that

he could be wrong. ... the possibility that the two ideas that ... he valued above all

else, �ducial inference and the fundamental theorem of natural selection, were both

wrong simply did not enter his mind.� (Kempthorne (1983).) We can go on and on

to quote many more adverse comments and criticisms on the �ducial argument, but

it does not serve any useful purpose.

On the other hand, not everybody is negative about the �ducial argument. There

are many serious attempts to make something out of it and especially many keen in-

terest on the philosophical aspect of it, notably Fraser (1961 and 1968), Je¤reys (1932

and 1961), Barnard (1963), Kyburg (1963 and 1974), Dempster (1963, 1964, 1966 and

1968), Hacking (1965), Edwards (1976 and 1983), Pedersen (1978) ; Seidenfeld (1979);

Buelher (1983), and most recently Wang (2000).

We are deeply convinced that the �ducial argument does make sense and is a

worthwhile topic for further study. It took human beings many hundred years to come

up with a universally accepted de�nition of �probability�in 1933 by Kolmogorov. So,
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instead of trying to retrospectively read and reread Fisher�s mind and to critically

expose inconsistency and incoherence in his argument, why don�t we move ahead

to see if we can make it works! We don�t have to be con�ned to his original idea

and thinking. We can modify, revise or even expand it. The other two types

of statistical inference, Bayesian and frequentist, are both not impeccable. The

Bayesian inference is perpetually plagued by the problem of choosing the proper prior

distributions of the unknown parameters. We doubt that one day the Bayesians

would be ever able to come up with a universally acceptable method of choosing

the right priors for the unknown parameters. And the frequentists would always

have, among others, the problems of post-data interpretation of pre-data inference

and of evaluating coverage probability of a random con�dence set of a parameter in

the absence of pivotal quantity involving the parameter of interest. (See the next

section.) The �ducial inference o¤ers a nice alternative to the other two types of

inference and can �ll in the gaps in them. (See Wang (2000) for some illustrations.)

�I don�t understand yet what �ducial probability does. We shall have to live with it

a long time before we know what it�s doing for us. But it should not be ignored just

because we don�t yet have a clear interpretation.� Fisher confessed to L. J. Savage

later in his life. (Savage (1964).) (For de�nition of pivotal quantity, see De�nition

16.)

2. SOME PROBLEMS WITH CURRENT STATISTICAL INFERENCE

Let us examine some problems with the current pre-data inference. We shall show

in Section 4 that �ducial argument o¤ers an alternative or even the correct solution

to each of the problems.
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2.1. Post-data Evaluation of Pre-data Probability

Besides the two post-data probabilities (2) and (3) ; let us consider another example

along the line. A statement on page 225 in Lehmann (1986) reads: �Suppose for

example that X is distributed N (�; 1) ; and consider the con�dence interval

X � 1:96 < � < X + 1:96

corresponding to con�dence coe¢ cient  = 0:95: Then the random interval (X�1:96;

X+1:96) will contain � with probability 0:95: Suppose now that X is observed to be

2:14: At this point, the earlier statement reduces to the inequality 0:18 < � < 4:10;

which no longer involves any random element. Since the only unknown quantity

is �; it is tempting (but not justi�ed) to say that � lies between 0:18 and 4:10 with

probability 0:95:" �To attach a meaningful probability to the event 0:18 < � < 4:10

requires (the italics is ours) that � be random.�He then proceeded to explain what

the Bayesian inference does.

This is a problem of the post-data evaluation of a pre-data probability. What

is the �probability�that 0:18 < � < 4:10 conditional on X = 2:14; given that X is

normally distributed? In Lehmann�s opinion, this question is meaningless and can not

be answered, unless � is a random variable. In other words, the Bayesian approach

is the only proper way out. We shall demonstrate that it is perfectly all right and

justi�ed to say that "� lies between 0:18 and 4:10 with probability 0:95"; without

requiring that � be random: We shall use the �ducial distribution to be constructed

later to compute the probability

Pr (0:18 < � < 4:10 j X = 2:14) (5)

and show that it is equal to 0:95. In other words, the �ducial distribution can come

to the rescue in this situation.
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2.2. Frequentist Con�dence Intervals

From frequentist point of view, a con�dence set C (X1; :::; Xn) for a parameter �

is a random set. This random set is usually obtained by inverting the acceptance

region of testing a point-null hypothesis H0 : � = �0 against the two-sided alternative

H1 : � 6= �0 or a one-sided null hypothesisH0 : � � �0 against the one-sided alternative

H1 : � > �0: The con�dence set obtained by the test-inverting method have many

problems: One is that it may not be an interval, even in a situation where an interval

is most appealing. Another is that it may not contain the maximum likelihood

estimator b� of �. The other is that if a pivotal quantity involving the parameter �

does not exist, then the evaluation of the coverage probability Pr (� 2 C (X1; :::; Xn))

poses a big problem. All these problems are no problem from the �ducialist point of

view. (See Wang (2000) for some details.)

Let us elaborate a little bit more on the last point - the evaluation of the coverage

probability of a random con�dence set in the absence of a pivotal quantity. One

of the most well-known approximate con�dence interval, the Wald interval, for the

binomial success probability � is

In (X) =

0BB@b� � z�=2
vuutb� �1� b��

n
;b� + z�=2

vuutb� �1� b��
n

1CCA : (6)

where b� = X; is the sample mean of a Bernoulli (�) random sample X = (X1; :::; Xn) :

We know that limn!1 Pr (� 2 In (X)) = 1��; but in practice n is never in�nity: For

�nite n, how to evaluate the coverage probability (6) has been a subject of many

recent studies. (See Brown et al (2001 and 2002), Wang (2000) and the references

cited therein.) The di¢ culty is that in the binomial distribution there is no pivotal

quantity involving � and the coverage probability Pr (� 2 In (X)) is a function of �

�uctuating up and down between 0 and 1, even for large values of n; for all con�dence

7



coe¢ cients 1 � �: Brown et al (2001) had many detailed graphical displays of the

behaviors of the coverage probabilities Pr (� 2 In (X)) for di¤erent values of �; n and

�; and concluded that "the chaotic coverage properties of the Wald interval are far

more persistent than is appreciated, ..., common textbook prescriptions regarding its

safety are misleading and defective in several respects, and cannot be trusted". We

shall see later that the �ducial inference o¤ers an alternative solution to this problem

and the �ducial distribution can be used to construct con�dence intervals for � and to

evaluate the coverage probabilities of any existing intervals obtained by any means,

with or without existence of pivotal quantities.

