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Jackknife Methods for Truncated Data

Pao-Sheng Shen™ Jacle Lin™

Abstract

Let X and Y be two independent positive random variables with survival
functions F and G, respectively. Under random truncation, X and are both
observable only when X is large than Y . The nonparametric MLE of F(x),
17“,,(x)=17:g,[1—dA,,(z)], was derived by Lynden-Bell (1971) , where A,(z) is the
estimated cumulative hazard function . In this note, we derive an explicit formula for the
delete-d jackknife estimate of A,(z). From this it is demonstrated that jackknifing may
lead to a reduction of the bias. Besides, it is shown that the delete-1 jackknife variance
estimator of F, (x) consistently estimates the limit variance.

Keywords : Truncation, Jackknife.

1. Introduction

Let X and Y be two independent positive random variables with
survival functions F and G , respectively. Under random truncation, both X
and Y are observable only when X >Y . Truncated data occur in astronomy,

(e.g., Lynden-Bell, 1971) , epidemiology, biometry (see Wang, Jewell and Tsai, 1986 )

and possibly in other field such as economics.

Let (U,.V,), ..., (U,,V,)denote the truncated sample. Let U, <U,, <...
<U,,be the ordered values of U, and V,, the concomitant of U, for
k=1,..n . The nonparametric MLE of F(x) , F(x)=1-F,(x)
=1-17..[l-dA,(z)], was derived by Lynden-Bell (1971) , where A,(z)
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=Y vwe Ym) s m =2l «ww]> and I is the indicator function of the
event A. In Section 2, we derive an explicit formula for the delete-d jackknife
estimator of A,(z). From this it is demonstrated that jackknifing may lead to a
reduction of the bias. In Section 3, it is shown that the delete-1 jackknife
variance estimator of F, consistently estimates the limit variance. Simulation
studies are conducted to compare confidence limits for the survival probability
F(x) obtained via the delete-d jackknife with the Greenwood’s formula ( Tsai,

Jewell and Wang, 1987) .

2. Bias Reduction

Let a, and a, denote the lower boundaries of X and Y. Woodroofe
(1985) showed that when a, <a,, A,(x) underestimates A(x) and the bias
is [g[l—C(z)]"dA(z), where C(z)=G(){l- F(z)]/P} (X 2Y). As pointed out by
Woodroofe( 1985 ), although the bias of A,(x) converges to zero, but may do so
arbitrarily slow. To reduce the bias of the estimate A,(x), we consider the
delete-d jackknife estimator of A,(x). Let D,, be the collection of subjects
of {1, 2,...,n} which have size n—d, and d >0 is an integer less than n.

Forany g=1{ji,..., jn, } € Du4, define An o (2) =3 g v, Yy - for 0<z<e0,

Define Aj(x) = [1/ ¢ )] YA g(x), where X, denotes the summation
over all the subsets in D, ,. The delete-d jackknife estimator of A;)(x) (see
Efron, 1982, p.7) s

A (X) = A(6) = (5 = DAy 0y (%)

Given m,>1 and d<n,, Lemma 2.1 derives the explicit form of

AyayUwy) (k=1,.,n=1), where Uy, (k=1,..,n-1) is computed from the
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original sample and

Lemma 2.1.

Let Ay s(Uw)=0.For k=1,..,n-1,given n, >1 and d <n,,

ZJ(d)(U(k)) = /_fj(d)(U(k—l)) + 'nl_k .

Proof :

For k=1,..,n—-1,given n, >1 and d <n,, we have

Ay (Uwy)

-1
_ n min(@,m-1) (e —1\(n-n)
= Ayay(Up-ny) +
J(d)( k 1)) (d) s=max(0,zd:—(n—nk))( s )( d-s ) n,—S

_(m - i n\(n-n) |
d ) s=max(0,d—~(n-m )\ § d-s | ny

This concludes the proof of Lemma 2.1..

Given n, >1 and d <n,, Lemma 2.2. derives the explicit form of A, (Uy,)

(k=1,...n-1).

Lemma 2.2.

For k=1,..,n—1,given n, >1 and d2n,,

_ — 1 () (n-m)\ 4
Ajay(Uwy) = Ayay(U—y)) + = — .
ny d
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Proof :

For k=1,..,n-1,given n, >1 and d >n,, we have

Ay (Uiy)
HORE =D d) s=max(0,d-(m-m)\ § d-s jn,—S
-1
— n -1 py h-h ) g
= Ajay(Up-1)) + -
J(d)( (k 1)) (d) s§0 (s)(d_s)nk
-1
— ] (n n-n\ g
= Ayay(Up-y) + =—— —
J(d)( (k 1)) , (d) (d-n,,) 1,
This concludes the proof of Lemma 2.2..

Next, Lemma 2.3. derives the explicit form of A, 1ayUmy) -

Lemma 2.3.

