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Abstract

Consider a smooth curve wriggling and moving in the Euclidean 3-
space R? as time goes by. How can one say about the geometry in this
phenomena? A very natural question is to ask ” Does the shortest path
from position p at time ¢1 to position g at time t2 exit?” In this paper, we
will investigate the existence of the shortest paths, which we call them
feasible paths. Local existence of feasible paths due to the first variation
formula of energy functions. Our main result is to show a long-time ex-
istence theorem for feasible paths from p to ¢q. Some interesting example
will be mentioned.
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1 Introduction and local existence

Consider a regular space curve v : [, 8] — R, Let o : [, 3] x [a,b] — R® be a
smooth map such that o([«, 3] x {a}) = v([e, 8]) and for each t, o([e, 8] X {¢})
is also a regular space curve. Set

Y={o(u,t)la<u<p, a<t<b}

and denote X; = o([o, 8] x {t} for some fixed t € [a, b].

A space curve c : [d,l;] Y for0<a<a<b<bis called a time-curve if
c(t) € ¥y for all t € [a,b]. That is, c¢(t) is a time-curve provided c(t) = o (u(t),t).
A feasible path from p € ¥ to g € X3 is a time-curve from p to ¢ with the
shortest length. By the definition of the energy Z(c) of a space curve ¢ from a
to b

b
S(c) = / ()2t



, a feasible path is a time-curve with minimal energy. Let us first investigate
the local existence of feasible paths.

Let ¢(t) = a(u( ),t) be a time-curve form p € ¥; to ¢ € X;. Then ¢'(t) =
ot (t) + oy and ¢’ (t) = 0y (W' (t))? + 20,0/ () + o4 We claim that c(t) is a
feasible path if it satisfies the following feasible path equation:

d 1 T B
dt(Eu ( )) iEu(u (t)) + < Oty Oy >= 0 (1)

, where £ =< 0,0, >= ||o,||* with the standard Euclidean inner product
<,>. Note that a curve satisfies equation (1) is in fact a stationary point of
the energy function.

Indeed, let

c(t) = o(u(s,t),t), (a) =pc®(b) =qVs € (—¢,¢€)

be a proper variation of ¢’ (t) = ¢(t) and denote ¢*(t) = %cs (t). Then the first
variation of the energy function is (c.f. [1] or [2])

Dzt = /Hc )t
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This gives the feasible path equation (1).
Let p = o(u,t) and the affine tangent space 7,3, be defined by

T,5 = {Aoy, +0o¢|A € R}.

If ¢(t) = o(u(t),t) is a time-curve, then ¢ (t) = o,u/(t) + 04 € T,%; is an affine
tangent vector. Now we have the following local existence theorem for feasible
paths.

Local Existence Theorem. Given a < ug < (3, 0 < a < tg < b and



po = o(ug,to). Then there exits a positive number e, depending on the time
to such that for t € [to,to + €1,), U € (Up — €1y, Uo + €1,) and ||v|| < €,, where
v = oy (uo, to)u (to) + o(uo, to) € TpyXy,, there exists a unique feasible path
¢ =cy(t) : [to, to+€,) — X with the initial conditions c(to) = po and ¢ (ty) = v.
Moreover, the map c : [to,to + €,) X Tp,St, — L defined by c(t,v) = c,(t) is
smooth.

2 Some examples

Example 1. Let vy(u) = (cosu,sinu) and o(u,t) = (cosu,sinu, ¢(t)). Then
E =1, < o4,0, >= 0 and the feasible path equation is
d / 1 !/ 2 "
0= (Eu(t) = 5 Eu(w(t)"+ < ou, 00 >=u"(t).
The solution is u(t) = at + b for some constants ¢ and b. In particular, a
circular helix c(t) = (cost,sint, ¢(t)) and a time-curve with u = constant are
both feasible paths.

Example 2. Consider the unit-speed curve y(u) = (f(u), 0, g(u)) with (f’(u))*+
(¢'(u))? = 1 rotating about the z—axis. Suppose 7 rotates an angle ¢(t) at
time t. So

o(u,t) = (f(u) cos ¢(t), f(u) sind(t), g(u))
and then £ =1 and, o4 =
(—=¢" () f(u) sin d(t)—(¢' (1)) f (u) cos (1), ¢" () f (u) cos () —(¢' (1)) f (u) sin é(t), 0).

