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This project studies the graph labeling, graph
coloring, graph partition, and graph covering. We
will research on the following related topics using
the tools from finite geometry, number theory, group
theory, and other standard combinatorial methods:

F For a graph G and an abelian group A, we say an
edge labeling using non-identity elements is A-magic
if all induced vertex sums are constant. The set of
all possible such magic vertex sum constants is
called magic sum spectrum. We will study the magic
sum spectrum of various classes of graphs, in
particular regular graphs. Even in the case A = Zk,
the finite cyclic additive group consisting of
congruence classes modulo k, to characterize Zk-magic
graphs 1s quite hard. This research direction 1is
closely related to A-coloring (a.k.a. abelian
coloring in literatures), in particular related to
the conjecture raised by Archdeacon in 1986, namely,
let G be a bridgeless graph and let H be a group of
order at least five, then the edges of G can be
colored with the non-identity elements of H such that
at each vertex of G the three colors sum to the
identity in H. On the other hand, our project will
also focus on L(2,1)-labeling, antimagic labeling,
and list coloring etc., and we will put special
attention on those unsettled conjectures.

%F The edge clique covering problem is that for a
given graph, to find the least number of cliques so
that every edge is contained in at least one clique.
Fred Roberts and Walter Wallis considered the class
of graphs for which the set of all maximal cliques
forms an edge clique covering of minimum Size, which
1s called maximal clique irreducible graphs. We
extend to a general class of weakly maximal clique
irreducible graphs, which is the subject of recent
collaboration with Dr. Vijayakumar in Cochin
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University in India. In 1966 Paul Erdos pointed out
that there 1s one-to-one correspondence between edge
clique covering and intersection representations for
graphs. We also study related subjects regarding the
uniqueness of set representations of graphs, and I
have been collaborating with Professor Wang Yue-Li of
National Taiwan University of Science and Technology
in Taipei. We just published a paper regarding unique
intersectability of diamond-free graphs recently.
Therefore we will continue the exploration along this
line of research.

A-magic labeling, abelian coloring, L(2,1)-labeling,
antimagic labeling, list coloring, maximal clique
irreducible, clique covering, unique intersection
representation, finite geometry, number theory, group
theory
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F and ¥’ of G, ¥ can be obtained from ¥ by a bijective mapping from S(¥") to S(F), then

G is said to be s-uniquely intersectable. In this paper, we are concerned with the s-unique

Set re . intersectability of diamond-free graphs, where a diamond is a K4 with one edge deleted.
presentation . . .

Uniquely intersectable Moreover, for a diamond-free graph G, we also derive a formula. for computing ws(G).

Clique partition © 2011 Elsevier B.V. All rights reserved.

Diamond-free graphs

Keywords:

1. Introduction

In this paper, G = (V, E) represents a simple graph of n vertices and m edges; i.e., |V(G)| = n and |E(G)| = m, where
V(G) = {v1, v2, ..., vn}. An edge v;v; is in E(G) if vertices v; and v; are adjacent. Two adjacent vertices v; and v; in V(G) are
twins if they have the same closed neighborhood. G is twin free if it contains no twins. For two graphs G and H, if G has no
induced subgraph H, then we say that G is H-free. Thus, a graph is triangle free (respectively, diamond free) if it contains no
triangles (respectively, diamonds) as an induced subgraph. Here, a triangle means a K5 and a diamond is the graph obtained
by deleting an edge from Kj.

The concept of set representation of graphs was first introduced by Szpilrajn-Marczewski [10] and Erdos et al. [4]. A set
representation of G is a multifamily ¥ = {S;, S,, ..., Sy} of nonempty sets such that, for any i # j, S; N'S; # @ if edge
viv; € E(G), and S; N S; = ¥ otherwise, where multifamily means that Sy, S, .. ., S, might not be distinct. Note that S; is a
corresponding set of v; fori = 1, 2, ..., n. A set representation ¥ is distinct if S; # S; for i # j, and is antichain if S; Z S;
for i # j. A simple set representation is a distinct set representation with [S; N S;| = 1if v;v; € E(G). For a set representation
F =1{5,8%,...,S.}, letS(¥) = U};l S;. It is known that any G has a (simple) distinct set representation (see Theorem
2.5 of [5]). Thus we can meaningfully denote by w(G) (respectively, ws(G)) the minimum size of |[S(#)| among all distinct
set representations (respectively, simple set representations) ¥ of G. A minimum distinct set representation (respectively,
minimum simple set representation) ¥ of G is a distinct set representation (respectively, simple set representation) with
IS(F)| = w(G) (respectively, ws(G)). Kou et al. [7] and Poljak et al. [9] proved that finding @(G) and ws(G), respectively, for
a general graph G is NP-complete. Harary [5] proved that, for a connected graph G of n(> 3) vertices, w(G) = m if and only
if G is triangle free.

The concept of unique intersectability of G was proposed by Alter and Wang [1]. They defined G to be uniquely intersectable
if, for any two minimum distinct set representations  and ¥’ of G, ¥ can be obtained from #' by a bijective mapping from

* This work was supported in part by the National Science Council of the Republic of China under contracts NSC 96-2115-M-029-007 and NSC 97-2221-
E-011-158-MY3.
* Corresponding author.
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S(F') to S(F). Based on the above theorem of Harary, they proved that every triangle-free graph G is uniquely intersectable.
Later, Tsuchiya [11] studied the unique intersectability with respect to antichains, abbreviated a-uniquely intersectable, and
showed that being triangle free is also a sufficient condition for a graph to be a-uniquely intersectable. Then, Mahadev and
Wang [8] proved that, for every diamond-free graph G, G is uniquely intersectable if and only if G is twin free. This generalizes
Alter and Wang's result, since diamond-free graphs are a superset of triangle-free graphs. Kong and Wu [6] defined a superset
of diamond-free graphs, called purple graphs. They proved that a purple graph is uniquely intersectable if and only if it is
twin free and unique intersectable with respect to multifamily representation. This further improves Mahadev and Wang’s
result, since diamond-free graphs are unique intersectable with respect to multifamily representation [8].

Inspired by the concept of a-uniquely intersectable, we say that a graph G is s-uniquely intersectable if, for any two
minimum simple set representations £ and ¥’ of G, # can be obtained from ' by a bijective mapping from S(¥’) to
S(F). Actually, the proof in [1] also reveals that every triangle-free graph G is s-uniquely intersectable. However, Mahadev
and Wang’s proof [8] cannot be applied directly to the s-unique intersectability of a graph. Therefore, it is interesting to find
out a general sufficient condition for the s-unique intersectability of a graph.

