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中 文 摘 要 ： 本計畫從事圖形的標號、著色、分割、與覆蓋之相關研究。

我們將以有限幾何，數論，群論等工具以及其他標準組合學

方法研究以下幾類相關問題: 

 

 對一圖形 G 與一交換群(abelian group) A，我們說 A-

幻方標號(A -magic labeling)為一組邊標號 f: E(G) -> A 

- {0}，使得每一頂點之頂點和(vertex sum)皆同，其中 0 

為交換群 A 之單位元素。我們記所有可能之 magic vertex 

sum constants 為 magic sum spectrum，本計畫將針對各類

圖形之 magic sum spectrum 研究，特別關於 regular 

graphs。當 A = Zk  (即 modulo k 同餘類所成加法循環

群)，注意到刻劃 Zk-magic 圖形仍然為困難之未解問題。 

此研究方向與 A-coloring (文獻或稱 abelian coloring)相

關，特別是 1986 年 Archdeacon 提出之 Conjecture :   

 

Let G be a bridgeless graph and let H be a group of 

order at least five. Then the edges of G can be 

colored with the non-identity elements of H such that 

at each vertex of G the three colors sum to the 

identity in H. 

 

另外本計畫有關標號著色方向亦有: 圖形的 L(2, 1)-標號

(距離二型態標號)，反幻方標號(antimagic labeling)，列

表著色(list coloring)問題等等。本計畫將針對相關諸多未

解猜想進行研究。 

 

 圖的邊集合的團覆蓋(clique covering)問題就是：對於

一給定圖形，尋找最少數目的團，使得每一個邊至少(或恰

好)包含在某個團之中。Fred Roberts, Walter Wallis 等人

考慮那些需要所有的極大團形成邊集合的最小團覆蓋的圖

類，並稱之為極大團不可約圖(maximal clique irreducible 

graphs)。我們推廣定義到一更大範圍之圖類，即弱極大團不

可約圖(weakly maximal clique irreducible graphs)。近

期與印度 Cochin University 的 Dr. Ambat Vijayakumar 

共同研究此方向，獲得 graph product 研究成果。1966 

Erdos 指出圖的邊集合的團覆蓋與圖交集表示

( intersection representation)有一一對應關係。本計畫

亦將研究相關的圖交集表示的唯一性問題。近期與台科大王

有禮教授合作發表 diamond-free 圖類之交集表示唯一性。

我們將繼續考慮這研究方向的其他問題。 

 



中文關鍵詞： A-幻方標號，可換群著色，L(2,1)-標號，反幻方標號，列表

著色，極大團不可約圖，弱極大團不可約圖，團覆蓋，唯一

集合表示，有限幾何，數論，群論 

英 文 摘 要 ： This project studies the graph labeling, graph 

coloring, graph partition, and graph covering. We 

will research on the following related topics using 

the tools from finite geometry, number theory, group 

theory, and other standard combinatorial methods: 

 

 For a graph G and an abelian group A, we say an 

edge labeling using non-identity elements is A-magic 

if all induced vertex sums are constant. The set of 

all possible such magic vertex sum constants is 

called magic sum spectrum. We will study the magic 

sum spectrum of various classes of graphs, in 

particular regular graphs. Even in the case A = Zk, 

the finite cyclic additive group consisting of 

congruence classes modulo k, to characterize Zk-magic 

graphs is quite hard. This research direction is 

closely related to A-coloring (a.k.a. abelian 

coloring in literatures), in particular related to 

the conjecture raised by Archdeacon in 1986, namely, 

let G be a bridgeless graph and let H be a group of 

order at least five, then the edges of G can be 

colored with the non-identity elements of H such that 

at each vertex of G the three colors sum to the 

identity in H. On the other hand, our project will 

also focus on L(2,1)-labeling, antimagic labeling, 

and list coloring etc., and we will put special 

attention on those unsettled conjectures. 

 

 The edge clique covering problem is that for a 

given graph, to find the least number of cliques so 

that every edge is contained in at least one clique. 

Fred Roberts and Walter Wallis considered the class 

of graphs for which the set of all maximal cliques 

forms an edge clique covering of minimum size, which 

is called maximal clique irreducible graphs. We 

extend to a general class of weakly maximal clique 

irreducible graphs, which is the subject of recent 

collaboration with Dr. Vijayakumar in Cochin 



University in India. In 1966 Paul Erdos pointed out 

that there is one-to-one correspondence between edge 

clique covering and intersection representations for 

graphs. We also study related subjects regarding the 

uniqueness of set representations of graphs, and I 

have been collaborating with Professor Wang Yue-Li of 

National Taiwan University of Science and Technology 

in Taipei. We just published a paper regarding unique 

intersectability of diamond-free graphs recently. 

Therefore we will continue the exploration along this 

line of research. 

 

英文關鍵詞： A-magic labeling, abelian coloring, L(2,1)-labeling, 

antimagic labeling, list coloring, maximal clique 

irreducible, clique covering, unique intersection 

representation, finite geometry, number theory, group 

theory 
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a b s t r a c t

For a graph G with vertices v1, v2, . . . , vn, a simple set representation of G is a family
F = {S1, S2, . . . , Sn} of distinct nonempty sets such that |Si ∩ Sj| = 1 if vivj is an edge in G,
and |Si ∩ Sj| = 0 otherwise. Let S(F ) =

n
i=1 Si, and let ωs(G) denote the minimum |S(F )|

of a simple set representationF of G. If, for every twominimum simple set representations
F andF ′ of G,F can be obtained fromF ′ by a bijectivemapping from S(F ′) to S(F ), then
G is said to be s-uniquely intersectable. In this paper, we are concerned with the s-unique
intersectability of diamond-free graphs, where a diamond is a K4 with one edge deleted.
Moreover, for a diamond-free graph G, we also derive a formula for computing ωs(G).

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, G = (V , E) represents a simple graph of n vertices and m edges; i.e., |V (G)| = n and |E(G)| = m, where
V (G) = {v1, v2, . . . , vn}. An edge vivj is in E(G) if vertices vi and vj are adjacent. Two adjacent vertices vi and vj in V (G) are
twins if they have the same closed neighborhood. G is twin free if it contains no twins. For two graphs G and H , if G has no
induced subgraph H , then we say that G is H-free. Thus, a graph is triangle free (respectively, diamond free) if it contains no
triangles (respectively, diamonds) as an induced subgraph. Here, a trianglemeans a K3 and a diamond is the graph obtained
by deleting an edge from K4.

The concept of set representation of graphs was first introduced by Szpilrajn-Marczewski [10] and Erdös et al. [4]. A set
representation of G is a multifamily F = {S1, S2, . . . , Sn} of nonempty sets such that, for any i ≠ j, Si ∩ Sj ≠ ∅ if edge
vivj ∈ E(G), and Si ∩ Sj = ∅ otherwise, where multifamily means that S1, S2, . . . , Sn might not be distinct. Note that Si is a
corresponding set of vi for i = 1, 2, . . . , n. A set representation F is distinct if Si ≠ Sj for i ≠ j, and is antichain if Si ⊈ Sj
for i ≠ j. A simple set representation is a distinct set representation with |Si ∩ Sj| = 1 if vivj ∈ E(G). For a set representation
F = {S1, S2, . . . , Sn}, let S(F ) =

n
i=1 Si. It is known that any G has a (simple) distinct set representation (see Theorem

2.5 of [5]). Thus we can meaningfully denote by ω(G) (respectively, ωs(G)) the minimum size of |S(F )| among all distinct
set representations (respectively, simple set representations) F of G. A minimum distinct set representation (respectively,
minimum simple set representation) F of G is a distinct set representation (respectively, simple set representation) with
|S(F )| = ω(G) (respectively, ωs(G)). Kou et al. [7] and Poljak et al. [9] proved that finding ω(G) and ωs(G), respectively, for
a general graph G is NP-complete. Harary [5] proved that, for a connected graph G of n(> 3) vertices, ω(G) = m if and only
if G is triangle free.

