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Field-induced birefringence, also known as cross-polarization wave generation, has played an important role
in ultrafast nonlinear optics. In this paper we analyze birefringence induced by relativistic collective motion of

electrons driven by a high-intensity laser field. An analytical expression for the phase difference between the
parallel and perpendicular polarizations of a weak probe pulse with respect to the polarization of a strong pump
pulse as a function of intensity, density, and wavelengths is derived. It is shown that under typical experimental
conditions of high-field physics, the effect is well above detection threshold. The analysis is compared with

particle-in-cell simulations, and the agreement provides good support for the theory.

DOI: 10.1103/PhysRevA.83.033801

I. INTRODUCTION

Relativistic nonlinear optics is a research field recently
emerged from the rapid development of high-intensity
lasers [1]. In relativistic nonlinear optics the field in the laser
pulse is much stronger than the field that binds the outer
electrons of atoms and molecules, to the extent that the v x B
term in the Lorentz force cannot be ignored. As aresult the non-
linearity comes from the relativistic motion of free electrons
instead of the anharmonicity of the bound-electron oscillation
in atoms and molecules. Terawatt-class lasers have been
utilized to induce relativistic nonlinear optical phenomena
in underdense plasmas, including harmonic generation [2—4],
self-focusing [5—-7], self-phase-modulation [8], pulse compres-
sion [9], and optical rectification [10,11]. These phenomena
have also been studied by theoretical analysis [12-21] and
computer simulation [22-28].

Field-induced birefringence, also known as cross-
polarization wave generation, has played an important role in
ultrafast nonlinear optics. It is utilized in fiber mode-locking
lasers to generate femtosecond laser pulses [29,30]. It is the
key element of frequency-resolved optical-gating—the first
method capable of reconstructing the femtosecond laser wave
form (both amplitude and phase profiles) [31]. It is the mech-
anism underlying the most effective method for enhancing the
contrast of femtosecond high-intensity lasers [32]. It has also
been used to image the propagation dynamics of intense light in
a medium [33]. In the extreme case, experimental observation
of vacuum birefringence induced by virtual electron-position
pair creation has been considered [34].

In this paper we study relativistic birefringence induced by
a strong propagating laser field in underdense plasmas. For
relativistic nonlinear optics it is natural to consider a fully
ionized plasma as the nonlinear medium. This is because
plasma will not be damaged by a high-intensity laser, and
plasma is not limited by absorption in the deep uv spectral
range and beyond. In addition, transient plasma structures can
be fabricated by synchronized laser pulses to enhance the
nonlinear interaction [4]. We analyze the relativistic motion
of plasma electrons driven by a strong linearly polarized
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pump beam and a weak probe beam polarized at 45° with
respect to the polarization axis of the pump beam. Because
of the nonlinear relativistic motion of the electrons, the probe
beam experiences different indices of refraction in its two
polarization axes, and this results in a phase difference between
the two polarizations as a function of the intensity of the pump
beam, the plasma density, and the wavelengths of the pump
and probe beams. This makes the medium birefringent for the
probe beam.

In relativistic nonlinear optics, a relevant parameter is the
amplitude a of the normalized vector potential. Relativistic
effects become significant when a is not much smaller than 1.
Although relativistic nonlinear effects can be analyzed by
using a as the perturbation parameter, such an approach is
valid only when a <« 1. This is too restrictive considering
that currently a tabletop multiterawatt laser can easily produce
a field of a > 1. In this paper we use a’/a and 1 — 7> as
the perturbation parameters to derive the first-order analytical
solution that describes the relativistic birefringence induced
by a laser beam, where a and a’ are the amplitudes of the
pump beam and probe beam, respectively, and 7 is the index
of refraction. The starting point (unperturbed solution) is the
fully relativistic solution for the case with ' = 0 and n = 1,
which is exact for arbitrary a [15]. For most experiments
1 —n? is on the order of 1072 and a’/a can be chosen
«1; hence the first-order terms in the expansion already
provide a useful approximate solution without being limited
to a < 1. For field-induced birefringence it is not necessary
to carry out a three-dimensional analysis. This is because in
general third-order relativistic nonlinear effects do not rely
on the transverse gradient of the driving field or the transverse
gradient of the electron density, in contrast to second-harmonic
generation and optical rectification [20,21].

In Sec. II the nonlinear equations of motion for the electrons
driven by a high-intensity pump beam and a low-intensity
probe beam are derived. In Sec. III first-order analytical
solutions for the electron motion are derived. In Sec. IV
the difference between the indices of refraction for the two
polarization axes is derived as a function of the amplitude a,
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the plasma density n(, and the wave numbers k,k’ of the pump
and probe beams. Comparison with particle-in-cell simulations
is carried out in Sec. V. The close agreement between the
analytical calculation and simulation provides a good support
for the theoretical analysis.

II. EQUATIONS OF MOTION FOR THE ELECTRONS

In the following analysis we assume the laser to be focused
onto a preionized gas target. Preionization is done by the front
edge of the laser pulse or by a prepulse that has a broader
spatial profile and passes through the gas before the pump
pulse [4]. The ions are too heavy to move significantly within
the time scale of the laser pulse; hence they are considered as a
static distribution of background positive charges. Since in the
relativistic regime the energy of electrons’ thermal motion is
much smaller than that of their collectively driven motion, it is
possible to ignore the thermal motion and assume that within
the ultrashort time scale of the laser pulse the collectively
driven motion can be described by a cold fluid model. To
simplify the notation, in most places we use the normalized
vector potential a and the normalized scalar potential ¢ to
represent the electromagnetic fields. These two dimensionless
quantities are defined by

_ lelA _ lel® 2.1
T mec?’ mec?’ '
where e = —|e| is the electron charge, m, is the electron rest

mass, c is the speed of light, A is the vector potential, and &
is the scalar potential.

