FRERTIEELE LT AL

g

B2 ot st (11D
Fyb = % 4F 2 G § %)

%o o
b S B
HEpoR
HFHE
S
e G =
Ty
F 2 it £
)‘%@ m 3 A

DA
: NSC 99-2221-E-029-017-
©99#08* 0l px 100 07°* 31p

L B TRk

F

DRRRE
DRy iR
:;ﬁ_l fr;ﬁmﬁl_;\ [ER:E ﬁ R
gﬁJ fr,g:rmﬂl_«;{ ,194;&7 ﬁ ;—:
LSy 4 -{ Eem A | e %
]lé_lfr,pmﬂl_a;]\ iFpsIE A ﬁ

=

Z K 100# 107 27¢p

_ s g . \ F 2
T ’% > 3L '4 Ze 21
RARRPELR firbaegys B L E T

SRR S N/ A B S N
Shapa W BuARrE O FsARE
3 e L NSC 99-2221-E-029-017-

HeEHEFLD 99& 82 1p3x 100& T2 3lA

REWEE por AR A FFAIRE MICT%E

FERAFAIRLR AR AFER IR L Rk
LRAifFA TG R oAPR S ERBE RSP kR
TESEAR R E R AREAETRIRAE LA

%i,'ﬁ"f‘:%‘}‘ﬁﬁ%‘iﬁ‘ WA EFAEFTAIRE R Y4

S G YRS ERTCON [1 NS =

AP EEHIDERL G TEHAUT R FRL
IENC U S0 =R A -

(A A s B LAY < B2

WA R g e 4R

(W% & TP L2 WA 3 4R

;,J,r.g::la.«ﬁ b B OE A

z T
fled s FEMHAR - E]- 267 2F 439

v = A F 100 = 10 2 5P

- PR

TR A ARV A 70 & gk
D L Fiﬁ?f"fu.{i%' A B E R
g B R T A B AT T
mAFRE M AR A ABHIIrEN 4 A

2

I N Y T
NS S UL PR SR
AMEA 0 @ FH LI R A AR i
BRIl NERCER L IE o L e, R
fi ’ lrlﬁ“@s EW}FT °

MAES T HOAR L AT BOAE L B b BRBORE -
it As

)
>

Abstract

As early as in the 1970’s, the notion of
software factory that treats software
development as a kind of factory production
had been proposed. However, software
factory has not yet been accepted by the
software development community. The
major reason is that factory model is
restricted to produce fix-type products. In
this research based on pseudo software, a
corresponding software product line model
is proposed. With this model, a software
factory resembling hardware factory model
is possible to be build.
Keywords : software engineering, software

factory, software product line, pseudo
software
Z w3
S IR S R X EN .

FOPRAF IV UEGAME AP R
Ao LA R R A LTI AR
PR E - BA A AR U FA
AVEASAFRTPEA S THESEL
(Mass Production) & "% M 4 & = & » i&
R - R Ra A MRT 5
BEFHEZT AR PA TR S 2R
P REEASREE o B BFRE DS E SR
¢ 4 & # ;% (High-Mix, Low-Volume
Production, HMLV Production) » i% & 7 3~
Tl RE A A S e EA Zéﬂ’ﬁ:%’;
g Egden g SRt ARG 8
Metn>td Ao MA T R BRER

i - AT A S AR Bt A A
TR - A s TR AR
- RS GEET AR f&ié_dﬁ?u
Rypp e 4L F 8 BOM 24 3 %
o fE2aliee s ifkai
S0 F]pt oo A ffﬁﬁ‘_‘ﬁi?‘v]r{ﬁd*ﬂi'u s A —
ﬁf#tm SoftBOM » 7R R eh R

H-RBFpé- By g ko FHdEd
)J»F'B)’?@'Eﬁmz\ = —\ o ’S’-? iE ‘f*l;l]

(Use case) & - @24 g e £
#1278 m @_"4} e % -,«VIJ%F! Re miZE £
22 SoftBOM #r: > #R 18 3 2 okl 1 i
ig %»J.ﬁ];«x-ri? m}%#ﬁ@’\geﬁa}%l) s
Egﬂil- TUfRA- b4 B PFELe §
B AL F 0 ER 8 ¥R SoftBOM
HA T REAE NS A7 EF -7
p ’/5&'?\@ W1 - R oF - B R
vuELAFEINHE SoftBOM > & F &
BoF R m AR s Rih
smmOMski%ﬁ %#mfsé%mﬁ

B U A T R
Rk i 2 4 'Hfi° AL &L

et ﬁfﬂfﬁ 3T @@g@

® ML AEHG RREET b2 AE
AR LR S A G

® FRGFERL ALK

@ o T RFAEFCHEF AL I fn
SoftBOM » ¥ 1 & 2 # 44 A B » &
SR | rr'ﬁfﬁ

® Xy AR Rt AR R

MG A o

AL E R - BT TR R
i % 3f i (Delivery Forecasting) & 5t o i %
;F' [,:‘ i }\’Eﬁlf\{’gg‘; - BAp
PREr 'E‘J& ik d oo g B R R
IR R TAHEE % P
PE'/@’EE'J‘});L" % o Eb?@iﬁf‘g’:y W %.3‘; = iF
REGHDIET AP ES A o BT Ry

P ERIE R R B R R
PR BT A A P ARAER o dopt A o TS 1R
ﬁﬁiﬁ%m$%°ﬂw’ D VS
FRFE % ST E 2 SR8 3 R e TR R
o F ARG T RS GRS A
FE PP HE R Ao

EFER
l‘j}-&hﬂﬁj PRI I RN VE =g |
ARAEEFAE AR A TR
%ﬁWWH% Z AP E > F ik A
£ B ok Fici 2 SoftBOM #:3) 5

AAH D FRE D - BEHETY AW Rk
MIBE AL AR PET A
T gk

OEESLs REL FES K
2RI R A
j\'él-:i]‘f“"l;b%l o 7 ?t/}g,ﬁ; EETE T
ﬁéﬁﬂﬁiiﬁ»g&,éﬁﬁm
WA kT edama e d i 5
A LEE T BT RN
;E e ,:lf KL o

(2) #FH B
2 Android & * 25 A

BT R

UERCEE R R
CRRE R

ﬂfﬁ;ﬁ;’(‘ lf’i”"l’fﬁ,-\)& ;lf«’é\
lﬁq*'?] Ret aE 2R R 34%1‘5—‘
;IIJO
=

TR

ALFCFAME 2 #5552 odl 1 Buiicd

AR AT O i 1 R B EUKE
FHRFEE L EF AL BB ol
BT AL e A8 B Nap I 2 2
AP 2 A ASEA] > Arde A2 o
SoftBOM 4R 5 A2 AR 7 ° 7 M
4 & ¢ ok T A (software assets) > 1Y
L_@\’ggi é_f“;‘lé ji:’?ﬁ i oo

FPE R 2 ORHCR] kR
R E T T -J‘\ BERUYE-E 8]
BEGHEE B A5 DR E IR
FR T Fo TR IKIWISI FhF]3E - @ &
— & SoftBOM 2+ 4 % SoftBOM J %t i
2 7 FHA 2 SoftBOM gsam | A2 58 5 B
F o F & B H0RR K % - SoftBOM
1% FHA] 0 4 Scene £ 3N E B4 i dt
7 ez * 8 - Interface Component
$o g H GUI & i 4 & ~ Business Logic #”
WwHE EBESE S5 F A TestCase » 3
&éﬂ%@:@% 3 JZ” =30 F;IEJFéL“rM /P.