The concept of unique intersectability of Gwas proposed by Alter andWang [1]. They defined G to be uniquely intersectable
if, for any twominimum distinct set representations F and F ′ of G, F can be obtained from F ′ by a bijective mapping from

✩ This work was supported in part by the National Science Council of the Republic of China under contracts NSC 96-2115-M-029-007 and NSC 97-2221-
E-011-158-MY3.
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S(F ′) to S(F ). Based on the above theorem of Harary, they proved that every triangle-free graph G is uniquely intersectable.
Later, Tsuchiya [11] studied the unique intersectability with respect to antichains, abbreviated a-uniquely intersectable, and
showed that being triangle free is also a sufficient condition for a graph to be a-uniquely intersectable. Then, Mahadev and
Wang [8] proved that, for every diamond-free graphG,G is uniquely intersectable if and only ifG is twin free. This generalizes
Alter andWang’s result, since diamond-free graphs are a superset of triangle-free graphs. Kong andWu [6] defined a superset
of diamond-free graphs, called purple graphs. They proved that a purple graph is uniquely intersectable if and only if it is
twin free and unique intersectable with respect to multifamily representation. This further improves Mahadev and Wang’s
result, since diamond-free graphs are unique intersectable with respect to multifamily representation [8].

Inspired by the concept of a-uniquely intersectable, we say that a graph G is s-uniquely intersectable if, for any two
minimum simple set representations F and F ′ of G, F can be obtained from F ′ by a bijective mapping from S(F ′) to
S(F ). Actually, the proof in [1] also reveals that every triangle-free graph G is s-uniquely intersectable. However, Mahadev
andWang’s proof [8] cannot be applied directly to the s-unique intersectability of a graph. Therefore, it is interesting to find
out a general sufficient condition for the s-unique intersectability of a graph.

2. Preliminaries

First, we introduce some terms which will be used later. A clique in G is a set Q ⊆ V (G) whose vertices are pairwise
adjacent in G. A trivial clique contains only one vertex. A clique in G is maximal if it is not properly contained in any other
clique in G. A set Q = {Q1,Q2, . . . ,Qp} of cliques in G is called a clique partition of G if E(G) =

p
i=1 E(Qi), E(Qi) ∩ E(Qj) = ∅

for i ≠ j, and {v} ∈ Q for each v ∈ V (G) of degree 0. Erdös et al. [4] found a bijection between set representations and clique
covers of a graph G. Below, we introduce this bijection in detail, and call it the Erdös bijection. Let Q = {Q1,Q2, . . . ,Qp} be a
clique partition of G. For every vi, 1 ⩽ i ⩽ n, construct a set Si whose elements are those cliques in Q containing vi. Clearly,
for any i ≠ j, |Si ∩ Sj| = 1 if vi is adjacent to vj, and |Si ∩ Sj| = 0 otherwise. Hence, {S1, S2, . . . , Sn} is a set representation of
Gwhere any distinct Si, Sj have |Si ∩ Sj| ⩽ 1. Conversely, given a set representation F = {S1, S2, . . . , Sn} of Gwhere Si is the
corresponding set of vi for 1 ⩽ i ⩽ n and any distinct Si, Sj have |Si ∩ Sj| ⩽ 1, we can obtain a clique partition of G as follows.
For each sj ∈ S(F ) = {s1, s2, . . . , sp}, if sj is in Si, then let Qj contain vi. Clearly, the subgraph of G induced by the vertices
in Qj is a clique, and exactly one Qj with 1 ⩽ j ⩽ p contains {vx, vy} if vxvy ∈ E(G) and none otherwise. Therefore, the set
{Q1,Q2, . . . ,Qp} is a clique partition of G. Hereafter, we use Erdös F and Erdös Q to denote the resulting set representation
and clique partition, respectively, of the Erdös bijection.

A finite linear space (FLS) Γ = (P, L) consists of a set P of n points and a set L of lines, where a line is a set of points,
satisfying the following axioms [2].

(L1) A line contains at least two and at most n − 1 points.
(L2) For any two points x, y ∈ P , exactly one line of L contains {x, y}.

A projective plane (PP) Π is an FLS satisfying further the following two axioms [2].

(P1) Any two distinct lines have exactly one common point.
(P2) There exist four points in which no three points are collinear.

In [3] (see also [2]), de Bruijn and Erdös proved a theorem about FLSs. To employ the theorem in this paper, we note that,
with the correspondence between points and vertices, and lines and cliques, there is a bijection between FLSs and clique
partitions Q of complete graphs Kn, n ⩾ 3, where the cardinality of every clique in Q is between 2 and n − 1. Therefore we
can paraphrase the theorem in terms of clique partition as follows.

Theorem 1 ([3]). If Q with |Q| > 1 is a clique partition of Kn with n ⩾ 3, and there is no trivial clique in Q, then |Q| ⩾ n, where
equality holds if and only if

(a) Q consists of one clique with n − 1 vertices and n − 1 copies of K2 or
(b) the FLS corresponding to Q is a PP.

The FLSs with n ⩾ 3, corresponding to clique partitions as in Condition (a) of Theorem 1, are conventionally referred to
as near-pencil (N-P for short). We will use the two terms N-P and PP to stand for both an FLS and the corresponding clique
partition of a complete graph. For example, two clique partitions Q = {Q1,Q2, . . . ,Q7} of K7 corresponding to N-P and PP
are listed in Table 1.

In Table 1, the PPwith n = 7 is the so-called Fano plane, as illustrated in Fig. 1, where the line segments (straight or round)
pass through lines {v1, v2, v3}, {v3, v4, v5}, {v1, v5, v6}, {v1, v4, v7}, {v2, v5, v7}, {v3, v6, v7}, {v2, v4, v6}, respectively.

For the clique partition Q of Kn with |Q| = 1, i.e., Q = {Q1} and Q1 = {v1, v2, . . . , vn}, if we add trivial cliques Qi = {vi}

for i = 2, 3, . . . , n to Q, then the resulting set Q′
= {Q1,Q2, . . . ,Qn} is still a clique partition of Kn. Henceforth, we use

Erdös FKn to denote the Erdös F with respect to Q′, i.e., Erdös FKn = {S1, S2, . . . , Sn} where S1 = {Q1} and Si = {Q1,Qi}

for i = 2, 3, . . . , n. We also use Erdös FN-P and Erdös FPP to emphasize set representations of a complete graph which are
obtained by Erdös bijection on its N-P and PP, respectively.

Proposition 2. For a Kn, all of its Erdös FN-P, Erdös FPP, and Erdös FKn are simple set representations.
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Table 1
Clique partitions Q of K7 with |Q| = 7.

Q N-P PP

Q1 {v1, v2} {v1, v2, v3}

Q2 {v1, v3} {v3, v4, v5}

Q3 {v1, v4} {v1, v5, v6}

Q4 {v1, v5} {v1, v4, v7}

Q5 {v1, v6} {v2, v5, v7}

Q6 {v1, v7} {v3, v6, v7}

Q7 {v2, v3, . . . , v7} {v2, v4, v6}

Fig. 1. Fano plane.

3. Diamond-free graphs are s-uniquely intersectable

A vertex vi ∈ V (G) is called a monopolized vertex of Q if vi is contained in only one maximal clique Q in G; otherwise, vi
is called a shared vertex. Similarly, an element in S(F ) is called a monopolized element with respect to a set representation
F of G if it appears in only one set of F .

Proposition 3. In a graph G, the closed neighborhood of a monopolized vertex of a maximal clique Q is contained in Q .

Theorem 4. For n ⩾ 1, ωs(Kn) = n. Further, any minimum simple set representation of Kn, for n ⩾ 3, is an Erdös FN-P, Erdös
FPP, or Erdös FKn .