The pump and probe beams are both linearly polarized and
propagating in the Z direction. In a one-dimensional model the
normalized vector potential of the pump beam is a sin(k¢) X
and that of the probe beam is (a’/ V2)sin(k'’)(& + $), where

C=nz—ct, ' =n'z—ct, (2.2)
and n, n’ are the refractive indices of the pump and probe
beams, respectively. In combination, the normalized vector
potential a = a; X + ax§ + asZ is

!’

ay = asin(k?) + % sin(k'c"), 2.3)
ay = % sin(k'¢"), 2.4)
s = 0. 2.5)

We assume that the amplitudes a(¢),a’(¢’) satisfy a’ <« a and
the slowly varying condition

da da’
— = O(kea), — = O(K'ea), 2.6
dc (kea) v (k'ea’) (2.6)
where € <« 1. We also assume that 7,7’ satisfy the condition
of rarefied plasma

1 —n*=0(),

1 —7n?% = 0(). (2.7)

In the following analysis terms much smaller than O(¢) are
ignored.
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The analysis starts from the Lorentz equation dp/dt =
e(E+v/c x B) and the energy equation d(m.c’y)/dt =
ev - E. They are equivalent to

fl—l; = m,c [l% +V¢p—B x(Vx a)i| (2.8)
d _ 5 _B_a
E(mecy) =mec P - ( ” + V¢>) (2.9)

where B = v/c. The normalized scalar potential satisfies the
Poisson equation

(2.10)

where k, = w,/c and w, = (4we’ng/m,)"/? is the plasma
frequency for the ambient plasma density ng, and n, is the
electron density. The quantities n, and B are related by the
continuity equation

.B) =0. @2.11)

ot
Using the notations x; = x, X =y, X3 =2, X4 =ct, By =
dxs/(cdt) =1, and a4 = —¢, Egs. (2.8) and (2.9) can be

written as
dpM 2 day
= Zﬂu )

—(m cy)—mczz,Bv(gj: gi“) (2.13)

2.12)

Using the same notations, (d/dt) a,, = (39/9t +cB - V)a, can
be written as

dau _ Zﬁy&au’ (2.14)

hence the first term in the right-hand side of Eq. (2.12) is
mec(da,/dt) and the second term in the right-hand side
of Eq. (2.13) is —mc(day/dt) = m.c(d¢/dt). Therefore
Egs. (2.12) and (2.13) are equivalent to

4
da
— 2 v
(P = mecay) = —mec ;ﬂu w219
Lo @y = §) = mec? fjﬁ oa (2.16)
—mec(y — @) = mec . .
dt Y o 0X4
For © = 1 or 2, one may write Eq. (2.15) as
iy ) 224:,3 a e
— — MeCa)) = —M,C . .
dt - + - ox
For i = 3, since az = 0, one may write Eq. (2.15) as
de 2 Bav
- N . 2.18
v 2124/3 o (2.18)
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Subtracting n times Eq. (2.16) from Eq. (2.18), one obtains

d BRE
P —meen(y =)l = — mec® > By (B_x” 4+ )au.

v=I1,2,4 ¢ at
(2.19)

The subscript L represents the x and y components, and
the subscript || represents the z component. Because a, do
not depend on x, the right-hand side of Eq. (2.17) is zero.
Define f| such that the right-hand side of Eq. (2.19) is equal
to d(m.cnf)/dt, namely,

d 5 ad n o
—(m, =—-m, | — + = . (220
Tomeenfi) = —mec u;f <8x +Cat>au (2.20)
Then Eqs. (2.17) and (2.19) become
d
el —m, =0, 2.21
7 (pL —mecay) (2.21)

d d
Z[Pn —meen(y — @) = E(mecﬂfn)- (2.22)
The solutions are

(2.23)
(2.24)

pL=mecay,
py=mecn(y —1—¢ + fj).
The integration constant —1 is added after y in Eq. (2.24)

such that the initial condition p; = p; = 0 is satisfied when
a =a = 0.From 8 = p/(m.cy) one has

pL =", (2.25)
Y
1 —
Br=n-— W (2.26)

Moreover, from y*(1 — B} — ) =1 one obtains (I —
n?)y*+2By — C =0, where B=1n*(1 +¢ — fj) and C =
1+a3 +1n°(1 +¢ — f))*. Therefore to the first order of
1 —n?onehasy = C/(2B) — (1 — n*)C?/(8 B*), namely,

_1+ad +0' A+ - )

24— f)

[1+a? +n*d+¢— fi)*?
8n°(L+¢ — fi)3

where ¢ and n, are determined by Egs. (2.10) and (2.11),
and fj by Eq. (2.20). Because [3/0x) + (1/c)(3/31)]¢ = 0, in
Eq. (2.20) only the derivative of the probe beam with the phase
k'¢" and the amplitude a’(¢’) is nonzero. That is, fj =0 if
a’ = 0. When f; = 0and n = 1, Egs. (2.23)~(2.27) reduce to
the solutions in Ref. [15]. In Sec. III ¢, n,, and f; will be
solved and in Sec. IV the solutions will be used to evaluate
the difference between the refractive indices for the two
polarization axes experienced by the probe beam.

—(1—n? . (227

III. THE SOLUTIONS

In this section we complete the solutions in
Egs. (2.23)—(2.27) by solving for ¢ and n, from Egs. (2.10)
and (2.11), and for f; from Eq. (2.20). Set ¢ = ¢; + ¢y,
where ¢, is the slowly varying part of ¢ and ¢ is the
fast-varying part. As we shall see in Sec. IlIl A ¢y < ¢, and
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¢s = O(a) when the amplitude a is not much smaller than 1.
Moreover, as we shall see in Sec. IV, the refractive indices
satisfy

ek e
1 4 ¢ 1 + ¢;
hence the assumption in Eq. (2.7) is equivalent to
K K
2 = O(ea), 2 = O(ea). (3.2)

In Secs. III, IV, and V we consider the case with |k — k| =
O(k) and in Sec. VI the case with |k — k| < k is discussed.