2. Preliminaries

First, we introduce some terms which will be used later. A clique in G is a set Q € V(G) whose vertices are pairwise
adjacent in G. A trivial clique contains only one vertex. A clique in G is maximal if it is not properly contained in any other
cliquein G.AsetQ = {Qs, Qa, . .., Qp} of cliques in G is called a clique partition of Gif E(G) = f;l E(Q),E(Q)NEWQ) =9
fori # j,and {v} € Qforeach v € V(G) of degree 0. Erdos et al. [4] found a bijection between set representations and clique
covers of a graph G. Below, we introduce this bijection in detail, and call it the Erdds bijection. Let Q = {Q;, Q2, ..., Qp} bea
clique partition of G. For every v;, 1 < i < n, construct a set S; whose elements are those cliques in Q containing v;. Clearly,
foranyi # j, |S; N Sj| = 1ifv; is adjacent to vj, and |S; N S;| = 0 otherwise. Hence, {S1, S, ..., Sy} is a set representation of
G where any distinct S;, S; have |S; N S;| < 1. Conversely, given a set representation ¥ = {S1, Sy, ..., Sp} of G where §; is the
corresponding set of v; for 1 < i < nand any distinct S;, S; have [S; N S;| < 1, we can obtain a clique partition of G as follows.
For eachs; € S(F) = {s1,52,...,Sp}, if 5jisin S;, then let Q; contain v;. Clearly, the subgraph of G induced by the vertices
in Q; is a clique, and exactly one Q; with 1 < j < p contains {vy, vy} if vxv, € E(G) and none otherwise. Therefore, the set
{Q1, Qz, ..., Qp} is aclique partition of G. Hereafter, we use Erdds ¥ and Erdds Q to denote the resulting set representation
and clique partition, respectively, of the Erdds bijection.

A finite linear space (FLS) I' = (P, &£) consists of a set P of n points and a set £ of lines, where a line is a set of points,
satisfying the following axioms [2].

(L1) Aline contains at least two and at most n — 1 points.
(L2) For any two points x, y € P, exactly one line of £ contains {x, y}.

A projective plane (PP) IT is an FLS satisfying further the following two axioms [2].

(P1) Any two distinct lines have exactly one common point.
(P2) There exist four points in which no three points are collinear.

In [3] (see also [2]), de Bruijn and Erdés proved a theorem about FLSs. To employ the theorem in this paper, we note that,
with the correspondence between points and vertices, and lines and cliques, there is a bijection between FLSs and clique
partitions Q of complete graphs K, n > 3, where the cardinality of every clique in Q is between 2 and n — 1. Therefore we
can paraphrase the theorem in terms of clique partition as follows.

Theorem 1 ([3]). If Q with |Q| > 1is a clique partition of K, withn > 3, and there is no trivial clique in Q, then |Q| > n, where
equality holds if and only if

(a) Q consists of one clique with n — 1 vertices and n — 1 copies of K, or
(b) the FLS corresponding to Q is a PP.

The FLSs with n > 3, corresponding to clique partitions as in Condition (a) of Theorem 1, are conventionally referred to
as near-pencil (N-P for short). We will use the two terms N-P and PP to stand for both an FLS and the corresponding clique
partition of a complete graph. For example, two clique partitions Q = {Q1, Qy, ..., Q;} of K; corresponding to N-P and PP
are listed in Table 1.

InTable 1, the PP with n = 7 is the so-called Fano plane, as illustrated in Fig. 1, where the line segments (straight or round)
pass through lines {vq, vy, v3}, {vs, v4, vs}, {v1, Vs, vs}, {V1, V4, U7}, {V2, Us, V7], {v3, Ve, U7}, {V2, V4, V), respectively.

For the clique partition Q of K, with |Q| = 1,i.e.,, Q = {Q;} and Q; = {v1, vy, ..., v}, if we add trivial cliques Q; = {v;}

fori = 2,3,...,nto Q, then the resulting set Q" = {Q, Qa, ..., Q,} is still a clique partition of K. Henceforth, we use
Erdds Fi, to denote the Erdos F with respect to Q, i.e., Erd6s Fx, = {S1,S2, ..., S.} where S; = {Q1} and S; = {Q4, Qi}
fori = 2, 3,...,n. We also use Erdos Fy.p and Erdds Fpp to emphasize set representations of a complete graph which are

obtained by Erdds bijection on its N-P and PP, respectively.

Proposition 2. For a K, all of its Erdds Fy.p, Erdds Fpp, and Erdés Fy, are simple set representations.
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Table 1

Clique partitions Q of K7 with |Q| = 7.
0 N-P PP
Q {v1, v2} {v1, v2, v3}
Q {v1, v3} {v3, v4, v5}
Qs {v1, va} {v1, vs, ve}
Q {v1, vs} {v1, v4, v7}
Qs {v1, ve} {v2, vs, v7}
Qs {v1, vz} {vs, vs, v7}
Q {va, v3, ..., v7} {v2, v4, ve}

U1
Vo Vg
VU3 Uy Us

Fig. 1. Fano plane.
3. Diamond-free graphs are s-uniquely intersectable

A vertex v; € V(G) is called a monopolized vertex of Q if v; is contained in only one maximal clique Q in G; otherwise, v;
is called a shared vertex. Similarly, an element in S(F) is called a monopolized element with respect to a set representation
F of G if it appears in only one set of F.

Proposition 3. In a graph G, the closed neighborhood of a monopolized vertex of a maximal clique Q is contained in Q.

Theorem 4. For n > 1, ws(K,) = n. Further, any minimum simple set representation of K, for n > 3, is an Erd6s Fy.p, Erdds
Fpp, or Erdos F,,.

Proof. Clearly, ws(K;) = 1 and ws(K;) = 2. We prove that ws(K,) = n for n > 3. We can easily construct a simple set
representation & of Ky, for n > 3, with S(¥) = {s1,S2,..., Sy} by letting ¥ = {S¢,S,, ..., Sy}, where S; = {s;} and
S; = {s1,s;} for 2 < i < n. Thus ws(K,;) < nforn > 3. Then we prove that ws(K,;) > n for n > 3. Suppose to the contrary
that K, n > 3, has a simple set representation & with |S(¥)| < n — 1. We delete all monopolized elements from all sets
in £ and let £’ be the resulting set. Clearly, £’ remains a set representation of K, and therefore Erd6s Q with respect to
F'is a clique partition of K, which contains at most n — 1 cliques and no trivial ones. By Theorem 1, |Q| = 1. This means
that all sets in £ are the same. Thus, S(¥) consists of an element common to all sets in & and at most n — 2 monopolized
elements since |[S(F)| < n — 1. This implies that at least two sets in F are the same, a contradiction. Thus we have proved
that ws(K;) = nforn > 1.

Let £ be a minimum simple set representation of K, withn > 3, i.e., |S(¥)| = n. Delete all monopolized elements from
all sets in £ and obtain F'. Then Erd6s Q with respect to ' is a clique partition of K, which contains at most n cliques and
no trivial ones. By Theorem 1, Q is an N-P or PP, or has |Q| = 1. In the former two cases, |Q| = n, and therefore £’ = F is
an Erdos Fn.p or Erdds Fpp. In the last case,  is an Erdos F,. This completes the proof. O

Lemma 5. If a graph G is diamond free, then any two distinct maximal cliques in G have at most one vertex in common.

