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Abstract

As early as in the 1970’s, the notion of
software factory that treats software
development as a kind of factory production
had been proposed. However, software
factory has not yet been accepted by the
software development community. The
major reason is that factory model is
restricted to produce fix-type products. In
this research based on pseudo software, a
corresponding software product line model
is proposed. With this model, a software
factory resembling hardware factory model
is possible to be build.
Keywords : software engineering, software

factory, software product line, pseudo
software
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<assign>::= <var> = <const>;
<build>::=Build <set> from <set>;
<build>::=Build <set> from <set> and <set>;
<build>::=Build <set> for all <var> in <set>;
<select>::=Select any <var> from <set> and
select any <var> from <set> where <rule>;
<set>::=QueueOfWI|SetOfWI| TeamOfPP|SetOfPP|
ConstrainSetOfPS |PrerequisiteOfWI|
ConstrainSetOfPW
<rule>::=<rule> or <rule>,
<rule>::= expression,
<var>::= string
<const>::=string
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p = Project;
Build QueueOfWI(p) from SetOfWI(p);
Build TeamOfPP(p) from SetOfPP;
Build ConstrainSetOfPS(p) from TeamOfPP(p);
Build PrerequisiteOfWI(x) for all x in QueueOfWI(p);
Build constrainSetOfPW(p) from QueueOfWI(p)
and TeamOfPP(p);
Select any wi from queueOfWI(p) and Select any x
from TeamOfPP(p) where
PrerequisiteOfWI(wi) is empty,
([wi, x] is in ConstrainSetOfPW/(p)) or
([wi, _] is not in ConstrainSetOfPW(p)),
(wi.requiredSkill is in x.skillSet),
([x, wi.requiredSkill] is in ConstrainSetOfPS(p)),
CalendarOf(x,_) > 0.5,
CurrentProgress.cost < p.costUpperBound;
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p = Project;
Build QueueOfWI(p) from SetOfWI(p);
Build TeamOfPP(p) from SetOfPP;
Build ConstrainSetOfPS(p) from TeamOfPP(p);
Build PrerequisiteOfWI(x) for all x in QueueOfWI(p);
Build constrainSetOfPW(p) from QueueOfWI(p)
and TeamOfPP(p);
Select any wi from queueOfWI(p) and Select any x
from TeamOfPP(p) where
PrerequisiteOfWI(wi) is empty,
([wi, x] is in ConstrainSetOfPW(p)) or
([wi, _] is not in ConstrainSetOfPW(p)),
(wi.requiredSkill is in x.skillSet),
([x, wi.requiredSkill] is in ConstrainSetOfPS(p)),
minimum(wi.estimationTime / CalendarOf(x,_)
| x.PerformanceOFSkill(wi.requiredSkill));
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Rapid Application Lifecycle Management: a new Approach with

Tool Support
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®Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei, Taiwan

Abstract. Software lifecycle is the process by which software is conceived, developed, maintained, and decommissioned. To the
development team, initiating effective application lifecycle management (ALM) is challenging for three reasons. (1) ALM definition is
hard since lifecycle activities are interdependent and complex in nature that involves product, project, people, process, tool and technology.
(2) ALM activities require the support of correctly tailored tools. (3) Effective ALM activities execution requires discipline. To take on the
three challenges of initiating ALM, we present a new approach called Rapid Application Lifecycle Management (RALM). RALM
provides a reference model with a number of templates for ALM activity definition. Once customized, the templates are converted into
platform-specific process definition files with tool support. Observations from a field application of RALM are presented and discussed .

Keywords. Application lifecycle management, ALM definition, ALM discipline, ALM implementation, VSTS