A. Solution of ¢

In order to solve for ¢ from Eq. (2.10), one needs to evaluate
n./ng first. For the case with ¢’ = 0 and n = 1, the solution
of n,/ngis [15]

fe _ VY (3.3)
ng l+¢
We can make an educated guess that the lowest-order approxi-
mation for n,/ng is still of the same form for the case with
a' < a and 1 —n*> = O(e). This guess will be verified in
Sec. IIIC. Therefore to the lowest order, Eq. (2.10) is

equivalent to
14
Vp=k———1]).
o=5 (551

Keeping only the lowest-order terms in Eq. (2.27), namely,
neglecting f,¢ and setting n = 1, one obtains

(3.4)

1+a? 1 + ¢,
~ i 35
Y20 + 6y 2 (3-5)
and
1+a 1
4 ~ Y tai (3.6)

—_ 1l -l — — .
1+¢ 1 + ¢, 21+ 5 2
From Eqgs. (2.3) and (2.4) one has, by neglecting the terms
with a’?,
2(cos 0. — cos6_),

2
= +dd~ %[1 — cos(2ke)] —
3.7)

where 6, = k¢ + k’¢’. Therefore Eq. (3.4) can be separated
into the slowly and fast-varying parts as follows:

[ 14d2 1
Ve =k [2(1 +6,)? 2] G
) - 12, a® aa’
Vs = m |:? cos(2k¢) + E(COSQJF - cos@)] .
(3.9)

Note that the term cosf_ = cos(k¢ — k’¢’) belongs to the
fast-varying part, because here |k — k'| = O(k) is assumed.
Equation (3.8) leads to

1+ a2

2 _
(o) = 1+2V2¢, [k

(3.10)
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If V¢, < k[2,, Eq. (3.10) becomes approximately

2

(I+¢r =1+,

3 (3.11)

namely,

a2
c=y 1+ 5 -1,
[0} +2

which implies ¢; = O(a) when a is not much smaller than 1.
The condition Vzd)s < k?) holds, because Egs. (2.6) and
(3.2) imply V3¢, = O(k*e?a) = O(klz,e). Since in the one-
dimensional case ¢ s does not depend on x ; , one has V2o r=
82¢>f / axﬁ; hence Eqgs. (3.9) and (3.11) imply approximately

6= k> a’ aa’ (cosf; cosh_
F=aa+ a2 /2) | 8k2 NAWE k)l
(3.13)

where 0L =k £ k'’ ~ (k k) z—ct)and ko =k £ k' =
O(k). Using Eq. (3.2) one can see that ¢y = O(ea) and
consequently ¢y < ¢,. Equations (3.12) and (3.13) are the
lowest-order solutions of ¢, and ¢,. Note that for ¢, the
lowest order means O(ea) for the cos(2k¢) term and O(ea’)
for the cos 6. terms. Even though the cos 64 terms are much
smaller than the cos(2k¢) term in Eq. (3.13), as we shall see in
Sec. IV, only the cos f. terms are relevant to the birefringent
effect.

(3.12)

B. Solution of f
The term f| is defined in Eq. (2.20), which is equivalent to

n o
(nfn)——c > ﬂ”(ax” cat>““‘ (3.14)

v=1,2,4

Since [9/dx) 4+ (n/c)(8/01)]¢ = 0, the derivative of a4 = —¢
equals the derivative of the cosf. terms in Eq. (3.13) and
the derivatives of a; and a, equal the derivatives of the
(a’/+/2)sin(k'¢’) terms in Egs. (2.3) and (2.4). As mentioned
at the end of Sec. III A, the terms with cos 6+ in Eq. (3.13) are
O(ea’), while the term (a’ /+/2) sin(k'¢’) in Eqs. (2.3) and (2.4)
is O(a’); therefore to the lowest order the term with v = 4 in
Eq. (3.14) can be neglected. Equation (3.14) is approximately

dfn nd
Zﬂv (a_x” C@t) a,.

Since B8, = a,/y for v = 1,2, Eq. (3.15) can be written as

d 0 ad
ﬁ e _L 4 — n ai’
dt 2y \dx; ¢ ot
where ai is given in Eq. (3.7). From Eq. (3.7) and [9/0x) +
(n/c)(@/0t)]¢ = 0, Eq. (3.16) equals
dfy _aa" ¢ (9 n3d
dt 242y \dx; cat
Since 64 = k¢ £ k'¢/, one has

ad n o
— 0y = £k
(E)x” + c8t> + (" —m).

(3.15)

(3.16)

) (cosO; —cosO-). (3.17)

(3.18)

PHYSICAL REVIEW A 83, 033801 (2011)

Moreover, the term 1/y in the right-hand side of Eq. (3.17)
can be changed to df./dt by using the following procedure.
From ¢{ = nz — ct and Eq. (2.26) one obtains

d 1 s
—gwc(ﬁ“—l)%—c +¢ .

3.19
7 (3.19)
From 01 ~ k¢ and Eq. (3.19), one gets
1 -1 do
A (3.20)
Y Ck:t(l + ¢Y) dt
SetD = 9/0x + (n/c)(9/9t) and F = F(6;) withi = +or —.

The right-hand side of Eq. (3.17) contains terms of the form
(1/y)DF. Because DF = C(dF/dbt;), where C =Db; =
+k'(n" —n) as shown in Eq. (3.18), and 1/y ~ C(d6;/dt),
where C = —1/[ck+(1 + ¢,)] as shown in Eq. (3.20), one has

~dF do; ~dF
cC——~=cC—,

de; dt dt
where CC =k'(n —n')/[cky(1+ ¢5)] when 6; =6, and
CC = —k'(n —n")/[ck—(1 + ¢5)] when 6; = 6_. Therefore,
the right-hand side of Eq. (3.17) can be changed from (1/y)DF
to the form d F'/dt as

dfy adk(n—n')d (COS9+ cosf_
dt 2421+ ¢,) dt \ ki k_

and the solution is approximately

l(DF) (3.21)
14

> , (322

= ad'k’(n —n") <cos 0, cos 9) . (3.23)
2V2(1 + ) \ ks k-
From Eq. (3.1) and k+ = k £ k’ one obtains
/ -2 11 Kkesk_
T A0t ) < - ﬁ) = 0tk Y
and Eq. (3.23) becomes
kiaa/
fi= N BT (k_cosOy +kycosh_). (3.25)

Using Eq. (3.2) one can see that fj = O(ea’). This is the

lowest-order solution of fj.