Proof. Clearly, ωs(K1) = 1 and ωs(K2) = 2. We prove that ωs(Kn) = n for n ⩾ 3. We can easily construct a simple set
representation F of Kn, for n ⩾ 3, with S(F ) = {s1, s2, . . . , sn} by letting F = {S1, S2, . . . , Sn}, where S1 = {s1} and
Si = {s1, si} for 2 ⩽ i ⩽ n. Thus ωs(Kn) ⩽ n for n ⩾ 3. Then we prove that ωs(Kn) ⩾ n for n ⩾ 3. Suppose to the contrary
that Kn, n ⩾ 3, has a simple set representation F with |S(F )| ⩽ n − 1. We delete all monopolized elements from all sets
in F and let F ′ be the resulting set. Clearly, F ′ remains a set representation of Kn, and therefore Erdös Q with respect to
F ′ is a clique partition of Kn which contains at most n − 1 cliques and no trivial ones. By Theorem 1, |Q| = 1. This means
that all sets in F ′ are the same. Thus, S(F ) consists of an element common to all sets in F and at most n − 2 monopolized
elements since |S(F )| ⩽ n − 1. This implies that at least two sets in F are the same, a contradiction. Thus we have proved
that ωs(Kn) = n for n ⩾ 1.

Let F be a minimum simple set representation of Kn with n ⩾ 3, i.e., |S(F )| = n. Delete all monopolized elements from
all sets in F and obtain F ′. Then Erdös Q with respect to F ′ is a clique partition of Kn which contains at most n cliques and
no trivial ones. By Theorem 1, Q is an N-P or PP, or has |Q| = 1. In the former two cases, |Q| = n, and therefore F ′

= F is
an Erdös FN-P or Erdös FPP. In the last case, F is an Erdös FKn . This completes the proof. �

Lemma 5. If a graph G is diamond free, then any two distinct maximal cliques in G have at most one vertex in common.

Proof. Suppose to the contrary that two distinct maximal cliques Q and Q ′ intersect at two vertices vi and vj in G. There
are at least two nonadjacent vertices vx and vy in Q and Q ′, respectively; otherwise, Q and Q ′ are contained in one maximal
clique. It is clear that the subgraph of G induced by vertices vi, vj, vx, vy is a diamond in G, a contradiction. �

In the following, unless otherwise stated, we assume that G is a connected diamond-free graph and is not a complete
graph, that Q = {Q1,Q2, . . . ,Qp} is the set of all maximal cliques in G, and that F = {S1, S2, . . . , Sn} is a simple set repre-
sentation of G, where Si is a corresponding set of vi for i = 1, 2, . . . , n. Further, letMi and Hi be the sets of monopolized and
shared vertices, respectively, of Qi for 1 ⩽ i ⩽ p, M =

p
i=1 Mi, FMi = {Sj : vj ∈ Mi} for 1 ⩽ i ⩽ p, and FM = {Sj : vj ∈ M}.

Similarly, H =
p

i=1 Hi, FHi = {Sj : vj ∈ Hi} for 1 ⩽ i ⩽ p, and FH = {Sj : vj ∈ H}. The subgraph of G induced by M is
denoted by G[M].
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Lemma 6. If G is a connected graph and is not a complete graph, then |S(FM)| ⩾
∑p

i=1 |Mi|.

Proof. Since G ≠ Kn and is connected, |Hi| ⩾ 1 for 1 ⩽ i ⩽ p. By Proposition 3, G[M] is the disjoint union of K|M1|,

K|M2|, . . . , K|Mp|. Obviously, FM is a simple set representation of G[M]. Therefore, by Theorem 4, |S(FM)| ⩾
∑p

i=1 |Mi|. �

Lemma 7. If there is a Qi with Mi = ∅, then, for any vk, vℓ ∈ Qi, the following statements hold.

(1) The element in Sk ∩ Sℓ is not in S(FMj) for any j with Mj ≠ ∅.
(2) If there is a Qj with j ≠ i and Mj = ∅, then, for any vx, vy ∈ Qj, the element in Sk ∩ Sℓ is distinct from the one in Sx ∩ Sy.

Proof. Let s be the element in Sk ∩ Sℓ. To prove statement (1), we suppose to the contrary that s is also in S(FMj) for some j
withMj ≠ ∅. This means that both vk and vℓ are adjacent to some vertex, say x, inMj. Since x is a monopolized vertex of Qj,
by Proposition 3, both vk and vℓ must be also in Qj. Thus, |Qi ∩Qj| ⩾ 2 which, by Lemma 5, is a contradiction. This concludes
the proof of this statement.

To prove statement (2), suppose to the contrary that there is a Qj with j ≠ i andMj = ∅ such that Sx ∩ Sy = {s} for some
vx, vy ∈ Qj. By Lemma 5, vx ∉ Qi or vy ∉ Qi. For the former, since s ∈ Sk ∩ Sℓ ∩ Sx, this means that there is a maximal clique,
say Qr , with r ≠ i containing vertices vk, vℓ, and vx. Thus vk, vℓ ∈ Qr ∩ Qi. By Lemma 5, this is a contradiction. The latter
case can also be handled similarly. This completes the proof. �

Lemma 8. Any simple set representation F of G has |S(F )| ⩾
∑p

i=1 |Mi| + |{i : Mi = ∅ for 1 ⩽ i ⩽ p}|, where equality holds
if and only if |S(FM)| =

∑p
i=1 |Mi| and


FHi , for every 1 ⩽ i ⩽ p with Mi = ∅, contains exactly one element, which is not in

S(FM) and


FHi ≠ FHj for i ≠ j.

Proof. SinceG is connected, everyQi, for 1 ⩽ i ⩽ p, hasmore than one vertex. Thus,Qi withMi = ∅ has |Hi| ⩾ 2. By Lemma 7,
every Qi with Mi = ∅ has at least one unique element in S(F ) which is not in S(FM). Moreover, |S(FM)| ⩾

∑p
i=1 |Mi| by

Lemma 6. Therefore,

|S(F )| ⩾ |S(FM)| + |{i : Mi = ∅ for 1 ⩽ i ⩽ p}|

⩾

p−
i=1

|Mi| + |{i : Mi = ∅ for 1 ⩽ i ⩽ p}|,

where equality holds if and only if |S(FM)| =
∑p

i=1 |Mi| and


FHi , for every 1 ⩽ i ⩽ p with Mi = ∅, contains exactly one
element, which is not in S(FM) and


FHi ≠ FHj for i ≠ j. �

Theorem 9. For a connected diamond-free graph G, ωs(G) =
∑p

i=1 |Mi| + |{i : Mi = ∅ for 1 ⩽ i ⩽ p}|.

Proof. Theorem 4 has proved this theorem if G is a complete graph. Thus we assume that G is not a complete graph in
the following. By Lemma 8, we can prove this theorem by showing a simple set representation F of G with |S(F )| =∑p

i=1 |Mi| + |{i : Mi = ∅ for 1 ⩽ i ⩽ p}|.
For each iwithMi ≠ ∅, letMi = {vi1 , vi2 , . . . , vi|Mi |

}, and Si1 = {qi,1} and Sij = {qi,1, qi,j} for 2 ⩽ j ⩽ |Mi|. For each vk ∈ Hi,
where 1 ⩽ i ⩽ p, assign Sk = {qx,1 : vk ∈ Qx and Qx ∈ Q}. Note that, since vk is a shared vertex, there are at least two cliques
in Q containing vk. The total number of elements used to construct F is equal to

∑p
i=1 |Mi| + |{i : |Mi = 0| for 1 ⩽ i ⩽ p}|.

To complete the proof, we have to show that the constructed F = {S1, S2, . . . , Sn} is a simple set representation of G.
First, we prove that F is a set representation of G. Clearly, each pair of vertices vj, vk ∈ V (Qi), for 1 ⩽ i ⩽ p, has a common
element qi,1 in their corresponding Sj and Sk. Therefore, Sj ∩ Sk ≠ ∅ if edge vjvk ∈ E(G). Now we prove that Sj ∩ Sk = ∅ if
there is no edge between vj and vk. Since only elements qi,1, for i = 1, 2, . . . , p, can appear in the representation sets of two
different vertices, it suffices to consider the adjacency of vertices having qi,1 in their corresponding sets. By our assignment
and Lemma 5, any two distinct maximal cliques, say Qi and Qj, have at most one shared vertex vk, which, if it exists, is
the only vertex having qi,1 and qj,1 in its set representation Sk. All of the other vertices in Qi cannot have qj,1 in their set
representations, and vice versa. Therefore, the constructed F is a set representation of G.