Proof. Suppose to the contrary that two distinct maximal cliques Q and Q' intersect at two vertices v; and vj in G. There
are at least two nonadjacent vertices v, and v, in Q and Q’, respectively; otherwise, Q and Q' are contained in one maximal
clique. It is clear that the subgraph of G induced by vertices v;, v, vx, vy is a diamond in G, a contradiction. O

In the following, unless otherwise stated, we assume that G is a connected diamond-free graph and is not a complete
graph, that Q = {Qy, Q2, ..., Qp} is the set of all maximal cliques in G, and that ¥ = {S1, S, ..., Sp} is a simple set repre-
sentation of G, where S; is a corresponding set of v; fori = 1, 2, ..., n. Further, let M; and H; be the sets of monopolized and
shared vertices, respectively, of Q; for 1 <i < p,M = Uf:] M;, Fi; = {Sj: vj € Mj} for 1 < i< p,and Fy = {5; : v; € M}.
Similarly, H = Ule Hi, Fu; = {Sj : vj € Hi}for 1 < i < p,and Fy = {S; : v; € H}. The subgraph of G induced by M is
denoted by G[M].
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Lemma 6. If G is a connected graph and is not a complete graph, then |S(Fy)| > Zle | M.

Proof. Since G # K, and is connected, |[H;| > 1for 1 < i < p. By Proposition 3, G[M] is the disjoint union of Ky,
Kims)s - - - » Kjm,|- Obviously, Fy is a simple set representation of G[M]. Therefore, by Theorem 4, [S(Fi)| > ?:1 IM;l. O

Lemma 7. If there is a Q; with M; = (J, then, for any vy, v € Q;, the following statements hold.

(1) The element in Sy N Sy is not in S(f‘”,v,j)for any j with M; # @.
(2) Ifthereis a Q; withj # i and M; = @, then, for any vy, vy € Q;, the element in S N S, is distinct from the one in Sy N S,.

Proof. Let s be the element in S, N S,. To prove statement (1), we suppose to the contrary that s is also in S(Fy;) for some j
with M; # @. This means that both vy and v, are adjacent to some vertex, say x, in M;. Since x is a monopolized vertex of Q;,
by Proposition 3, both vy and v, must be also in Q;. Thus, |Q; N Q;| > 2 which, by Lemma 5, is a contradiction. This concludes
the proof of this statement.

To prove statement (2), suppose to the contrary that there is a Q; withj # i and M; = @ such that S, N S, = {s} for some
Vx, Uy € Q. By Lemma 5, vy & Q; or v, ¢ Q;. For the former, since s € S, NS, N Sy, this means that there is a maximal clique,
say Q,, with r # i containing vertices vy, vy, and vy. Thus vy, v, € Q; N Q;. By Lemma 5, this is a contradiction. The latter
case can also be handled similarly. This completes the proof. O

Lemma 8. Any simple set representation ¥ of G has |S(F)| > f:] IM;| 4+ [{i : M; = @ for 1 < i < p}|, where equality holds
if and only if |S(Fu)| = le [Mj| and (") Fy,, for every 1 < i < p with M; = @, contains exactly one element, which is not in
S(Fum) and () Fu, # Fu; for i # j.

Proof. Since G is connected, every Q;, for 1 < i < p, has more than one vertex. Thus, Q; with M; =  has |H;| > 2.By Lemma7,
every Q; with M; =  has at least one unique element in S(¥) which is not in S(¥;). Moreover, |S(Fy)| > ZLl |M;| by
Lemma 6. Therefore,

IS(F)| > [S(Fm)| + I{i : My =@ for 1 <i<pl

p
> DM+ (i My = Pfor 1 < i< p)l,
i=1

where equality holds if and only if |S(Fy)| = f’:1 |M;| and (1) g, for every 1 < i < p with M; = @, contains exactly one
element, which is not in S(Fy) and () F, # Fuy; fori#j. 0O

Theorem 9. For a connected diamond-free graph G, ws(G) = f:1 IMi| + |{i: M; = @ for 1 <i< p}l

Proof. Theorem 4 has proved this theorem if G is a complete graph. Thus we assume that G is not a complete graph in
the following. By Lemma 8, we can prove this theorem by showing a simple set representation # of G with |S(F)| =

P IMil+ [{i: My =@ for1<i<pll

For eachiwith M; # ¢, let M; = {v;, vy, . . ., v,-‘Mil},and Si; = 1{qi,1} and S,'j = {qi1, g} for 2 < j < |M;|. For each v, € H;,
where 1 < i < p,assign S, = {qx,1 : vk € Qx and Q, € Q}. Note that, since vy is a shared vertex, there are at least two cliques
in Q containing vy. The total number of elements used to construct £ is equal to Zf:1 IM;| + |{i : IM; = 0| for 1 <i < p}|.

To complete the proof, we have to show that the constructed ¥ = {51, S5, ..., S} is a simple set representation of G.
First, we prove that ¥ is a set representation of G. Clearly, each pair of vertices vj, vy € V(Q;), for 1 < i < p, has a common
element g; ; in their corresponding S; and Si. Therefore, S; N S; # ¥ if edge vjvx € E(G). Now we prove that S; N S, = @ if
there is no edge between v; and vy. Since only elements g; 1, fori = 1, 2, ..., p, can appear in the representation sets of two
different vertices, it suffices to consider the adjacency of vertices having g; ; in their corresponding sets. By our assignment
and Lemma 5, any two distinct maximal cliques, say Q; and Q;, have at most one shared vertex v, which, if it exists, is
the only vertex having g; ; and g; ; in its set representation Si. All of the other vertices in Q; cannot have ¢; ; in their set
representations, and vice versa. Therefore, the constructed ¥ is a set representation of G.

Next, we prove that ¥ is a distinct set representation of G. Clearly, all vertices v; in M;, fori = 1, 2, ..., p, have different
S;. By Lemma 5 again, if a shared vertex in H;, for some 1 < i < p, has both g; ; and g; 1, for some 1 < j < pandj # i, in
its set representation, then no other vertex can have both of them in its set representation. Therefore, # is a distinct set
representation of G.

It remains to show that |S; N S;| = 1if v;jv; € E(G). Clearly, for any two v;, v; € Q, qy,1 is the only common element
between S; and S;. This concludes the proof of this theorem. O
Lemma 10. Ifthere exists a simple set representation ¥ of G with |S(Fy)| = le |M;|, then, for every nonempty M;, 1 <i < p,
Fu; is an Erdds fK\Mn of G[M;].

Proof. Note that |[S(Fy)| = ?:1 |M;| implies that [S(Fy;)| = |M;|. If there exists |[M;| = 1or 2 for 1 < i < p, then F; can
only be an Erdos Fit, - Thus, this lemma holds for |[M;| = 1 and 2. In the following, we consider the case where |M;| > 3 if it
exists.
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Suppose to the contrary that there is an £y, = {S1, Sz, ..., Sjm;} which is not an Erdos 37,(%‘ of G[M;]. By Theorem 4, Fy,
is an Erdos Fy.p or an Erdoés Fpp of G[M;]. We only consider the former case since the latter can be handled similarly. Let
Qnr =1{0,Qy, ..., QI/MI-\} be an N-P of G[M;] so that the Erdés ¥ with respect to it is Fy,. By the definition of N-P, there is
no clique in Qy_p containing all vertices of M;. Therefore, there is also no common element among all S; fori = 1, 2, ..., |M;|.

Since |H;| # 0 and every vy € H; is adjacent to every vertex in M;, the intersection between Sy and S(#y,) has at least two
elements, say e; and e,. We claim that there exists a vertex v, € M; whose corresponding S, also contains both e; and e,. Note
that v, is the vertex in Q., N Q.,, where Qe forj = 1or 2, is the clique containing all vertices v, with e; € S,. Consequently,
ISk N S¢| > 2, which contradicts that Fy, is a simple set representation of G[M;]. This establishes the lemma. O

Theorem 11. Every connected diamond-free graph G is s-uniquely intersectable except K, for n > 3.