C. Solution of n,

Finally we solve for n, from Eq. (2.11). Equation (2.11) is
equivalent to

on,
; 4+cB-Vn,+n.cv.-g=0. (3.26)
Since (8/0t + ¢ - V)n, = dn./dt, Eq. (3.26) is equivalent to
dne =0 (3.27)
dt o ’
The solution is
ne = ng exp (—/ cV. ,Bdt) . (3.28)

To obtain the value n,/ny, we must evaluate the integral in
Eq. (3.28). Because V - (y ) is much simpler than V - 8, we
separate the integrand into two terms,

cV~ﬂ=c|:yﬂ~V%+%V-(yﬂ):|. (3.29)

033801-4
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From V(1/y) = —(1/y?)Vy, the first term in Eq. (3.29) is

Vo Yg vy _L(dr 9
cyB-V == (B V)= y(dt at)' (3.30)

From Egs. (2.25) and (2.26), the second term in Eq. (3.29) is

0 0
EV'(VB)=£{£+—[n(y—1—¢+fu)]}
4 y 9x1  9dx
cn o
R ——(y -+ fp) (3.31)
Y ox)

where da, /ox; = 0, because a; does not depend on x,,
and n can be taken as a constant, because its deriva-
tive dn/dx; = O(ke?) [obtained from Eq. (3.1), kf,/k2 =
O(ea),and 9¢/dx = O(kea)] canbe neglected. Substituting
Egs. (3.30) and (3.31) into (3.29), it becomes

ldy 1—-n*dy cn{( d na
V.g=—_="2 AT A T
cv-B ydt+ y 8t+y 8xH+c3t v
_cn g — fi) (3.32)
Y 8)CH ’ ’

where we subtracted (?/y)(dy/dt) in the second term and
added it back in the third term. To obtain n./n¢ in Eq. (3.28),
we must evaluate the integral [ ¢V - B dt. The first term in
Eq. (3.32), which is equivalent to —d(In y)/dt, can obviously
be integrated. The other terms in Eq. (3.32) are all of the form
(1/y)(DF), where D represents the differential operator 9/01,
9/dx) 4+ (n/c)(@/0t), or 9/0x;. As mentioned in Sec. III B,
whenD = 9/0dx + (n/c)(9/0¢) the term can be changed to the
form d F/dt. We shall show in what follows that terms with
D = 9/9t and D = 9/9dx can also be changed to the form
dF/dt. Hence they all can be integrated. For this purpose
we set 0 =k¢, 6, =0,, 03 =0_, and k| =k, ky = k4,
k3 = k_. First we show that the second term in Eq. (3.32) is
approximately equivalent to [(1 — n%)/(1 + ¢,)1(dy /dt). Let
F = F(6;) withi =1, 2, or 3, since d0; /0t = —ck;, one has

oF dF 96; dF

— = —— = —ck;—.

ot do; ot do;
Similar to the derivation of Eq. (3.20), from Eq. (3.19) and
0; = k;¢ one has

(3.33)

1 -1 do;
-~ (3.34)
y  cki(l1 4 ¢y) dt
Combining Eqs. (3.33) and (3.34), one gets
10F 1 dF
~ (3.35)

y ot 1+¢, di’
As can be seen from Egs. (3.5) and (3.7), y consists of
functions F(6;) with i = 1, 2, or 3; therefore by Eq. (3.35)
the second term in Eq. (3.32) is
l—n?dy _1—n*dy
y ot T l+¢, dt
Next we show that the last term in Eq. (3.32) is approximately
[1/(1 + ¢5)ld(¢p — fy)/dt.Let F = F(6;) withi =1, 2, or 3;
since 96; /x| ~ k;, one has
oF dF 36,  dF
3)CH - d@[ 8)6” ld@,'.

(3.36)

(3.37)
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Combining Egs. (3.34) and (3.37), one gets
19F -1 dF

Yty dr

As can be seen from Eqgs. (3.13) and (3.25), ¢ — f consists

of functions F(6;) with i = 1, 2, or 3; therefore by Eq. (3.38)
the last term in Eq. (3.32) is

- (3.38)
Y 9x

@ —fp 1 d@—f)

Y 3X|| 1+¢§‘ dt
Ll do_ 1 dp
T1t+edt 1+¢, dt’ (3-39)

where for the first term in Eq. (3.39) the denominator 1 + ¢
is replaced by 1+ ¢. This can be done, because d¢/dt is
small (¢ is slowly varying and ¢, is small) and terms of
order smaller than d¢/dt can be neglected. Finally we show
that the third term in Eq. (3.32) is approximately —[1/(1 +
@s)1(df/dt). The differential operator for the third term is
D = 9/9x; + (n/c)(9/01), the same as that in the right-hand
side of Eq. (3.16). The proof can be done by simply comparing
the third term with Eq. (3.16). Since ¢; is a function of a(¢),
one has [9/0x) + (/c)(9/9t)]¢s = 0; hence from Eq. (3.5)
the third term in Eq. (3.32) is

c 0 d c (0 bl a?
_"(_+2_>M_<_+z_)_l,
y \dx; cot y \dx,  cdt) 2(1+ ¢y)

(3.40)
Comparing Eq. (3.40) with (3.16), one gets
c 0 d 1 d
e LA R CYY)
y \0x c ot 1+ ¢ dt

Substituting Egs. (3.36), (3.39), and (3.41) into Eq. (3.32), it
becomes approximately