Next, we prove that F is a distinct set representation of G. Clearly, all vertices vj inMi, for i = 1, 2, . . . , p, have different
Sj. By Lemma 5 again, if a shared vertex in Hi, for some 1 ⩽ i ⩽ p, has both qi,1 and qj,1, for some 1 ⩽ j ⩽ p and j ≠ i, in
its set representation, then no other vertex can have both of them in its set representation. Therefore, F is a distinct set
representation of G.

It remains to show that |Si ∩ Sj| = 1 if vivj ∈ E(G). Clearly, for any two vi, vj ∈ Qk, qk,1 is the only common element
between Si and Sj. This concludes the proof of this theorem. �

Lemma 10. If there exists a simple set representationF of G with |S(FM)| =
∑p

i=1 |Mi|, then, for every nonemptyMi, 1 ⩽ i ⩽ p,
FMi is an Erdös FK|Mi |

of G[Mi].

Proof. Note that |S(FM)| =
∑p

i=1 |Mi| implies that |S(FMi)| = |Mi|. If there exists |Mi| = 1 or 2 for 1 ⩽ i ⩽ p, then FMi can
only be an Erdös FKMi

. Thus, this lemma holds for |Mi| = 1 and 2. In the following, we consider the case where |Mi| ⩾ 3 if it
exists.
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Suppose to the contrary that there is an FMi = {S1, S2, . . . , S|Mi|} which is not an Erdös FK|Mi |
of G[Mi]. By Theorem 4, FMi

is an Erdös FN-P or an Erdös FPP of G[Mi]. We only consider the former case since the latter can be handled similarly. Let
QN-P = {Q ′

1,Q
′

2, . . . ,Q
′

|Mi|
} be an N-P of G[Mi] so that the Erdös F with respect to it is FMi . By the definition of N-P, there is

no clique in QN-P containing all vertices ofMi. Therefore, there is also no common element among all Si for i = 1, 2, . . . , |Mi|.
Since |Hi| ≠ 0 and every vk ∈ Hi is adjacent to every vertex inMi, the intersection between Sk and S(FMi) has at least two

elements, say e1 and e2.We claim that there exists a vertex vℓ ∈ Mi whose corresponding Sℓ also contains both e1 and e2. Note
that vℓ is the vertex in Qe1 ∩ Qe2 , where Qej , for j = 1 or 2, is the clique containing all vertices vx with ej ∈ Sx. Consequently,
|Sk ∩ Sℓ| ⩾ 2, which contradicts that FMi is a simple set representation of G[Mi]. This establishes the lemma. �

Theorem 11. Every connected diamond-free graph G is s-uniquely intersectable except Kn for n ⩾ 3.

Proof. By Theorem 9, for a connected diamond-free graph G except Kn with n ⩾ 3,ωs(G) =
∑p

i=1 |Mi|+ |{i : Mi = ∅ for 1 ⩽

i ⩽ p}|. By Lemma8, |S(FM)| =
∑p

i=1 |Mi| for anyminimumsimple set representationF ofG. By Lemma10, every nonempty
FMi is an Erdös FK|Mi |

of G[Mi].
Thus, for every iwithMi ≠ ∅, the common element in all sets ofFMi is also in every Sj ∈ FHi as vj is adjacent to any vertex

in Mi. Moreover, since |S(F )| =
∑p

i=1 |Mi| + |{i : Mi = ∅ for 1 ⩽ i ⩽ p}| and |S(FM)| =
∑p

i=1 |Mi|, by Lemma 7 and the
pigeonhole principle, for every iwithMi = ∅, all Sj for vj ∈ Qi contain a common element, say ei, which is not in S(FM), and
ei and ej are distinct for 1 ⩽ i, j ⩽ p and i ≠ j. From above, for any vj ∈ H , |Sj| is equal to the number of cliques containing
vj, and Sj = {ei : ei is the common element in FMi ∪ FHi and vj is in Qi for i = 1, 2, . . . , p}. Therefore, for any two minimum
simple set representationsF andF ′ of G,F can be obtained fromF ′ by a bijectivemapping from S(F ′) to S(F ). That is, the
common element in FMi ∪ FHi has a unique corresponding common element in F ′

Mi
∪ F ′

Hi
, and every monopolized element

in FMi has a unique corresponding monopolized element in F ′

Mi
for each 1 ⩽ i ⩽ p. Thus G is s-uniquely intersectable. �

A similar proof to Theorem7.6 in [6] (except replacing Lemma 7.1 in [6] by Theorem4) establishes the following theorem.

Theorem 12. For any graph G, ωs(G) ⩾ c +
∑p

i=1 |Mi|, where c is the number of maximal cliques Qi in G not only with Mi = ∅

but having an edge not in any other Qj.

As a further study, it is interesting to find a sufficient and necessary condition for graphs having ωs(G) = c +
∑p

i=1 |Mi|

and study their s-uniquely intersectability.
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Abstract. For an undirected graph G, a zero-sum flow is an assignment of
non-zero integers to the edges such that the sum of the values of all edges
incident with each vertex is zero. We extend this notion to a more general
one in this paper, namely a constant-sum flow. The constant under a
constant-sum flow is called an index of G, and I(G) is denoted as the
index set of all possible indices of G. Among others we obtain that the
index set of a regular graph admitting a perfect matching is the set of all
integers. We also completely determine the index sets of all r-regular graphs
except that of 4k-regular graphs of even order, k ≥ 1.

1 Introduction and Preliminaries

Throughout this paper, all terminologies and notations on graph theory can be
referred to the textbook by West[8]. We use Z to stand for the set of all integers,
and Z∗ the set of all non-zero integers.

Let G be a directed graph. A k-flow on G is an assignment of integers with
maximum absolute value k− 1 to each edge such that for every vertex, the sum
of the values of incoming edges is equal to the sum of the values of outgoing
edges. A nowhere-zero k-flow is a k-flow with no zero edge labels. A celebrated
conjecture of Tutte says that:

(Tutte’s 5-flow Conjecture[7]) Every bridgeless graph has a nowhere-zero
5-flow.

Jaeger showed that every bridgeless graph has a nowhere-zero 8-flow[4]. Next
Seymour proved that every bridgeless graph has a nowhere-zero-6-flow[6].

One may study the elements of null space of the incidence matrix of an
undirected graph. For an undirected graph G, the incidence matrix of G, W (G),
is defined as follows:

W (G)i,j =

{
1 if ej and vi are incident,
0 otherwise.



An element of the null space of W (G) is a function f : E(G) −→ Z such that
for all vertices v ∈ V (G) we have∑

u∈N(v)

f(uv) = 0,

where N(v) denotes the set of adjacent vertices to vertex v. If f never takes the
value zero, then it is called a zero-sum flow on G. A zero-sum k-flow is a
zero-sum flow whose values are integers with absolute value less than k. There
is a conjecture for zero-sum flows similar to the Tutte’s 5-flow Conjecture for
nowhere-zero flows as follows. Let G be an undirected graph with incidence ma-
trix W . If there exists a vector in the null space of W whose entries are non-zero
real numbers, then there also exists a vector in that space, whose entries are
non-zero integers with absolute value less than 6, or equivalently,

(Zero-Sum Conjecture[1]) If G is a graph with a zero-sum flow, then G ad-
mits a zero-sum 6-flow.

It was proved by Akbari et al. [1] that the above Zero-Sum Conjecture is
equivalent to the Bouchet’s Conjecture for bidirected graphs[3]. For regular
graphs they obtained the following theorem:

Theorem 1 Let G be an r-regular graph (r ≥ 3). Then G has a zero-sum 7-flow.
If 3|r, then G has a zero-sum 5-flow.

We extend the notion zero-sum flows to a more general one, namely constant-
sum flows as follows:

Definition 2 For an undirected graph G, if there exits f : E(G) → Z∗ such that∑
u∈N(v)

f(uv) = C for each v ∈ V (G), where C is an integer constant (called an

index), then we call f a constant-sum flow of G, or simply a C-sum flow of
G.

Denote by I(G) the set of all possible indices for G, and call it the index
set of G.

Remark. Note that 0 ∈ I(G) if and only if G admits a zero-sum flow.

We have the following observation for the index set of an r-regular graph:

Theorem 3 Let G be r-regular(r ≥ 2) with a perfect matching, then I(G) = Z.

