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Tests for Response Probability in Multiple
Logistic Regression Models

Wen-Ta Kuo™ Wei-Hsiung Shen™

Abstract

In this paper we propose several test procedures, such as the likelihood ratio test,
uniformly most powerful unbiased test and the Wald test, for testing the response
probability in a muitiple logistic regression set up when the observations are independent
binomial variables. An application of the tests is provided.

Keywords : Binomial Distribution, Likelihood Ratio Test, Uniformly Most Powerful
Unbiased Test, Wald Test, Logistic Regression.

1. Introduction

The multiple logistic regression model can be briefly described as follows.
Denote a set of predictors for a binary response variable ¥ by X, X»,--, X Let
x; =(x;0,xx) be the ith setting of values of k explanatory variables,
i=1,.,1,where x;,, =1.Model for the logit of the probability ~ that Y =1 is

logit(ﬂ'(_x_t))= ﬂexw +ﬂ1x” +"'+ﬁkxfk ........................ )

which, by definition, yields

exP(Zﬁfxy)
= nix)) = ____,.___Lt“..____.._

1+exp(}: ﬁ,xy

Here the parameter [; refers to the effect of X; on the log odds that Y =1,
controlling the other X''s.
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Agresti(1990) mentioned the following in his book (1990, p.112) : When more than
one observation on Y occurs at a fixed x; value, it is sufficient to record the
number of observations #»; and the number of ‘1’ outcomes. Thus we let Y; refer
to this success count rather than to individual binary response. The {Y;:i=1, -1}
are independent binomial random variables with E[Y]=mx(x;,) , where
m+m+--- +ny =N.

Accordingly, for Y; ~ Binomial (n:,7z(x;)), the likelihood function is

o L(ﬁ@& ﬁh“*iﬂlsyh “,y =T

TII](y ) {1+ exﬁ(gﬂf%’@)}””’ texp( Z ﬁ,x;j)}f”

e

and the log-likelihood function equals
Ko i Biiyiieny))

- gzog( ] £ wgu+expezﬂ,xyn+zm2ﬁfw

=t el =0

Obviously, the maximum likelihood estimates (MLE) of f's are obtained by
solving the likelihood equations :

_exp(foxie +ﬁ1x‘n-f-ﬁ‘2xm) e
"X T+ exp(Boxno + Prn  Paxn) =0, ,k ......... )
tgl L 1+ew(ﬁsxm +ﬂ1xn +ﬁ2xi2) Elye i ] ‘ @

For the univariate (k =1) binomial response logistic regression model, Agresti
(1990) used the Newton-Raphson method to solve the likelihood equations and
determine approximate estimates of fo and fi. Dobson(1990) derived some criteria
such as the likelihood ratio test (LRT) and large sample test for goodness of fit of a
model in this context. For the bivariate case, Shen(2000) proposed several test
procedures for testing the significance of regression coefficients in a multiple
regression set up.
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In this paper we propose several test procedures for testing
Hy :m(x) = mg Vs Hyim(@#m

for a specified set of doses x, where =, is a given constant, 0 <z, <1. To
motivate the proposed tests, we have taken k =2 throughout the paper. The
generalization to & > 2 is obvious, though the computations become quite messy.
When k& = 2, the problem is equivalent to testing

Hy: o */’?’?1 thn= 5 H bt firt B el

where 8, =In . Write 6 = By + Bix; + fax, — 6, so that we have

1

Ha:emegvs; H:020.

In Section 2 we discuss the LRT for the sake of completeness. In Section 3,
using the standard theory of exponential families (Lehmann, 1986), the uniformly most
powerful unbiased (UMPU) test for H, versus H; has been derived. An additional
large sample test has been derived in Section 4. An application of the use of the
above tests is provided in the context of the analysis of a low birth weight problem
(Hosmer and Lemeshow, 1989).

2. Likelihood Ratio Test

In this section we discuss the LRT for testlng Hy:n(x)=mgvs. Hy :w(x) # 7y .-
The unrestricted MLE ,BMLE = (ﬁo MLE > ,Bl MLE » ,82 wmg) is the soluticn of the
equations (2) for k =2. Under the null hypothesis H,, the restricted MLEs of £,
and S, are obtained from the last two equations, j=1,2 in (2) for k =2, after
setting B, = 6y — Bix — Bx, which are given by
, i!’i(x  — X;)exp(Gs + Fi(Xn — X1) + Bylxiy — X1))
, ':9: 1+ exp(ﬁu + ﬂ: (% — xx )“" ﬁz(xn X2))

-‘Zyl(xy““xj) ]—'1,2 , g : : e reeneenenaes 3)
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Denote the solutions of 3) by ﬁMLE = (ﬁl,MLE’ﬁZ,MLE)' . Then the LRT of Ho
vs. H, rejects H, whenever A = L(ﬁMLE)/ L(,BMLE) is small, or equivalently,

D =-2logA = ~2AlBryiz) ~ 1 Bue)) > 2ta

where y?, is upper a level cut-off point of y? distribution. This is an
approximate test, which holds in large samples.