%ﬁ%ﬁﬂi?léﬁ”*&d °SoftBOM 4 i A% 3¢ Hft

227 SoftBOM § i54p A 2_ 4255 25 # 28 ~ &
‘3‘4'}\‘&2‘ AREPNF O IRIK ?F¢7F5)(
AR SRR A ﬁ A C I C AL -t
b F 1T3% SoftBOM et 5y

B omBEcHPEL T '43’ R &R i}
a r’i”LF%—L é%é SoftBOM & E_‘x". _F 3&“'1’
#Z2 ofr A A AP fe b mER iRy
FHA o APE- BRI HE fu‘_ﬁ%s—
oo deBl AT o AR Y R B ﬁ
BAl kW~ R HETR B o 1“»
i% 1 Pseudo Software -7 fift 2 ¥ 3% (T en
R RGBS EGE S PR
B - N = %s*i—‘ﬁ (Requirements
Modeler) | 42 35 #c #8 1 By 97 ae £ &
%mmmw@’%%B%ﬁW%ﬁﬁﬁw

TR AP AL BRI AR - 2
é_i"“l A &0 NPT) e B 1 R i
g TR IR 1 B O BT
1Ed R e

\

=
ﬁmiéﬁﬂ
eV B
A AP P e TAR R
SoftBOM B # %X B f F# B # 2 &% »
SoftBOM B # A B drm= 3 ﬁ%ﬁ&ﬁﬂ’*
AR ¥ F APE & 3§ o0 SoftBOM 2
B 147 Z e SoftBOM - 2 & 4 E — B 37
e SoftBOM #-3| » SoftBOM B 4 4 ﬁ %
‘ﬁi%FﬂHKSMBOMEﬂﬁ&ﬁ\ 7k
Bl > & k5 SoftBOM . 5t #i 48 tw
39 1 213% SOftBOM s i) 4254 iil
FERAR LWL AR TS &
¥ o B {4 > SOftBOM B % 4 B #-igut ¢ B
=+ 7 SoftBOM £ ¢ & SoftBOM F iR
BT EIE o @i e T A A
g RERIFE? £A4FR Y > U E IFL
HREr 2 AR ER B LY &
,}7% o

BOUCRRiE N 34 A FFEPE R D {RH
frig * oo SOftBOM B % 2 ket &
ﬁ’ﬁﬁiéﬁﬁéﬁﬁf%‘ﬁ%éﬁ
4 1% SoftBOM & ¥ c %8 7 KA P 1 &

Requirements \

A .
New SoftBOMs Prototype development Manufac.turlng
Development Planning
SoftBOMs v Customized
SoftBOMs f
Pseudo Production
e oaton ™ Sofiware 7% - Scheduling &
Customization Development Planning
R : Comrol
Production
SoftBOM i =

Product Line i

/ Soft Part i

Software

Soft Part j — SoftBOM j <=
Product Line j

\ Soft Part

m

Product Line m m

SoftBOM

Bl mE

Fehrin o F A BAERLRAT LATR
* SOftBOM # bldzst ¢ iz sk [
% 413% SOftBOM thfh & # iv » F i
SoftBOM i #& #c# 7 FH-A R T F &
Eenst i 2 VT RRE R bR >
“TA 2 St el 3% SoftBOM hx
ﬁﬂ%%’%ﬁﬂT—%§€%$°$ﬁ
M REE» FEIFEPE o d 3 Ll &
Mioe A IB;*'KI*’LI‘M/F‘ e QRN pB |
WoONPE T AR AR
AR SR TR ARG B TR R

e BN

42 HR RERIER 4

(‘.
7““%
._,.

B

- @m0 PR OB R R R o

4o COCOMOII » 812 #8577 17 % 35 2 &
, H

@,ﬂﬁﬁﬁﬁ I e FE L B P 2
WEEDARB I AL

El (ﬂm
Nw
&

FEm R 2 PIHCR Y o hgoiliiTE
AR 0 R el iER I e R
pbfe 2% o AAm e (T AT E AR
oo X EH - EBEFRAER o L3 H
HFo-BRRLEFDIR O - BEE
L PTRE o FlU o WKL R g

B N EA /S A A, B U

PR s blde ik B~ E ?;‘}};{ i r
ER I N R TR IR
WAl o R B AT R 0 i
LRI M RRad iRt PFEZR
L oo o BEEEE 42 ARG LR
R AR P AR RS REE -
B2 2Rz R
P ARG - g REHE R
B Ff e ik & 0881 Rrendd ﬁif’"? £
j\j/?j,/g,m,g # *3‘;]4 ~ R i 1% gy
P> Tied &k AR A k,“ﬁ;%ﬁ,}‘{

J Tk B‘] % g

ATEETE e WA S ey

| PEAER T Pseudo
HES Software

e aE AR
|

& fie 8 o
ieds % 2

i 2
% € LS

a0
b
20
<
¢
(w
b
o
o
By
—b
e

PrApRd 3 F L HEBE IR LA
Pro 2R o R B S BIRR k 2 W BFE P W
gk R T &k H R ER]) RFA A2 D
ﬁ—\ 2 B 2 /\4?;};;,\1 EpNxEH

% 4p B 3”“‘%:}; » MR GE P GEE A U
Qw’mpﬁﬁmlw?;iﬁam%
P o BEARIR T 51 EF S R BRI BLAT R A

Wenk AR D7 o kG ERKMEP Th
ﬁm;ﬁ FA] s —gﬁl@ﬁi# B iEIE p e
IR RAARAE 0 ek T R ke
WoRFEAENERE T - 25 0 £ B
PR BT B ehd B A i g b
S8 ’ﬁ?sbynkmlﬁf“p’{a’%ﬂ“\ &
Bl g R P chd A TR UFIE 2 4
Migit > APRAT S wT AL AT R
l;"f:'ﬁijrﬂlu- I—m”“}""”f# B {8 s REAR
SIEF TR 2 B~ RFOCH ~ 1 fuan
4 A FRE g T .a%]% o
BSR4 s Nl 2 L ¥

WARB T > Fd ERIF R EF L

*rm

SA T
ﬁ?‘:*% AAMBRELIE 2T A 1y
o T RGP AL A é‘?/)g,_taﬁ\y:rf;qﬂl’;g iz
» =2r=2L
~ - M
® Project - ;

3T H r"ﬁ“-’ § 7 M
B costUpperBound : pt 37
%1&%?“E°
W expectedDueDate : yt 37 H % = 3g #)
2. Hp o
® Work Item - F4 22 1 i%> bl4ck 7 -
20 AT ﬁ%ﬁfhu£ N
Rz 2N EBR A 3?— HILZPIEE
d 11T *&5 ,:v_»,«n-,—ﬁ»_

W requiredSkill : #7% 2. 1 T o

W skillLevel @ #7% Hat 2. £ 3 & % o

W estimationTime : 3 & = & 1 2 2 &
gapke

W priority : 1 @J—ump B o

® Production People BE R S W TS
Bz A A Rl TR A

Wid: AR R
[| skiIISet'f‘? ARATE R 2 Fa fE
Wocost: %4 R 1Pk o

® performanceOfSkHI(sklll) %
7o skill + z_ & :”.E_kjkf.,;;,,b ° é PBciE 4

WP RAGARARARE RS
i 2= S N o] M%Mfﬂzg.qpﬂ»;o

® CalendarOf (x, date) - 4 #& 4
g date e+ 7 * 1 pEIL G o
0 pF > MAZE VA iRiRa @
1 o MiEHRAEE L §x] =

® SetOfPP - g 1 i ? > 75 2
SR R

® QueueOfWI(X) - & % x ® » & A1 &2
= 1 1 |ig; L o

® PrerequisiteOfWI(x) - 1 & x Z &+ %
EFRCNE s ol RN E - o

® TeamOfPP(X) - fg3++# H & % X & * i1
2 ALXBRBELE 5 SetOfPP e+ & &

® ConstrainSetOfPW(x) - & % x *® 3f &
ARG Rafpi AR E B EY 2

_J.