Therefore, the feasible path equation is

u”(t) = f'(u(t)f(u(®)) (¢ (1))* = 0.

In particular, let v(u) = (1,0,u) and compare with Example 1. Then the
feasible equation is u”(t) = 0. Hence the parallel curve with u = constant
and helix are feasible paths. Moreover, let f(u) = 2 + cosu and g(u) = sinu
(compare with a torus). Then the feasible path equation is

u (t) 4 sinu(t) (2 + cosu(t))(¢'(t))* = 0.

Example 3. Consider the circle y(u) = (acosu,a + asinu) of radius a > 0
rolling without slipping along the z-axis as time goes by. Suppose the circle
rolls a distance a¢(t) at time (). Then

o(u(t),t) = (acos(u(t) — ¢(t)),a + asin(u(t) — ¢(t)),0).



Then E = a?, < 04,0, >= —a?¢"(t) and the feasible path equation is
d 1
0= a(Eu’(t)) - §Eu(u’(t))2—|— < oy, 0y >=a? (U (t) — ¢"(1)).

In particular, if ¢(t) = ¢ then a cycloid, which is a curve with u = constant, is
a feasible path. That is, a time-curve with u = constant is a feasible path if
the rolling velocity is constant.

Example 4. Consider time evolution of the curve y(u) = (a + coswu,sinu),
a > 1 with
o(u,t) = e *(cosu + acost,sinu + asint).

That is, the center of 7 is moving along the logarithmic spiral (e~* cost, et sint)
and the radius is e at time t. Then E = e %, < o4 = e !(2asint +
cosu, —2a cost + sinu) and then

< 044,04 >= —2ae” 2 (sintsinu + cost cosu) = —2ae”** cos(u — t).
So the feasible path equation is
u’(t) — 2u/(t) — 2acos(u — t) = 0.

A very special case is when ¢ = 1 and uw = 7 + ¢ then ¢(¢) = 0. Significantly, a
time-curve with u = constant is never a feasible path.

3 Long-time existence of feasible paths

Now we sketch a proof of the long-time existence of feasible paths. Our main
tool is the Morse theory and the technique presented in Jost’s book [3]. Let

Apg = {e(t) = a(u(t), D)|c(a) = p, ¢(b) = g}

be the set of all time-curves with end point p, ¢ and ¢(f) € X7 for a < ¢ < b.

Then the energy functional Z(c) = %fj |/ (t)|?dt is continuous on A,,. For
7 > 0 define
qu ={ce qu‘E(C) <n.}

Let a =ty < t1 < t2 <...<tr =D be a partition of [a,b]. Define

Apg(t, .. tk—1) = {c € Apgle

[t:_1.t,] 15 feasible.}
Now we denote

qu(tl, coytl—y) = qu(tl, oo te—1) N qu



By the local existence of feasible paths, there exists pg > 0 such that for
a<tj, ty <b, [t; —tm| < po and z € i, y € Xy, there is a unique feasible
path from z to y. Now we choose a partition a = tg < t1 < ...t = b of [a, D]
with

Po

t; —t < —
0 i—1 277

for i =1,2,..., k. Then, for each c € A} (t1,...,tr—1),

d(c(tin) ;)? Length(cli, 1))
(t _tz 1) ( ti1,ti] )
2(t; — ti—1)E(c )

2(i i )77<Po

INIA

Therefore, the feasible path from c¢(t;—1) to ¢(¢;) is unique and hence coincides
Wlth C‘ [ti—l 7ti] .
Moreover, the piecewise feasible path ¢ is uniquely determined by

(c(tr), ... c(ty)) €D x...x 5 =xk1

Thus,

c— (C(tl)v ceey C(tk))
defines a homeomorphism of the interior of AJ, (t1,...,tx—1) onto an open sub-
set of ¥¥~1 and hence the interior of A}, (t1,...,tx—1) may be equipped with

the structure of a differentiable manifold. Then for ¢ € A} (t1,...,tk—1), We
have the formula