Proof.
Let M be the perfect matching. Note that we have the factorization G =

M ⊕ (G\M), where G\M is an (r − 1)-regular graph. Since for the perfect
matching I(M) = Z∗, and G\M has indices r−1 and 1−r by labeling 1 and −1



respectively on edges, we have that I(G) = I(M ⊕ (G\M)) ⊇ (r − 1) + Z∗ and
I(G) = I(M ⊕ (G\M)) ⊇ (1−r)+Z∗. If (r−1)+Z∗ ̸= (1−r)+Z∗, then we are
done with I(G) = Z, since (r−1)+Z∗ = Z∗\{r−1} and (1−r)+Z∗ = Z∗\{1−r}.
In case (r − 1) +Z∗ = (1− r) +Z∗, which implies r − 1 = 1− r that is r = 1, a
contradiction. 2

Moreover, we see that I(G) = Z∗ for 1-regular graphs G, and I(G) = Z or
2Z∗ for 2-regular graphs G based upon the following observation:

Lemma 4 Let Cn be an n-cycle, where n ≥ 3. We have the following:

(1) I(Cn) = 2Z∗, for n odd.
(2) I(Cn) = Z, for n even.

Proof.
(1) Note that in any constant-sum flow of a cycle, the edges should alternatively

be labeled the same. Therefore, for n odd, the labels on all edges are all the
same. Therefore I(Cn) = 2Z∗.

(2) For n even, we label the edges 1, x− 1, 1, x− 1, · · · , 1, x− 1 for x ∈ Z\{1} to
obtain the index x, and 2,−1, 2,−1, · · · , 2,−1 to obtain the index 1. There-
fore I(Cn) = Z.

2

Corollary 5 Let G be a 2-regular graph. Then I(G) = 2Z∗ if G contains an odd
component (a connected component consisting of an odd cycle), and I(G) = Z
otherwise.

We determine completely the index sets of r-regular graphs in later sections
for r ≥ 3, except the index sets of 4k-regular graphs, k ≥ 1.

2 Constant-Sum Flows for Regular Graphs

Lemma 6 Suppose G is a graph and {0, 1} ⊆ I(G), then I(G) = Z.

Proof. Let V (G) = {1, 2, · · · , n}, and aij ̸= 0 be the edge labeling from vertex
i to vertex j. Since 1 ∈ I(G),∑

j∈N(i)

aij = 1, ∀i ∈ V (G).

Pick some x ∈ Z∗, then

x ·
∑

j∈N(i)

aij =
∑

j∈N(i)

xaij = x, ∀i ∈ V (G).

Therefore x ∈ I(G), and I(G) = Z. 2



Remark. In [1] it was proved that all r-regular graphs G admit zero-sum flows
if r ≥ 3, that is, 0 ∈ I(G). Therefore it suffices to show I(G) = Z by verifying
1 ∈ I(G). Also it is not hard to see that if m ∈ I(G) then mZ ⊆ I(G) for each
positive integer m ≥ 2.

Pull Back Labeling Construction:

In the following we propose a pull back labeling construction mentioned in
[1]. First for an undirected loopless graph G, we define a new graph G′ as follows.
Suppose that V (G) = {1, 2, · · · , n}, then G′ is a bipartite graph with two parts
{u1, · · · , un} and {v1, · · · , vn}. Join ui to vj in G′ if and only if the two vertices
i and j are adjacent in G. Assume that G′ admits a constant x-sum flow f ′.
If f ′(uivj) + f ′(ujvi) ̸= 0 for any pair of edges uivj and ujvi in G′, then we
construct a constant 2x-sum flow f for G, in the following way. For two adjacent
vertices i and j in G, let ij be the edge connecting them in G. Then we may
define f via f ′ by f(ij) = f ′(uivj) + f ′(ujvi). By our assumption, f(ij) ∈ Z∗.
Pick some x in Z∗, we have∑

vj∈N(ui)

f ′(uivj) = x,
∑

uj∈N(vi)

f ′(ujvi) = x,

thus we find∑
j∈N(i)

f(ij) =
∑

vj∈N(ui)

f ′(uivj) +
∑

uj∈N(vi)

f ′(ujvi) = 2x, ∀i ∈ V (G).

This defines a 2x-sum flow for G. If G is r-regular, then G′ is an r-regular bipar-
tite graph. Thus by Hall’s Marriage Theorem, all edges of G′ can be partitioned
into r perfect matchings. Let E1, · · · , Er be the set of edges of these matchings.
We will use this construction and notations throughout the remaining of this
article.

2.1 Odd Regular Graphs

We deal with general odd regular graphs here:

Lemma 7 If G is a (2k + 1)-regular graph, then I(G) = Z for all k ≥ 2.

Proof.
Construct G′ as before, we change the definition of f ′(e) as follows:

Let

f ′
0(e) =

{
k + 1 , e ∈ E1 ∪ · · · ∪ Ek

−k , e ∈ Ek+1 ∪ · · · ∪ E2k+1

This gives that f ′
0 is a zero-sum flow for G′ and satisfies f ′

0(uivj)+f ′
0(ujvi) ̸=

0. So f0(e) ∈ {2k + 2,−2k, 1} is a zero-sum flow for G.



Let

f ′
1(e) =

{
k , e ∈ E1 ∪ · · · ∪ Ek

1− k , e ∈ Ek+1 ∪ · · · ∪ E2k+1

This gives that f ′
1 is a 1-sum flow for G′ and satisfies f ′

1(uivj)+f ′
1(ujvi) ̸= 0.

So f2(e) ∈ {2k, 2− 2k, 1} is a 2-sum flow labeling for G.

Now we set f(ij) =
f0(ij) + f2(ij)

2
for all i, j ∈ V (G). Then f(e) ∈ {2k +

1, 1− 2k, 1} and

∑
j∈N(i)

f(ij) =
1

2
(
∑

j∈N(i)

f0(ij) +
∑

j∈N(i)

f2(ij)) =
1

2
(0 + 2) = 1.

That is, f is a 1-sum flow for G and 1 ∈ I(G). 2

Lemma 8 If G is a 3-regular graph, then I(G) = Z.

Proof.
As mentioned in previous remark, we see that it suffices to show I(G) = Z by
verifying 1 ∈ I(G) for regular graphs G.

Construct G′ as before, we define the f ′
0(e) as follows:

Let

f ′
0(e) =

−2 , e ∈ E1

1 , e ∈ E2

1 , e ∈ E3

This gives f0(e) ∈ {−4, 2,−1} which is a zero-sum flow for G. Define the f ′
1(e)

as follows:

Let

f ′
1(e) =

−3 , e ∈ E1

2 , e ∈ E2

2 , e ∈ E3

This gives f2(e) ∈ {−6, 4,−1} which is a 2-sum flow for G.

Now, we set f(e) =
1

2
(f0(e) + f2(e)). Then f(e) ∈ {−5, 3,−1} and

∑
j∈N(i)

f(ij) =
1

2
(
∑

j∈N(i)

f0(ij) +
∑

j∈N(i)

f2(ij)) =
1

2
(0 + 2) = 1.

That is, f is a 1-sum flow for G, same as saying 1 ∈ I(G), and hence I(G) = Z. 2



2.2 Even Regular Graphs

Note that for any regular graph of odd degree, the number of vertices is always
even. Also Petersen[5] proved the following two well known Theorems in 1891:

Theorem 9 (Petersen, 1891) Every regular graph of even degree is 2-factorable.

Theorem 10 (Petersen, 1891) Let k be a positive integer. If a connected 2k-
regular graph G has an even number of vertices, then it may be k-factored. That
is, G can be factored into the sum of two k-regular spanning subgraphs.

Therefore we observe the following for even regular graphs with odd orders:

Lemma 11 If G is r-regular graph with odd vertices (therefore r is even), then
I(G) = 2Z, for all r ≥ 3.

Proof. We show that I(G) ⊆ 2Z first. Suppose c ∈ I(G), then we have

2
∑

e∈E(G)

f(e) = c|V (G)|.