2

v
-
Ve

.,\K 7.4_ g«;% puyl
=
=

-n‘\g lﬁ\: F}.

mowy

i

|

~
Y

~F N EREXwWI]EZZ oA Ewi
FUIpTFI A AXETRY -
® ConstrainSetOfPS(x) - E; % AR T A

B At B k9 vpip 8% B2 4p ik
Wk E S B AP 2 F B skill]
FidEz2 o MEAAR XL ERP R
& * Hoae skill »
® CurrentProgress(x) - & 4x%& & X # {731
B ehfp BT e
® totalCost : i B ‘é"

—\

_.

Rl iw

Pl

d|

ik

& A E
2

g

:EJ; ﬁﬁ“‘ 'E‘ﬁ}’\ﬂ;’l}lfi ‘J‘-a— F“’Em
?’f BREEE o Glde - Bk
’E%F J%Aﬁ%?uayﬁ

?‘- ’ '?»&ﬁ?i"‘?*" 1 f{ pu""—"—i— Iﬁ
RERZT o hrmy g o
BT S] W P praE 2 pbos)

\1

il

._‘
-
~ -

[l

-

ol
W
"

it
“k
R
k] \

=
EaN
-
ol

o

T

<assign>::= <var> = <const>;
<build>::=Build <set> from <set>;
<build>::=Build <set> from <set> and <set>;
<build>::=Build <set> for all <var> in <set>;
<select>::=Select any <var> from <set> and
select any <var> from <set> where <rule>;
<set>::=QueueOfWI|SetOfWI| TeamOfPP|SetOfPP|
ConstrainSetOfPS |PrerequisiteOfWI|
ConstrainSetOfPW
<rule>::=<rule> or <rule>,
<rule>::= expression,
<var>::= string
<const>::=string

B 3. i1 FE LR

IREE ¢33 3 B9 T E0) BN

AP F NGB kPR 2%
Z Android & * 4258 3 KA 0 @ om B
b i< LN ’{\lé“jﬁsb}éjﬁﬁiﬁf%
I AF R 2 HRET K o AP
Android B * A2\ e g LFEE 1 L2 79 R
I BRI PLE PR 0 BT R B
B B o B m BT R KRB R
RE g PR ;\#%%I% B S
WP mﬁ SR T L REF RET

'@imﬁﬁa@pﬁ§W%@miﬁﬁ

RKrmoBEAT BT Ry 74T -
VR UE R R "/‘ A b ep
AT FRFENT RGBS gL
EE R ARG Ko

Bl 4 5 mRacke s B 1 B i 03
B > Manager § § & Eﬁ‘—l&%‘dﬂﬁ' e BRAC
%2 < Presentation ¢ Widget # = -Manager
%%w;& Widget 2z & 1+ 17 g
Presentation ; =» w i Widget 7 Field
Constraints - 5 F# /=1 » 7 1L &
3§ & H5-§ i = Navigation > d 3§ ¢
Widget - Event #7ff s > ¢ Fw ¥ - B3
BooRmF R~ "é‘é’ﬁ - ﬁkwk‘@“—’
“’t’”"‘}' B E R AT R R T
2 % Navigation # % Business Logic .u#;,
Wipu BIEE o B > £ Test Cases 45
it 4o @ % 7% Business Logic £ Field
Constraint » 1 2 B 3% PFen g o

Project) Story
-name 1 contains ~description
-profile 1.
1 isa
load into 1 Pseudo Software present
Manager handle |-name
-project {_*-requirements 1 0
1
! playbacl1< Presentations
activity
manage Pseudo Softw;_arePIayer display |fayout
-targetPresentation |
- . 1 1|-name 1
0. -activePresentation
. 1
Widget |nv04(e* Navigate k
-properties has - 1
« |-fieldconstraints « | Event ’
0-] ! 0- -name Trigger Navigation
-navigation -target
described g
0.1 described 1
Field Constraints TestCases 0.
_testCases asserted| o me asserted | BusinessLogics
T 0..".scenarios 0. 1 testCases

composed by

R
E@j‘%‘l%q"Ti}% :".L'/»'\T ;%;z LA
AR R X BN
»:Lr'%’ 2o GE R o A ﬁ_%’é&i%ﬁ P i
P22 Boif i d 2 P RP o B 5 frde it en
- B2 aur1 2 & LR W

’561*&&1 A é__”"]‘(‘b"?“‘"# ,.+, P
TR R 6 R AR R g £32a
rﬁ&ﬁﬁéMJ;wwhw@&ig'&ﬁ

ss, 1 A

p = Project;
Build QueueOfWI(p) from SetOfWI(p);
Build TeamOfPP(p) from SetOfPP;
Build ConstrainSetOfPS(p) from TeamOfPP(p);
Build PrerequisiteOfWI(x) for all x in QueueOfWI(p);
Build constrainSetOfPW(p) from QueueOfWI(p)
and TeamOfPP(p);
Select any wi from queueOfWI(p) and Select any x
from TeamOfPP(p) where
PrerequisiteOfWI(wi) is empty,
([wi, x] is in ConstrainSetOfPW/(p)) or
([wi, _] is not in ConstrainSetOfPW(p)),
(wi.requiredSkill is in x.skillSet),
([x, wi.requiredSkill] is in ConstrainSetOfPS(p)),
CalendarOf(x,_) > 0.5,
CurrentProgress.cost < p.costUpperBound;

Bl 5. BoBAE R 2 P b

p = Project;
Build QueueOfWI(p) from SetOfWI(p);
Build TeamOfPP(p) from SetOfPP;
Build ConstrainSetOfPS(p) from TeamOfPP(p);
Build PrerequisiteOfWI(x) for all x in QueueOfWI(p);
Build constrainSetOfPW(p) from QueueOfWI(p)
and TeamOfPP(p);
Select any wi from queueOfWI(p) and Select any x
from TeamOfPP(p) where
PrerequisiteOfWI(wi) is empty,
([wi, x] is in ConstrainSetOfPW(p)) or
([wi, _] is not in ConstrainSetOfPW(p)),
(wi.requiredSkill is in x.skillSet),
([x, wi.requiredSkill] is in ConstrainSetOfPS(p)),
minimum(wi.estimationTime / CalendarOf(x,_)
| x.PerformanceOFSkill(wi.requiredSkill));