1d 1 d 2
ydt  1+¢dt dt \1+ ¢
d 14
1—nH— : 3.42
+( n)dt(“r@) (3.42)
From Egs. (3.28) and (3.42), one obtains
Z—e =exp[lny — In(1 + ¢) + g1, (3.43)
0
where
2fi 2 ( Y )
= —(1- —-1). 344
s ( n)1+¢s (3.44)

An integration constant —1 is added after y /(1 4 ¢y) in
Eq. (3.44) such that g =0 is satisfied when a =a’ = 0.
Equation (3.44) is the lowest-order solution of g, whose first
term contains fj = O(ea’) and second term contains 1 — n*. If
a’' =0andn = 1, then g is zero. From fj in Eq. (3.25), 1 — n?
in Eq. (3.1), and y /(1 + ¢5) — 1 in Egs. (3.6) and (3.7), one
obtains

% &2
=L os2ke)
E T 20 +a22p2 | 262

!’

aa
+———(cos 64 + cos 9)] .

3.45
V2kK' ©45)
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Comparing with ¢, in Eq. (3.13), one can see that g is

of the same order as ¢//1 + a?/2, namely, O(e) for the

cos(2k¢)term and O(ea’/a) for the cosfy terms. Because

g < 1, Eq. (3.43) is approximately
ne

oY 14y,

3.46
ngp 1+¢ (3.40)

As mentioned before it differs from Eq. (3.3) only by a first-
order perturbation term g. At this point we have completed the
solutions of B, By, ¢, and n./ny to the first-order correction.
These solutions will be used in Sec. IV for the analysis of
relativistic birefringence.

IV. RELATIVISTIC BIREFRINGENCE

The time-dependent electron density n,, electron velocity
B, and potential function ¢ derived in Secs. II and III
serve as the source terms of the Maxwell equation. These
source terms result from the nonlinear oscillation of the
electrons, from which the change of the refractive indices
in the two perpendicular axes can be derived. In the
Coulomb gauge V - a = 0, the normalized transverse Maxwell
equation is

2
<v2 - ia—) a, =kf,l'z—;ﬂL + <1%> @)

c? 9t 0x, \c 0t

Because ¢ does not depend on x |, it is

1 92 n
2_ - 7 — 2 ¢
(V 2 aﬂ)aj_ kp o ,31_.

Equations (2.25) and (3.46) imply

4.2)

a| a|
14¢)~
1+¢>( &

Rep, = ~ (1+g— i ) (4.3)
no 1 + ¢ 1+ ¢

where 1+¢ =1+ ¢y)[1+¢s/(1+¢s)]. As mentioned
after Eq. (3.45), both g and ¢ /(1 + ¢;) are O(¢). In Eq. (4.3)
the first term a, /(1 4 ¢5) is the lowest-order term and the
others are the first-order perturbations. The Maxwell equation
for the lowest-order driving field is

2
V2 — 0 — Wi a¥ =0.
22 1+¢,) *

The solutions are given in Egs. (2.3) and (2.4) with the
refractive indices

4.4)

k2 k/Z

TS

R/
L+,

(4.5)

as mentioned in the beginning of Sec. IIl. In this paper we
focus on how the refractive index is changed by the first-order
perturbations. From Eq. (4.3) it can be seen that to the first-
order correction the Maxwell equation is

1 92 K2 k2a
(Vz____ P )alz peL <g— ¢ )
2o 1+, 1+ ¢; 1+ ¢;

(4.6)
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From ¢/ in Eq. (3.13) and g in Eq. (3.45), one obtains

kp <g_ by >
1+ ¢; 14 ¢,

kiaa' 3a cos(2k¢) 1 1
= + |\ — 5 Jcosby
2V2(1 4 a2/22 | 4v2a'k? kk' k3

1 1
+ W_i_g cosO_ |,

where 04 = k¢ £ k'¢’ and k+ = k £ k’. Moreover, from the
a; in Egs. (2.3) and (2.4), one has a; = asin(k¢) and
a, ~ 0. Hence for L = 1 the right-hand side of Eq. (4.6) is
approximately

kpar ( 9y
1 + ¢ 1+ ¢

and for L = 2 it is approximately

4.7

) =aa’sin(k'¢") + R, (4.8)

2
kypa (g— ¢r ) =0
1+ ¢; 1+ ¢ ’

where in Eq. (4.8) the term aa’sin(k’¢’) comes from a; ~
a sin(k¢) times the cos 64 terms in Eq. (4.7) and

4.9)

e ( . ) (4.10)
0=— |5+, .
421 + a2 /22 \k} k2

R = Asin(k¢) + Bsin(3k¢) + C sin(2k¢ + k'¢')

+ Dsin(2k¢ — K'¢)). @.11)

The 3-w term sin(3k¢) is the source of third-harmonic
generation [20]. It was shown in our previous works that for
the three-dimensional case R also contains 2-w terms sin(2k¢)
and cos(2k¢) which are the source of second-harmonic
generation [20], and the slowly varying 0-w term which is
the source of terahertz radiation [21]. In this paper we are
concerned with only the 1-w term «wa’ sin(k’¢”), which changes
the refractive index n’ for the probe beam. From Egs. (4.6),
(4.8), and (4.9), in the % direction (L = 1) the probe beam
satisfies

1 32 k2 ’
(VZ _ —[7) a_ Sin(k/é‘/) = ad sin(k/é‘/),

2otz 1+¢, /)2
4.12)
and in the y direction (L= 2)
192 k2N a
Vie - — - 2 ) —sin(k'¢)=0. (4.13
( Ry 1+¢S>ﬁsm( ¢ 4.13)
Since
2
. N . /ot
Sln(k C ) = _Wﬁ sm(k C ), (414)
Egs. (4.12) and (4.13) can be written respectively as
122 92
2 nx 0 . _
(V — C—2m>61/ Sln(k/é'/) = 0, (415)
2 a2
, My 0 . _
(V — C_zﬁ a’ sm(k/{/) = O, (416)
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where
[ R v
1+ ¢ k
k2 / k2
no=.1- o/ . (4.18)
’ 1+ ¢;
The birefringence effect represented by n}, — 1, is

RO S Ft ). @19)
Ny =My =~ w2 8(1 + a2/2)%k ki k) :

The intensity scaling is 7}, — 1, oc a*/(1 4 a*/2)?, the density
scaling is 1, — 1} « k2 o ng, and the wave number depen-
dence is ), — 0}, o< (1/k*)(1/k* + 1/k2), where ks =k +
k'. Equation (4.19) is verified by particle-in-cell simulation in
Sec. V.