2.3. Inconherence of the P-value

A p-value is a post-data probability, conditional on the observed value of a test

statistic, when testing a null hypothesis against an alternative. In applications, it

is a simple device to determine if a null hypothesis H0 is to be rejected. Despite

its widespread use in applications, it is known that the current p-value theory is

incoherent. (See Sackrowitz and Samuel-Caln (1999) and Schervish (1996).) Let us

give a simple illustration here.

Consider the normal (�; 1) population with the sample mean X as the test statistic

to test a one-sided null hypothesis H0 : � � 0 against the alternative H1 : � > 0; the

p-value � is generally de�ned as

�1 (x) = Pr
�
X � x

�
= 1� � (x) : (7)

For testing a point null hypothesis H0 : � = 0 against the two-sided alternative

H1 : � 6= 0; it is de�ned as

�0 (x) = 2Pr
�
X � x

�
= 2 (1� � (x)) ; (8)

where in (7) and (8) x is the observed value of X and � is the standard normal

c.d.f. Since the p-value � is continuous in x; for all 0 < � < 1=2; we can �nd
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x0 such that Pr
�
X � x0

�
< � and 2Pr

�
X � x0

�
> �: For these values of x0; we

would reject H0 : � � 0 and accept H0 : � = 0 simultaneously at level �: But

f� : � = 0g � f� : � � 0g ; the incoherence of the p-value is evident.

What is wrong? Because p-value; being a post-data probability conditional on

the observed value of a test statistic, clearly belongs to the domain of the post-

data inference, but has been wrongly treated in the literature as a pre-data inference

devise. (Evidently, p-value theory comes from the concepts of "the power function"

of hypotheses testing.) We shall explain how to rectify it in Section 4, after we

introduce the �ducial distribution in the next section.

Remark I

Out of many problems in current statistical theory, we have just chosen

three simple ones for later demonstration of the applications of the �ducial

distribution to be constructed in the next section. There are many more

complicated ones, which we do not plan to get into them at this point, for

instance, the Neyman-Pearson Lemma. This Lemma provides a method

of deriving a most powerful (MP ) critical region for testing a simple null

hypothesis H0 : � = �0 against a simple alternative H1 : � = �1 6= �0. For

simplicity, suppose the population is normal (�; 1) and a single observation

X is used to test �0 = 0 against a �xed point �1 > 0, this Lemma leads

to the MP level-:05 critical region C = fx : x � 1:645g ; for all �1 > 0: If

X = 1:5 is observed, then �0 = 0 is accepted; disregarding the value of �1:

This decision is evidently debatable, because if �1 = 2 then X = 1:5 is

much more likely coming from the population with � = 2 rather than from

that with � = 0: Similarly, if X = 1:8 is observed, then � = 0 is rejected.

But if �1 = 4 ; with X = 1:8 the choice between � = 0 and � = 4 should

not be 4, but 0: (See Wang (2001) for more details.) There are many
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more �aws attributable to the logic of the Neyman-Pearson Lemma. We

believe that one recourse to resolve this dilemma is the �ducial inference.

3. THE FIDUCIAL DISTRIBUTION

3.1 Scope of the Problem

We shall con�ne ourselves to one dimensional sample space 
 and one dimensional

parameter space �: Also we shall restrict ourselves to the continuous parameter

space only and leave the discrete case in a future report. We assume the continuous

parameter space is an interval � = [�1; �2], with one or both limits may be open

and/or in�nite. For example, for the correlation coe¢ cient of a bivariate distribution

� = �; � = [�1; 1] ; for the scale parameter variance � = �2; � = (0;1) ; for the

location parameter � = �; � = (�1;1) ; for the Bernoulli success probability � = p;

� = [0; 1] ; for the parameter � of the uniform (0; �) distribution with 0 < � < 1;

� = (0;1) :

Denote X = (X1; :::; Xn) to be a random sample from a certain population and

Y = t (X) a su¢ cient statistic for � with cumulative distribution function F (y j �) =

Pr (Y � y j �) ; where � is the parameter of concern. For simplicity, we shall assume

that Y has no nuisance parameter. We do not require that F be continuous in y. In

other words, we shall consider both the continuous and the discrete sample spaces.

The distribution function F (y j �) plays a central role in �ducial argument. The

whole theory is based on the interdependence relation between y and � through the

function F: An ideal distribution F should possess two conditions. One is that it is

a monotone function in � and the other is that it has range in (0; 1) inclusively, for

all Y = y �xed: (See Savage (1976).) In Fisher (1930), he considered F a decreasing

function in � and tacitly assumed it has range in whole (0; 1) ; for all Y = y �xed:

Many earlier writers tended to go around with Fisher. Stone (1983) believes that
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requiring F have range in whole (0; 1) is a �nontrivial condition". (We found that

a few distributions fail the second condition.) If these two conditions are met, then

for �xed Y = y and p with 0 < p < 1; the equality F (y j �) = p leads to a unique

solution for � = � (p; y). Therefore, if Y = y is �xed, then the relation between �

and p is one-to-one. (This is a key point in �ducial argument emphasized from the

beginning in Fisher (1930).) We shall come back to investigate these two conditions

in more details later in this section.

3.1.1 De�nitions and Restrictions.�

Let us give a de�nition of �ducial distribution as follows:

De�nition 1 The �ducial distribution of a parameter � is a posterior distribution of

the parameter conditional on an observed value of the statistic Y = y in the absence

of a prior distribution of �.

There are several requirements stressed by Fisher and many other writers on �ducial

argument.

One essential requirement is �the complete absence of information a priori about

the parameter in question.� (Edwards (1983).) It was Fisher�s means �to arrive at the

equivalent of posterior distributions in a Bayesian argument without the introduction

of prior distributions.� (Savage (1976).) This requirement was not clearly stated

and emphasized by Fisher in his early writings. It was �stipulated for the �rst time

in Fisher (1956).� (Pedersen (1978).) We shall adhere to this requirement.

Another �principal condition which Fisher laid down was that a proper �ducial

distribution must depend on the data only through su¢ cient statistics.� (Demp-

ster (1964).) This condition is certainly theoretically appropriate to have �because

otherwise there would be a multitude of �ducial distributions (for each parameter)

each corresponding to some other statistic which used less than all the information�.