Proof. By Theorem 9, for a connected diamond-free graph G except K, withn > 3, ws(G) = ZL] M|+ {i : Mj =@ for1 <
i < p}|.ByLemmas8, |S(Fy)| = le |M;| for any minimum simple set representation # of G. By Lemma 10, every nonempty
Fu; is an Erdos ?'K\Mi\ of G[M;].

Thus, for every i with M; # ¢, the common element in all sets of ), is also in every S; € Fy, as v; is adjacent to any vertex
in M;. Moreover, since [S(F)| = Y0, IMi| + |{i : M; = @ for 1 < i < p}| and |S(Fum)| = D_F_, [Mj], by Lemma 7 and the
pigeonhole principle, for every i with M; = ¢, all S; for v; € Q; contain a common element, say e;, which is not in S(Fy), and
e; and e; are distinct for 1 < i,j < p and i # j. From above, for any v; € H, |S;| is equal to the number of cliques containing
vj,and S; = {e; : ¢; is the common element in Fy, U Fy, and v;isin Q; fori = 1, 2, ..., p}. Therefore, for any two minimum
simple set representations £ and ¥’ of G, £ can be obtained from F’ by a bijective mapping from S(¥ ") to S(F). That is, the
common element in Fy, U Fy, has a unique corresponding common element in T,\j,i U 51}1,, and every monopolized element
in Fy, has a unique corresponding monopolized element in }‘,\;,i for each 1 < i < p. Thus G is s-uniquely intersectable. O

A similar proof to Theorem 7.6 in [6] (except replacing Lemma 7.1 in [6] by Theorem 4) establishes the following theorem.

Theorem 12. For any graph G, ws(G) > ¢ + Zf:l |M;|, where c is the number of maximal cliques Q; in G not only with M; = ¢
but having an edge not in any other Q;.

As a further study, it is interesting to find a sufficient and necessary condition for graphs having ws(G) = ¢ + Zf;l | M|
and study their s-uniquely intersectability.
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Abstract. For an undirected graph G, a zero-sum flow is an assignment of
non-zero integers to the edges such that the sum of the values of all edges
incident with each vertex is zero. We extend this notion to a more general
one in this paper, namely a constant-sum flow. The constant under a
constant-sum flow is called an index of G, and I(G) is denoted as the
index set of all possible indices of G. Among others we obtain that the
index set of a regular graph admitting a perfect matching is the set of all
integers. We also completely determine the index sets of all r-regular graphs
except that of 4k-regular graphs of even order, k > 1.

1 Introduction and Preliminaries

Throughout this paper, all terminologies and notations on graph theory can be
referred to the textbook by West[8]. We use Z to stand for the set of all integers,
and Z* the set of all non-zero integers.

Let G be a directed graph. A k-flow on G is an assignment of integers with
maximum absolute value k — 1 to each edge such that for every vertex, the sum
of the values of incoming edges is equal to the sum of the values of outgoing
edges. A nowhere-zero k-flow is a k-flow with no zero edge labels. A celebrated
conjecture of Tutte says that:

(Tutte’s 5-flow Conjecture[7]) Every bridgeless graph has a nowhere-zero
5-flow.

Jaeger showed that every bridgeless graph has a nowhere-zero 8-flow[4]. Next
Seymour proved that every bridgeless graph has a nowhere-zero-6-flow[6].

One may study the elements of null space of the incidence matrix of an
undirected graph. For an undirected graph G, the incidence matrix of G, W(G),
is defined as follows:

1 if e; and v; are incident,
0 otherwise.

W(G)i,; = {



An element of the null space of W(G) is a function f : E(G) — Z such that
for all vertices v € V(G) we have

> flw) =0,

u€N (v)

where N (v) denotes the set of adjacent vertices to vertex v. If f never takes the
value zero, then it is called a zero-sum flow on G. A zero-sum k-flow is a
zero-sum flow whose values are integers with absolute value less than k. There
is a conjecture for zero-sum flows similar to the Tutte’s 5-flow Conjecture for
nowhere-zero flows as follows. Let G be an undirected graph with incidence ma-
trix W. If there exists a vector in the null space of W whose entries are non-zero
real numbers, then there also exists a vector in that space, whose entries are
non-zero integers with absolute value less than 6, or equivalently,

(Zero-Sum Conjecture[1]) If G is a graph with a zero-sum flow, then G ad-
mits a zero-sum 6-flow.

It was proved by Akbari et al. [1] that the above Zero-Sum Conjecture is
equivalent to the Bouchet’s Conjecture for bidirected graphs[3]. For regular
graphs they obtained the following theorem:

Theorem 1 Let G be an r-regular graph (r > 3). Then G has a zero-sum 7-flow.
If 3|r, then G has a zero-sum 5-flow.

We extend the notion zero-sum flows to a more general one, namely constant-
sum flows as follows:

Definition 2 For an undirected graph G, if there exits f : E(G) — Z* such that
Z fluv) = C for each v € V(G), where C is an integer constant (called an
u€N (v)
index), then we call f a constant-sum flow of G, or simply a C-sum flow of
G.
Denote by I(G) the set of all possible indices for G, and call it the index
set of G.

Remark. Note that 0 € I(G) if and only if G admits a zero-sum flow.

We have the following observation for the index set of an r-regular graph:
Theorem 3 Let G be r-reqular(r > 2) with a perfect matching, then I(G) = Z.

Proof.

Let M be the perfect matching. Note that we have the factorization G =
M @ (G\M), where G\M is an (r — 1)-regular graph. Since for the perfect
matching I(M) = Z*, and G\ M has indices 7 —1 and 1 —r by labeling 1 and —1



respectively on edges, we have that I[(G) = I(M & (G\M)) D (r — 1) + Z* and
I(G)=IMe(G\M)) D (1—r)+Z*. If (r—1)+Z* # (1 —r)+Z*, then we are
done with I(G) = Z, since (r—1)+Z* = Z*\{r—1} and (1-r)+Z* = Z*\{1—-r}.
In case (r — 1)+ Z* = (1 — r) + Z*, which impliesr —1=1—r thatisr =1, a
contradiction. ad

Moreover, we see that I(G) = Z* for 1-regular graphs G, and I(G) = Z or
27" for 2-regular graphs G based upon the following observation:

Lemma 4 Let C,, be an n-cycle, where n > 3. We have the following:
(1) I(Cy) = 2Z*, for n odd.
(2) 1(Cy) =1Z, for n even.

Proof.

(1) Note that in any constant-sum flow of a cycle, the edges should alternatively
be labeled the same. Therefore, for n odd, the labels on all edges are all the
same. Therefore I(C,,) = 2Z".

(2) For n even, we label the edges 1,2 —1,1,z—1,---,1,2 — 1 for z € Z\{1} to
obtain the index x, and 2, —1,2,—1,---,2, —1 to obtain the index 1. There-
fore I(C,,) = Z.

O

Corollary 5 Let G be a 2-reqular graph. Then I(G) = 2Z" if G contains an odd
component (a connected component consisting of an odd cycle), and I(G) = Z
otherwise.