3. Uniformly Most Powerful Unbiased Test

Writing By = 0 - fix; — fx; +6, the joint probability density function of
(Y,...,Y;) can be written as

PYy =y, Xy =y imyny, %1, %, 30, By, )
] l[yl)ﬂ{l +eXP((9+3a)+ﬂ1(xu "xl)+ﬂ2(xi2 "xz))}

i=1

ex (34-9@)2_?, + ﬂl Zy,(x“ ~x1)+ﬂz zyi(xﬂ «xz)} ...... @

i=]

Therefore, by Neyman-Fisher factorization theorem, it follows from (4) that
! ! /
So = Z}J/i , S = E;yi(xil ~x),and S, = Zl}’i(xiz =X)
i= iz iz

are jointly sufficient statistics for 8,4, and f,. It also follows from (4) that the
joint distribution of §,,S, and S, is given by

P(S, = 50,81 = 5,5, =510, 51, 53) ’
= Co.p,.5,(50551,8,)exp{(Bg + D)so + Bisi + Basa} e (5)

where Cy g 5 (50,5,5,) is an appropriate function of 8,8,,8, and (so,51,5,)
whose actual determination is not necessary at this point. However, (5) shows that the
joint distribution of (Sy,S5),S;) belongs to a three-parameter exponential family
(discrete), and this distribution is complete whenever (6, £, ;) € w which contains
a three-dimensional cube in R*, which is assumed to hold.
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To derive an “optimum” test of H : #(x) = 7, it is clear from (5) that, under
Hy,S, and S, are jointly sufficient for (S, f,). Again, the distribution, which
belongs to a two-exponential family, is obviously complete.

Now, using the standard results on exponential families (Lehmann (1986)), we
conclude the following. The UMPU test rejects H, whenever, for given S| =s,
and S, =s5,, syis either too large or too small. In other words, the UMPU test

function at level « is given by

1, if so<ci(s,8) or s>c(s1.57)
¢(SO) = 717 if Sﬁzci(slaSZ) ’ - I'-""-”LZ
Ov” " ';.7”"5*‘!"(31!’32)'(36 ‘202(5,,82’)
where ¢(s1,52), ¢2(s1,82), 1 and y, satisfy
P(Sy <c(51,5:)1 8 = Snsz = stﬂo)
+ P(S,y >€z(5n32ﬂ5'1 = 51,8, = 31130)

+ Z?“.P(Sﬂ "—‘ci(sl’sl)‘,Sl'::, sl!‘SZ = SZ;H0)= i T TP (6)

i=1
and
ZSoP(Sn = Sa 151 =85,8; = SzaHo)
- E{sﬁ ;s, = s,,s, =5 Holl- ) - SO 0

where A4 = {sq :¢;(51,53) <y < c3(81,5,)}. It may be noted that the former is the
size condition while the latter is the unbiasedness condition.

To compute c(s;,5;) and c,(s;,s,) for given values of s and s,, we
observe from (3.1) that the conditional probability distribution of S, given S, =s,,
S, =s,,and H,, is given by
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P(Sn =8]8 = Srasz = Sz;He)

e L P A =\ )) : beveecrovnnene ®
e LY g
| Z{H( 'f)exp(ﬂnzy,-)}
A4y =1 Vi =t
where
4 = {y Zy; = 5’0! Zlyl(xﬂ ""xi) = Sh Zy#{xﬂ*xﬁ) = 32}‘
2 = i i : s
and

"h Zy:(xnz - xz) - 32

=

4 = {Z : 2{3’!‘(% -x)
e

In actual practice, we proceed as follows : Given s;,s, (the observed values of
Y yi(xy —x) and X, y(x;y —x;), respectively) and « (the level of significance), we
first enumerate all possible combinations y(0<y, <n;,i=1..1) such ye 4
that so that the denominator of (8) is evaluated. Next, for all these combinations of
y € 42, the numerator is evaluated for values of to given by Z{:l yi. Once the
conditional probabilities in (8) are evaluated, c¢(s;,s;) and c¢,(s;,5,) are obtained
from (6) and (7) by trial and error.

4. The Wald Test

Here we essentially follow an old idea of Berkson(1955). See also Sinha(1988).
Let pi =yi/ni, i=1,...,1 be the sample proportion of 1's at the ith setting and
qi =1- pi. Writing w; =log(pi/qi),i=1,..,1 it follows from (1) that, in large
samples, w; satisfies :
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E(w) = fo+ Pixa+ ﬁzxfz |

and

Var(w;) ® Var( Di ){% In=— qi

. 2,: L
p ' nfmﬂ-'m)

We propose to first estimate fo, /i and B by a weighted least squares
method, and then use the resultant estimates to test Hy : #(x) = 7o . The appropriate

weights to be used here according to the weighted least squares theory (Neter,
Wasserman and- Kutner, 1990) are the reciprocals of the estimated variance of w;,ie.,
nipiq;.