Bl 6. Hosgdoif i 2 0§ b

52 %M1 frF M1 E —PS4Android

hhE R R o APEEE R L
EnFEiz 3 RFEL L - FL i
Fo? R B F 2§ R ¥
ﬁagxé’*ﬁfm&ﬁ ;ugiﬁ_a B i 4
#= 5 P (v- B 7 5 PS4Android ¢ £ = 13
VRBEEHEE AR SEG 0 AR eSS
BEA O %1% NIELLS
PR R R EECERS L BF
s hx A F AR Ao 7
P mBEREMWO~F 0 B D@L T
Presentation ; [# 5= Navigation ; @4 7+
Field Constraint ; B4 5= Business Logic ;
%57 TestCase - Q% B H M %iET > &
PHARRE- DT ERRFWE B~
ERzk: X

2/ Problem Frames Aualyzer * Pseudo Software Designer B Pyendo Software Player
Fra » PO Story

PR FRE R E HA
Gl Frdt > AR HIA R A mERacRl
T RPN 0 T “P%ﬁfd ’fi—”‘”l—,’i N

e Koo FE18“P:?1*%@TA 2 AR A W
_;-Q_T/’v\ ‘_:'E‘T?v

OFE = =R RENE- N N o

%4*;$%§%ﬁ?ﬁ;%¥{%1
v x]}-}ﬁ??‘oié?—‘ﬁ?,l‘zgﬁv— - e
B 14

s Q‘Lsaz BEHHIT
(25 & % Android T 5 § % ¢ Lk A
%m’ l%ﬁ*”“‘*ﬁ ¥ 6 & mmaac

4 ¢ ¢ Presentation -

B R MiEE p 3% 3 4 i 0 Business

Logic £ Field Constraint p %

EHEm? LT Navigation £ ¥_ Field
Constraint e i+ ¢ {2 ihor o F @ ¥
ﬁ:}%‘f £ % Navigation s~ 2 {5 > ¢ 39
x% * F’ i+ Pseudo Software Desugner 4 b'“r?;
E N eI I e B R R S A S = =)
Presentation o 4% pt =~ & é’ﬁB 2Rt I
%ﬁ%’émmﬁﬁﬁﬁﬁﬁﬁéﬁ—
L % (3)& 7 Business Logic sp % o

F &% H BE hi % Field Constraint 7
¢ &3k~ Field Constraint s

m[__,E]

* PO EDet
» POt #Bun

O,

B 8. mikdtEF

AR W o

L S
R R PR A S A 70 E A eikdd
11[12] » &5 4 GE =7 Bemer #73 1& 2. &
Wb B g4 g ke N[5]lem l/« H
R kA d poA g FER[10]
- R FRZ M R erToshlba[ZG]

l——r'
Hltach|[15]iz€ o 71980 # NANFLH E B

3 Aaen # i Eureka Software Factory
(ESF)[14,15,31] - 90 & p|$ HP 2 M. L.
Griss #1# 4 e dF TR * AE B - System
Reuse % i thfick8 1 fg[18]o @ 1T # k%E ¥
MDA #4= > 7 %5 12 Model-Driven #g 7]
i 48 1 B (Model-Based Software Factory)
AA[1722]; ¥ - 2o~ F AN 5P
e g K8 1 Ry 28 A (Cell-Based Software
Factory)[43] sV P %4 7 2% 5 B> 08
4 A & (Software Product Line):4p B 7 3
[36,37,38,40,41,42] - H 4 & — 37 i 4p
Wi hep A kil s A2

oo

$4 2

1. W.W. Agresti, “Software Engineering as
Industrial Engineering,” Software Eng. Notes,
vol. 6, no. 5, 1981, pp. 11-12.

2. V.R. Basili, G. Caldiera, and G. Canone, “A
Reference Architecture for the Component
Factory,” ACM Transactions on Software
Engineering and Methodology, Vol. 1, Issue 1,
1992, pp. 53-80.

3. B. Blum, “Understanding the Software
Paradox,” ACM SIGSOFT Software
Engineering Notes, vol. 10, no. 1, 1985, pp.
43-47.

4. B. Boehm, Software Cost Estimation with
COCOMOIl, Prentice-Hall, 2000.

5. Bemer, R.W., Position papers for Panel
Discussion: The Economics of Program
Production, in A. J. H. Morrell (Ed.),
Information Processing 68, Amsterdam,

North-Holland (1968)

6. H. Bratman; and T. Court, "The Software
Factory," Computer, vol.8, no.5, May 1975, pp.
28-37.

7. FP. Brooks Jr., The Mythical Man-Month:
Essays on Software Engineering,
Addison-Wesley, 1975, pp. 47-48.

8. B. Clark, S.Devani-Chulani, and B. Boehm,
“Calibrating the COCOMO II
Post-Architecture Model,” Proceedings of the
International ~ Conference on Software
Engineering Workshop, IEEE Computer Soc.
Press, Los Alamitos, USA, 1998, pp.477-480.

9. J.O. Coplien, “Reevaluating the Architectural
Metaphor: Toward Piecemeal Growth,” IEEE
Software, vol. 16, no. 5, Sep./Oct. 1999, pp.
40-44.

10. M. A. Cusumano, Japan's Software Factories
A Challenge to US Management, Oxford
University Press, 1991.

11.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

M. A. Cusumano, “Shifting Economies: From
Craft Production to Flexible Systems and
Software Factories,” Research Policy, vol. 21,
1992, pp. 453-480.

M. A. Cusumano, "The Software Factory: A
Historical Interpretation,” IEEE Software,
vol.06, no.2, March/April, 1989, pp. 23-30.

M. W. Evans, The Software Factory, Wiley,
New York, 1989.

C. Fernstrom, “The Eureka Software Factory:
Concepts and Accomplishments,” Proceedings
of the 3rd European Software Engineering
Conference, LNCS No. 550, pringer-Verlag,
1991, pp. 23-36.

C. Fernstrom; K.-H. Narfelt; and L. Ohlsson,
"Software Factory Principles, Architecture, and
Experiments,” IEEE Software, vol.9, no.2,
pp.36-44, Mar 1992

A. Fuggetta, L. Lavazza, S. Morasca, S. Cinti,
G., Oldano and E. Orazi, “Applying GQM in
An Industrial Software Factory,” ACM Trans.
Softw. Eng. Methodol. 7, 4 (Oct. 1998), pp.
411-448.

J. Greenfield, K. Short, S. Cook, and S. Kent,
Software Factories, Assembling Applications
with Patterns, Models, Framework, and Tools,
Wiley, 2004.

M. L. Griss, and K. D. Wentzel, “Hybrid
Domain-Specific Kits for A Flexible Software
Factory,” In Proceedings of the 1994 ACM
Symposium on Applied Computing, Phoenix,
Arizona, United States, March 06 - 08, 1994,
pp. 47-52.

J.D. Herbsleb, and D. Moitra, “Global Software
Development,” IEEE Software, Vol. 18, Issue 2,
2001, pp.16-20.

W. S. Humphrey, “Software and The Factory
Paradigm,” Software engineering Journal,
\ol.6, Issue 5, September, 1991, pp. 370-376.
IEEE, “IEEE standard for developing software
life cycle processes”, IEEE Std 1074 — 1995 ,
April, 1996.

B. Langlois, and D. Exertier, “MDSoFa, A
Model-Driven Software Factory,” OOPSLA
2004, MDSD Workshop.

C. Li, H. Li, and M. Li, “A Software Factory
Model Based on ISO 9000 and CMM for
Chinese Small Organizations,” Proceedings of
the Second Asia-Pacific Conference on Quality
Software, December, 2001, pp.288-292.