We determine completely the index sets of r-regular graphs in later sections
for r > 3, except the index sets of 4k-regular graphs, k > 1.

2 Constant-Sum Flows for Regular Graphs
Lemma 6 Suppose G is a graph and {0,1} C I(G), then I(G) = Z.

Proof. Let V(G) = {1,2,---,n}, and a;; # 0 be the edge labeling from vertex
i to vertex j. Since 1 € I(G),

Z a;; = 1, Vie V(G)
JEN(9)

Pick some x € Z*, then

x - Z a;j = Z za;; =z, Vie V(Q).

JEN(i) JEN (i)

Therefore z € I(G), and I(G) = Z. O



Remark. In [1] it was proved that all r-regular graphs G admit zero-sum flows
if r > 3, that is, 0 € I(G). Therefore it suffices to show I(G) = Z by verifying
1 € I(G). Also it is not hard to see that if m € I(G) then mZ C I(G) for each
positive integer m > 2.

Pull Back Labeling Construction:

In the following we propose a pull back labeling construction mentioned in
[1]. First for an undirected loopless graph G, we define a new graph G’ as follows.
Suppose that V(G) = {1,2,---,n}, then G’ is a bipartite graph with two parts
{u1,---,u,} and {v1,---,v,}. Join u; to v; in G’ if and only if the two vertices
i and j are adjacent in G. Assume that G’ admits a constant z-sum flow f’.
If f'(u;v;) + f'(ujv;) # 0 for any pair of edges u;v; and ujv; in G’, then we
construct a constant 2z-sum flow f for G, in the following way. For two adjacent
vertices ¢ and j in G, let ij be the edge connecting them in G. Then we may
define f via f" by f(ij) = f'(uwiv;) + f'(ujv;). By our assumption, f(ij) € Z*.
Pick some z in Z*, we have

quvj qujvl—,

v €N (ui) uj €N (v;)
thus we find
Z f(@ij) Z I (wivy) Z I (ujv;) =2z, Vie V(G).
JEN() v; EN (u;) uj €N (v4)

This defines a 2z-sum flow for G. If G is r-regular, then G’ is an r-regular bipar-
tite graph. Thus by Hall’s Marriage Theorem, all edges of G’ can be partitioned
into r perfect matchings. Let Eq,---, E, be the set of edges of these matchings.
We will use this construction and notations throughout the remaining of this
article.

2.1 0Odd Regular Graphs
We deal with general odd regular graphs here:

Lemma 7 If G is a (2k + 1)-regular graph, then I(G) = Z for all k > 2.

Proof.
Construct G as before, we change the definition of f’(e) as follows:

Let
f() k+1, ee EyU---UE;
0 -k e€ Ery1 U U FBopqa

This gives that f} is a zero-sum flow for G" and satisfies f{(u;v;)+ f(u;jv;) #
0. So fo(e) € {2k + 2, —2k, 1} is a zero-sum flow for G.



Let

File) = k , eceBiU---UEg
1 1—-k, e€ Bxp1U---UFEg11

This gives that f] is a 1-sum flow for G’ and satisfies f{(u;v;)+ f{(u;v;) # 0.
So fa(e) € {2k,2 — 2k, 1} is a 2-sum flow labeling for G.

Now we set f(ij) = M for all 7,57 € V(G). Then f(e) € {2k +
1—2k,1} and
1
> fg) = 5( > foli)+ D faif) 0+2) L.
JEN() JEN(4) JEN (i)
That is, f is a 1-sum flow for G and 1 € I(G). O

Lemma 8 If G is a 3-regular graph, then I(G) =Z.

Proof.
As mentioned in previous remark, we see that it suffices to show I(G) = Z by
verifying 1 € I(QG) for regular graphs G.

Construct G’ as before, we define the f{(e) as follows:

Let
-2, e€e F;
file)=<1 |, e€Es
1 s 6€E3

This gives fo(e) € {—4,2,—1} which is a zero-sum flow for G. Define the f](e)
as follows:

Let
-3, e€ Eq
f{(e) =<2 , e€ky
2 , e€FE3

This gives fa(e) € {—6,4, —1} which is a 2-sum flow for G.

Now, we set f(e) = %(fo(e) + f2(e)). Then f(e) € {—5,3,—1} and

> [ = Z foli)+ Y fa(if) 0+2) 1.

JEN(3) JEN JEN(3)

That is, f is a 1-sum flow for G, same as saying 1 € I(G), and hence I(G) = Z. O



2.2 Even Regular Graphs

Note that for any regular graph of odd degree, the number of vertices is always
even. Also Petersen[5] proved the following two well known Theorems in 1891:

Theorem 9 (Petersen, 1891) Every regular graph of even degree is 2-factorable.

Theorem 10 (Petersen, 1891) Let k be a positive integer. If a connected 2k-
reqular graph G has an even number of vertices, then it may be k-factored. That
is, G can be factored into the sum of two k-reqular spanning subgraphs.

Therefore we observe the following for even regular graphs with odd orders:

Lemma 11 If G is r-regular graph with odd vertices (therefore r is even), then
I(G) = 2Z, for allr > 3.

Proof. We show that I(G) C 2Z first. Suppose ¢ € I(G), then we have

2 ) fle)=cV(G)

e€EE(Q)

Since |V (G)| is odd, therefore  must be even, thus I(G) C 27Z.

Conversely, we show I(G) D 2Z. Let r = 2k. G will have a 2-factor, namely
E; by Theorem 9. We now define a 2-flow by fa(e) = k, if e € Fy, and fa(e) = —1
for others edges. Set fo(e) = k — 1, if e € Eq, and fo(e) = —1 for others edges
would gives a 0-flow. a

To complete the picture, we need one more Lemma:

Lemma 12 If G is a 2k-regular graph with even vertices, where k is odd, then
I(G) =17 for all k > 3.

Proof.

Without loss of generality we may assume G is connected. By Petersen’s
Theorem 10, G = K1 @ K5, where K7 and K5 are two k-factors. Since k is odd,
I(K,) = I(K2) = Z by Lemma 7 and Lemma 8. Therefore, I(G) = I(K1® K3) D
I(K )+ I(Ks) = Z. m]

Remark. We complete the picture for all even regular graphs except 4k-regular
graphs of even order.

In below we present examples of index sets of 4-regular graphs. However the
index set of a general 4-regular graph is not known yet.

Example 1. I(C,,,00C,,) = Z for even m and even n, where C,,,[JC,, is Cartesian
product.

Example 2. I(G) = Z for the following 4-regular graph G without perfect
matching. Note that we give the 0-sum and 1-sum flows.



Fig. 2. A 4-regular graph with 1-sum flow

3 Concluding Remarks

To summarize up, we have obtained all index sets of r-regular graphs except
4k-regular graphs, k > 1, with even number of vertices as follows:

Theorem 13 The index sets of r-reqular graphs G of order n, are as follows:

Z, r=1.

Z, r =2 and G contains even cycles only.
I(G)={ 2Z*, r =2 and G contains an odd cycle.

27, r >3, r even and n odd .
Z, r>3, r#4k, k> 1, and n even .

