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Small Area Estimation Employing
Poststratification

Pao-Sheng Shen™

Abstract

A compromise estimator employing poststratification is proposed for small area
estimation. The estimator strikes a balance to deal with the assumption of similarity within a
poststratum and small number of observations in subareas constructed by poststratification.
Small sample properties are derived for the estimator from simple random samples. By
assuming that the probability that poststratum size equal to zero is negiligibly small, the
estimator can be justified in Bayesian terms based on an inherent superpopulation model. The
generalization of poststratification from the simple random sampling to complex design is
discussed.
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1. Introduction

Small area estimation has received considerable attention in recent years
because of a growing demand for reliable small area statistics. Sample surveys rarely
produce enough data to permit accurate estimation of these small areas by using the
standard methods based on the selection probabilities. Therefore, alternative
estimators that borrow strength from other related small areas have been proposed in
literature to improve efficiency. An example concerning small area estimation was
given by Ghosh and Meeden (1986) under a normal superpopulation model. Ghosh
and Lahiri (1987) proposed robust empirical Bayes estimation of a vector of stratum
means under the assumption that the posterior expectation of any stratum mean is a
linear function of sample observations. Cressie (1989) used an empirical Bayes
approach to correct undercount in U. S. decennial censuses by modeling the subareas
within a poststratum to have a common mean and variances inversely proportional to
their census counts.
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Although the superpopulation model approach to small area estimation provides
a new avenue for exploration of this problem, the model-dependent estimators may
be seriously design biased. Purcell and Kish (1980) warned against the mistake of
considering small area estimation as one homogeneous problem and suggested that
area size is a key factor in the choice between design-consistent and
model-dependent estimators. Hence, this article is aimed at finding an estimator
which provides a good compromise for dealing with the assumption of homogeneity
within a poststratum and the unacceptably large standard error due to small number
of observations in subareas. A class of estimator, which are generalizations of the
synthetic estimator (SYN)(Gonzalez and Hoza, 1978), will be proposed. The design-based
inferences are developed for the estimators from simple random samples. These
include the derivation of their biases and variances. It will be shown that estimators
will have both within poststratum and between poststratum components of variance.
Based on a random effects superpopulation model, an approximate Bayes rule can be
obtained from the class of estimators with respect to a general quadratic loss function
within the class of linear combinations of a given set of functions on the sample
space. The approximate Bayes rule strikes a balance between SYN which pools
information across areas and the classical unbiased estimator (UNB) which depends
only on data. It has a much smaller bias than the SYN estimators when the latter is
badly biased. In addition, it has the advantage of a considerably reduced variance
compared to UNB. These results are supported by a Monte Carlo study. In Section 2
the proposed class of estimators are introduced and small sample properties are
derived for the estimators from simple random samples. In Section 3 the estimators
are studied through a Bayesian approach. In Section 4 the properties of the estimators
as well as SYN and UNB are studied through a Monte Carlo simulation. Finally,
Section 5 provides some concluding remarks and discussion of generalization from
the simple random sampling to complex design.

2. Estimators

We suppose the finite population of size N is divided into / mutually
exclusive areas, labelled i=1,...,/. An estimate is required for the total (or mean) of
the variable of interest for each area, In practice, the number of areas, I, is often
quite large. We further assume that, within each area, units are poststratified into L
subareas ; labelled h=1,...,L . The subarea sizes N, resulting from this
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cross-classification are assumed to be known. The number of poststrata, L, is
usually modest ; in any case, L is assumed small compared to I . Let
Yyi(j =1,...,N},;) be the measurement on the 7™ individual in the hi" subarea
and let ¥, =3 L, W,Y, denote the mean for the i" area, where W, = N,/N,

and ¥, =Y ™Y, /N, ,where N,=%;_N, .The primary focus is to estimate Y,'s.
We will con51der the case of a simple random sample of size n drawn from the
population. Define #,, as the number of units measured in the 4" subarea and
n,. =Y. iy, asthe number of units which happen to fall into the h™ poststratum.

Define the “indicator variables”

Gf n}u Xhir
(X
o) = {0 - otherwise,

where
xhi ES, S= { 0,1,2,..-,lﬂintthhi) }

and

: - 1, ff ‘anl.' ’V
Y =10, otherwise.