Let U=Y L,ni Piqi(wi — Bo — Pixa — Paxiz)* . Minimizing U with respect to
B = (o, P, B2) , we readily arrive at the following normal equation :

where

. zwixﬂnipitﬁj

: Z;x,-zn;pﬂ; : !Zt?‘n"iz';'tpf‘lt ;{Z‘?"tﬁz Wi
i= : =] : = e

The weighted least squares estimate (WLSE) BWLSE = (IBO,WLSE’ ,B,’WLSE, /}Z,WLSE).
from the above equations is given by :

P =42

Using the asymptotic normality of p,’s, it is not difficult to show that in large
samples
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B ~ N(B.Z(B)
where
2 5an T, 12;;,"2!;1;;:,.(1—51:;)’ j gx;lxéz"i”{(l"”t) ‘;
" ‘?:lx,zn ;ri(l ﬂ,) izlx,,xizn 7 (I -7, ) 'lefgrt,-fr,:(l -r)
fooLi= = i ,"i‘*f'v", o
Define
Vi3 / . o £
1 L o
i : ‘ :
- {[Z(ﬂ) L%]} -
Vi - '

We are now in a position to describe the Wald test for H, : 7(x) = 7, versus
H, : n(x) # m,. Here we propose to use the test statistic

NV E R Vi % Vag +2EVy 42Xy 4+ 20 K50)3

andreject H, if T>z,),.

5. An Application

A woman's behavior during pregnancy may greatly alter the chance of delivering
a baby of normal birth weight. We use as our example a subset of the variables from
the data for a study of risk factor associated with low infant birth weight reported in
Hosmer and Lemeshow (1989; data were collected at Baystate medical Center, Springfield, MA,
1986). Relevant data appear in {Table 1) . The variables used are smoking status
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during pregnancy (SMOKE : 1 = Yes, 0 = No) and presence of uterine irritability (Ul : 1=
Yes, 0 = No).

The LRT statistics (D) and P-values for testing H, versus H,, for four
combinations of SMOKE and UI are given in { Table 2) . We used the
Newton-Raphson method to find the iterative MLE # of z For each combination,
we take four values of 7, around the estimated value 7, for testing the hypothesis
at 5% level. For the UMPU test, {Table3) shows ¢,(s;,5;), ¢,(51,%), 71, 73
and s, for H, vs. H,. The values of test statistics of the Wald test and their
P-values are given in {Table 4) .

{(Tab. 1) Relevant data for a study of risk factorsassociated
with Low Infant Birth Weight.

100 22

0 0

0 1 15 7
1 0 61 23
1 1 13 7

{Tab.2) Likelihood ratio test statistics (D) and P-values for four combinations

of SMOKE and UI.
o e e
0 0 0.227 04 14.5340 0.0001 *
0.3 2.9202 0.0875
0.2 1.5639 0.2111
01 15.3940 0.0001 *
0 1 0.422 0.6 3.0890 0.0788
0.5 1.1880 0.4442
0.4 0.8388 0.8235
03 0.4389 0.1992
1 0 0.366 05 4.8880 0.0270 %
04 0.3306 0.5653
03 1.3606 0.2434
0.2 10.1070 0.0015 *
1 1 0.590 0.7 1.2990 0.2544
086 0.0103 0.9191
05 0.7494 0.3867

04 3.3435 0.0675
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{(Tab.3)  Uniformly most powerful unbiased test for four combinations of
SMOKE and UL (s, =59)

SMOKE WL % & 6wy
0 0 0.4 68 87 0.0117 0.1536 *
03 57 75 0.0169 0.3496
0.2 49 65 0.1154 0.0078
0.1 40 53 0.0010 0.4166 *
0 1 0.6 58 67 0.0264 0.1747
0.5 57 66 0.0104 0.2410
0.4 55 66 0.0080 0.0059
03 52 61 0.0009 0.8641
1 0 05 61 77 0.0041 0.2578 *
04 54 69 0.0017 0.2220
03 47 62 0.0357 0.0173
0.2 42 55 0.0205 0.0273 *
1 1 0.7 55 65 0.0239 0.0642
0.6 54 63 0.09947 0.0008
0.5 53 62 0.0011 0.5864
0.4 51 60 0.1914 0.0577

{Tab.4) The Wald tests T for four combinations of SMOKE and UI.

0 0 0.4 3.5503 0.0004 *

0.3 1.6349 0.1012

0.2 0.6917 0.4892

0.1 4.1989 0.00003 *
0 1 0.6 1.7656 0.0775

0.5 0.7709 0.4408

0.4 0.2238 0.8228

0.3 1.3078 0.1910
1 0 0.5 2.1899 0.0286 *

0.4 0.5731 0.5666

0.3 1.1888 0.2346

0.2 3.3381 0.0008 *
1 1 0.7 1.1621 0.2452

0.6 0.1020 0.9188

0.5 0.8708 0.3838

0.4 1.8436 0.0652
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6. Discussion

The results by using the test procedures discussed in the previous sections are all
consistent. Although the UMPU test is to be preferred, we recommend using the
Wald test proposed in Section 4 due to its obvious simplicity of calculation even for
a general k.
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