Even further one may consider the concept constant sum k-flow similar to
that of zero-sum k-flow. It would be interesting to study the relationship among
these related notions. Calculating the index sets of other graph classes are obvi-
ously next sets of research problems to be explored.
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Abstract—It is known that edge magic labeling can be applied
to the arrangement of devices of a wireless network. The concept
of edge magic labeling was introduced by A. Kotzig and A. Rosa
in 1970. A (p, q)-graph G with p vertices and ¢ edges is called
edge magic if there exists a bijective function f : V(G)UE(G) —
{1,2,...,p+ ¢} such that f(u) + f(v) + f(uv) is constant for
any edge uv € E(G). Moreover, G is called super edge magic
if f(V(G))=1{1,2,...,p}. In 1970 A. Kotzig and A. Rosa also
defined the edge-magic deficiency, 1 (G), of a graph G as the
minimum number of isolated vertices added to the graph so
that the resulting disconnected graph is edge magic. In 1999
Figueroa-Centeno et al. introduced and studied similar notion of
super edge magic deficiency 1;(G) of a graph G for super edge
magic labeling. Calculating the deficiency provides with more
detailed information regarding related graph labeling. In this
paper we completely determine the super edge magic deficiency
of complete bipartite graphs s (Ky,,n) = (m —1)(n — 1), which
justifies a conjecture raised by R. Figueroa-Centeno et al. and
Hegde et al. independently.

I. INTRODUCTION

Consider a wireless network in which every device must be
able to connect to a subset of the other devices in the network
using a unique channel to prevent collisions. One way to create
such a channel assignment is to give numeric labels to the
devices and channels in such a way that the labels of two
devices and the communication line between them sum to a
consistent value across every pair of devices in the network.
In this case, knowing the labels of the two communicating
devices gives the identification number of the communication
line between them[9]. This solution is an example of an edge-
magic labeling, which we introduce in the following.

In this article we consider finite undirected graphs without
loops or multiple edges. We denote by V(G) and E(G) the set
of vertices and the set of edges of a graph G respectively. We
say that G is a (p, ¢)-graph if |V(G)| = p and |E(G)| = q.

Edge magic labeling were first introduced by A. Kotzig and
A. Rosa[8] in 1970. Super edge magic labeling were first
introduced by Enomoto, Llad’o, Nakamigawa and Ringel[2]
in 1998. We define these labelings below:

Definition 1.1: An edge magic labeling of a (p,q) graph
G is a bijective function f : V(G)UE(G) — {1,2,...,p+q}
such that f(u) + f(v) + f(uv) is constant for every edge
wv € E(G). In such case, G is said edge magic. If moreover
f(V(G)) ={1,2,...p}, then f is called a super edge magic

labeling, and G is said to be super edge magic.

In 2001, it was observed by R. Figueroa-Centeno, R.
Ichishima, and F. Muntaner-Batle [4] the following:

Lemma 1.1: A (p,q) graph G is super edge magic if
only only if there exists a bijective function f : V(G) —
{1,2,...,p} such that the set

S={f(u) + f(v) :uv € E(G)}

consists of ¢ consecutive integers.

Therefore, one may consider the super edge magic labeling
problems using the vertex labeling in the above proposition.
The following are necessary conditions for being super edge
magic:

Lemma 1.2: If a (p, ¢)-graph G with p vertices and ¢ edges
is super edge magic, then ¢ < 2p — 3.

Proof: Let G be super edge magic with vertex labels
{1,2,...,p}. Then the set of induced edge labels is {k, k +
1,...,k+q— 1} for some integer k. Therefore k+ (¢ —1) <
(p—1)+pand 1 +2 <k, thus ¢ < 2p — 3.

Q.E.D.

More generally, for a (p, ¢)-graph G, by an edge-antimagic
vertex labeling we mean a one-to-one mapping f from V(G)
into {1,2,---,p} such that the edge-weights f¥(uv) =
fw) + f(v) of edges uv € E(G) are distinct. The vertex
labeling f is called (a,d)-edge-antimagic if moreover the
set of distinct edge-weights forms an arithmetic progression
a,a +d,---,a+ (¢ — 1)d with initial term a and common
difference d, where a and d are two fixed positive integers.
A graph G is called edge-antimagic ((a,d)-edge-antimagic,
respectively) if it admits an edge-antimagic ((a,d)-edge-
antimagic, respectively) vertex labeling.

Lemma 1.3: If a (p, ¢)-graph G with p vertices and ¢ edges
is edge-antimagic, then ¢ < 2p — 3. In particular this is true
for (a, d)-edge-antimagic graphs.

Proof: Let G be (a,d)-edge-antimagic with vertex
labels {1,2,...,p}. Then the set of induced edge labels
is {a,a +d,...,a+ (¢ — 1)d} for some integer a and d.
Therefore if ¢ > 2p — 3, and note that the edge weights
are numbers among the 2p — 3 numbers ranging from
3,4,...,2p — 1, thus by pigeonhole principle, there must



be two edge weights are the same, a contradiction. Hence
qg<2p—3. Q.E.D.

On the other hand, for a (p, ¢)-graph G = (V(G), E(G)),
a bijection ¢ from V(G) U E(G) to {1,2,....p + q}
is called (a,d)-edge-antimagic total labeling if the edge-
weights w(xy) = g(x) + g(y) + g(xy), for xy € E(G), form
an arithmetic progression starting from a and having common
difference d, where a and d are two fixed integers. Note that
d is allowed to be 0. An (a, d)-edge-antimagic total labeling
is called super (a,d)-edge-antimagic total if g(V(G)) =
{1,2,...,p}. A graph G is called (a,d)-edge-antimagic total
(super (a, d)-edge-antimagic total, respectively) if it admits an
(a, d)-edge-antimagic total (super (a, d)-edge-antimagic total,
respectively) labeling.

The following lemma shows that every (a,d)-edge-
antimagic vertex labeling can be extended to a super (a,d)-
edge-antimagic total labeling.

Lemma 1.4: A (p,q) graph G is super (a,d)-edge-
antimagic total if there exists a bijective function f : V(G) —
{1,2,...,p} such that the set

S = {f(u) + (v) : uv € E(G)}

consists of an arithmetic progression {b,b+d’,---,b+ (¢ —
1)d'}, where d' = d + 1.

Proof: Assume there exists a bijective function
f : V(G — {l,...,p} such that the set
S = {f(u) + f(v) : wv € E(G)} consists of an arithmetic
progression {b,b + d’,---,b + (¢ — 1)d’}. Then one may
extend the vertex labeling to V(G) U E(G) by assigning
values p + 1,...,...,p + (¢ — 1),p + ¢ to the edges
with the sum of endpoint labels in the reversing order
b+ (¢ — Dd',...,b + d,b respectively, thus we get the
arithmetic progression {a,a + d,---,a + (¢ — 1)d} over the
edges with their two endpoints, where a = b+ (p+¢),a+d =
b+d +(p+q—1),---,a+(¢g—1)d=b+(¢—1)d' + (p+1).
Therefore d =d+ 1 and a =b+ (p + q). Q.E.D.

Corollary 1.1: Every super edge-magic and edge-
antimagic (p, ¢)-graph contains at least two vertices of degree
less than 4.