1. Introduction

Application lifecycle is the process by which an application is conceived, developed, maintained, and
decommissioned [12, 14]. The “health” of the application very much depends on the lifecycle activities that
take place. For instance, inadequately defined requirements defy the best intention to develop good software;
insufficiently defined issue tracking states can prevent the real cause behind high defect rates from being
exposed; and so on. Typical lifecycle activities include requirements development, project planning, solution
development, requirements management, deployment, issue tracking, and so on [1, 2, 4]. Each of these
lifecycle activities can involve a multitude of technologies and tools. In this paper, we assume that the
development processes and activities are defined, executed, adapted, and managed on state-of-the-art
application lifecycle management (ALM) platforms, which are described in Section 2. While the use of ALM
platforms reduces the complexity of integrating development and management tools and allows the team to
quickly modify process as required, to the development team, the first hurdle lies in jumpstarting effective
application lifecycle management for a software development project on the target platform. Initiating ALM is
challenging in three respects:
®  ALM definition: A formal ALM definition helps software engineering team implementing the ALM on the selected ALM
platform. However, for most of the small-to-medium software teams, formally defining the ALM activities and their
interrelationships is in itself a very complicated undertaking [3, 18].
®  ALM discipline: ALM activities remain difficult to implement even after they are defined. In particular, coordination and
cooperation among developers are often viewed as non-technical overhead and there is usually a lack of willingness
among the team members to comply [17].
® ALM implementation: ALM activities require tool support for their implementation. Commercial and open source ALM
tools require tailoring to suite the team’s need. Again, misfits are common: a tool can offer too many un-wanted features
while some critical features may be missing [11].
To date, several approaches have been reported in the ALM literature. In order to avoid misfits brought by
adopting an ALM platform, Moore et al. suggest making modifications to the standard templates or even



creating new templates from scratch [11]. K&éridinen J. et al. have defined an ALM framework for
documenting the company’s ALM solutions and finding improvement for ALM solutions [9]. Pirklbauer G. et
al. identify key problem areas typically addressed by ALM and provide guidance on how to develop an ALM
strategy for software development organizations [13]. In this paper, we present an instrumented approach for
ALM definition, ALM discipline and ALM implementation. The approach is called Rapid Application
Lifecycle Management (RALM). RALM provides a reference model for ALM that can be used by software
team to jumpstart the task of ALM definition. The reference model is defined in a number of templates which
are in Microsoft Excel format. The conversion from templates to platform-specific settings is done by a tool
named ALMTranslator. The current version of ALMTranslator can be used to implement the defined ALM
activities on the Microsoft Visual Studio Team System (VSTS) 2005. In addition to the ALM implementation,
engineering guidelines for carrying through ALM discipline are also automatically published on the project
portal by ALMTranslator.

2. State-of-the-art ALM platforms

The development of ALM platforms and tools (e.g., Microsoft VSTS [16], Borland ALM [5], and IBM Jazz
[8]) has reached a point that they emphasize the customization of processes and tools to suit the development
team’s need. No longer are teams forced to accept a specific process, especially one that the team is unfamiliar
with. As a result, the same ALM platform can support waterfall, unified, agile, or any other home grown
software processes [15]. The main features of ALM platforms include configuration and change management,
issue tracking, project management, build management, report management, and so on. As can be seen,
substantial amount of work is involved in setting the platform for these functions to work correctly.
State-of-the-art ALM platforms fill the “how-to” gap for organizations that adopt process improvement
standards such as CMMI [6], which provides a framework for defining “what” to be done. For example, in
configuration management, a support process area in CMMI, a specific practice says that access control
should be established. However, until the project has been created and configuration items have been
determined, such a practice is at best a declaration; access control setting is only possible after project artifacts
have been defined. For this reason, it can be noted that while an ALM platform such as VSTS supports CMMI,
customizations such as setting access control rights are still necessary and are performed manually [16].

3. The RALM Process

The primary benefit of a comprehensive ALM platform is the provision of all commonly used ALM
functionalities (or best practices) on a single platform. However, the numerous interdependent ALM activities
also greatly increase the complexity and difficulty of adopting the ALM platform. To avoid being overly
general, we propose to look at ALM at the project level. That is, once the project scope, budget, and time are
known, many activities can be defined down to the specifics, which help eliminating vagueness and avoiding
misfit. The RALM process is depicted in Figure 1, where VSTS is used as the target ALM platform although
the process is equally applicable to other ALM platforms including other commercial and open source ones.
RALM process consists of two phases: ALM definition and ALM platform initiation.
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In the ALM definition phase, the development team picks a project (“My Project” in Figure 1). An ALM
reference model is provided to help the development team capture and define its ALM activities. The
activities inside the reference model are currently known best practices, including requirements management,
change management, issue tracking, configuration management, project management, and so on. First, the
current practices of the project team are selected and sequenced into a development scenario, which is
reviewed against the reference model. Each ALM activity is captured in an activity template. The template has
an advantage in allowing the captured ALM activity definition to be reviewed in a time efficient manner.
Alternatively, on an ALM platform like VSTS, the definition can be directly configured into the platform. By
so doing, however, the settings become invisible: to review the settings the team must actually play with the
ALM platform, which can be a cumbersome and time-consuming process. Also, verifying satisfaction
becomes difficult since only a partial view of the ALM definition is revealed. In contrast, with the use of
templates the task of ALM activity definition is iterated until the team comes to an agreement. The end of the
definition phase produces a collection of customized ALM activities, which is collectively called “MyALM
definition” in Figure 1.