An intuitive way of understanding the origin of this
relativistic birefringence is by looking at the Maxwell equation
of Eq. (4.2). In Eq. (4.2), the right-hand side is proportional
to n.B., which represents the “nonlinear current density”
resulting from the nonlinear motion of the electrons. It can
be decomposed into two terms as shown in Eq. (4.3). The first
term a, /(1 + ¢;) is isotropic in the x-y polarization plane,
which yields the isotropic refractive indices shown in Eq. (4.5).
The second term, as shown in the right-hand side of Eq. (4.6),
contains a plasma wave of the form cos(k¢ + k’¢’) multiplied
by a, . To the lowest order this term represents the scattering
of the pump beam into the probe beam by the plasma wave.
Because the pump beam is polarized along the x axis, the
scattered wave adds to the probe beam only in the x axis
direction. This scattered wave modifies the refractive index
along the x axis. The plasma wave of the form cos(k¢ + k'¢")
can be traced back to the nonlinear interaction (v/c) x B in the
Lorentz force. This nonlinear interaction is significant only in
the relativistic regime, where |v/c| is not much smaller than 1.
The mixing of the pump and the probe beams by the (v/c) x B
term results in a modulation of the form cos(k¢ &+ k'¢’) in
the electron motion, which in turn yields an electron density
modulation (plasma wave) of the same form through the
continuity equation.

V. COMPARISON WITH PARTICLE-IN-CELL
SIMULATIONS

In this section the theoretical result given in Eq. (4.19) is
examined by one-dimensional particle-in-cell simulation [35].
In the simulations, a linearly polarized pump pulse with a
fixed wavelength A = 810 nm and a linearly polarized probe
pulse with various wavelengths A" copropagate in a plasma
slab of length L. The probe pulse is 45° polarized with respect
to the polarization axis of the pump pulse. The wavelength
of the probe pulse is chosen to be far enough from that
of the pump pulse such that the self-phase-modulation or
Raman scattering of the pump pulse does not interfere with the
birefringent effect. The full width at half maximum (FWHM)
pulse durations of the pump pulse and the probe pulse are
162 and 49 fs, respectively. The duration of the pump pulse
is chosen to be short enough such that for the range of a
in the simulations the pulse energy is within the reach of
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a tabletop multiterawatt laser. It is also chosen to be long
enough compared with the period of plasma oscillation to
reduce transient effects. The duration of the probe pulse is
chosen to be smaller than that of the pump pulse such that it
samples the peak region of the pump pulse. It is also chosen to
be long enough such that the effect of group velocity dispersion
is negligible. The total length of the simulation domain is
230 pm and the grid size is Az = A’/1024. The simulation is
carried out in the moving-window mode to save computation
time and memory usage. A 22-um-long density ramp is placed
at the plasma-vacuum interface to reduce the transition effects
induced by the laser pulses while entering the plasma slab. In
order to determine the phase of the probe pulse precisely, the
simulated wave form of the probe pulse is curve fitted to a sine
wave at the pulse peak. This enables accurate calculation of
the phase difference between the two orthogonal polarizations
in the probe pulse.

From Eq. (4.19), it is seen that the optical path difference
8. = (n, — n})L satisfies

F(M_Sk’zaL Lo a2
PTEL T k) T a2

(5.1)

In the simulation we measure the difference of the location
8L = Zxme — Zyma» Where z, —and z,  are the points at
which the x- and $-direction fields have the maximum value.
We compare the data F(8;) = [(81</2<$L)/(k;‘,L)](1/k?F +
1/k?)~" with the theoretical result F(8;) = a®/(1 + a?/2)?
in Fig. 1, where A" = 2/ k" ranges between 472 and 574 nm,
no :meczklz,/(4rrez) ranges between 6.7 x 10'8/cm? and

2.8 x 10"/cm?, and L ranges between 383 and 880 um.

0.8 T T T T T T T T T T

0.6 .
. § oO0g

~

R 04} o 0 4
R o 5

02} .

00 " 1 " 1 " 1 " 1 " 1 "

0.0 0.5 1.0 15 2.0 2.5 3.0
a

FIG. 1. Comparison between the simulation data (squares) and
the theoretical prediction (curve) given in Eq. (5.1). The label for the
x axis is the amplitude a of the normalized vector potential defined by
Eq. (2.1), and the label for the y axis is the function of the optical path
difference F (5, ) defined by Eq. (5.1). Both of them are dimensionless
quantities. For the data with ascending a, the wavelength of the probe
pulse, the plasma density, and the propagation distance are A’ (nm)
= 475, 472, 492, 512, 533, 554, 475, 574, 532, 475, 477, 482, and
502, ng (10" /cm?) = 20, 28, 18, 13, 10, 8, 10, 6.7, 7,7, 8, 7.5, and
7,and L (um) = 582, 383, 383, 383, 383, 383, 482, 383, 582, 880,
781, 781, and 781, respectively.
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All the simulation data fall close to the theoretical curve of
Eq. (5.1) and thus support the theory well.

