
行政院國家科學委員會專題研究計畫  期中進度報告 

 

 

曲線與曲面之時間演化的研究(1/2) 

 

 
計畫類別：個別型計畫 

計畫編號： NSC94-2115-M-029-003- 

執行期間： 94 年 08 月 01 日至 95 年 07 月 31 日 

執行單位：東海大學數學系 

 

 

 

 

計畫主持人：陳文豪 

 

計畫參與人員：陳彥碩、胡雅婷 

 

 

 

 

報告類型：精簡報告 

 

處理方式：本計畫可公開查詢 

 

 
 

 

中 華 民 國 95 年 5月 17 日

 



Shortest Paths in Time Evolution of Curves

Wen-Haw Chen

Department of Mathematics, Tunghai University
Taichung 40704, Taiwan.

e-mail: whchen@thu.edu.tw

Abstract

Consider a smooth curve wriggling and moving in the Euclidean 3-
space R3 as time goes by. How can one say about the geometry in this
phenomena? A very natural question is to ask ” Does the shortest path
from position p at time t1 to position q at time t2 exit?” In this paper, we
will investigate the existence of the shortest paths, which we call them
feasible paths. Local existence of feasible paths due to the first variation
formula of energy functions. Our main result is to show a long-time ex-
istence theorem for feasible paths from p to q. Some interesting example
will be mentioned.

This work is partially supported by a Taiwan NSC grant #
94-2115-M-029-003

1 Introduction and local existence

Consider a regular space curve γ : [α, β] → R3. Let σ : [α, β]× [a, b] → R3 be a
smooth map such that σ([α, β]×{a}) = γ([α, β]) and for each t, σ([α, β]×{t})
is also a regular space curve. Set

Σ = {σ(u, t)|α ≤ u ≤ β, a ≤ t ≤ b}

and denote Σt̄ = σ([α, β] × {t̄} for some fixed t̄ ∈ [a, b].
A space curve c : [ā, b̄] → Σ for 0 ≤ a ≤ ā < b̄ ≤ b is called a time-curve if

c(t) ∈ Σt for all t ∈ [ā, b̄]. That is, c(t) is a time-curve provided c(t) = σ(u(t), t).
A feasible path from p ∈ Σā to q ∈ Σb̄ is a time-curve from p to q with the
shortest length. By the definition of the energy Ξ(c) of a space curve c from a
to b

Ξ(c) =
∫ b

a

‖c′(t)‖2dt
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, a feasible path is a time-curve with minimal energy. Let us first investigate
the local existence of feasible paths.

Let c(t) = σ(u(t), t) be a time-curve form p ∈ Σā to q ∈ Σb̄. Then c′(t) =
σuu′(t) + σu and c′′(t) = σuu(u′(t))2 + 2σutu

′(t) + σtt. We claim that c(t) is a
feasible path if it satisfies the following feasible path equation:

d

dt
(Eu′(t)) − 1

2
Eu(u′(t))2+ < σtt, σu >= 0 (1)

, where E =< σu, σu >= ‖σu‖2 with the standard Euclidean inner product
<,>. Note that a curve satisfies equation (1) is in fact a stationary point of
the energy function.

Indeed, let

cs(t) = σ(u(s, t), t), cs(a) = p cs(b) = q ∀s ∈ (−ε, ε)

be a proper variation of c0(t) = c(t) and denote ċs(t) = ∂
∂tc

s(t). Then the first
variation of the energy function is (c.f. [1] or [2])

∂

∂s
Ξ(cs(t)) =

∂

∂s

∫ b

a

‖ċs(t)‖dt

=
∂

∂s

∫ b

a

(Eu̇2 + 2〈σu, σt〉u̇ + ‖σt‖2)dt

=
∫ b

a

{(Eu
∂u

∂s
u̇2 + 2Eu̇

∂2u

∂t∂s
) + 2(〈σu, σt〉uu̇

∂u

∂s
+ 〈σu, σt〉

∂2u

∂t∂s
)

+〈σt, σt〉u
∂u

∂s
}dt

=
∫ b

a

{(Euu̇2 + 2〈σu, σt〉uu̇ + 〈σt, σt〉u)
∂u

∂s
) + 2

∂u

∂s

∂

∂t
(Euu̇ + 〈σu, σt〉)}dt

=
∫ b

a

{Euu̇2 + 〈σt, σt〉u − 2
∂

∂t
(Eu̇) − 2〈σut, σt〉 − 2〈σtt, σu〉}

∂u

∂s
dt

= −2
∫ b

a

{ d

dt
(Eu̇) − 1

2
Euu̇2+ < σu, σtt >}∂u

∂s
dt.