(Edwards (1976).) Fisher originally speci�ed that Y �is the estimate found by the
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method of maximum likelihood�. (Fisher (1930).) But in many of his later writings,

he consistently used the term �su¢ cient statistic�. What happens when no su¢ cient

statistic exists? Fisher�s own opinion was that �the whole of information (supplied

by the data) could be utilized in the form of ancillary information�. (See Fisher�s

contribution to the discussion in Neyman (1934).) In other words, when there is no

su¢ cient statistic, a recourse is the conditional inference. When making inferences

on �; it certainly makes sense to require Y be su¢ cient statistic. Therefore we shall

restrict Y to be a su¢ cient statistic for �: (A statistic Y = t (X) is su¢ cient for a

parameter � if the joint distribution of X = (X1; :::; Xn) conditional on Y = y = t (x)

is independent of the parameter �:)

In his original paper Fisher had required that both the sample space and the para-

meter space be continuous, and that F (y j �) be di¤erentiable with respect to both y

and �. And many earlier writers tended to go along with him. (See Neyman (1934),

Lindley (1958) and Edwards (1983).) We do not �nd this requirement necessary.

In fact, in Wang (2000), the binomial distribution F (y j �) =
P

i�y (
n
i ) �

i (1� �)n�1 ;

which is continuous in �; but not in y; was used to de�ne a posterior distribution of

� conditional on y and it worked out just �ne. In this paper, we shall stick to the

continuous parameter space. The details for the discrete parameter space shall be

separately reported later.

The last requirement is the existence of a pivotal quantity. (Fisher (1941), see

also Edwards (1983).) There are many distributions in which pivotal quantities do

not exist, for example all the distributions with continuous sample space and discrete

parameter space. We have found that it is not necessary to stick to this requirement.

By the dimension of a sample space, we mean the range of Y; not that of the

population. For example, in a bivariate population, the sample correlation coe¢ cient
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Y = R de�ned by

Y = R =

Pn
i=1

�
Xi �X

� �
Yi � Y

�qPn
i=1

�
Xi �X

�2Pn
i=1

�
Yi � Y

�2 ; (9)

from a bivariate random sample f(X1; Y1) ; :::; (Xn; Yn)g has sample space 
 = [�1; 1].

For two independent random samples X1; :::; Xn and Y1; :::; Ym; the statistic

Y =
S2x
S2y

(10)

has sample space 
 = (0;1). (S2x and S2y are the sample variances of X 0s and Y 0s;

respectively.)

Similarly, by the dimension of a parameter space, it refers to the dimension of the

parameter of concern, not that of the parameters in the population. For example, in

a bivariate distribution, the correlation coe¢ cient

� = � =
�xy
�x�y

(11)

has parameter space � = [�1; 1] : For two independent populations, the ratio of two

variances

� =
�2x
�2y

(12)

has parameter space � = (0;1) :

3.2 Constructing a Fiducial Distribution

How can we invent a posterior distribution for the parameter � conditional on Y = y

without a prior distribution of �? An example immediately pops up in mind is the

normal (�; �2) distribution. We take Y = t (X) = X; the sample mean. Since

(y � �)2 is invariant when y and � are interchanged. Then the function g de�nes by

g (� j y) =
p
np
2��

e�n(��y)
2=2�2 ; for � 2 R; y �xed, (13)
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is an instant probability density function of � for all given Y = y; which is the density

of the normal (y; �2=n) distribution.

Another example is the exponential distribution f (y j �) = 1
�
e�(y��)=�; for y > � >

�1; � > 0 is �xed. Switching the roles of y and �; we get

g (� j y) = 1

�
e(��y)=�; for�1 < � < y; y �xed:

Again g is a perfect density of �; given Y = y:

There are many more examples which work nicely and the posterior density g

can be obtained by manipulating the roles of � and y in the density f: But in

general, this approach does not work. For example, the binomial mass function

f (y j �) =
�
n
y

�
�y (1� �)n�y ; the Poisson mass function f (y j �) = e��y=y! and the

exponential distribution with density f (y j �) = 1
�
e�y=�; switching the roles of � and

y in f does not produces posterior densities:

The next de�nition de�nes a relation between the parameter � and the statistic Y

which is useful in constructing �ducial distributions.

De�nition 2 A family of distributions fF (y j �) ; � 2 �g is stochastically increasing

if �1 > �2 implies F (y j �1) � F (y j �2) for all y and F (y j �1) < F (y j �2) for some

y: Similarly, a family of distributions fF (y j �) ; � 2 �g is stochastically decreasing

if �1 > �2 implies F (y j �2) � F (y j �1) for all y and F (y j �2) < F (y j �1) for some

y:

From the parameter space point of view, a family of distributions fF (y j �) ; � 2 �g

is stochastically increasing if the distribution F (y j �) is a decreasing function in � for

all �xed y and stochastically decreasing if the distribution F (y j �) is an increasing

function in � for all �xed y:

Fisher (1930) suggested that if a distribution F (y j �) is stochastically increasing;

de�ne

G (� j y) = 1� F (y j �) (14)
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as the posterior distribution of � conditional on the observed value Y = y: And its

density � is

g (� j y) = G0 (� j y) = � @
@�
F (y j �) ; (15)

the derivative of G. (Of course, he did not forget to de�ne the density f of Y as

f (y j �) = @
@y
F (y j �) ; in the continuous sample space case:) Evidently, as we have

pointed out earlier, he thought that all distributions are stochastically increasing,

di¤erentiable with respect to y and � and taking values in (0; 1) inclusively. We shall

see later that it is not always so.

How could one perceive that G = 1 � F in (14) de�nes a distribution for the

unknown � for all �xed y? It works for all distributions with � a location or a scale

parameter case, (and more)! We believe that it is one of the many Fisher�s ingenious

discoveries in Statistics.

Let us see two examples of stochastically increasing distributions F and their cor-

responding G = 1� F :

Example 3 The normal (�; 1) distribution with Y = X; the sample mean. Then

F (y j �) =
R y
�1

p
np
2�
e�n(x��)

2=2dx is stochastically increasing so

G (� j y) =
Z 1

y

p
np
2�
e�n(x��)

2=2dx:

The graph of G (� j 1) ; with n = 1; is shown below:

420-2
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The function G (� j y) is a perfect continuous distribution for �1 < � <1 for all

y �xed:

Example 4 The Bernoulli (�) distribution with Y = �ni=1Xi; the sum of a random

sample. Then Y has the binomial (n; �) distribution with F (y j �) =
Py

x=0

�
n
x

�
�x (1� �)n�x ;

which is stochastically increasing and

G (� j y) =
nX

x=y+1

�
n

x

�
�x (1� �)n�x ;

for y = 0; 1; :::; n� 1: The graph of G (� j 4) for n = 10 is as follow:
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It is a perfect continuous distribution in � for 0 � � � 1 and all y = 0; 1; :::; n� 1:

The case for y = n is explained in detail in Wang (2000).