Since |V (G)| is odd, therefore r must be even, thus I(G) ⊆ 2Z.
Conversely, we show I(G) ⊇ 2Z. Let r = 2k. G will have a 2-factor, namely

E1 by Theorem 9. We now define a 2-flow by f2(e) = k, if e ∈ E1, and f2(e) = −1
for others edges. Set f0(e) = k − 1, if e ∈ E1, and f0(e) = −1 for others edges
would gives a 0-flow. 2

To complete the picture, we need one more Lemma:

Lemma 12 If G is a 2k-regular graph with even vertices, where k is odd, then
I(G) = Z for all k ≥ 3.

Proof.
Without loss of generality we may assume G is connected. By Petersen’s

Theorem 10, G = K1 ⊕K2, where K1 and K2 are two k-factors. Since k is odd,
I(K1) = I(K2) = Z by Lemma 7 and Lemma 8. Therefore, I(G) = I(K1⊕K2) ⊇
I(K1) + I(K2) = Z. 2

Remark. We complete the picture for all even regular graphs except 4k-regular
graphs of even order.

In below we present examples of index sets of 4-regular graphs. However the
index set of a general 4-regular graph is not known yet.

Example 1. I(Cm�Cn) = Z for evenm and even n, where Cm�Cn is Cartesian
product.

Example 2. I(G) = Z for the following 4-regular graph G without perfect
matching. Note that we give the 0-sum and 1-sum flows.



Fig. 1. A 4-regular graph with 0-sum flow

Fig. 2. A 4-regular graph with 1-sum flow

3 Concluding Remarks

To summarize up, we have obtained all index sets of r-regular graphs except
4k-regular graphs, k ≥ 1, with even number of vertices as follows:

Theorem 13 The index sets of r-regular graphs G of order n, are as follows:

I(G) =


Z∗, r = 1.
Z, r = 2 and G contains even cycles only.
2Z∗, r = 2 and G contains an odd cycle.
2Z, r ≥ 3, r even and n odd .
Z, r ≥ 3, r ̸= 4k, k ≥ 1, and n even .

Even further one may consider the concept constant sum k-flow similar to
that of zero-sum k-flow. It would be interesting to study the relationship among
these related notions. Calculating the index sets of other graph classes are obvi-
ously next sets of research problems to be explored.
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Abstract—It is known that edge magic labeling can be applied
to the arrangement of devices of a wireless network. The concept
of edge magic labeling was introduced by A. Kotzig and A. Rosa
in 1970. A (p, q)-graph G with p vertices and q edges is called
edge magic if there exists a bijective function f : V (G)∪E(G) →
{1, 2, . . . , p + q} such that f(u) + f(v) + f(uv) is constant for
any edge uv ∈ E(G). Moreover, G is called super edge magic
if f(V (G)) = {1, 2, . . . , p}. In 1970 A. Kotzig and A. Rosa also
defined the edge-magic deficiency, µ(G), of a graph G as the
minimum number of isolated vertices added to the graph so
that the resulting disconnected graph is edge magic. In 1999
Figueroa-Centeno et al. introduced and studied similar notion of
super edge magic deficiency µs(G) of a graph G for super edge
magic labeling. Calculating the deficiency provides with more
detailed information regarding related graph labeling. In this
paper we completely determine the super edge magic deficiency
of complete bipartite graphs µs(Km,n) = (m− 1)(n− 1), which
justifies a conjecture raised by R. Figueroa-Centeno et al. and
Hegde et al. independently.

I. INTRODUCTION

Consider a wireless network in which every device must be
able to connect to a subset of the other devices in the network
using a unique channel to prevent collisions. One way to create
such a channel assignment is to give numeric labels to the
devices and channels in such a way that the labels of two
devices and the communication line between them sum to a
consistent value across every pair of devices in the network.
In this case, knowing the labels of the two communicating
devices gives the identification number of the communication
line between them[9]. This solution is an example of an edge-
magic labeling, which we introduce in the following.

In this article we consider finite undirected graphs without
loops or multiple edges. We denote by V (G) and E(G) the set
of vertices and the set of edges of a graph G respectively. We
say that G is a (p, q)-graph if |V (G)| = p and |E(G)| = q.

Edge magic labeling were first introduced by A. Kotzig and
A. Rosa[8] in 1970. Super edge magic labeling were first
introduced by Enomoto, Llad’o, Nakamigawa and Ringel[2]
in 1998. We define these labelings below:

Definition 1.1: An edge magic labeling of a (p, q) graph
G is a bijective function f : V (G)∪E(G) → {1, 2, . . . , p+q}
such that f(u) + f(v) + f(uv) is constant for every edge
uv ∈ E(G). In such case, G is said edge magic. If moreover
f(V (G)) = {1, 2, . . . p}, then f is called a super edge magic

labeling, and G is said to be super edge magic.

In 2001, it was observed by R. Figueroa-Centeno, R.
Ichishima, and F. Muntaner-Batle [4] the following:

Lemma 1.1: A (p, q) graph G is super edge magic if
only only if there exists a bijective function f : V (G) →
{1, 2, . . . , p} such that the set

S = {f(u) + f(v) : uv ∈ E(G)}

consists of q consecutive integers.
Therefore, one may consider the super edge magic labeling

problems using the vertex labeling in the above proposition.
The following are necessary conditions for being super edge
magic:

Lemma 1.2: If a (p, q)-graph G with p vertices and q edges
is super edge magic, then q ≤ 2p− 3.

Proof: Let G be super edge magic with vertex labels
{1, 2, . . . , p}. Then the set of induced edge labels is {k, k +
1, . . . , k+ q− 1} for some integer k. Therefore k+(q− 1) ≤
(p− 1) + p and 1 + 2 ≤ k, thus q ≤ 2p− 3.

Q.E.D.

More generally, for a (p, q)-graph G, by an edge-antimagic
vertex labeling we mean a one-to-one mapping f from V (G)
into {1, 2, · · · , p} such that the edge-weights f+(uv) =
f(u) + f(v) of edges uv ∈ E(G) are distinct. The vertex
labeling f is called (a, d)-edge-antimagic if moreover the
set of distinct edge-weights forms an arithmetic progression
a, a + d, · · · , a + (q − 1)d with initial term a and common
difference d, where a and d are two fixed positive integers.
A graph G is called edge-antimagic ((a, d)-edge-antimagic,
respectively) if it admits an edge-antimagic ((a, d)-edge-
antimagic, respectively) vertex labeling.

Lemma 1.3: If a (p, q)-graph G with p vertices and q edges
is edge-antimagic, then q ≤ 2p − 3. In particular this is true
for (a, d)-edge-antimagic graphs.

Proof: Let G be (a, d)-edge-antimagic with vertex
labels {1, 2, . . . , p}. Then the set of induced edge labels
is {a, a + d, . . . , a + (q − 1)d} for some integer a and d.
Therefore if q > 2p − 3, and note that the edge weights
are numbers among the 2p − 3 numbers ranging from
3, 4, . . . , 2p − 1, thus by pigeonhole principle, there must



be two edge weights are the same, a contradiction. Hence
q ≤ 2p− 3. Q.E.D.

On the other hand, for a (p, q)-graph G = (V (G), E(G)),
a bijection g from V (G) ∪ E(G) to {1, 2, . . . , p + q}
is called (a, d)-edge-antimagic total labeling if the edge-
weights w(xy) = g(x) + g(y) + g(xy), for xy ∈ E(G), form
an arithmetic progression starting from a and having common
difference d, where a and d are two fixed integers. Note that
d is allowed to be 0. An (a, d)-edge-antimagic total labeling
is called super (a, d)-edge-antimagic total if g(V (G)) =
{1, 2, . . . , p}. A graph G is called (a, d)-edge-antimagic total
(super (a, d)-edge-antimagic total, respectively) if it admits an
(a, d)-edge-antimagic total (super (a, d)-edge-antimagic total,
respectively) labeling.

The following lemma shows that every (a, d)-edge-
antimagic vertex labeling can be extended to a super (a, d)-
edge-antimagic total labeling.

Lemma 1.4: A (p, q) graph G is super (a, d)-edge-
antimagic total if there exists a bijective function f : V (G) →
{1, 2, . . . , p} such that the set

S = {f(u) + f(v) : uv ∈ E(G)}

consists of an arithmetic progression {b, b + d′, · · · , b + (q −
1)d′}, where d′ = d+ 1.