This gives the feasible path equation (1).
Let p = σ(u, t) and the affine tangent space TpΣt be defined by

TpΣt = {λσu + σt|λ ∈ R}.

If c(t) = σ(u(t), t) is a time-curve, then c′(t) = σuu′(t) + σt ∈ TpΣt is an affine
tangent vector. Now we have the following local existence theorem for feasible
paths.

Local Existence Theorem. Given α ≤ u0 ≤ β, 0 ≤ a ≤ t0 ≤ b and
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p0 = σ(u0, t0). Then there exits a positive number εt0 depending on the time
t0 such that for t ∈ [t0, t0 + εt0), u ∈ (u0 − εt0 , u0 + εt0) and ‖v‖ < εt0 , where
v = σu(u0, t0)u′(t0) + σt(u0, t0) ∈ Tp0Σt0 , there exists a unique feasible path
c = cv(t) : [t0, t0+εt0) → Σ with the initial conditions c(t0) = p0 and c′(t0) = v.
Moreover, the map c : [t0, t0 + εt0) × Tp0Σt0 → Σ defined by c(t, v) = cv(t) is
smooth.

2 Some examples

Example 1. Let γ(u) = (cos u, sinu) and σ(u, t) = (cos u, sin u, φ(t)). Then
E = 1, < σtt, σu >= 0 and the feasible path equation is

0 =
d

dt
(Eu′(t)) − 1

2
Eu(u′(t))2+ < σtt, σu >= u′′(t).

The solution is u(t) = at + b for some constants a and b. In particular, a
circular helix c(t) = (cos t, sin t, φ(t)) and a time-curve with u = constant are
both feasible paths.

Example 2. Consider the unit-speed curve γ(u) = (f(u), 0, g(u)) with (f ′(u))2+
(g′(u))2 = 1 rotating about the z−axis. Suppose γ rotates an angle φ(t) at
time t. So

σ(u, t) = (f(u) cos φ(t), f(u) sinφ(t), g(u))

and then E = 1 and, σtt =
(−φ′′(t)f(u) sinφ(t)−(φ′(t))2f(u) cos φ(t), φ′′(t)f(u) cos φ(t)−(φ′(t))2f(u) sinφ(t), 0).
Therefore, the feasible path equation is

u′′(t) − f ′(u(t))f(u(t))(φ′(t))2 = 0.

In particular, let γ(u) = (1, 0, u) and compare with Example 1. Then the
feasible equation is u′′(t) = 0. Hence the parallel curve with u = constant
and helix are feasible paths. Moreover, let f(u) = 2 + cos u and g(u) = sinu
(compare with a torus). Then the feasible path equation is

u′′(t) + sinu(t)(2 + cos u(t))(φ′(t))2 = 0.

Example 3. Consider the circle γ(u) = (a cos u, a + a sinu) of radius a > 0
rolling without slipping along the x-axis as time goes by. Suppose the circle
rolls a distance aφ(t) at time (t). Then

σ(u(t), t) = (a cos(u(t) − φ(t)), a + a sin(u(t) − φ(t)), 0).
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Then E = a2, < σtt, σu >= −a2φ′′(t) and the feasible path equation is

0 =
d

dt
(Eu′(t)) − 1

2
Eu(u′(t))2+ < σtt, σu >= a2(u′′(t) − φ′′(t)).

In particular, if φ(t) = t then a cycloid, which is a curve with u = constant, is
a feasible path. That is, a time-curve with u = constant is a feasible path if
the rolling velocity is constant.

Example 4. Consider time evolution of the curve γ(u) = (a + cos u, sinu),
a ≥ 1 with

σ(u, t) = e−t(cos u + a cos t, sinu + a sin t).