In both examples above, despite of their small curves, the derivatives g of G do not

have nice known forms. In fact, according to our investigation, g does not match

any known density function.

De�nition 5 A parameter � 2 � = (�1;1) is a location parameter of F if

F (y j �) = F (y � � j 0) and that � 2 � = (0;1) is a scale parameter of F if

F (y j �) = F (y=� j 1) for y � 0 and = 0 for y < 0:
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In the above de�nition, it is assumed that 0 is a location parameter and 1 is a

scale parameter. The location and the scale parameters are with respect to the

distribution F of the su¢ cient statistic Y; not with respect to that of the original

population. For example, in the normal population, the variance � = �2 is a scale

parameter of the distribution of the sample variance Y = S2; not that of the normal

population. We restrict Y to be Pr (Y < 0) = 0 in case � is a scale parameter. It

is a logical restriction, because a scale parameter is positive and its corresponding

statistic should be non-negative.

Lemma 6 a) If � is a location or scale parameter of a continuous distribution F;

then F is stochastically increasing. b) If �� is a location parameter or 1=� is a

scale parameter of a continuous distribution F; then F is stochastically decreasing.

Proof. a). For �xed y, if � is a location parameter and �1 < �1 < �2 < 1;

then F (y j �1) = F (y � �1 j 0) � F (y � �2 j 0) = F (y j �2) ; because y� �1 > y� �2;

and if � is a scale parameter and 0 < �1 < �2 < 1; then F (y j �1) = F (y=�1 j 1) �

F (y=�2 j 1) = F (y j �2) ; because y=�1 > y=�2 for y > 0:

b). It can be proved in an identical manner.

Lemma 6 covers a lot of ground. But there are many other distributions not covered

by it. The binomial (n; �) and the Poisson (�) distributions are both stochastically

increasing in �: The negative binomial (r; �) distribution is stochastically decreasing

in �. The parameter � in these distributions are neither location nor scale parameters.

If a statistic Y and a parameter � related by a distribution function F (y j �) =

Pr (Y � y j �) ; is the family fF (y j �) ; � 2 �g of distribution functions automatically

either stochastically monotone? That is for �1 < �2, F (y j �1) � (�) F (y j �2) for

all y and F (y j �1) < (>) F (y j �2) for some y: The answer is "not necessary". The

following counter example which answers the above question was communicated to

us by Neil Schwertman (2000).
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Example 7 Let Y be normal (0; �) so that F (y j �) =
R y
�1

1p
2��
e�x

2=2�dx: It is easy

to check that for �1 = 2 < 9 = �2; F (y j �1) < F (y j �2) for all �1 < y < 0 and

F (y j �1) > F (y j �2) for all 0 < y <1:

In this example � is neither a location parameter nor a scale parameter of Y: And

Y is not a su¢ cient statistic of �: If we make the transformation Z = Y 2; then Z is

su¢ cient statistic for � and � becomes the scale parameter of Z: By Lemma 6 the

distribution F (z j �) = Pr (Z � z j �) is stochastically increasing in �. We believe,

but have not been able to prove it, that under the restriction that Y is a su¢ cient

statistic of �; the distribution function F (y j �) is either stochastically increasing or

decreasing. We also discovered even more that for all �xed y the monotonicity of

F (y j �) is strict in �: That is if F is stochastically increasing in �; then for all �xed y;

F (y j �1) > F (y j �2) for all �1 < �2: Its proof for � is a location or a scale parameter

is straight-forward, but in general, we have not been able to do it.

Lindley (1958) gives necessary and su¢ cient conditions that the derivative�@F (y j �) =@�

is a Bayesian posterior distribution for some prior distribution of �. Lindley assumed

that all the distributions are stochastically increasing.

Earlier in this section we stated that an ideal distribution function must take val-

ues in (0; 1) inclusively for all �xed y. That is for the parameter space � = [�1; �2] ;

with one or both limits may be open and/or in�nite, then, for all y 2 R; F (y j �1) =

lim�!�+1
F (y j �) = 1 (= 0) and F (y j �2) = lim�!��2

F (y j �) = 0 (= 1) ; for a sto-

chastically increasing (decreasing) distribution F in �: We have checked extensively

and found that the majority of distributions do take value in (0; 1) inclusively, but

there are a few exceptions. Interestingly, the very �rst example � distribution of the

sample correlation coe¢ cient, Fisher (1930) used failed this condition. (He used the

95-percentile of the distribution of the sample correlation coe¢ cient to numerically

demonstrate the relation G = 1� F: See Example 11 later in this section.)
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For �xed y, we denote 8<: F (y j �1) = lim�!�+1
F (y j �) ;

F (y j �2) = lim�!��2
F (y j �) :

(16)

We are now ready to formally construct the �ducial distributions for the continuous

parameter space:

De�nition 8 For the continuous parameter space � = [�1; �2] with su¢ cient statistic

Y = t (X) having the distribution F (y j �) = Pr (Y � y j �) ; conditional on Y = y,

the �ducial distribution G (� j y) is

G (� j y) = F (y j �1)� F (y j �)
F (y j �1)� F (y j �2)

; (17)

if F (y j �) is stochastically increasing in �; and is

G (� j y) = F (y j �)� F (y j �1)
F (y j �2)� F (y j �1))

; (18)

if F (y j �) is stochastically decreasing in �: The two limits F (y j �1) and F (y j �2)

are as de�ned by (16) :

If F (y j �1) = 1; F (y j �2) = 0 and F (y j �) is stochastically increasing in �; (17)

reduces to

G (� j y) = 1� F (y j �) : (19)

(19) was taken as the �ducial distribution in Fisher (1930) and in many others�

writings. The next Theorem, together with Lemma 6, possibly explain Fisher�s and

others�reasonings in their �ducial argument.

Theorem 9 A distribution F satis�es F (y j �1) = 1; F (y j �2) = 0; if � 2 � =

(�1;1) is its location parameter or � 2 � = (0;1) is its scale parameter.