Proof: Assume there exists a bijective function
f : V (G) → {1, . . . , p} such that the set
S = {f(u) + f(v) : uv ∈ E(G)} consists of an arithmetic
progression {b, b + d′, · · · , b + (q − 1)d′}. Then one may
extend the vertex labeling to V (G) ∪ E(G) by assigning
values p + 1, . . . , . . . , p + (q − 1), p + q to the edges
with the sum of endpoint labels in the reversing order
b + (q − 1)d′, . . . , b + d′, b respectively, thus we get the
arithmetic progression {a, a + d, · · · , a + (q − 1)d} over the
edges with their two endpoints, where a = b+(p+q), a+d =
b+d′+(p+q−1), · · · , a+(q−1)d = b+(q−1)d′+(p+1).
Therefore d′ = d+ 1 and a = b+ (p+ q). Q.E.D.

Corollary 1.1: Every super edge-magic and edge-
antimagic (p, q)-graph contains at least two vertices of degree
less than 4.

Proof: Assume on the contrary that p − 1 vertices of G
are of degrees at least 4. Then, by Lemma 1.2 and Lemma 1.3

4p− 4 =

p−1∑
i=1

4 ≤
∑

v∈V (G)

degv = 2q ≤ 2(2p− 3) = 4p− 6

which is a contradiction. Q.E.D.

Remark. Note that the relationships among above mentioned
labelings are as follows: an (a, d)-edge-antimagic vertex la-
beling is a super (a′, d−1)-edge-antimagic total labeling, and
when d = 1, it is a super edge magic labeling.

Now we are in a position to consider that, how far a graph is
away from being super edge magic. Therefore a more general
notion of deficiency is introduced as follows.

Definition 1.2: The super edge magic deficiency µs(G)
of a graph G is defined as µs(G) = min{n ≥ 0 : G∪ nK1 is
super edge magic}. If G is not super edge magic by adding any
number of isolated vertices, then µs(G) = ∞, and µs(G) = 0
if G is super edge magic.

In 1970 Kotzig and Rosa[8] defined the edge-magic de-
ficiency, µ(G), of a graph G as the minimum n such that
G ∪ nK1 is edge-magic total. If no such n exists, they
define µ(G) = ∞. In 1999 Figueroa-Centeno, Ichishima, and
Muntaner-Batle[3] extended this notion to super edge-magic
deficiency, µs(G), in the analogous way. They conjectured
that µs(Km,n) = (m − 1)(n − 1). This conjecture was also
studied independently by Hegde and Shetty[6], who used
the notions of strongly k-indexable labelings and vertex
characteristics in 2009. They both proved Km,n is super
edge magic if and only if m = 1 or n = 1. They observed
that µs(Km,n) ≤ (m − 1)(n − 1) and conjectured that
µs(Km,n) = (m − 1)(n − 1) by giving several supporting
examples such as K2,n, K3,n and K4,n etc. We calculate the
super edge magic deficiency of Km,n for any m and n in later
sections, thus confirm the conjecture completely:

Theorem 1.1: The super edge magic deficiency of com-
plete bipartite graphs is µs(Km,n) = (m − 1)(n − 1) for
positive integers m,n.

We define the following more general concept:
Definition 1.3: The (a, d)-edge-antimagic deficiency

µd(G) of a graph G is defined as µd(G) = min{n ≥ 0 :
G ∪ nK1 is (a, d)-edge-antimagic }, where a and d are two
fixed positive integers. If G is not (a, d)-edge-antimagic by
adding any number of isolated vertices, then µd(G) = ∞, and
µd(G) = 0 if G is (a, d)-edge-antimagic.

More examples and discussions about (a, d)-edge-antimagic
vertex labeling, (a, d)-edge-antimagic total labeling and their
deficiency problems can be referred to [1].

However in this article, we focus on the deficiency problem
of super edge magic labeling for complete bipartite graphs.
We will show Theorem 1.1 in later sections.

II. BASIC LABELING MATRIX CONSTRUCTION

Let f be a super edge magic labeling of Km,n ∪ zK1 and
z be a non-negative integer. We let A = {a1, a2, · · · , an} and
B = {b1, b2, · · · , bm} be the two partite sets of Km,n. Without
loss of generality we assume f(a1) < f(a2) < · · · · · · <
f(an) and f(b1) < f(b2) < · · · · · · < f(bm). For simplicity,
we abuse the language and express these labellings f(ai) and
f(bj) by ai and bj , respectively. That is to say that we assume
that a1 < a2 < · · · · · · < an and b1 < b2 < · · · · · · < bm,
respectively.

Note that we may assume m,n ≥ 2, since in case either
m = 1 or n = 1, then it is not hard to see that µs = 0,
which means the star graphs K1,n are super edge magic. In
the following we put the induced edge labels in a matrix form,
where the entry along the ai column and bj row is the sum
ai + bj , which is the induced label over the edge aibj .

We suppose a1 + b1 = k, the smallest possible induced
labeling over the edge a1b1. Then without loss of generality



may assume a1+b2 = k+1. Since f is super edge magic, we
may assume further that there is a longest consecutive integer
sequence of induced edge labelings k, k+1, · · · , k+ (t0 − 1)
with length t0 ≥ 2, while we label consecutively b1, b2, · · · , bt0
along the partite set B.

B\A a1 a2 · · · · · · · · · · · · ar0

b1 k k + t0 · · · · · · · · · · · · k + (r0 − 1)t0
b2 k + 1 k + t0 + 1 · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
bt0 k + (t0 − 1) k + 2t0 − 1 · · · · · · · · · · · · k + t0r0 − 1

Then a2 + b1 = k + t0 should be the next smallest edge
label. Since the sequence of vertex labels b1, b2, · · · , bt0 is
consecutive and given, it can be seen that the edge labels over
a2b1, a2b2, · · · until a2bt0 are k+t0, k+t0+1, · · · , k+2t0−1
respectively.

Now we may assume further that along the partite set A,
there is an arithmetic progression a1, a2, · · · , ar0 with the
common difference t0 and the longest length r0 ≥ 2. Therefore
we obtain all the consecutive edge labels from a1 + b1 = k
to ar0 + bt0 = k + t0r0 − 1, and in this fashion we say they
form a basic matrix.

We continue growing the basic matrix along partite sets
A and B, and the next smallest edge label is bt0+1 + a1 =
k+ r0t0. Note that the vertex labels a1, a2, · · · , ar0 are fixed,
therefore the edge labels along the row bt0+1 + a1, bt0+1 +
a2, · · · , bt0+1 + ar0 are also fixed as k + r0t0, k + r0t0 +
t0, · · · , k + r0t0 + (r0 − 1)t0.

Now there are two possibilities for the induced edge label
k+ r0t0+1, which are bt0+2+a1 and ar0+1+ b1. If ar0+1+
b1 = k+r0t0+1, then bt0+1+a2 = ar0+1+bt0 = k+r0t0+t0,
a contradiction. Therefore it should be the case bt0+2 + a1 =
k + r0t0 + 1.

Similarly, we have bt0+3 + a1 = k + r0t0 + 2, · · ·, until
b2t0 + a1 = k + r0t0 + t0 − 1, again the edge labels along
the rows are fixed. In this fashion, another basic matrix of
consecutive edge labels, of size t0 × r0, is obtained. Keep
growing similar matrices, we may assume that there is a largest
t1 ≥ 2 of the same size t0 × r0 basic matrices.