N.K. Lim, JS.K. Ang, and FN. Pavri,
“Diffusing Software-Based Innovation with A
Software Factory Approach for Software
Development,” Proceedings of the 2000 IEEE
International Conference on Management of
Innovation and Technology, Vol. 2, November,
2000, pp. 549 -555.

M. S. Mahoney, "Finding a History for
Software Engineering,” IEEE Annals of the

26.

27.

28.

29.

30.

31.

32.

33.

History of Computing, January—March 2004,
pp. 8-19.

Y. Matsumoto, "Japanese Software Factory," in
Encyclopedia of Software Engineering, (ed.)
Marciniak, J.J., FIRST EDITION, Johon Wiley
& Sons, N.Y, pp.593-605.

J. Nandhakumar, "Managing Time in a
Software Factory: Temporal and Spatial
Organization of IS Development Activities,"
The Information Society, Volume 18, Number 4,
1 July 2002 , pp. 251-262(12)

L.J. Osterweil, “Software Processes are
Software Too,” Proc. 9th Int’l Conf. Software
Eng. (ICSE 9), IEEE Computer Soc. Press,
1987, pp. 2-13.

K. Pillai, and V.S. S. Nair, “A Model for
Software Development Effort and Cost
Estimation”, |IEEE Transactions on Software
Engineering, Volume 23, Issue 8, August, 1997
pp: 485 — 49.

K. Potosnak, “Human Factors-Management:
The Key to Success”, IEEE Software, Volume 6,
Issue 2, March, 1989, pp: 86 — 88.

W. Schéfer, and H. Weber, ,,European Software
Factory Plan—the ESF profile,” In Modern
Software Engineering, Foundations and
Current Perspectives, P. A. Ng and R. T. Yeh,
Eds. Van Nostrand Reinhold Co., New York,
NY, 1989, pp. 613-637.

Standish Group, “Extreme CHAOS (2001),”
2001,
http://www.standishgroup.com/sample_researc
h/

K. Swanson, D. McComb, J. Smith, and D.
McCubbrey, “The Application Software
Factory: Applying Total Quality Techniques to

37.

38.

39.

40.

41.

42.

43.

Systems Development,”, MIS Quarterly, Vol.
15, No. 4 (Dec., 1991), pp. 567-579.

H. Weber, The Software Factory Challenge,
10S Press, 1997.

C. Atkinson et al., Component-based product
line engineering with UML. Addison-Wesley,
London, New York, 2002.

P. Clements, L. Northrop, Software Product
Lines: Practice and Patterns, Addison Wesley,
Reading MA, 2001

P. Clements, and C. Krueger, Being Proactive
Pays Off/Eliminating the Adoption Barrier,
IEEE Software, Special Issue of Software
Product Lines. July/August 2002, pages 28-31
H. Gomma, Designing Software Product Lines
with UML, Addison-Wesley, 2004.

Jwo, J.-S., Cheng, Y.C., Pseudo software: A
mediating instrument for modeling software
requirements. J. Syst. Software (2009),
d0i:10.1016/j.js5.2009.10.042

Charles W. Krueger, Easing the Transition to
Software Mass Customization, Proceedings
of the 4th International Workshop on Product
Family Engineering, October 2001, Bilbao,
Spain, Springer-Verlag, New York.

Frank van der Linden, Jan Bosch, Erik
Kamsties, Kari Ké&nsald and Henk Obbink,
Software Product Family Evaluation, in
Proceedings of the 3rd International Software
Product Line Conference, Boston, MA, USA,
Aug. 30-Sep. 2, 2004.

D. Weiss, C. Lai, and R. Tau, Software
product-line engineering: a family-based
software development process, Addison-Wesley,
Reading, MA, 1999.

Yoshihiro Matsumoto site,
http://www5d.biglobe.ne.jp/~y-h-m/

http://www5d.biglobe.ne.jp/~y-h-m/

R gL E T+ 554 p 24

;ﬁ‘jj\}“p;zp ;p'?}@)J—é#B/‘a-ﬁi)i\giq\; Pﬁpgﬁl_f%-,ﬁz Zﬂ’“é:% B e it z%
B (fRsct S T2 L& - BE - BELE-HFRE27 L) L7
Yt Rl SR \u£%ﬁ¢ii‘ﬁ%&@i’f%-?€?wo
;ﬂﬁ'—iﬂ ITRFERFEPAERE ~ESFFH P RETIRTE- FETR
= p iR
,ﬂ};]g
BARY > APEEHEMLRTE AN E > REFIOTHA AL R A5
2L - BT e ko ¥ - mi,jxygj B Bl 6P RO EL 2

uﬁﬂﬁﬁ@m%ﬁﬂ} o HAs AP EEaE o
1*§°p§ﬁﬁﬁﬁﬁﬁﬂwyﬁgﬁﬁﬁ%%
wr WeFR (A giafp [JER? [&

APFEREFL ST A% ‘%ipwmkmgﬁiﬂﬂ
RFH I AFFEwm !
e Z = TJumpstarting Application Lifecycle Management: a New Approach with Tool Support ;
e 4 % @ 7] Journal of Information Science and Engineering # %
e %~ TPseudo Software: a Mediating Instrument for Modeling Software Requirements ; & %
2 R % ¥ 7 Journal of Systems and Software, Volume 83, Issue 4 (April 2010), Pages:
599-608
e #~ [Rapid Application Lifecycle Management: a new Approach with Tool Support ; = %
I F% 3t ¢ SoMeT2010 -

RpFigms:
e < - 12 Pseudo Software % A# 2 Android 2 R E1 2 |, e #4357 L%
1 25724 € %2 & (TCSE2009)
;@,o "~ i % & Problem Frames £ Pseudo Software g &3 B2 |, < 43 % -2
B it AR % 52 K S R EHh &
x;é’ﬁvév,i% CEMTEIAT A EREE S G o FTFRAT S S ZFA Y §
?s? Bho A RN A A& B BN HFE2ZT) (12 500
")
HITE S ERAT 2 %
) Pseudo Software #7#£ 4 : £ > Pseudo Software > #- IKIWISI (I’ I Know It When | See
1) FI3E 00w e F frEEfiet » { £ & 8 F Foa 53 2 Pattern e0= 5N eskT ko
e FF Pseudo Software » ¥ 12 22 3088 1 1 SOBOM 73 AP R B %0 4ot o a0 43 @ #04Y
I R F9RE R R fueh 2 AL o
2. B N- BEWA AP PR E 22 L5 RALM - RALM F, L% - B Ay
DR RS HAIE LA R o BB ST RS TERK Jﬁﬂ*’@%”’”f’
BEBEITEF O FEPFLETR o FE LA R ﬁbrviﬁﬂ HFIE R Tk
#41* RALM #7d &eh1 & ALMTranslator A 1 VSTS jifzge & 122 VSTS X Ty
51 FTet R H Y P o Ml 2 PO VSTS i e § 1 2 o

bk pE
e },m /_‘1

= =

10

it

R R ML SR T AARGERERFHFL

P 99 & |

)

(s
DO

1 p

FE w5 | NSC 98—2221—E—029—017—

T EEIE 2 O R -1

VR
B R N PRI HE v g s .
‘&'i"}l; % l‘ii lfy }1 E%quﬁ_ il‘q -~ % F'\ \’2%—1 ﬁig 2N
£ Q0
B 9= 9 T8 e . Bk
gpifﬁ?ﬁ!"‘ =N gfziqf"f%-h
99 & 10 * 1 p