19



Proof. Assume � is a location parameter. For �xed y, lim�!�1 F (y j �) =

lim�!�1 F (y � � j 0) = lims!1 F (s j 0) = 1; and lim�!1 F (y j �) = lim�!1 F (y � � j 0)

= lims!�1 F (s j 0) = 0:

Next assume � is a scale parameter. For �xed y, lim�!0+ F (y j �) = lim�!0+ F (y=� j 1)

= lims!1 F (s j 1) = 1; and lim�!1 F (y j �) = lim�!1 F (y=� j 0) = lims!0 F (s j 1)

= 0:

According to our investigation, absolute majority of the �ducial distributions fall

into the type (19) : Let us state it as a Corollary to Theorem 9.

Corollary 10 If � is a location or a scale parameter of F (y j �), then the �ducial

distribution is (19) :

If F (y j �1) = 0; F (y j �2) = 1 and F (y j �) is stochastically decreasing in �; (18)

becomes

G (� j y) = F (y j �) : (20)

This case is rarely mentioned in the literature. A discrete example of (20) is the neg-

ative binomial distribution (Example 14) and a continuous example is the exponential

distribution F (y j �) = 1� e�y�; (y > 0).

It is easy to check that all the �ducial distributions G (� j y) possess the properties

that: 8>>><>>>:
1) lim�!�1G (� j y) = 0;

2) lim�!1G (� j y) = 1;

3) �0 < �00 implies G (�0 j y) � G (�00 j y) for all y:

Therefore G0s are bona �de distribution functions of �, and �ducial probabilities over

the parameter space � can be de�ned accordingly. If G is di¤erentiable with respect

� for all �xed y; the �ducial density is

g (� j y) = �@F (y j �) =@� (F (y j �1)� F (y j �2)) ;
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for stochastically increasing distribution F (y j �) : And

g (� j y) = @F (y j �) =@� (F (y j �2)� F (y j �1)) ;

for stochastically decreasing distribution F (y j �) : The �ducial densities for special

cases (19) and (20) are g (� j y) = �@F (y j �) and g (� j y) = @F (y j �) ; respectively,

which can be found in Pedersen (1978) on page 149.

Let us get back to the Lehmann�s example (5) in Section 1. In the normal (�; 1)

distribution case, by Lemma 6 and Corollary 10; the �ducial distribution is (19) :

Hence

Pr (0:18 < � < 4:10 j X = 2:14)

= G (4:10 j 2:14)�G (0:18 j 2:14)

= F (2:14 j 0:18)� F (2:14 j 4:10)

= � (1:96)� � (�1:96) = 0:95:

Let us have some more examples. The sample correlation coe¢ cient distribution

was the very �rst example Fisher used in his �ducial argument. The parameter �

is neither a location nor a scale parameter, but the distribution F is stochastically

increasing in �.

Example 11 (Sample correlation coe¢ cient.). 
 = � = [�1; 1] : The parameter

� = � is the correlation coe¢ cient of the bivariate normal population de�ned by (11)

and the statistic is the sample correlation coe¢ cient Y = R de�ned by (9) : The

density of Y was derived by Fisher (1915) and there are several expressive forms

proposed by several authors over the years for the density and distribution. (See

Johnson et al (1995) Chapter 32). For n � 3, one form of the density is

fn (y j �) =
(n� 2)

�
1� �2

�(n�1)=2
(1� y2)(n�4)=2

�

Z 1

0

dw

(coshw � �y)n�1
: (21)

21



For n = 3; the distribution of Y can be written as

F3 (y j �) =
cos�1 (�y)� ��1� (1� y2)

�
1� �2y2

��1=2
cos�1 (�y�)

�
: (22)

As we have stated earlier that this is an example of 0 < Fn (y j �2) < Fn (y j �1) < 1;

for all �1 < y < 1 and n � 3. Some values of F (y j �2) ; F (y j �1) are displayed in

Table I below:

TABLE I

y F3 (y j �1) F3 (y j �2)

.9 .87635 .73761

.6 .78 .52535

.3 .71936 .41571

0 .65915 .34085

-.3 .58429 .28064

-.6 .47465 .22

-.9 .26239 .12365

The graph of the �ducial correlation coe¢ cient distribution G3 (� j y) ; for n = 3

and y = �:6, 0 and :9 are shown in Figure I: For y = :9; it is the bottom one, a

convex upward curve; for y = 0; it is the middle one, a straight line; and for y = �:6;

it is the top one, a concave downward curve. It can be observed that if y > 0 the

graph is convex upward from �1 to 1, and it y < 0 it is just the opposite, concave

downward. For y = y0 > 0 and y = �y0 the graphs are symmetric with respect to

the line y = 0:
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FIGURE I

THE FIDUCIAL CORRELATION COEFFICIENT DISTRIBUTUION

Example 12 (F -distribution.) 
 = � = (0;1) : From two independent normal

populations, the parameter � = �2x=�
2
y is de�ned by (12) ; the ratio of two variances and

the statistic Y = S2x=S
2
y ; by (10) ; the ratio of two sample variances of two independent

random samples of sizes n+ 1 and m+ 1. So that the pivotal quantity Z = Y=� has

the standard F -distribution with n and m d.f., hence � is the scale parameter of Y .

The distribution F (y j �) is

Fn;m (y j �) =
Z y

0

1

�
fn;m (t=�) dt (23)

where fn;m denoting the standard density of the F -distribution with n and m d.f. By

(19) the �ducial F -distribution with n and m d.f. Gn;m (� j y) = 1� Fn;m (y j �) :

The graph of the �ducial F -distribution G6;10 (� j y) for n = 6 and m = 10 at

y = 1:5 is displayed in Figure II. It starts from 0 and reaches 1; as the value of �
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increases from 0 to 1. The shape of the graphs stays unchanged as y increases, but

moves to the right-side.
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FIGURE II

THE FIDUCIAL F �DISTRIBUTION

Let us consider an example of stochastically increasing distribution with discrete

sample space. We have already showed the binomial distribution in Example 4. The

Poisson distribution is next.

Example 13 (Poisson distribution.) 
 = f0; 1; 2; ::: g while � = [0; 1): The

random variable Y has the Poisson distribution with intensity �: The distribution

F (y j �) is

F (y j �) =
yX
i=0

e���i=i!; y = 0; 1; 2; ::: and � � 0.

F is stochastically increasing, therefore the �ducial Poisson distribution is G (� j y) =

1� F (y j �) ; for � > 0 and y = 0; 1; 2; ::: .