1

We consider a class of estimators of ¥, of the form

o . L W,y ()P + Bulx 7
y_,(ﬁl)‘ahl.iﬁ%&w ........................ o
o X Wt
where
X, = (0% 02,0 0 Bulxn) =7y —@ul%y) ¥y and

¥y, are the ordinary sample means of the units falling into the hi”
subarea and the h” poststratum respectively provided subarea
size n,, 21 orpoststratum size n, 21. The definition of y,,, ot
7, forthecase ny, =0 or n, = =0 is arbitrary.

The variances of the estimators (1) are unaffected by translation of y values.
Now, to derive order of magnitude of their biases and variances, let E,;(<) denote
the conditional expectation given ny's and E;(-) denote the expectation over
n,,'s. Similarly, we define variances V,(*), V,4(*) and covariances Covi,(*),
Cov,,(*) . First, we write ¥,(x;) ina simple form as
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L
yi(x)= thWmJ’m (xp)

where
1 - 1 =
. (“2' +Epy (xhi))yhi + (‘2' + 05, Xy ))}’h-
y ,.(x )= = : s
oy 146,
where
1 - 1 L
ahi(xhi)""iEd(ﬁ’i) st ﬂm(xhi)“z‘EdU’i)
Ei(Xp) = et » Xpi) = =
hi\™"h Ed (7,) hi\Mh Ed (,")
ook ook = E Ay
7i=ZWhi7h’ 9i=ZW}u‘9h:‘» ghizz_ll_____j:(z_’.),’
h=t h=1 : Ed(?’i)
N-N,
= L Z N
Ed(}’i)'—”’?:leEd()’h):aﬂd Ed(yh)""l“"“'(xjj“"
n

Suppose that |§,| <1, we are able to expand ¥, (x;,) in the form
~ 1 = 1 < [ Z o mad ol ]
Yni i) = 5"‘ Eni(Xn) Vi + ‘2’“’ 81 (%) n | -0 +(6,) —(6) +...
from which we obtain the bias of ¥,(x,), denoted as B, [}h (x; )] ,

B Gu) = BBl 08 r 0 ES0-@ )

)"
2

~§’5,,,(xh,-)}+...

h=1

L = =
+ YWY, =Y, ){5*‘ Ey [51;.' (xn )]"‘ E%d[

+(=p™! E,rd{(ﬁ,»)"’“ 86, (x,) - (9‘2) ]+ : }

where 7, denotes the population mean for the h" poststratum. Under the
Yh pop



Small Area Estimation Employing Poststratification 51

assumption that the poststratum sizes are sufficiently large for approximating the
hypergeometric distribution of n, by a binomial, we can observe that, for any
positive integer m,

Ql
) ; ¥
Q h

84 =(-D"(1~ }’h)+(

where
N,
- S0 o1l

Similarly,
Byxw)
1

—

1
: 5 + Ew [&u (xm )=

i
where

Bm(xm) *1 Qh A,,,(x,,,)

o minm) ‘
E4\41«::‘(’“1&1)”,_ Z" ( )P;u(l Pm)"*k

kzxm X

where P,;=N i / N . Hence, it is not difficult to see that in case of boundedness of
, forall A,

Bd(,V (x; ))~0(max{Q )4‘0(“’,;“{ l?;: = f’;nl (1- Ahik(xhi)) }),

Next, we derive the variances of the class of the estimators (1). There are two
components of variances from the well-known relation

V,5,6)=VulEral7 (_i)})"'Ew(Vw()’( D,

where the term V), (E2 d [i,,. (x i)]) and E, (VZd sz_i (x ,.)]) are called the between
poststrata and the within poststrata components of variance of y,(x;)and denoted as
Vsl (x i)] and V[V, (x )] respectively. To derive ¥, [7,(x))], we require the
following results. We can observe that, for any positive integer m,
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7=y, (xm ),

".'” ’.ﬂ...'" ..__Q!_.’
S )=(==)"1-7)+ [2(1 ~0)

Hence, it is not difficult to see that
Covi4 (85 (xpy ), O (24 ))~0(mfx{z!,,i (xm - Ay (xps ))}) ,
Coviy (s 91:':)’"9(“1,?’5@5’ }) .