B\A a1 · · · · · · · · · · · · ar0

b1 k · · · · · · · · · · · · k + (r0 − 1)t0
· · · · · · · · · · · · · · · · · · · · ·
bt0 k + (t0 − 1) · · · · · · · · · · · · k + t0r0 − 1

bt0+1 k + t0r0 · · · · · · · · · · · · k + (2r0 − 1)t0
· · · · · · · · · · · · · · · · · · · · ·
b2t0 k + t0r0 + (t0 − 1) · · · · · · · · · · · · k + 2t0r0 − 1
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
bt1t0 k + (t1 − 1)t0r0 + (t0 − 1) · · · · · · · · · · · · k + t1t0r0 − 1

Keep growing the edge labeling matrix of Km,n in similar
fashions, we may see it grows alternatively from the basic
matrix of size t0 × r0, then t1 basic matrices of size t0 × r0,
and then r1 matrices of size t1t0×r0, then t2 matrices of size
t1t0 × r1r0, · · · · · ·, recursively until either tk+1 matrices of
size tk · · · t0 × rk · · · r0 (with rk+1 = 1), or rk+1 matrices of
size tk+1tk · · · t0× rk · · · r0 (with tk+2 = 1), for some k ≥ 0.

We conclude that if Km,n ∪ zK1 is super edge magic, then
the induced edge labeling matrix must grow in the above
fashion, and

m =
∏
i≥0

ti, n =
∏
j≥0

rj .

Note that eventually ti or rj will reach 1, which means the
matrices stop growing, since m and n are finite.

III. PROOF OF MAIN RESULT

Proof of the Theorem 1.1:

In 2006 [3], Figueroa-Centeno et al. showed that
µs(Km,n) ≤ (m − 1)(n − 1) by giving a super edge magic
labeling with extra (m−1)(n−1) isolated vertices. Therefore
it suffices to show that µs(Km,n) ≥ (m− 1)(n− 1).

Let [m,n] be the set of integers {r | m ≤ r ≤ n}. We claim
that [a1, an] ∩ [b1, bm] = ∅. If the claim is true, then either
an − b1 ≥ mn or bm − a1 ≥ mn. Therefore if Km,n ∪ zK1

is super edge magic, then z ≥ (m − 1)(n − 1), and thus
µs(Km,n) ≥ (m−1)(n−1), then the Theorem 1.1 is proved.

To prove the claim, we see from the conclusion of pre-
vious section, either mn = t0r0 · · · tkrktk+1 or mn =
t0r0 · · · tk+1rk+1, that is, either m = t0 · · · tktk+1 and n =
r0 · · · rk, or m = t0 · · · tk+1 and n = r0 · · · rk+1. We proceed
by mathematical induction. When k = 0, it is not hard to see
the claim is true. We assume k ≥ 0.
Case 1: m = t0 · · · tktk+1 and n = r0 · · · rk.

Assume to the contrary that [a1, an]∩ [b1, bm] ̸= ∅, we have
4 different cases. Since the arguments are similar, we use the
case b1 < a1 < bm < an as an example.

By induction hypothesis, we know for example a1 could lie
between bt0···tk and bt0···tk+1, that is the gap between the first
matrix and the second matrix of sizes tk · · · t0×rk · · · r0. Look
at |ar0···rk − a1| = (rk − 1)t0 · · · tk + (rk−1 − 1)t0 · · · tk−1 +
· · ·+(r0 − 1)t0 and |bt0···tk+1 − bt0···tk | = (rk − 1)t0 · · · tk +
(rk−1 − 1)t0 · · · tk−1 + · · · + (r0 − 1)t0 − 1. Note that since
|ar0···rk − a1| and |bt0···tk+1 − bt0···tk | differ by 1, there must
be repeated labellings ai = bj , a contradiction.

Similar situations for other following possible gap positions
for a1 such as, a1 could lie between b2t0···tk+1 and b2t0···tk+2,
or between b3t0···tk+2 and b3t0···tk+3,· · · · · · · · · · · ·, or between
b(tk+1−1)t0···tk and b(tk+1−1)t0···tk+1, we got a contradiction in
each case.

As for other possibilities b1 < a1 < an < bm,
a1 < b1 < bm < an, or a1 < b1 < an < bm, one
may reach contradictions by similar arguments.

Case 2: m = t0 · · · tk+1 and n = r0 · · · rk+1.
Assume to the contrary that [a1, an]∩ [b1, bm] ̸= ∅, we have

4 cases similar to that in Case 1. We use a1 < b1 < an < bm
as an example.

By induction hypothesis, we know for example b1 could
lie between ar0···rk and ar0···rk+1 as before, and we look
at |ar0···rk − ar0···rk+1| = (tk+1 − 1)t0r0 · · · tkrk + (tk−1 −
1)t0r0 · · · tk−1rk−1 + · · ·+ (t1 − 1)t0r0 + t0 and |bm − b1| =
(tk+1−1)t0r0 · · · tkrk+(tk−1)t0r0 · · · tk−1rk−1+· · ·+(t1−



1)t0r0 + t0 − 1. Note that |ar0···rk − ar0···rk+1| and |bm − b1|
differ by 1, therefore again there must be repeated labellings
ai = bj , a contradiction.

Other possibilities can be done similarly. Hence we are
done with the proof of the claim. Q.E.D.

IV. EXAMPLES

We give an algorithm below on super edge magic labeling
of Km,n ∪ (m− 1)(n− 1)K1, since Km,n has the super edge
magic deficiency (m − 1)(n − 1). Starting with the basic
matrix of size t0 × r0, then growing the matrix of induced
edge labels by giving the vertex labeling along one partite set
to be continuous, while along the other partite set to be an
arithmetic progression. Let also the smallest vertex labeling
along one partite set be 1, and the smallest vertex labeling
along the other partite set is a.

Algorithm 4.1: Super Edge Magic Labeling of Km,n

Input: Given a complete bipartite graph Km,n.

1) For m,n, fix factorizations of m = t0t1 · · · tktk+1 and
n = r0r1 · · · rk−1rk.

2) if tk+1 = 1, then the matrix is fixed for mn =
t0r0 · · · tkrk.

3) if rk = 1, then the matrix is fixed for mn =
t0r0 · · · tk−1rk−1tk.

4) solve a by the formula a + (rk − 1)t0r0 · · · rk−1tk +
(rk−1−1)t0r0 · · · rk−2tk−1+ · · ·+(r0−1)t0 = mn+1.

Output:
The super edge magic labeling of Km,n∪(m−1)(n−1)K1

in matrix form.

Example 4.1: Note that µs(K6,8) = 35. We give below
3 possible cases, out of 14 possible cases totally, while
calculating the super edge magic deficiency for K6,8. We
assume without loss of generality that m = 6, n = 8.

Case 1: mn = t0r0, t0 = 6, r0 = 8, t1 = 1, a = 7.
m\n 7 13 19 25 31 37 43 49

1 8 14 20 26 32 38 44 50
2 9 15 21 27 33 39 45 51
3 10 16 22 28 34 40 46 52
4 11 17 23 29 35 41 47 53
5 12 18 24 30 36 42 48 54
6 13 19 25 31 37 43 49 55

Case 2: mn = t0r0t1, t0 = 3, r0 = 8, t1 = 2, r1 = 1,
a = 28.

m\n 28 31 34 37 40 43 46 49
1 29 32 35 38 41 44 47 50
2 30 33 36 39 42 45 48 51
3 31 34 37 40 43 46 49 52
25 53 56 59 62 65 68 71 74
26 54 57 60 63 66 69 72 75
27 55 58 61 64 67 70 73 76

Case 3: mn = t0r0t1r1, t0 = 3, r0 = 4, t1 = 2, r1 = 2,
t2 = 1, a = 16.

m\n 16 19 22 25 40 43 46 49
1 17 20 23 26 41 44 47 50
2 18 21 24 27 42 45 48 51
3 19 22 25 28 43 46 49 52

13 29 32 35 38 53 56 59 62
14 30 33 36 39 54 57 60 63
15 31 34 37 40 55 58 61 64

V. CONCLUDING REMARKS

For a graph determining the deficiency is the same as
determining the super edge magic labeling by assigning labels
to vertices in a relaxed way. Therefore it is applicable in the
arrangement of devices of a wireless network as mentioned in
the beginning section.

For future research directions we propose that the work in
this paper can be explored further for special types of bipartite
graphs, including those of trees. Also we have found certain
classes of complete multi-partite graphs which can not be
made super edge magic adding any number of vertices.

For more generalization of super edge magic labeling
and their deficiency problems, one may consider (a, d)-edge-
antimagic vertex/total labeling as mentioned in the introduc-
tion section and look up the recent book [1].
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