The graphs of the �ducial Poisson distribution for y = 0; 3 and 6 are displayed in

Figure III. The left-most curve is for y = 0; the middle one is for y = 3 and the
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right-most curve is for y = 6: They all tend to 1 as � tends to in�nite.
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FIGURE III

THE FIDUCIAL POISSON DISTRIBUTUION

Next let us consider an example of stochastically decreasing distribution with dis-

crete sample space.

Example 14 (Negative binomial.) 
 = f0; 1; 2; ::: ; g and � = [0; 1] : The negative

binomial distribution is

F (y j �) =
yX
x=0

�
r + x� 1

x

�
�r (1� �)x ; y = 0; 1; :::; r = 1; 2; :::; 0 � � � 1:

F is stochastically decreasing with F (y j 0) = 0 and F (y j 1) = 1 for all y � 0. By

(20) the �ducial negative binomial distribution is G (� j y) = F (y j �) :

The graphs of the �ducial negative binomial distribution for the pairs (r; y) = (2; 2) ;

(2; 5) and (5; 2) are displayed in Figure IV. The left-most curve is for the pair (2; 5);

the middle curve is for (2; 2) and the right-most curve is for (5; 2) : If the value of

r increases, the curve tends to sift to the right, while if the value of y increases, the

curve tends to sift to the left.
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THE FIDUCIAL NEGATIV E BINOMIAL DISTRIBUTION

4. SOME APPLICATIONS

4.1. Evaluation of Pre-data Probability and P-value

Let us pose to illustrate some applications of the �ducial distributions (17) and (18) :

First let us verify the probability Pr (3:45 < � j X = 3:45) = 1=2 in (2) ; explain why

Student�s Pr (y1 � � � y2) = 1=2 in (3) is false and how to rectify the incoherence

problem of p-value: They are relative easy to settle and we shall then go into the

problem construction and post-data evaluation of the pre-data con�dence intervals in

much more details.
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For Pr (3:45 < � j X = 3:45) = 1=2: Without loss of generality, assume F is sto-

chastically increasing in � so that G = 1� F .

Pr (� < 3:45 j X = 3:45)

= G (3:45 j 3:45)

= 1� F (3:45 j 3:45)

= 1� 1=2 = 1=2;

because F is continuous and symmetric with respect to �; F (t j t) = 1=2 for all

�1 < t <1: Similarly, Pr (3:45 < � j X = 3:45) = 1=2:

For Student�s Pr (y1 � � � y2) = 1=2: Fisher could have misinterpreted it as

Pr (y1 < � < y2) = 1� Pr (y2 < �)� Pr (� < y1) : (24)

And further misjudged the right-hand-side of (24) as Pr (y2 < �) = Pr (x1 and x2 < �)

and Pr (� < y1) = Pr (� < x1 and x2) ; and then concluded that the right-and-side of

(24) equals 1 � 1=4 � 1=4 = 1=2: These arguments are false. The proper way to

write (3) is

Pr (y1 < � < y2 j Y1 = y1 < Y2 = y2) : (25)

It is a post-data probability conditional on two realized values of Y1 and Y2: In our

construction of the �ducial distribution, it requires that � and y be interdependent

through the function F (y j �) which is either stochastically increasing or decreasing

in � for all �xed y. This interdependence of � and (y1; y2) through F (y1; y2 j �) and

the monotonicity of F (y1; y2 j �) in � for �xed y1 and y2 must be established before

an assertion on (25) can be made: Therefore our arguments in the last section are

not applicable here:

On the other hand, had � have a distribution conditional on (y1; y2) ; then �

would have a mean and a variance which are functions of y1 and y2: If not, it
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can lead to a contradiction, because the variance of � would have to be independent

of the length y2 � y1: The following is a sharp example: let F be uniform over

(� � 1=2; � + 1=2) ; then Pr (y1 < � < y2 j Y1 = y1 < Y2 = y2) = 1; for y2 � y1 > 1=2;

and Pr (y1 < � < y2 j Y1 = y1 < Y2 = y2) < 1; for y2�y1 < 1=2: (See De Groot (1986),

p.400). Therefore Pr (y1 < � < y2) 6= 1=2; not as claimed by Gosset and Fisher. In

this example F is symmetry with respect to �; a stricter condition than requiring �

being the median.

A related problem along the line is in Je¤reys (1932). Je¤reys asserted that �the

probability is 1=3 that a third observation X3 will lie between the �rst two�, i.e.

Pr (y1 < x3 < y2 ) = 1=3: This is trivially true because it is simply a problem of

permutation of three numbers x1; x2 and x3; counting the proportion of x3 being in

the middle of the other two in all 3! possible permutations. This problem involves

no unknown parameter and requires not symmetry condition.

For Lehmann�s post-data probability (5) : We have already demonstrated

it in section 3 that, with F being normal (�; 1) ; Pr (0:18 < � < 4:10 j X = 2:14) =

0:95 which is equal to the pre-data probability Pr (X � 1:96 < � < X + 1:96) : Thus

Lehmann�s belief that without � being random (5) can not be evaluated is rebu¤ed.

For the incoherence of p-value: In section 2, we have an example that according

to the current practice of the p-value one could simultaneously reject the one-sided

null hypothesis H0 : � � 0 and accept the point-null hypothesis H0 : � = 0: Since

f� : � = 0g � f� : � � 0g ; the decision is erroneous. In other words, the current

p-value is incoherent. What is wrong? Because p-value is a post-data probability

conditional on a realized value of the test statistic Y = y: It is clearly belong to the

post-data inference, but being used as a device in the pre-data inference.

In many text books on statistics, p-value is often not clearly de�ned. Here is a
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good one on page 77 in Garthwaite et al (2002). The p-value � with test statistic Y

for testing H0 versus H1 is

� (y) = "Pr (Y is at least as extreme as the observed value y j H0) :"

So that in testing H0 : � � 0 versus H1 : � > 0; "extreme" means "fY � yg",

and (7) is correct. In testing H0 : � = 0 versus H1 : � 6= 0; "extreme" means

"fY � yg [ fY � yg", it does not follow that (8) is correct. There is a di¤erence

in the logics of the post-data and the pre-data inferences. In testing the point-null

hypotheses, according to the frequentist�s logic, y can be an extreme value on the left

or on the right (when Y is realized), but Y has yet to be observed, and hence the

probability (8). But to the �ducialist, it is much simpler, because Y = y has already

been observed. An observed value y is either left-extreme or right-extreme, not both.