<:1 ~):’; 1 Eif= s 1 Ek’i’;}ij&ﬁ—‘]}}]%s;ﬁ?}g
g% +4L | (#=) The 9th International Conference on Software

Methodologies, Tools and Techniques (SOMET_10)

(PR O)Pd 2 pPFR: 2 2HELE1E

R

iz p

(# ~)Rapid Application Lifecycle Management: a new Approach

with Tool Support

-~ e § RSB

The 9th International Conference on Software Methodologies, Tools and
Techniques(SOMET_10) *+ 9/29~10/1 &p 2R F - B - X g:&d A/~ F
pAFieRE ¢ ~ SANGIKYO ~ Microsoft ¥ X i7%> &2 ¢ H 1 & kp L 1 FEL I
Wi dmd RFH - MBI BRF|F & F 3% > Rapid Application
Lifecycle Management: a new Approach with Tool Support A% #-3+9/30 p 7 3% o

A F A ARG R R B FE RIS REF BAF L fof e g
1

ﬁiﬁ%iﬁpiiﬁﬁ%°%W{£%E$?ﬁBﬂwHMM%WSﬁE%%ﬁ\
X B A AT A %R 732 R L % 3 (HENDERSON-SELLERS & B 18R F L
§ % > 4% 43§7F 5 a1 420> %) - HENDERSON-SELLERS 3% % RALM evpe & &2 % & %

B AT N EnD EPEA L ARIT o Rt SR M AT E Rena G ALM 2 £ s 4e Microsoft

FEKR >IN EHFLE AT XL A2 - > 2 HRER AR5
MR XPIEx A EHE 0 G H APP B2 E N RAE A » 15 g £ R A

%R AR o AR Y R R LT 2T LR 0 § L2 R

SR AT F o ST D HRiE B RAE 0 ff H R M SR B T
BH > F SRR > EH A B ERHT (virtualization) B > & F_%-
2 EHE S 5 eR ¥ #0H (web applications) » k& F 487 & - i R FH G 07 o
R o BRI T L e O 2 R IRG 0 W PR ERE
e o qpdiF s gkl el Bufe s g% 22 4 |(security isolation) ~ [
B w42 = g a B M | (performance isolation) ~ [B W42 = 0¥ * jh > 4 |
(availability isolation) ~ [% %] #&2 = & ¢ = fH = 4 | (administration
isolation) ~ ™ % [B w4 = chfic 48 7 K% % |(customization) & o izut R° 58 enfZ
Ao MR R AR A E R o IR g B BOBRK - Bl R S i
BMI1ENFAHETHEIREILIRBDEF -

AUERT RIFIARG ARG B A R ah- B 5 9/29 0 invited
talk : "Consolidating diagram types from several agent-oriented
methodologies" » # 4 & Brian HENDERSON-SELLERS (Faculty of Information
Technology, University of Technology, Sydney, Australia) @ i®-¥ ﬂ} | * semantics
net-~agent~ontology & Al e $5 i ~ & 7 1 22 22 L ggent-oriented software
development 97 ;2 o 8@ * Al Fjrkecd 1 fzen= 2 > VT 5 AR 3 h

R

LR e
BIp g5 E05 AR T € Byrgik > 2 > P AN- B FEMHE

FRLE o FIt o BT AR Y REE B AR T 2 N H B AT R Y gra o 2

ST TR G
Fite¢wm2 &2 - & TNewTrends in Software Methodologies, Tools, and

Techniques, ;5 Hamido Fujita ed. IOS Press - 2010. ISBN 978-1-60750-628-7

E:D
o

Rapid Application Lifecycle Management: a new Approach with

Tool Support

Jung-Sing Jwo?, Yu Chin Cheng®, Tien-Song Hsu®, Chun Hsin Liu®
®Department of Computer Science, Tunghai University, Taichung, Taiwan

®Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei, Taiwan

Abstract. Software lifecycle is the process by which software is conceived, developed, maintained, and decommissioned. To the
development team, initiating effective application lifecycle management (ALM) is challenging for three reasons. (1) ALM definition is
hard since lifecycle activities are interdependent and complex in nature that involves product, project, people, process, tool and technology.
(2) ALM activities require the support of correctly tailored tools. (3) Effective ALM activities execution requires discipline. To take on the
three challenges of initiating ALM, we present a new approach called Rapid Application Lifecycle Management (RALM). RALM
provides a reference model with a number of templates for ALM activity definition. Once customized, the templates are converted into
platform-specific process definition files with tool support. Observations from a field application of RALM are presented and discussed .

Keywords. Application lifecycle management, ALM definition, ALM discipline, ALM implementation, VSTS

1. Introduction

Application lifecycle is the process by which an application is conceived, developed, maintained, and
decommissioned [12, 14]. The “health” of the application very much depends on the lifecycle activities that
take place. For instance, inadequately defined requirements defy the best intention to develop good software;
insufficiently defined issue tracking states can prevent the real cause behind high defect rates from being
exposed; and so on. Typical lifecycle activities include requirements development, project planning, solution
development, requirements management, deployment, issue tracking, and so on [1, 2, 4]. Each of these
lifecycle activities can involve a multitude of technologies and tools. In this paper, we assume that the
development processes and activities are defined, executed, adapted, and managed on state-of-the-art
application lifecycle management (ALM) platforms, which are described in Section 2. While the use of ALM
platforms reduces the complexity of integrating development and management tools and allows the team to
quickly modify process as required, to the development team, the first hurdle lies in jumpstarting effective
application lifecycle management for a software development project on the target platform. Initiating ALM is
challenging in three respects:
® ALM definition: A formal ALM definition helps software engineering team implementing the ALM on the selected ALM
platform. However, for most of the small-to-medium software teams, formally defining the ALM activities and their
interrelationships is in itself a very complicated undertaking [3, 18].
® ALM discipline: ALM activities remain difficult to implement even after they are defined. In particular, coordination and
cooperation among developers are often viewed as non-technical overhead and there is usually a lack of willingness
among the team members to comply [17].
® ALM implementation: ALM activities require tool support for their implementation. Commercial and open source ALM
tools require tailoring to suite the team’s need. Again, misfits are common: a tool can offer too many un-wanted features
while some critical features may be missing [11].
To date, several approaches have been reported in the ALM literature. In order to avoid misfits brought by
adopting an ALM platform, Moore et al. suggest making modifications to the standard templates or even

creating new templates from scratch [11]. K&éridinen J. et al. have defined an ALM framework for
documenting the company’s ALM solutions and finding improvement for ALM solutions [9]. Pirklbauer G. et
al. identify key problem areas typically addressed by ALM and provide guidance on how to develop an ALM
strategy for software development organizations [13]. In this paper, we present an instrumented approach for
ALM definition, ALM discipline and ALM implementation. The approach is called Rapid Application
Lifecycle Management (RALM). RALM provides a reference model for ALM that can be used by software
team to jumpstart the task of ALM definition. The reference model is defined in a number of templates which
are in Microsoft Excel format. The conversion from templates to platform-specific settings is done by a tool
named ALMTranslator. The current version of ALMTranslator can be used to implement the defined ALM
activities on the Microsoft Visual Studio Team System (VSTS) 2005. In addition to the ALM implementation,
engineering guidelines for carrying through ALM discipline are also automatically published on the project
portal by ALMTranslator.