Proof: Assume on the contrary that p — 1 vertices of G
are of degrees at least 4. Then, by Lemma 1.2 and Lemma 1.3

p—1
4p—4:Z4§ Z degv=2q<22p—3)=4p—6
i=1 VeV (G)

which is a contradiction. Q.E.D.

Remark. Note that the relationships among above mentioned
labelings are as follows: an (a,d)-edge-antimagic vertex la-
beling is a super (a’, d — 1)-edge-antimagic total labeling, and
when d = 1, it is a super edge magic labeling.

Now we are in a position to consider that, how far a graph is
away from being super edge magic. Therefore a more general
notion of deficiency is introduced as follows.

Definition 1.2: The super edge magic deficiency . (G)
of a graph G is defined as ps(G) = min{n > 0: GUnK; is
super edge magic}. If G is not super edge magic by adding any
number of isolated vertices, then us(G) = 0o, and pus(G) =0
if G is super edge magic.

In 1970 Kotzig and Rosa[8] defined the edge-magic de-
ficiency, 1(G), of a graph G as the minimum n such that
G U nK; is edge-magic total. If no such n exists, they
define ©(G) = co. In 1999 Figueroa-Centeno, Ichishima, and
Muntaner-Batle[3] extended this notion to super edge-magic
deficiency, ps(G), in the analogous way. They conjectured
that ps(Ky,n) = (m — 1)(n — 1). This conjecture was also
studied independently by Hegde and Shetty[6], who used
the notions of strongly k-indexable labelings and vertex
characteristics in 2009. They both proved K,,, is super
edge magic if and only if m = 1 or n = 1. They observed
that ps(Kmn) < (m — 1)(n — 1) and conjectured that
ps(Kmn) = (m —1)(n — 1) by giving several supporting
examples such as K3 ,, K3, and Ky, etc. We calculate the
super edge magic deficiency of K, ,, for any m and n in later
sections, thus confirm the conjecture completely:

Theorem 1.1: The super edge magic deficiency of com-
plete bipartite graphs is ps(Kpn) = (m — 1)(n — 1) for
positive integers m, n.

We define the following more general concept:

Definition 1.3: The (a, d)-edge-antimagic deficiency
1a(G) of a graph G is defined as pug(G) = min{n > 0 :
G UnKj; is (a,d)-edge-antimagic }, where a and d are two
fixed positive integers. If G is not (a, d)-edge-antimagic by
adding any number of isolated vertices, then p4(G) = oo, and
1a(G) =0 if G is (a, d)-edge-antimagic.

More examples and discussions about (a, d)-edge-antimagic
vertex labeling, (a,d)-edge-antimagic total labeling and their
deficiency problems can be referred to [1].

However in this article, we focus on the deficiency problem
of super edge magic labeling for complete bipartite graphs.
We will show Theorem 1.1 in later sections.

ITI. BASIC LABELING MATRIX CONSTRUCTION

Let f be a super edge magic labeling of K, , UzK; and
z be a non-negative integer. We let A = {aj,as, -+, a,} and
B = {b1,ba, -, by} be the two partite sets of K, ,,. Without
loss of generality we assume f(a;) < f(ag) <
flan) and f(b1) < f(bg) < ------ < f(bm). For simplicity,
we abuse the language and express these labellings f(a;) and
f(bj) by a; and b;, respectively. That is to say that we assume
that a; < az < < ap and by < by < < b,
respectively.

Note that we may assume m,n > 2, since in case either
m = 1 or n = 1, then it is not hard to see that us = 0,
which means the star graphs K ,, are super edge magic. In
the following we put the induced edge labels in a matrix form,
where the entry along the a; column and b; row is the sum
a; + b;, which is the induced label over the edge a;b;.

We suppose a; + by = k, the smallest possible induced
labeling over the edge a1b;. Then without loss of generality



may assume a; +by = k+ 1. Since f is super edge magic, we
may assume further that there is a longest consecutive integer
sequence of induced edge labelings k, &k +1,---,k+ (to — 1)
with length to > 2, while we label consecutively by, ba, - - -, by,
along the partite set B.

B\A ai Qg e arg
b1 k k+to [+ oons k + (7«0 — 1)150
ba k+1 kE+to+1|-ooevvens
by, k+(t0—1)k}+2t0—1 ~~~~~~~~~ k+toro — 1

Then as + by = k + to should be the next smallest edge
label. Since the sequence of vertex labels bi,ba, -, by, is
consecutive and given, it can be seen that the edge labels over
(lle, agbg, - - until agbtn are k+t0, k+t0+1, teey, k+2to —1
respectively.

Now we may assume further that along the partite set A,
there is an arithmetic progression ai,as, - with the
common difference ¢y and the longest length ry > 2. Therefore
we obtain all the consecutive edge labels from a; + b1 = k
to ar, + by, = k + toro — 1, and in this fashion we say they
form a basic matrix.

We continue growing the basic matrix along partite sets
A and B, and the next smallest edge label is by 11 + a1 =
k + roto. Note that the vertex labels a1, as,- - -, a,, are fixed,
therefore the edge labels along the row by, 41 + a1,bty4+1 +
ag,---,byy+1 + ar, are also fixed as k + roto, k + roto +
t(), ce ,k‘ + Toto + (7’0 - l)to.

Now there are two possibilities for the induced edge label
k+roto+ 1, which are by 42 +a; and ap,+1 +01. If apg41 +
b1 = k+roto+1, then by, 41 +a2 = Gro4+1+bi, = k+1oto+to,
a contradiction. Therefore it should be the case by 42 + a1 =
k+rotog + 1.

Similarly, we have b, 13 + a1 = k + rotop + 2,---, until
bat, + a1 = k + roto + to — 1, again the edge labels along
the rows are fixed. In this fashion, another basic matrix of
consecutive edge labels, of size ty X rg, is obtained. Keep
growing similar matrices, we may assume that there is a largest
t1 > 2 of the same size ty X ry basic matrices.

y Arg

B\A RS R ™
by I k+ (TO _ 1)to
bto k+(t0_1) ............ k+toro — 1

bt0+1 k+toro 0 |reeeeeeeeeen k+ (27"0 — 1)t0

bat, k + toro + (to — 1) ............ k + 2toro — 1

beito |k + (tl — 1)t07"0 + (tO — 1) ............ k + titoro — 1

Keep growing the edge labeling matrix of K, ,, in similar
fashions, we may see it grows alternatively from the basic
matrix of size ty X 7o, then ¢; basic matrices of size ¢y X 7o,
and then r; matrices of size ¢ty X rg, then to matrices of size
tito X riTg, - , recursively until either ¢; matrices of
size ty---tg X rg - -- 1o (With 741 = 1), or ri41 matrices of
size thg1le - to XTK -+ T0 (with thya = 1), for some k£ > 0.

We conclude that if K, , U zK is super edge magic, then
the induced edge labeling matrix must grow in the above

fashion, and
m= Hti’ n= Hrj.
i>0 >0

Note that eventually ¢; or r; will reach 1, which means the
matrices stop growing, since m and n are finite.

III. PROOF OF MAIN RESULT
Proof of the Theorem 1.1:

In 2006 [3], Figueroa-Centeno et al. showed that
ps(Kmpn) < (m—1)(n — 1) by giving a super edge magic
labeling with extra (m —1)(n — 1) isolated vertices. Therefore
it suffices to show that ps(Ky, ) > (m —1)(n —1).