And (8) should be written as

�0 (x) =

�
Pr
�
X � x

�
; if x > 0;

Pr
�
X � x

�
; if x < 0:

The factor 2 in (8) must be deleted from a �ducial point of view.

Clearly p-value belongs to the post-data inference domain and should be treated

accordingly.

The proper way to de�ne a p-value � is in terms of the �ducial distribution G. For

simplicity we assume that Y is a point estimate of �; as in the normal case above:

(In the distributions such as binomial and Poisson a point estimate of � is simplyb� = Y=n; and "extreme" can be equivalently expressed in Y , as in b�:) When testing
H0 : � � �0 versus H1 : � > �0; if Y = y is observed,

� (y) = 1�G (�0 j y) :

When testing H0 : � = �0 versus H1 : � 6= �0; if Y = y is observed,

�0 (y) =

�
1�G (�0 j y) ; if y > �0;
G (�0 j y) ; if y < �0:

This solves the incoherence problem of current de�nition of the p-value:
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4.1. Problems with Pre-data Con�dence Intervals

Construction of �ducial intervals and post-data evaluation of pre-data random in-

tervals were studied in some details in Wang (2000). For the sake of completeness

of this paper, we shall brie�y go over some essentials and get into some other topics

not covered there.

A random interval I (Y ) =
�b�L (Y ) ;b�U (Y )� obtained by any means becomes a

non-random interval I (y) =
�b�L (y) ;b�U (y)� once Y = y is observed. By using the

�ducial distribution G, its post-data coverage probability is simply

Pr
�b�L (y) < � < b�U (y) j y� = G�b�U (y) j y��G�b�L (y) j y� :

For example; with Y = nX; when X = x is observed, the Wald interval (6) becomes

I (x) =
�b�L (x) ;b�U (x)� where b�L (x) = x�z�=2qx(1�x)

n
and b�U (x) = x+z�=2qx(1�x)

n
:

The post-data coverage probability is then

Pr
�b�L (x) < � < b�U (x) j x�

= G
�b�U (x) j x��G�b�L (x) j x� ; (26)

= Pr
�
Y < y j b�L (x)�� Pr�Y � y j b�U (x)� ;

where G (� j y) =
Pn

i=y+1 (
n
i ) �

i (1� �)n�i ; for y = nx. (See Example 4:) For n = 50;

1�� = :95; y = 8; b�L (8=50) = :0584 and b�U (8=50) = :2616; Pr (:0584 < � < :2616 j 8=50)
= :9268: (All post-data coverage probabilities of I (x) for n = 50; 1 � � = :95 and

Y = 0; 1; ::: are tabulated in Table 1 on page 110 in Wang (2000).)

The post-data coverage probability (26) is void of the parameter �, thus provides an

alternative and e¤ective way to evaluate any pre-data random interval and to compare

two or more random intervals, especially when pivotal quantities do not exist:

In general, for a given distribution F; a (1� �) 100% post-data con�dence interval

(�1 (y) ; �2 (y)) ; conditional on Y = y; is simply a pair �1 (y) and �2 (y) satisfying

G
�b�1 (y) j y��G�b�2 (y) j y� = 1� �: (27)
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There are many solutions to (27) ; among them the optimum one is the one with

the shortest width
���b�U (y)� b�L (y)��� : Let us formally de�ne a �ducial interval below

which is more general than the one given in De�nition 3 in Wang (2000).

De�nition 15 Given a statistic Y with distribution F; a (1� �) 100% �ducial in-

terval of a parameter � conditional Y = y is an interval (�1 (y) ; �2 (y)) satisfying

equation (27) :

By De�nition 15, in the binomial distribution case, for 1 � � = :95 with n = 10

and y = 3; the equal-tailed �ducial interval for � is (:0667; :6525) while the optimum

�ducial interval is (:0479; :6226) : The optimum �ducial intervals for � in the binomial

distribution case are compiled in Wang and Chang (2002) for n = 1; 2; :::50, 1� � =

:90; :95 and :99:

In Wang (2000), there are two examples of continuous sample space, the normal

(�; 1) and the uniform (0; �) distributions. Both are stochastically increasing, because

� is a location parameter in the normal (�; 1) case and a scale parameter in the uniform

(0; �) case. In both examples, it was shown that if C (Y ) is the random interval for

� obtained, by inverting tests of point-null hypotheses versus a two-sided alternative,

then C (y) is the corresponding �ducial interval obtained by (27). The main reason

for this relation is the existence of pivotal quantities in both distributions. We shall

formally develop it as a theorem in this section.

De�nition 16 A function Q (Y; �) of a statistic Y and a parameter � is said to be a

pivotal quantity if its distribution does not depend upon any unknown parameters.

The distribution function and the probability density function of the pivotal quan-

tity Q(Y; �) shall be denoted by H and h:

If the distribution of Y does not depend on any parameters other than �, then

Q(Y; �) = Y � �, if � is the location parameter and Q(Y; �) = Y=�; if � is the scale

31



parameter; are two simple examples of pivotal quantities. Another well-known one is

Q(Y; �) = F (Y j �) ; if the sample space is continuous: There are two problems: One

is that it may not be unique. For example, for the normal population with variance

�2 unknown, in addition to the student�s T =
p
n(X � �)=S; the lesser-known one

is T � =
p
n(X � �)=R; where R = Yn � Y1 is the sample range. (Yi�s denote the

order statistics of a random sample). The other is it may not exist. The binomial

distribution with success probability � and the Poisson distribution with intensity �

are two well known examples. In fact for all the discrete distributions with continuous

parameter space � pivotal quantities can not be constructed. We are concern here

mainly with distributions having pivotal quantities.