. kH £ (e )2
=( Z: [tioa,ti]) Z“)))

i=1 i=1 L

In particular, The restriction of Z to qu(tl, ..., tg—1) is differentiable. More-
over, it can be shown that (c.f. [3]) the energy function Z is differentiable on A,

Lemma 3.1. All critical points of = is on A], are contained in A} (tl, ey te—1).
Proof. Let c € qu. Then
d(c(ti-r), e(ti))? < 2(t; — ti-1)E(e) < p5-
This implies that the map
ri Al — qu(tl, ceosti—1)
is well-defined. Moreover, r is continuous and

E(r(c)) <E(e)



Now we define a family (r;)o<¢<1 of maps 7 : A, — A}, by the following.
Fori=1,...;k—1, let

Tt (C) [tim1,tio1+t(ti—ti—1)]

be the feasible path from ¢(t;—1) to c(t;—1 + t(t; — t;—1)) and let

Tt(c) [ti—1+t(ti—ti—1)] = Cllti—i+t(ti—ti—1)]-

Then we have rq(c) = ¢, r1(c) = r(c) and r¢(c) is continuous in ¢ and ¢. This
proves that A}} (t1,...,t;_1) is a deformation retract of A}} . Since the critical
points of = are feasible paths and so are piecewise feasible paths, they lie in
AJ, (1, ..., tk—1) if their energy is <. O

Let another partition (71,...,7x) be given by
o< <t <Tm<...<Tp <t

and we also assume that )
0
T Tl < i
fori=1,...,k with 7o = 7, — b.
Let v be a time-curve from p € ¥, to g € ¥p. Note that this curve always
exists due to the local existence theorem. Assume

E(v) <.

Now we use the curve shortening process to prove the long time exis-
tence of the feasible paths. Let r1(c) be the piecewise feasible path for which
r1(c)|iti—1,t;] is the feasible path from c(t;—1) to c(t;). By the local existence
theorem and the choice of rhog, this determines r1(c) uniquely. Then define
r2(c) as the piecewise feasible path for which r3(c)|(7i—1, 73] is the feasible path
from ¢(7;—1) to ¢(7;). Note that ry(c) is likewise uniquely determined. Define

P(c) = reori(c).
Lemma 3.2. We have the inequality

=(P(e)) < (o),
with equality holds if and only if ¢ is a feasible path.

Proof. Note that
E(r1(c)) < E(o),
which the equality holds if and only if ¢ is a piecewise feasible path from p to
g with nodes ¢(t1),...,c(tg—1). Likewise, for each time-curve ¢

E(r2(¢)) < E(0),



with equality holds if and only if ¢ is a piecewise feasible path from p to ¢ with
nodes ¢(71),...,¢(mx—1). Thus , if Z(P(y)) = E(v), then all segments c(t;, t; 1]
as well as all segments ¢[7;, 7;_1] are feasible paths. Hence c is a feasible path
from p to q. O

Lemma. 3.3 Let ¢ be a time-curve with energy E(c) < n. Then a subse-
quence of P™"(c) = Po...o P(c) converges uniformly to a feasible path.

Proof. First note that each curve P"(c) for n = 1,2,... is a piecewise fea-
sible path with nodes P"(c(7)),..., P™(c(7)) where the individual segments
are feasible paths between those nodes. Hence, as in, each such curve may be
identified with a k—tuple

P"(c(m1)),...,P"(c(r)) € X*.

Since X* is compact, P*(c(r1)),. .., P™(c(7x)) converges to some (py, ..., px) €
¥* and hence P"(c) converges uniformly to the piecewise feasible path ¢y with
nodes co(7;) = p; for i = 1,...,k, whose individual segments col(,,_, -] again

are the feasible path from co(7;—1) to ¢o(7;) since the limit of feasible paths is
a feasible path. Denote the convergent subsequence of (P"™(¢))nen by ¢m =
(P™ (¢))men- Then

E(co) = lim Z(ep),

m—0o0

as follows from. Moreover,
E(co) = limE(emt1) = im E(P"¢p,) < lmE(P(cy)) < HmE(cy,) = Z(co).

Therefore, equality must hold throughout. Hence P(c,,) converges to P(co)
and we have
Z(P(co)) = lim Z(P(cm)) = Z(co).

m— 00

Finally, by Lemma, cq is a feasible path from p to q. O
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