We find a first approximation to ¥,;(y,(x;)) by omitting the terms in 8,,8,, and
0,:(x,,;) with degree higher than 2 in the expansion of

L . . - .
Ve (i(x))= ZW,.%{m%mwh~e,-)+m.-—-,inm(am(xmwlz :
: ZWh,Wh' B By~ T )Con, (@ -0, ()= 2 2)
' +Ia,1?,,qcﬂvm(<am-—af),wwé” )

+ (B =TTy =T )CovislBo i) =B/, B v o)~ B/ 2) -

It follows that
Val3 0l max{ 07 J}+ o max{ 7, - 1, Auen0- 40 )

The within poststrata component Vy, [?.,- (x; )] is given by

ZW Iu{ 4y (xm)Sm{Ew (n ‘nki 2 x,,,) } ; |
+B,,,(xu)3,,[Ed(n,, by 20-5;1] |

where E,d(,lnh,»Zx,,,») stands for the conditional expectation given ny, 2 x; ,
Eld(,]n,,, >1) stands for the conditional expectation given n, >1, Sz and S}
denote the variance of Y in the hi” subarea and A" poststratum, respectively.
When n is sufficiently large, Eld(n;,.'lnh,-thi) and Eld(n,;llnh.zl) can be

approximated to terms of order n™? using
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((n= %)y + 30 ) ' + (=) Pl = B/ Nn =200 + %]
and
(=18, +1) +(n-1B, =P [n-1B, +1]2,

respectively, where B, = N, /N (Stephan, 1945).

3. A Bayesian Analysis of the Estimators

In this Section, we investigate the property of the class of estimators (1) using a
Bayesian Approach. We assume that there is a superpopulation distribution from
which all the population values are derived. Consider the variance component model
as follows :

Yh‘? = Hy +¢M f+‘¢h§ . RIRIIIIIIINILIIIIIL R )

Em(¢hi)*0s Vm(¢hi)=al2w h=1..,L
Em((ahy)zﬂ, Vm(?”hg‘):'t}%, h=1a°~-s£a

where E,(©) and V,(s) denote model-based expectation and variance respectively.
All distributions for the model are assumed independent.

The parameter ¢, is the random effect associated with the i# area within the
h" poststratum, and @y; is the random effect associated with the j* individual
within the hi% subarea. Since o} is in general much larger than 7} / Ny s
conditional on g =(u, thy,..s ) a0d @ =(01,02,..,61) 5 Yus Vg s Yy
are independently distributed for all h=1,...,L with E,(¥, ‘,u,,) =4, and
vV, (Z,ilah) = o7. Similarly, E, (S}|r,)=7}. We now state a result that justifies the
use of the class of estimators (1). First, the loss function considered is taken to be of
the form

1 o )
l)'_‘lf(N,,.)(ygﬂ -7, R 3)

where f(N,) is any positive function N, the i area size and y¢* is some
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arbitrary estimate of Y.
LEMMA

Under the model (2) and assuming that there is vanishingly small probability that
poststratum size is zero, there exists x;'s such that ?.,»(gc:), i=1...,I, is an
approximate Bayes rule with respect to the loss function (3) within the class of
decision rules 57,,- (x;), i=1,...,1,withthe form

. L 3
yix)= ’,’Z‘W hi zl‘a'hgi (>4 )8n; Xai) s
= jz
where
it (Xi) = @ (0 i s
Eria(Xp) = 0 (%) Py and gy (x,) = (1 =@y (x,)V), +

At En)s Apa(x) and A,.(x,) are real-valued functions of
xy,; and satisfy ' :

3
EmEd{Zlﬂhij(xki)ghy‘(xki)}=ﬂh’ h=l...,L.
J=
Proof. We wish to find A,,(x4) = (At (6 )s Apiz i )s iz ()Y (B=1,,L
i=1,...,1) to minimize the risk
dos g > ~
E,,.Ed[gf(fv.i)(y.,(z,-)-—z,-)’] ,

WU PR PN (OO ) — o

Under the superpopulation model (2), this is equivalent to finding x, to
minimize the following risk separately for each % and i :

3 =
E.E, Z(ﬂhg- (xyi )3@‘ () =Yy )2 :