Let [m, n] be the set of integers {r | m <r < n}. We claim
that [aq,a,]) N [b1,b,] = 0. If the claim is true, then either
an — b1 > mn or by, — a; > mn. Therefore if K, , U2zK;
is super edge magic, then z > (m — 1)(n — 1), and thus
ps(Kpmn) > (m—1)(n—1), then the Theorem 1.1 is proved.

To prove the claim, we see from the conclusion of pre-
vious section, either mn = torg---tgrrtpr1 OF mn =
toro - - - tk+17k+1, that is, either m = g - - txlg41 and n =
o Tk, Or m=1tg---tg41 and n =17g - T541. We proceed
by mathematical induction. When k£ = 0, it is not hard to see
the claim is true. We assume k > 0.

Case I: m=tg---tgtyrr and n =1rg - - - 1.

Assume to the contrary that [a1, a,]N[b1, by] # 0, we have
4 different cases. Since the arguments are similar, we use the
case by < a1 < by, < a,, as an example.

By induction hypothesis, we know for example a; could lie
between by,..., and by,..., +1, that is the gap between the first
matrix and the second matrix of sizes ¢y, - - - to X1y - - - 9. Look
at [arg..r, —a1| = (rp — Dtg -+t + (rk—1 — Do -+ - tr—1 +
s (7’0 — 1)t0 and |bt0~~~tk+1 — bto"'tk‘ = (’I"k - l)to st
(rg—1 — Dto--+tk—1 + -+ (ro — 1)to — 1. Note that since
|@rg..r, — @1] and |byy...t, 11 — b1, | differ by 1, there must
be repeated labellings a; = b;, a contradiction.

Similar situations for other following possible gap positions
for a; such as, a; could lie between by, ...t, +1 and bag, ..., 42,
or between ba ..., +-2 and bsyy...p 43,7 e , or between
b(tys1—1)to--tr, A0 Dty —1)¢o.--t,, 41, WE Ot a contradiction in
each case.

As for other possibilities by < a1 < ap < by,
ar < b < by < ay, or a7 < by < a, < b,, one
may reach contradictions by similar arguments.

Case 2: m =ty ---tgrr and n =19+ Tpy1-

Assume to the contrary that [ay, a,]N[b1, byn] # 0, we have
4 cases similar to that in Case 1. We use a1 < by < a,, < b,
as an example.

By induction hypothesis, we know for example b; could
lie between ar,...r, and a,,...,,+1 as before, and we look
at |Grg..ory, — Qroeert1| = (tgr — Dtoro - - trerp + (te—1 —
1)t0T0 s tk,17‘k,1 + -4 (tl — 1)t0T0 -+ to and |bm — bl‘ =
(tep1—1)toro - - trrp+(t—1)toro - - tpg—1rp—1+-- -+ (t1—



1)toro +to — 1. Note that |ary...ry — Grg-oorpt1| and by, — b1
differ by 1, therefore again there must be repeated labellings
a; = b;, a contradiction.

Other possibilities can be done similarly. Hence we are
done with the proof of the claim. Q.E.D.

IV. EXAMPLES

We give an algorithm below on super edge magic labeling
of KppnU(m—1)(n—1)Ky, since K,, , has the super edge
magic deficiency (m — 1)(n — 1). Starting with the basic
matrix of size ty X rg, then growing the matrix of induced
edge labels by giving the vertex labeling along one partite set
to be continuous, while along the other partite set to be an
arithmetic progression. Let also the smallest vertex labeling
along one partite set be 1, and the smallest vertex labeling
along the other partite set is a.

Algorithm 4.1: Super Edge Magic Labeling of K, ,,
Input: Given a complete bipartite graph K, ;.

1) For m,n, fix factorizations of m = tgt; - - - txtx41 and
n=mrory---"rg-1Tg.

2) if tg11 = 1, then the matrix is fixed for mn =
to?‘o e tk’l“k.
3) if r, = 1, then the matrix is fixed for mn =

toro - tk—17k—1lk-
4) solve a by the formula a + (ry — 1)toro---rr—1tr +
(’I"k_l — ].)toT'() cee rk—th—l +-. -+ (7’0 — 1)t0 =mn-+ ].
Output:
The super edge magic labeling of K, , U(m—1)(n—1)K;
in matrix form.

Example 4.1: Note that u,(Kgs) = 35. We give below
3 possible cases, out of 14 possible cases totally, while
calculating the super edge magic deficiency for Kgg. We
assume without loss of generality that m = 6,n = 8.

Case 1: mn:to’l“o, to = 6, ro = 8, ﬁl = 1, a="1.

m\n| 7 [13[19]25|31|37|43[49
8 114{20]26/32|38|44(50
9115]21(27|33|39}45|51
10/16|22(28(34|40[46|52
11]17|23|29|35/41(47|53
12[1824|30|36(42|48|54
13(19]25|31(37|43|49|55

O\ | | W | —

Case 2: mn = toroti, tg = 3, ro = 8, t, = 2, r = 1,
a = 28.

m\n|28]31]34]37]40[43]46[49
1 129|32(35|38|41(44/47(50
2 |30|33|36|39(42|45|48|51
3 |31|34{37|40|43]46[49(52
25 |53]56/59|62|65(68|71|74
26 |54(57|60|63|66(69(72(75
27 |55|58|61|64(67(70(73|76

Case 3: mn = torotir1, to =3, 70 = 4, t1 = 2, 11 = 2,
to =1, a = 16.

m\n|16]19]22]25[40[43]46[49
1 |17|20]23]26(41|44(47|50
2 |18|21]24(27|42|45/48|51
3 |19]22(25|28|43]46(49|(52
13 ]29|32(35|38|53[56(59(62
14 130|33(36/39|54(57|60|63
15 |31|34(37|40|55|58|61|64

V. CONCLUDING REMARKS

For a graph determining the deficiency is the same as
determining the super edge magic labeling by assigning labels
to vertices in a relaxed way. Therefore it is applicable in the
arrangement of devices of a wireless network as mentioned in
the beginning section.

For future research directions we propose that the work in
this paper can be explored further for special types of bipartite
graphs, including those of trees. Also we have found certain
classes of complete multi-partite graphs which can not be
made super edge magic adding any number of vertices.

For more generalization of super edge magic labeling
and their deficiency problems, one may consider (a, d)-edge-
antimagic vertex/total labeling as mentioned in the introduc-
tion section and look up the recent book [1].
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arrived in the Regency Hotel around noon in March 5™, and registered with the
conference.

| met many other scholars in the field of communications and computing. We exchange
ideas about research and talked about advances most recently. There are 4 main keynote
speakers invited in the conference, and one of them is the Professor Chang Chin Cheng
from Feng Chia University and National Chung Cheng University, who is well known in
the field of cryptography and number theory applications. There were scholars who came
from other counties and regions such as Hong Kong, Macau, China, India, Japan etc.

The talks | have listened to were mostly around communications and computing fields,
although there is another joint conference about Ocean Engineering. | presented in the 2"
day of the conference, which attracted attentions of many other scholars and we talked
about co-work opportunities afterwards.
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This is a very successful conference, at which | met old friends and also made new friends
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in the research field, and listened to many nice talks.
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