In the ALM platform initiation phase, the ALM activity definitions are implemented on the target ALM
platform. Done manually, the task of setting the ALM platform according to the definition tends to be tedious
and error-prone. Fortunately, state-of-the-art ALM platforms allow batched implementation of ALM
definitions through what are called the process definition files. To take advantage of batched setting, RALM
converts the customized ALM activity definitions into process definition files through a conversion tool
(ALMTranslator in Figure 1), which generates three types of files: the process definition files to be imported
to the target ALM platform, a configuration guide for the target ALM platform, and engineering practice
guidance which is published on the project portal. In our example, the process definition files are imported
into VSTS. Since not all settings can be accomplished through imports, the remaining settings (e.g., the access
control rights for team members) are performed manually according to the configuration guidance.



4. The design of ALMTranslator

Figure 2 shows the design class diagram of ALMTranslator, which consists of ALMParser, ALM2VSTS and
PracticeGenerator. The ALM definitions files are parsed into the ALM-XML model by the ALMParser. The
ALM-XML model is manipulated by the ALM2VSTS for generating the platform-specific process definition
files and the configuration guidance. ALM2VSTS also needs to get the configurations of target platform
through the specific ConfigLoader (VSTSConfigLoader in this case). Finally, the PracticeGenerator generates
the platform-independent engineering practice from the ALM-XML model.

ALM-XMLModel A

PracticeGenerator ALMParser

[+init () 1 +parseALMdef) |- - - o o o oo - [

t lidat raoal
+generate) T [reancatzo ConfinglLoader o piss
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Figure 2. The design class diagram of ALMTranslator

5. Observations from field application and discussion

RALM has been applied to jumpstart the development of a balanced score card (BSC) application in an
enterprise solution provider. The waterfall process was adopted. The project duration was three months and
involved 11 developers from both headquarter and an offshore location. Each developer has a different access
control right to the code repository. The engineering practices adopted included configuration management,
issue tracking. The reports included bug rates, remaining works, and burn-down charts. Due to space limit we
will not go into detail. By applying RALM, it was observed that
e the project initiation phase, which included the ALM definition from the RALM templates, VSTS platform instrumentation,
and training, was completed in a work week; and
e the configuration guidance generated by RALM’s ALMTranslator enhanced the built-in guidance provided by VSTS, for
example, in proving a step-by-step guide for setting the issue types and states in issue tracking and in setting the access
control rights to the team members.
According to the classification of ALM tools by Goth [7], RALM can be seen as a combination of consulting
component and ALM plug-in. Since each team has its own needs, the challenge is to find suitable
implementations of ALM for complicated, real-life situations. This is has been reported even for teams that
belong to the same organization, where several case studies involved using VSTS as the platform for running
Scrum [11]. Medina-Dominguez et al. proposed the adaption of process template based on the project patterns
and a model to support process improvement by using patterns in a TFS environment [10]. In these works, the
tailoring of the ALM platform was performed manually. RALM can obviously help by proving a more
streamlined initiation.



6. Conclusion

RALM, a new method for jumpstarting ALM practices on state-of-the-art platform such as VSTS, has been
proposed. RALM is facilitated with tool support, e.g., ALMTranslator to convert the ALM definitions into
process definition files for VSTS. With ALMTranslator, process specialists adopting the RALM method will
define, review, and revise ALM process in a spreadsheet. Once validated, the definition is converted into
process definition files in VSTS. This not only expedites the ALM initiation, but also makes the definition
visible to all.  With respect to the three challenges outlined in the Introduction, RALM achieves the
following benefits:
e The ALM reference model and templates provide a framework to facilitate the organization to define its own ALM
activities. In the organization, this helps teams adopt their own ALM activities and reduce the complexity of initiating
ALM activities.
e The software engineering guidelines is published on the project portal. The availability of such information helps the team
in abiding to the disciplines.

e The process of initiating ALM tool support is expedited and the problem of ALM platform misfit is effectively resolved.
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