J=t
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When [/ is sufficiently large and x,, is given, we obtain by Theorem 2.1 of
Goldstein (1975) the approximate Bayes )A)A,-(x,,,.) as follows :

o}

s A ) =1-4,(x,), lﬁia (xp)=1,
ay, +q(xXy )t : e

At (xhi )=

where

N (n- th)P@(l "Pig_)_
[(n~x)B, + 2}

qOem) = [(n = )Py + 2]

The associated Bayes risk can be approximated by R, (x,,),

Ry (i) = o [1 = 2 (6 YA ) + 200 (50 ) Ay (J?m)] -
A TR () A ()
Hence, we can obtain the approximate Bayes rule of y,(x,), i=1,...,1, by finding
x; =(x],%3,...,x;;,)", h=1,...,Lsuch that

Ry (ep) = minfRy ()}, (h=1lioisL b i=lid) o

The proof is completed by choosing xj, such that A4,,(x};) = A, (x;) A4 (x5,) for
h=1...,L s i=1...1I.

From (4), the overall Bayes risk is as follows :

I Lo : ey ,
Zf(Ni )EthiRhi(x;!i) . S et (5)

=l

In situations where o7 and r7 are both unknown, we can derive the empirical
Bayes estimators by replacing the two variance components in (4) with the
nonnegative invariant quadratic estimators (IQE) proposed by Mathew and Sinha
(1992). Assuming that #,, =1 § for all # and 7, we can choose the following

estimators 77 and 67 for 77 and o7, respectively.

I Ry

NGRS

Al sl : ; o :
e k=l L
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G} =a,,(§',:nh,y,3,.~n,,‘y,%.), h=1,..,L.
=
By Theorem 2.3 of Mathew and Sinha (1992) a, (h=1,...,L) is chosen such that
67 has a uniformly smaller mean squared error than every unbiased IQE of of.
Mathew and Sinha (1992) show that 77 (h=1,...,L) is the unique nonnegative
unbiased IQE of t2(h=1,...,L). When n, is small or equal to zero, we can
aggregate temporarily some of the subareas within the same poststratum to have
stable estimators of 77 and o?.

4. The Simulation Study

A simulation study was carried out under the superpopulation model (2) to
illustrate the characteristics of three different methodologies for producing small area
estimation. The three methods evaluated were, SYN, UNB and the approximate
Bayes rule, described in Section 3, (denoted by SYN/C). If n,, =0 we define UNB
estimators to be zero (somewhat arbitrarily, since, strictly speaking, the estimator is then
undefined). We consider the case in which L=2, I=10, P, =0.075 forall # and
i=123 : P,;=005 for all » and i=45,6,7 : P,;=0.025 for all » and
i=8.9,10. For the Monte Carlo simulation, 5000 repeated simple random samples,
each of size n=120, were selected from the superpopulation of N =1000 units.
The superpopulations were generated using the RANNOR generating function of the
SAS library. The parameters were 4 =5, 4, =10 and three sets values for
(6?,77), namely, (0.2,1), (0.5,1) and (1,1). The results of the corresponding Ay;'s
for the approximate Bayes rules of the three superpopulations are 5, 4 and 4 for
i=123:4,3and2for i=4,5,6,7 : 3,2 and 1 for i=89,10, respectively.

To look at E,V, and E,B3, the estimates were averaged over all 5000
repetitions from the superpopulation model. Table 1 presents the results of E,V,,
E, B> (denoted as Var and B? respectively) and MSE =E, V, + E,,B} for each area
of the three superpopulations. The mean sample size taken for each area (denoted
by 'ms’) and the overall simulated risks with f(N,;)=1/I in (3.3) (denoted by "av’) are
also presented in {(Table 1) .
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(Tab. 1) Vvar, B* and MSE of Each of Three Estimators over 5000 Repeated

Simple Random Sample averaged over 5000 repetitions for the

Superpopulation model with three sets of values for o} and 7.