That is, the center of γ is moving along the logarithmic spiral (e−t cos t, e−t sin t)
and the radius is e−t at time t. Then E = e−2t, < σtt = e−t(2a sin t +
cos u,−2a cos t + sin u) and then

< σtt, σu >= −2ae−2t(sin t sinu + cos t cos u) = −2ae−2t cos(u − t).

So the feasible path equation is

u′′(t) − 2u′(t) − 2a cos(u − t) = 0.

A very special case is when a = 1 and u = π + t then c(t) = 0. Significantly, a
time-curve with u = constant is never a feasible path.

3 Long-time existence of feasible paths

Now we sketch a proof of the long-time existence of feasible paths. Our main
tool is the Morse theory and the technique presented in Jost’s book [3]. Let

Λpq = {c(t) = σ(u(t), t)|c(a) = p, c(b) = q}

be the set of all time-curves with end point p, q and c(t̄) ∈ Σt̄ for a ≤ t̄ ≤ b.

Then the energy functional Ξ(c) = 1
2

∫ b

a
|c′(t)|2dt is continuous on Λpq. For

η > 0 define
Λη

pq = {c ∈ Λpq|Ξ(c) ≤ η.}

Let a = t0 < t1 < t2 < . . . < tk = b be a partition of [a, b]. Define

Λpq(t1, . . . , tk−1) = {c ∈ Λpq|c|[ti−1,ti] is feasible.}

Now we denote

Λη
pq(t1, . . . , tk−1) = Λpq(t1, . . . , tk−1) ∩ Λη

pq.
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By the local existence of feasible paths, there exists ρ0 > 0 such that for
a ≤ tj , tm ≤ b, |tj − tm| < ρ0 and x ∈ Σtj , y ∈ Σtm there is a unique feasible
path from x to y. Now we choose a partition a = t0 < t1 < . . . tk = b of [a, b]
with

ti − ti−1 <
ρ2
0

2η

for i = 1, 2, . . . , k. Then, for each c ∈ Λη
pq(t1, . . . , tk−1),

d(c(ti−1), ti)2 ≤ Length(c|[ti−1,ti])
2

= 2(ti − ti−1)Ξ(c|[ti−1,ti])
≤ 2(ti − ti−1)Ξ(c)
≤ 2(ti − ti−1)η < ρ2

0.

Therefore, the feasible path from c(ti−1) to c(ti) is unique and hence coincides
with c|[ti−1,ti].

Moreover, the piecewise feasible path c is uniquely determined by

(c(t1), . . . , c(tk)) ∈ Σ × . . . × Σ = Σk−1.

Thus,
c → (c(t1), . . . , c(tk))

defines a homeomorphism of the interior of Λη
pq(t1, . . . , tk−1) onto an open sub-

set of Σk−1 and hence the interior of Λη
pq(t1, . . . , tk−1) may be equipped with

the structure of a differentiable manifold. Then for c ∈ Λη
pq(t1, . . . , tk−1), we

have the formula

Ξ(c) =
k∑

i=1

Ξ(c|[ti−1,ti]) =
k∑

i=1

d(c(ti−1), c(ti))2

2(ti − ti−1)
.

In particular, The restriction of Ξ to Λη
pq(t1, . . . , tk−1) is differentiable. More-

over, it can be shown that (c.f. [3]) the energy function Ξ is differentiable on Λpq

Lemma 3.1. All critical points of Ξ is on Λη
pq are contained in Λη

pq(t1, . . . , tk−1).

Proof. Let c ∈ Λη
pq. Then

d(c(ti−1), c(ti))2 ≤ 2(ti − ti−1)Ξ(c) < ρ2
0.

This implies that the map

r : Λη
pq → Λη

pq(t1, . . . , tk−1)

is well-defined. Moreover, r is continuous and

Ξ(r(c)) ≤ Ξ(c)
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Now we define a family (rt)0≤t≤1 of maps rt : Λη
pq → Λη

pq by the following.
For i = 1, . . . , k − 1, let

rt(c)|[ti−1,ti−1+t(ti−ti−1)]

be the feasible path from c(ti−1) to c(ti−1 + t(ti − ti−1)) and let

rt(c)|[ti−1+t(ti−ti−1)] = c|[ti−1+t(ti−ti−1)].