2. State-of-the-art ALM platforms

The development of ALM platforms and tools (e.g., Microsoft VSTS [16], Borland ALM [5], and IBM Jazz
[8]) has reached a point that they emphasize the customization of processes and tools to suit the development
team’s need. No longer are teams forced to accept a specific process, especially one that the team is unfamiliar
with. As a result, the same ALM platform can support waterfall, unified, agile, or any other home grown
software processes [15]. The main features of ALM platforms include configuration and change management,
issue tracking, project management, build management, report management, and so on. As can be seen,
substantial amount of work is involved in setting the platform for these functions to work correctly.
State-of-the-art ALM platforms fill the “how-to” gap for organizations that adopt process improvement
standards such as CMMI [6], which provides a framework for defining “what” to be done. For example, in
configuration management, a support process area in CMMI, a specific practice says that access control
should be established. However, until the project has been created and configuration items have been
determined, such a practice is at best a declaration; access control setting is only possible after project artifacts
have been defined. For this reason, it can be noted that while an ALM platform such as VSTS supports CMMI,
customizations such as setting access control rights are still necessary and are performed manually [16].

3. The RALM Process

The primary benefit of a comprehensive ALM platform is the provision of all commonly used ALM
functionalities (or best practices) on a single platform. However, the numerous interdependent ALM activities
also greatly increase the complexity and difficulty of adopting the ALM platform. To avoid being overly
general, we propose to look at ALM at the project level. That is, once the project scope, budget, and time are
known, many activities can be defined down to the specifics, which help eliminating vagueness and avoiding
misfit. The RALM process is depicted in Figure 1, where VSTS is used as the target ALM platform although
the process is equally applicable to other ALM platforms including other commercial and open source ones.
RALM process consists of two phases: ALM definition and ALM platform initiation.

Build ALM
Requirements

ALM
Reference

Model

ALM
Definition
Template

My ALM
Definition
7

AT MTranslator

. .

Process Configuration | Engineering Er;g;;l:j;ng
Definition Guidance Practice Upload
Portal
\ [‘ :
To To To Other To Other
VSTS VSTS ALM Tool ALM Tool

ALM activity definition phase

ALM platform initiation phase

VSTS . ! Other . v
Output Process Configuration| ALM Process Configuration|
Template Guidance ** | Tool Template Guidance
Output

Figure 1. RALM process

In the ALM definition phase, the development team picks a project (“My Project” in Figure 1). An ALM
reference model is provided to help the development team capture and define its ALM activities. The
activities inside the reference model are currently known best practices, including requirements management,
change management, issue tracking, configuration management, project management, and so on. First, the
current practices of the project team are selected and sequenced into a development scenario, which is
reviewed against the reference model. Each ALM activity is captured in an activity template. The template has
an advantage in allowing the captured ALM activity definition to be reviewed in a time efficient manner.
Alternatively, on an ALM platform like VSTS, the definition can be directly configured into the platform. By
so doing, however, the settings become invisible: to review the settings the team must actually play with the
ALM platform, which can be a cumbersome and time-consuming process. Also, verifying satisfaction
becomes difficult since only a partial view of the ALM definition is revealed. In contrast, with the use of
templates the task of ALM activity definition is iterated until the team comes to an agreement. The end of the
definition phase produces a collection of customized ALM activities, which is collectively called “MyALM
definition” in Figure 1.

In the ALM platform initiation phase, the ALM activity definitions are implemented on the target ALM
platform. Done manually, the task of setting the ALM platform according to the definition tends to be tedious
and error-prone. Fortunately, state-of-the-art ALM platforms allow batched implementation of ALM
definitions through what are called the process definition files. To take advantage of batched setting, RALM
converts the customized ALM activity definitions into process definition files through a conversion tool
(ALMTranslator in Figure 1), which generates three types of files: the process definition files to be imported
to the target ALM platform, a configuration guide for the target ALM platform, and engineering practice
guidance which is published on the project portal. In our example, the process definition files are imported
into VSTS. Since not all settings can be accomplished through imports, the remaining settings (e.g., the access
control rights for team members) are performed manually according to the configuration guidance.

4. The design of ALMTranslator

Figure 2 shows the design class diagram of ALMTranslator, which consists of ALMParser, ALM2VSTS and
PracticeGenerator. The ALM definitions files are parsed into the ALM-XML model by the ALMParser. The
ALM-XML model is manipulated by the ALM2VSTS for generating the platform-specific process definition
files and the configuration guidance. ALM2VSTS also needs to get the configurations of target platform
through the specific ConfigLoader (VSTSConfigLoader in this case). Finally, the PracticeGenerator generates
the platform-independent engineering practice from the ALM-XML model.

ALM-XMLModel A

PracticeGenerator ALMParser

[+init () 1 +parseALMdef) |- - - o o o oo - [

t lidat raoal
+generate) T [reancatzo ConfinglLoader o piss

Project

+l0ad() |-disciplines
1 Fbudget
VAN

1

VSTSConfiguration
ALMZVSTS 1 VSTSConfiglLoader | 1 T —

| l— |+setting()
+genera teProcessl Def() 7 1.

+generateConfGuida()

1
1
VSTSProcessTemplate
[Fstructure

Figure 2. The design class diagram of ALMTranslator

5. Observations from field application and discussion

RALM has been applied to jumpstart the development of a balanced score card (BSC) application in an
enterprise solution provider. The waterfall process was adopted. The project duration was three months and
involved 11 developers from both headquarter and an offshore location. Each developer has a different access
control right to the code repository. The engineering practices adopted included configuration management,
issue tracking. The reports included bug rates, remaining works, and burn-down charts. Due to space limit we
will not go into detail. By applying RALM, it was observed that
e the project initiation phase, which included the ALM definition from the RALM templates, VSTS platform instrumentation,
and training, was completed in a work week; and
e the configuration guidance generated by RALM’s ALMTranslator enhanced the built-in guidance provided by VSTS, for
example, in proving a step-by-step guide for setting the issue types and states in issue tracking and in setting the access
control rights to the team members.
According to the classification of ALM tools by Goth [7], RALM can be seen as a combination of consulting
component and ALM plug-in. Since each team has its own needs, the challenge is to find suitable
implementations of ALM for complicated, real-life situations. This is has been reported even for teams that
belong to the same organization, where several case studies involved using VSTS as the platform for running
Scrum [11]. Medina-Dominguez et al. proposed the adaption of process template based on the project patterns
and a model to support process improvement by using patterns in a TFS environment [10]. In these works, the
tailoring of the ALM platform was performed manually. RALM can obviously help by proving a more
streamlined initiation.

6. Conclusion

RALM, a new method for jumpstarting ALM practices on state-of-the-art platform such as VSTS, has been
proposed. RALM is facilitated with tool support, e.g., ALMTranslator to convert the ALM definitions into
process definition files for VSTS. With ALMTranslator, process specialists adopting the RALM method will
define, review, and revise ALM process in a spreadsheet. Once validated, the definition is converted into
process definition files in VSTS. This not only expedites the ALM initiation, but also makes the definition
visible to all. With respect to the three challenges outlined in the Introduction, RALM achieves the
following benefits:
e The ALM reference model and templates provide a framework to facilitate the organization to define its own ALM
activities. In the organization, this helps teams adopt their own ALM activities and reduce the complexity of initiating
ALM activities.
e The software engineering guidelines is published on the project portal. The availability of such information helps the team
in abiding to the disciplines.

e The process of initiating ALM tool support is expedited and the problem of ALM platform misfit is effectively resolved.