DR R 25

(ol,71)=(0.2,1)
0.066  0.000 0.066 0059 0000 0.059
0.065° 0000 0.065 0.060 0.000  0.060
0.065 = 0000 0.065 0.059 - °0.000" -~ 0.059
0.150° . 0.000_ . 0.150 0.073 . 0001 0.074
0.138  0.000°  0.138 0.074 - 0.002 0.076
0.154  0.000 ~ 0.154 0:075° 7 0.002  0.077
0.151 - 0.000 0,151 0.074  0.002 0076
1.398 0097 - 1495
1.448 0102 1.550
1428 0099 1527

P
=

(o},72)=(05,1)
0.066 0000 0.066  0.060 0,000 0.060
0065 0000 0065 0059 0000 0.059
0.065 0000 0065  0.060 0000 0.060
04150 0000 0150 0097 0001 0.098
0138 0000 0138 0096 0001 0.097
0154 0000 0154 0100 0.001  0.101

0451 0000 0151 0098 0001 0.099

1402 0098 1500 0177 0010 0187

1445 0102 - 1.547

1440 0099 1539

"

- - S e e A

@k, ti)=(11)
0.066 - 0.000 0.066 0.063.- 0.000 "~ 0.063
0.0650.000 -~ 0.065 0.063 0,000 ::-0.063
0.065 - 0.000 . 0.065 0.063 .- 0.000. - 0.063
0.150 - 0.000 . 0.150 0.102 . '0.001. .0.103
0138 0.000 0.138 0.095°  0.001 - 0101
0.153 - 0.000. - 0:153
0.15%-.0.000 - .0:151
1.409. ° 0.098 - 1.507
1.446 0,101 = 1.547
1.458- 0,100 - 1.568

- R R - TR Y B

-
@

* . mean sample size taken for each area. +: E,V,, I ' E,B}, § ! E,V,+E,B:.
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From {Table 1) , the following conclusions emerge :

A. The SYN estimators are badly biased unless o} / r# is very small. This
causes large MSE of the SYN estimators although they consistently have an
attractively low variance compared to the UNB and SYN/C estimators. The
UNB estimators are essentially unbiased except in the small areas 8, 9 and
10, where the events n,, =0, have a large probability. Their variance is
consistently higher than that of SYN and SYN/C estimators. The MSE of the
UNB estimators is unacceptably large in small areas because ¥, is given
the value 0 when #,, =0 (which creates large bias in the UNB estimate).

B. The SYN/C estimators are biased in some areas, but the bias is much less
pronounced than that of SYN estimators. The SYN/C estimators have much
smaller variance than that of UNB in small areas. In all areas of the three
superpopulations, the SYN/C estimators have a smaller MSE than either of
SYN and UNB estimators.

5. Diseussion

The use of the proposed class of ratio estimators based on poststratification
pinpoints one of the fundamental issues of controversy in statistical theory, namely,
that of conditional inference (see Fuller (1966) for a conditional approach). The main
argument in favor of the unconditional approach is simplicity; the quality of a whole
procedure is described by a single number, namely, the Bayes risk (5), when a
Bayesian approach is used. It is thus reasonable to use unconditional variance, or
mean-squared error at the planning stage to choose among methods. Our estimators
can be used to improve the collapsing procedure currently employed by the U.S.
Bureau of the Census, where x,;'s were set equal to some selected constants
independent of sample outcomes for all # and i. The extension of these results to
stratified random sampling is straightforward. However, the extension to more
complex designs, such as two-stage sampling involving clustering, is not obvious.
The main difficulty is the computation of E,(y,) or A4,,(x;,) which would require
the knowledge of subarea sizes in each next to last stage unit. The other difficulty is
the complexities due to the correlation of units within the same cluster. However for
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many survey designs, it is possible to compute approximations to the E,(y,) and
Ay (xy;) as follows.

Assume that the last stage units are obtained by simple random sampling from
next to last stage units. Let the subscript ¢ index denote next to last stage unit.
Denote by p(s) the probability that a sample s of next to last units has been drawn
by the specified design. Denote by m_(s) the specified number of last stage units to
be drawn from the c” next to last stage units in s. Denote by P, (s) and
P,.(s) the proportion of last stage units in the ¢” next to last stage unit which is in
the hi” subareaand A" poststratum, respectively. Then E,(y,) is approximated
by

Ern=Zpo0-1-Be™)

where P,(s) is an average value of the P,.(s) and mi(s) is an average value of the
m,(s). Similarly, A4,,(x;,;) can be approximated by

| A= ke =
s =L p) 3 ['",(f) P 1= o™

k=X

where P,;(s) is an average value of the P, (s), v(s) = min(#(s), N}, ). Improvements
in computation of the E,(y,) and A4,,(x;;) will be left for subsequent investigation.
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