VI. DISCUSSION AND SUMMARY

The phase difference between the two orthogonal polariza-
tions of the probe pulse A¢ = k'(n, — ;)L is on the order of

1072 for the ranges of a,ng,k,k’,L considered in this paper.
Although this is a small phase difference, it can be measured
by using the technique of balanced detection, which has a
typical phase sensitivity of 10™* [36]. To reach the condition
of L ~ 400 pm, the pump pulse must be focused to a spot size
for which the confocal parameter is larger than 200 pwm. This
means the FWHM focal spot size must be larger than 8.5 pm.
In the meantime, to reach the condition of @ = 2, the intensity
of the pump laser at the focal spot must exceed 8.4 x 10'3
W /cm? for A = 810 nm. These two conditions imply that the
pump laser must be able to deliver 1.2 J of energy if the
pulse duration is set to be ~160 fs and proportionally for other
pulse durations. This condition can be met by existing tabletop
high-power lasers based on chirped-pulse amplification.

In designing an experiment with a realistic three-
dimensional laser beam, one should keep the plasma density
low enough to avoid transverse modulational instability. From
the nonlinear refractive index in Eqs. (3.12) and (4.5) and
the analysis in Ref. [12], transverse modulational instability
becomes a concern when

2.2
u)oa)p

1
1 —
8c? ( J1+ a2/2)
Therefore the constraint on plasma density set by the transverse
modulational instability is

> 1. 6.1)

8c2m,
o< .
drretwi(l — 1/4/1+a?/2)

All the cases of particle-in-cell simulation presented in Fig. 1
satisfy this constraint. For the laser parameters we suggested
a=1-2, wyg =7.2 pum (FWHM focal spot size of 8.5 um),
and the density should be kept below (2.4-1.0)x 10" cm~3.
In Sec. V we limited our discussion to the case of |k — k| =
O(k). Such a consideration arises from the experimental point
of view. If k' is close to k, the pump pulse may generate
frequency components at the frequency of the probe pulse by
self-phase-modulation and Raman scattering. These frequency
components will interfere with the birefringence measurement.
From a theoretical point of view the case of k" — k can also
be analyzed by the same method. The only difference between
these two cases is in the proper separation of the fast and
slow components in the nonlinear source terms. When k' — &,
from Eq. (3.1) one has n” — n and k'¢’ — k¢; hence the term
cos6_ = cos(k¢ — k'¢’) approaches 1. For this case the term
cos 6_ should not be included in the fast-oscillating part of

n (6.2)
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v /(1 + ¢) — 1 [the right-hand side of Eq. (3.9)] and hence
should disappear in ¢ ;. Similarly, since the derivative of cos 6_
approaches zero, it should also disappear in df} /dt [the right-
hand side of Eq. (3.17)] and f}, and hence in g which contains
fiand y/(1 4+ ¢) — 1. For this case Eq. (4.7) then becomes

ks (g R ) _ khaa' |:3a cos(2kZ)
1 + ¢, 1 4 ¢, 2V2(1 +a? /22 L 4vV2a'k?
11
+ (W — Z) cos 9+i|. (6.3)

Multiplying Eq. (6.3) by a; & asin(k¢), one obtains that for
the case k' — k

—k$a? 11
az%ﬁa+ﬂﬂﬂ<ﬁT_Z)’
and Eq. (4.19) becomes
o V2 —kya® !
T TS 0k T 80+ a2k (E - Z) ©3)
where ky = k + k’. Namely, for the case k" — k, one has
—3k?,a2

32(1 + a2/2)%k*

(6.4)

/

0, — i, ~ (6.6)

In summary, we analyzed the effect of relativistic bire-
fringence induced by a high-intensity laser field in plasma.
The phase difference for the parallel and perpendicular
polarizations caused by the relativistic motion of electrons
is proportional to the square of the plasma density, and its
dependence on intensity reaches a maximum at a = +/2. The
saturation at @ > /2 is due to the relativistic mass increase of
electrons. The analytical result was compared with particle-
in-cell simulations, and the agreement provides good support
for the theory. For typical intensities, densities, and interaction
lengths in experiments in high-field physics, the phase dif-
ference is well above the detection threshold. This nonlinear
effect may thus be utilized for the diagnosis of relativistic
laser-plasma interactions or characterization of laser pulses
with relativistic intensity, for which conventional nonlinear
optics is impeded by optical breakdown and spectral limitation.
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Abstract:  An analytical expression for relativistic birefringence induced by high-intensity
laser field in plasma is derived. Its dependence on intensity, wavelength, and density is clearly
displayed. The theory is verified by particle-in-cell simulation.
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1. Introduction

Field-induced birefringence, also known as cross-polarization wave generation, has played an important role in ul-
trafast nonlinear optics. It is utilized to achieve passive mode-locking in fiber lasers [1, 2] as well as to enhance the
contrast of high-intensity lasers [3]. It is also the key element of frequency-resolved-optical-gating for femtosecond
waveform characterization [4].

In this paper we study relativistic birefringence induced by a strong propagating laser field in underdense plasmas.
For relativistic nonlinear optics it is natural to consider a fully ionized plasma as the nonlinear medium. This is because
plasma will not be damaged by high-intensity laser, and plasma is not limited by absorption in the deep UV spectral
range and beyond. In addition, transient plasma structures can be fabricated by synchronized laser pulses to enhance the
nonlinear interaction [5]. We analyze the relativistic motion of plasma electrons driven by a strong linearly-polarized
pump beam and a weak probe beam polarized at 45° with respect to the polarization axis of the pump beam. Because
of the nonlinear relativistic motion of the electrons, the probe beam experiences different indexes of refraction in its
two polarization axes as a function of the intensity of the pump beam, the plasma density, and the wavelengths of the
pump and probe beams. The induced birefringence rotates the polarization of the probe beam.

In relativistic nonlinear optics, a relevant parameter is the amplitude a of the normalized vector potential. Relativistic
effects become significant when a is not much smaller than 1. Although relativistic nonlinear effects can be analyzed
by using a as the perturbation parameter, such an approach is valid only when a < 1. This is too restrictive considering
that currently a tabletop multi-terawatt laser can easily produce a field of @ > 1. In this paper we use @’/a and 1 —n?
as the perturbation parameters to derive the first-order analytical solution that describes the relativistic birefringence
induced by a laser beam, where a, @’ are the amplitudes of the pump beam and probe beam respectively, and 7 is the
index of refraction. The starting point (unperturbed solution) is the fully relativistic solution for the case with @’ =0
and N = 1, which is exact for arbitrary a [6]. For most experiments 1 —1? is on the order of 10~2 and a’/a can be
chosen < 1, hence the first-order terms in the expansion already provide a useful approximate solution without being
limited to a < 1.