4.2.1. Inverting Tests of Hypotheses Via Pivotal Quantities.�

For the frequentists when testing a point-null hypothesis: H0 : � = �0 against the

two-sided alternative H0 : � 6= �0; in the present of a pivotal quantity Q(Y; �); the

null hypothesis H0 is rejected if and only if

Q(Y; �0) < �(�=2) or Q(Y; �0) > �(1� �=2);

where � (�) is the �-percentile of the distribution H, i. e. H(�(�)) = �; for all

0 < � < 1=2: (For convenience we take equal-tailed critical regions.) For �xed �0

the acceptance region of the test can be written as

A(�0 j �) = fY : �(�=2) � Q(Y; �0) � �(1� �=2)g:

And for each Y = y; the set I(y j �) = f�0 : �(�=2) � Q(y; �0) � �(1 � �=2)g is a

subset of the parameter space �. By letting

Q(y; �1(y)) = �(1� �=2) and Q(y; �2(y)) = �(�=2); (28)

the inverse of the acceptance region A(�0 j �) is

I(y j �) = f� : �1(y) � � � �2(y)g : (29)
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Because F is increasing in � it is necessary that �1(y) < �2(y) and that (29) is

an interval. Consequently, a (1� �) 100% pre-data con�dence interval for � is the

random interval

I(Y j �) = f� : �1(Y ) � � � �2(Y )g :

And the con�dence coe¢ cient of the interval I(Y j �) is

P�(� 2 I(Y j �)) = P�(Y 2 A(� j �)) = 1� �: (30)

4.2.2. Fiducial Intervals Via Pivotal Quantities.�

To derive the �ducial interval [�L(y); �U(y)] for �; in accordance with (27), after

Y = y is realized, the upper con�dence limit �U(y) is the solution to the equation

F (y j �U(y)) = �=2: Since F (y j �) = H(Q(y; �)) for all �; the upper limit �U(y) is

the solution to the equation Q(y; �U(y)) = �(�=2); where � (�) is the �-percentile of

the distribution H: Similarly, the lower limit �L(y) is the solution to Q(y; �L(y)) =

�(1��=2): Thus, in terms of the pivotal quantity Q (Y; �) ; the two quantities �L (y)

and �U (y) are solutions to the equations in (31) below�
Q(y; �U(y)) = �(�=2);

Q(y; �L(y)) = �(1� �=2):
(31)

The above two equations are identical to those in (28) for deriving the two limits �1(y)

and �2(y) of the frequentist interval I(Y j �); except that in the frequentist logic y is

not really a �xed realization of Y; while in the �ducialist�s, Y = y is a realized value

of Y . We have just proved the following theorem.

Theorem 17 If pivotal quantities exist and the distribution F of Y is stochastically

increasing in �; then the random interval I(Y j �) is the frequentist interval for � if

and only if the conditional interval I(y j �) is the �ducial interval.

In the above theorem, we considered only for F is stochastically increasing, because

as we have stated earlier that absolute majority of distributions are stochastically
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increasing. For the stochastically decreasing case, it can be prove in an identical

manner with minor modi�cations.

According to the above theorem, if a pivotal quantity exists and the distribution

F of Y is stochastically increasing in �, to construct a �ducial interval for � it is

su¢ cient to construct a frequentist interval and then to conditionalize it on Y = y.

The converse also holds.

With Y = y a realized value, when a pivotal quantity does not exist, to �nd a

�ducial interval
�b�1 (y) ; b�2 (y)� ; it is a simple application of the equation (27).

There are examples in which it is a fairly complicated process to derive (the likeli-

hood ratio) tests of hypotheses and then inverting them to form a frequentist con�-

dence interval for a parameter �. For examples, a) testing the mean � of a normal

population when �2 is unknown (Hogg & Craig (1995), p. 413, example 1); b) test-

ing the equality of two normal means � = �1 � �2; when the common variance �2

is unknown (Hogg & Craig (1995), p. 416, Example 2); c) testing the equality two

normal variances � = �21=�
2
2 when both means are unknown.(Hogg & Craig (1995),

p. 421, Example 3). If a random interval I (Y j �) is desired, it is much easier to

construct, by whatever means, a pivotal quantity Q (y; �) and using (27) to derive a

�ducial interval I (y j �) and then converting it into the interval I (Y j �).

Let us have �ve examples below: As usual we denote X and S2 the sample mean

and the sample variance and Y1 < ::: < Yn the order statistics of the random sample

X1; :::; Xn; and S21 and S
2
2 the sample variances of two independent random samples

X1; :::; Xn+1 and Y1; :::; Ym+1:

The Normal (�; �2) distribution with �2 unknown: Y = X and Q(Y; �) =
p
n(Y��)
S

; so that H is the t-distribution with n� 1 d.f. �(�) = tn�1;� the �-percentile
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of the t-distribution with n� 1 d.f. The �ducial interval for � is

I (y j �) =
�
y � tn�1;�=2

sp
n
; y + tn�1;�=2

sp
n

�
:

(s denotes the realization of the sample standard deviation S.)

Normal (�, �) with � unknown: Y = S2 and Q(Y; �) = (n�1)Y
�

; so that H

is the �2-distribution with (n� 1) d.f. and �(�) = �2n�1;a; the �-percentile of the

�2 (n� 1) distribution. The �ducial interval for � is

I (y j �) =
"
(n� 1)y
�2n�1;1��=2

;
(n� 1)y
�2n�1;�=2

#
:

The exponential distribution E (�; �) is de�ned as

f(x j �; �) = 1

�
e�(x��)=�; for x > � > �1 and � > 0:

Exponential E (�; �) with � unknown: Y = Y1 and Q(Y; �) =
n(Y��)b� ; whereb� =Pn

i=2(Yi�Y1)=(n�1) =
Pn

i=1(Xi�Y1)=(n�1) and 2(n�1)b�
�

has the �2 (2(n� 1)),

so that Q(Y; �) = 2n(Y��)=2
2(n�1)b�=2(n�1) ; has the F -distribution with (2; 2 (n� 1)) d.f. and

�(�) = F2;2(n�1);�; the �-percentile of the F2;2(n�1) distribution. The �ducial interval

for � is

I (y j �) =
�
y � b�

n
F2;2(n�1);�=2; y �

b�
n
F2;2(n�1);1��=2

�
:

Exponential E (�; �) with � unknown: Y =
Pn

i=1(Xi � Y1) and Q(Y; �) = 2Y
�

so that H is �2 (2(n� 1)) distribution and �(�) = �
2(n�1);�

: The �ducial interval for

� is

I (y j �) =
"

2y

�22(n�1);1��=2
;

2y

�22(n�1);�=2

#
:

And �nally, (see Example 12)
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Two independent normal N (�1; �21) and N (�2; �
2
2) ; with �1 and �2 un-

known and � = �21=�
2
2: Y = S21=S

2
2 and Q (Y; �) =

Y
�
so that H is the standard

F -distribution with (n;m) d.f. and � (�) = Fn;m;�: The �ducial interval for � is

I (y j �) =
�

y

Fn;m;1��=2
;

y

Fn;m;�=2

�
:
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