Then we have r0(c) = c, r1(c) = r(c) and rt(c) is continuous in t and c. This
proves that Λη

pq(t1, . . . , tk−1) is a deformation retract of Λη
pq. Since the critical

points of Ξ are feasible paths and so are piecewise feasible paths, they lie in
Λη

pq(t1, . . . , tk−1) if their energy is ≤ η.

Let another partition (τ1, . . . , τk) be given by

t0 < τ1 < t1 < τ2 < . . . < τk < tk

and we also assume that

τi − τi−1 <
ρ2
0

2η

for i = 1, . . . , k with τ0 = τk − b.
Let γ be a time-curve from p ∈ Σa to q ∈ Σb. Note that this curve always

exists due to the local existence theorem. Assume

Ξ(γ) ≤ η.

Now we use the curve shortening process to prove the long time exis-
tence of the feasible paths. Let r1(c) be the piecewise feasible path for which
r1(c)|[ti−1, ti] is the feasible path from c(ti−1) to c(ti). By the local existence
theorem and the choice of rho0, this determines r1(c) uniquely. Then define
r2(c) as the piecewise feasible path for which r2(c)|[τi−1, τi] is the feasible path
from c(τi−1) to c(τi). Note that r2(c) is likewise uniquely determined. Define

P (c) ≡ r2 ◦ r1(c).

Lemma 3.2. We have the inequality

Ξ(P (c)) ≤ Ξ(c),

with equality holds if and only if c is a feasible path.

Proof. Note that
Ξ(r1(c)) ≤ Ξ(c),

which the equality holds if and only if c is a piecewise feasible path from p to
q with nodes c(t1), . . . , c(tk−1). Likewise, for each time-curve c̃

Ξ(r2(c̃)) ≤ Ξ(c̃),
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with equality holds if and only if c̃ is a piecewise feasible path from p to q with
nodes ˜c(τ1), . . . , c̃(τk−1). Thus , if Ξ(P (γ)) = Ξ(γ), then all segments c[ti, ti−1]
as well as all segments c[τi, τi−1] are feasible paths. Hence c is a feasible path
from p to q.

Lemma. 3.3 Let c be a time-curve with energy Ξ(c) ≤ η. Then a subse-
quence of Pn(c) ≡ P ◦ . . . ◦ P (c) converges uniformly to a feasible path.

Proof. First note that each curve Pn(c) for n = 1, 2, . . . is a piecewise fea-
sible path with nodes Pn(c(τ1)), . . . , Pn(c(τk)) where the individual segments
are feasible paths between those nodes. Hence, as in, each such curve may be
identified with a k−tuple

Pn(c(τ1)), . . . , Pn(c(τk)) ∈ Σk.

Since Σk is compact, Pn(c(τ1)), . . . , Pn(c(τk)) converges to some (p1, . . . , pk) ∈
Σk and hence Pn(c) converges uniformly to the piecewise feasible path c0 with
nodes c0(τi) = pi for i = 1, . . . , k, whose individual segments c0|[τi−1,τi] again
are the feasible path from c0(τi−1) to c0(τi) since the limit of feasible paths is
a feasible path. Denote the convergent subsequence of (Pn(c))n∈N by cm ≡
(Pnm(c))m∈N . Then

Ξ(c0) = lim
m→∞

Ξ(cm),

as follows from. Moreover,

Ξ(c0) = limΞ(cm+1) = limΞ(Pnmcm) ≤ lim Ξ(P (cm)) ≤ limΞ(cm) = Ξ(c0).

Therefore, equality must hold throughout. Hence P (cm) converges to P (c0)
and we have

Ξ(P (c0)) = lim
m→∞

Ξ(P (cm)) = Ξ(c0).

Finally, by Lemma, c0 is a feasible path from p to q.

References

[1] M. P. do Carmo, Differential geometry of curves and surfaces, Prentice-
Hall, 1976.

[2] J. Jost, Riemannian geometry and geometric analysis, Prentice-Hall, 1995.

[3] A. Pressley, Elementary differential geometry, Springer, 2003.

7