2. Solutions for the relativistic electron motion

The normalized vector potential a = a; £ + a»9 + a3Z of the pump and probe combined laser field is a; = asin(k{) +
d'sin(k'¢") /2, ay = d'sin(k'¢") /v/2, and a3 = 0, where § = nz—ct, {’ =0’z —ct, and 17, 0’ are the refractive index
of the pump and probe beams respectively. The Lorentz equation is given by

dp _ ,[l0a _
® e Latw(p ﬁx(an)}, (1)

d o 1 da
E(mecw = meC ﬁ : (cat +V¢) , 2



where 8 = v/c. The normalized scalar potential ¢ in Egs. (1) and (2) satisfies the Poisson equation
V29 =k (ne/no — 1), 3)

where k, = @,/c and w), is the plasma frequency. The quantities n, and 8 in Eqgs. (1) and (2) are related by the
continuity equation

on,/dt+cV-(n.f)=0. €]
The solutions are p = m.cyf and
a| n(1+¢_fH>
= —, = _—, 5
B. 7 Bi=n v 6))
a1t gt [1+a +n2(1+¢—f))*?

(1-71%)

6
M(1+6—f)) S (1+0— 1)) ©

where the subscript L represents the x and y components and the subscript || represents the z component. Under the
condition |k —k'| = O(k) the solutions of ¢ = ¢;+ ¢y, f|, and n, are

Oy = \/14—7a2 I, o= L £005(2k§)+‘£/ cosf. cosf_ 7
s = 2 ) f= 2(1+a2/2) | 8k2 V2 ki 2 )
Y e (k_cos 0, +k cosf_) )
= _cos cos6_),
NG TTEWE e tHE
R Y _Sig a7 a—zcos(ZkC)—&-La/(cosG +cos6_) )
no  1+¢ 2(1+a2/2)3/% | 2k2 NGT2Y + RE

where 0. = k{ + k' and ke = k+ kK = O(k).

3. Relativistic birefringence

The time dependent electron density 7., electron velocity 3, and the potential function ¢ serve as the source terms of
the Maxwell equation, from which the change of the refractive indexes in the two perpendicular axes can be derived.
In the Coulomb gauge V -a = 0, the normalized transverse Maxwell equation is

(V _;ﬁ aL:kpnfoﬁL. (10)

From the solutions given in Egs. (5)-(9) one can evaluate the right hand side of Eq. (10) and show that the probe beam
satisfies in the £ direction (L= 1)

2 71/2 92
v2_1x9 fain(H e —
2 30 a'sin(k'¢") =0, (11)
and in the y direction (L= 2)
72
> 02
(Vz — 112}813) a/ Sin(k/cl) = O, (12)
where
Ka? 11
I ~ Y A - - . 13
=™ 81 a2 /222 (ki * k’i) 4

The intensity scaling is 1, — 7, o a*/(1+a?/2)?, the density scaling is Ny — My o< k;‘, o< nj, and the wave number
dependence is 1), — 1} o< (1/k")(1/k% 4 1/k%), where ks = k+k". Eq. (13) is verified by particle-in-cell simulation
in Section 4.



4. Comparison with particle-in-cell simulations

In the simulations, a linearly-polarized pump pulse with a fixed wavelength A = 810 nm and a linearly-polarized probe
pulse with various wavelength A’ are set to co-propagate in a plasma slab of length L. The probe pulse is 45° polarized
with respect to the polarization axis of the pump pulse. The wavelength of the probe pulse is chosen to be far enough
from that of the pump pulse, such that the birefringent effect is not interfered by the self-phase modulation or Raman
scattering of the pump pulse. The full-width-at-half-maximum (FWHM) pulse durations of the pump pulse and the
probe pulse are 162 fs and 49 fs respectively. The duration of the pump pulse is chosen to be short enough such that for
the range of a in the simulations the pulse energy is within the reach of a tabletop multi-terawatt laser. It is also chosen
to be long enough comparing with the period of plasma oscillation to reduce transient effects. The duration of the
probe pulse is chosen to be smaller than that of the pump pulse such that it samples the peak region of the pump pulse.
It is also chosen to be long enough such that the effect of group velocity dispersion is negligible. The total length of the
simulation domain is 230 um and the grid size is Az = A’/1024. The simulation is carried out in the moving-window
mode to save computation and memory usage. A 22-um long density ramp is placed at the plasma-vacuum interface
to reduce the transition effects induced by the laser pulses while entering the plasma slab. In order to determine the
phase of the probe pulse precisely, the simulated waveform of the probe pulse is curve fitted to a sine wave at the
pulse peak. This enables accurate calculation of the phase difference between the two orthogonal polarizations in the
probe pule. By calculating the optical path difference oy = (n}' —nJ)L from the simulation data, we plot the function

F(8) = (8K28)/ (kL) (1/k3 +1/k%) ~!and compare it with the theoretical result F (8, ) = a?/(1+a?/2)? in Fig. 1.
All the simulation data fall close to the theoretical curve of Eq. (13) and thus support the theory well.
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Fig. 1. Comparison between the simulation data (square) and the theoretical prediction (curve) given
in Eq. (13). For the data with ascending a, the wavelength of the probe pulse, the plasma density, and
the propagation distance are A'(nm) = 475, 472, 492, 512, 533, 554, 475, 574, 532, 475, 477,
482, 502, ng(10'8/cm®) = 20, 28, 18, 13, 10, 8, 10, 6.7, 7, 7, 8, 7.5, 7, and L(um) = 582,383,
383, 383, 383,383, 482, 383, 582, 880, 781, 781, 781 respectively.
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