7. Acknowledgement

This research is funded by the National Science Council of Taiwan under grant contracts 98-2221-E-029-022
and 98-2221-E-027-049-MY 3, and a grant from MOEA under grant contract 98-EC-17-A-02-S1-135.

References

[1] Alfonso Fuggetta, “Software process: a roadmap”, Proceedings of the Conference on The Future of Software Engineering ICSE '00, May, 2000, pp:25 — 34.

[2] Alvin W. Yeo, “Global-software development lifecycle: an exploratory study”, Proceedings of the SIGCHI conference on Human factors in computing
systems, March, 2001.

[3] Bennett, K. H., and Rajlich, V. T., “Software maintenance and evolution: a roadmap,” Proceedings of the Conference on The Future of Software Engineering,
Limerick, Ireland, 2000, pp. 73 — 87.

[4] Bill Curtis, Marc I. Kellner, Jim Over, “Process modeling”, Communications of the ACM, Volume 35, Issue 9, September, 1992, pp:75 — 90.

[5] Borland ALM, http://www.borland.com/us/solutions/index.html.

[6] Chrissis, M. B., Konrad, M., Shrum, S., CMMI: Guidelines for Process Integration and Product Improvement, Addison-Wesley, 2003.

[7] Goth, G., “Agile Tool Market Growing with the Philosophy,” IEEE Software 26(2), pp. 88-91, 2009.

[8] IBM Jazz, http://jazz.net/.

[9] Kaaridinen, J., Véalimaki, A., "Applying application lifecycle management for the development of complex systems: Experiences from the automation
industry,” Communications in Computer and Information Science 42, pp. 149-160, 2009

[10] Medina-Dominguez, F., Sanchez-Segura, M., Amescua, A., Garci, J., “Extending Microsoft Team Foundation Server Architecture to Support Collaborative
Product Patterns,” In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2007. LNCS, vol. 4470, pp. 1-11. Springer, Heidelberg, 2007

[11] Moore, R., Reff, K., Graham, J., Hackerson, B., “Scrum at a Fortune 500 Manufacturing Company,” In AGILE 2007, pp. 175-180, 2007

[12] Pfleeger, S. L., “The nature of system change”, IEEE Software, Vol. 15, Iss. 3, June, 1998, pp. 87-90.

[13] Pirkibauer, G., Ramler, R., Zeilinger, R., “An integration-oriented model for application lifecycle management,” ICEIS 2009-11th International Conference on
Enterprise Information Systems, Proceedings ISAS, pp. 399-402, 2009

[14] Rajlich, V.T., and Bennett, K.H., “A staged model for the software life cycle,” IEEE Computer, Vol. 33, Iss. 7, July, 2000, pp. 66-71.

[15] Sam Guckenheimer, Juan J. Perez, “Software Engineering with Microsoft Visual Studio Team System”, Addison Wesley, 2006.

[16] Semeniuk, J. and Danner, M., Managing Projects with Microsoft Visual Studio Team System, Microsoft Press, 2007.

[17] Shaw, M., “Prospects for an engineering discipline of software,” IEEE Software, Vol. 7, Iss. 6, November 1990, pp. 15-24.

[18] Turpin, R., “A progressive software development lifecycle”, Proceedings of the Second IEEE International Conference on Engineering of Complex Computer
Systems, October, 1996, pp. 208-211.

http://www.borland.com/us/solutions/index.html
http://jazz.net/

RAL gt pmd g SR T4

p#:2011/10/25

P e A

PR LA @t g EF R 2ot et (11D

FERAFA BAR

P E el 99-2221-E-029-017-

Fra

Bl

FRNET EEa A

R A RHR TR

VEREHFTIFEFTT

% 454

PRI BRE

p

o £k

99-2221-E-029-017-

i B2 X

R I

3 f s (11D

i B (F o
At @ LR - e
A% p PR LS s | RERE | g |7 PR
e (i (g 9% AL J 5 3% B T 2
fegg) | EHE) #H oo = ¥
%)
R 0 0 100%
e PiELBREL |0 0 100% #
¥~ T
it g 9 9 100%
P 0 0 100%
v %—4—\:‘ i+ 0
o T 0 0 100% .
S 9 0 0 100%
B e 0 0 100% n
R I
B4 & 0 0 100% + A
L4 3 3 100%
fgrsih A4 [E A4 | | 100% o
=X
(2R BLuersE |0 0 100%
LiEen 0 0 100%
L 9 2 100%
o AR Haar 2 |0 0 100% =
¥~ EE
it g 1 1 100%
L1 0 0 100% Y
K e 0
4 i 0 0 100% .
O 0 0 100%
1 ?P
A g 0 0 100% i
A
#1142 0 0 100% + A
L4 0 0 100%
graid A4 [Eaa 0 0 100%
A =
(hEE) LR 0 0 100% '
LiEmm 0 0 100%

H A%
(i Bt iigz &
5 hoyE B s d S
WEn L ER%EE
AT A R R
SRR N S R £
B2 E M E R
EE G F A

}ljo)

g

’i X538 P

freks

—

R E(FFHEEEN)

i/ e

Re|grga g A1 8

21

Fi

Byr A0 iR

T e

3
1
4e
g |FiHE/ iy
i
p

PEASHAEZ S (BR) Ak

OO O OO O o (o

R 640 %A] 7 h S R 2

FREL R R R R RARA E ST A S R R AR
w(f Q%f*%%%%~&£‘$m‘%gék HFBRLT) ATE R
ELgmaF LY R AR FRAEBFHEES > T- FEFTR o

L FE i r 8RR AR BTN P RERT- FE76
Wi
(A& 2 (G > 2100 % 5 %)
mEERYE
mEESERRS
(JH © & 7]
wm :
2. P S % a4 &Y g 1%
H> W #4 Orgd2~ 5 Oerd Oa
B O k® O ¢ EE
pag e 3t e Me
w1 (12100 3 52)

3%@§W$%‘ﬁﬁﬂ%‘ﬁg%@$%&’?Pf%1§ ® i
B (ff & scit S % AT A fﬁ%~@@~%$éé~ﬁ%%i?ﬁi)bz

500 F 3 *2)

PERAFI S ERIT LK

1. #& & Pseudo Sof tware #7#2 4 : E%? Pseudo Sof tware » #- IKIWISI (I" 11 Know It When
[See [t)enFEE k= &g FrFpfaild > { £ & 8 % Fit 431 Pattern ¢07 %3
&7 % o F P¥ Pseudo Sof tware » ¥ 12 22 it 48 1 A i1 Sof tBOM 5 A Ap R B % > 4ot o 5t
590 IRE O R S RCD R RO oehd A o

2.8 - B AP P F 0 202 0 fE5 RALM < RALM ";ﬁ' Ak ie- BHWA G
FHFEAFTHEYE LR TR FE ST AN E T AR Y MBI T R
B angr 2 AW EILEK A %$mﬁW4@ﬁﬂﬁﬁ%ﬁ»?@—ﬁﬂ%
RALM #7# #-¢h1 & AlMTranslator & i VSIS infzge 42 2 VSTS 2k dp 51 §T2* ot B
B E 2 o o e o Pen VSTS det 4 33§21 2 -

w