For k=n, we have

;[’(d)(U(n))

_ -1
=AJ(d)(U(n—l))+(Z] (nd J

n-d
n

= /_IJ(d)(U(n-l)) +

According to Lemma 2.1., 2.2. and 2.3., the following theorem derives the

explicit form of the delete-d jackknife estimator, A,,,(Uy,y).
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Theorem 2.1.
Given m >1 (k=1,..,n-1), the delete-d jackknife estimator,

AyayUwy), for k=1,...,n isgiven by

) k
Aray(Upy) = A (Uy) + .ZIBJ' ,
j=

where Uy, (k=1,..,n) iscomputed from the original sample and

0, ford <n;;

B, = n——d(n)_l n—nji1 >
a \d) \d=n,)n,’ fordz>n;.

J

Proof :

Theorem 2.1. follows from Lemma 2.1. and Lemma 2.2. upon
Ay (U = ﬁz.ln(U(k)) - (5 ~D) A0y (Uy) (h=1,...,n)

Next, we report on a small simulation study which is likely to demonstrate the
impact of jackknifing procedure. The distributions for X|s are exponential:
X,~exp(l), The distribution for Y’s are Weibull: Y,~W(f,5), that is,
G(y)=1-¢"?" for y>0, with varing parameters B =0.25,1.0,4.0, and
5=1.0,4.0. We consider the estimation of survival function F(2)=e”

=0.135. The sample size is chosen as 25and the replication is 3,000 times. The

delete-d jackknife estimator of F,(x) is

Fra®) = 4 F(0) = (G- D5 EFr().
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where F, o(x)=1-17,0u, L~ (1/n;)]. The d (denoted by d) is chosen
such that B, (see Theorem2.l.) is maximized. {Tab.1)shows the value of f£,,
S,, d, biases and mean-squared errors of F,(2) and F,3(2). Simulation
results demonstrate that F,(2) overestimates F(2). Jackknifing leads to a
reduction of bias and the reduction is substantial for the case f=4 and

6=4.

(Tab.1)  Simulation results of F,(2) and F,;(2) for¥;~W(B,5)

. bias mse
w F5 4 FQ2  Fa® FQ2  Fue®
35 025 10 22 0002  -0.005 0005 0.005
25 025 40 20 0015 0.007 0006 0006
25 10 10 20 0.006 0.001 0.005 0.005
25 10 40 18 0.057 0.032 0.016 0.014
38 40 10 19 0.008 0.000 0.006 0.006
25 40 40 13 0476 0108 0102 0.084

3. Estimation of variance

The delete-d jackknife variance estimator of F,(x) is

2
()= | Fuy - L5 R
d@a) ¢ (@) e
In this section, it will be shown that the delete-1 jackknife variance estimator

|4 (17’,, (x)) converges almost surely to the limit of the variance of F,(x).

Since the estimator F,(x) is closely related to the sample cumulative
hazard function A,(x) it is convenient to start with the delete-1 jackknife

variance estimator of A,(Uxy) (k=1,..,n)
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where A;0,(Upy) =1 /m)¥nsAwm(Uw) and A, ,(Ugu) denotes the delete-1

estimator of A,(Uy,) when Uy, (m=1,.,n) isdeleted from the sample.

From Theorem 2.1, given n, >1 (k=1..,n-1), A, ,(Uy) @(=1,.,n),is

given by

_ AUy, fork=1,...,n-1;
AU =1 4 U,) - ;11- fork=n.

Now, we shall show that the delete-1 jackknife variance estimator of

Jna, (x) converges almost surely to the correct variance.

For k=1,...,n-1, the delete-1 jackknife variance estimate of
JnA,(Uy) is given by

nVi (A (Ui))

SR e |

i=m+1 i=11;

m=k+1 Li=1P; — i=11;
1 k m-1 5',"1 l 2
=(n- )El i=1 ;(M; — Oim) _;1:

=(n=DE L=z, [z n(n, 5,m)]
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=(n~ 1)2

m=1 ”m(”m _1)

m-1

+2m-n% ¥ 3 Oy

m=1 i=I j=m+lI nmnl(nm —'ij)(ni _511)

005 e

i(sij - 5mj6im)

kK m-1 iema1
S0 % e yVE B S

m=1Hmy mlt]nm(nm"

The first term of (1), (-1, {1/[#. (1, D]} ,is the analogue of

Greenwood's formula ( Tsai, Jewell and Wang, 1987) and converges almost surely

to the asymptotic variance of vnA,(x) (see Wang, Jewell and Tsai, 1986 ) , namely,
jg[dH(z) /C?(z) ], where H(z)=P(X,<z| X, 2Y)). The second term of (1)

can be written as

qim 5

22 _)(nl)Z(n—'”:—)———, .............

i=1 iR i+1 ny

where gim =20y (G=L...m=1, m=1..k).

Since

Z P(U(l) > I/(t)!nm)

_9m__ _ s
E[(nm—l) Oim

n, -1

nm] fome? - Py >V(i)lnm),
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as n—>o and k/(n—p) O<p<i),for i=1,...,m~1, m=1,...,k, we have

qim
J
zk: -1 " O,,(n’l).

m=i+1 nm
Hence, (2) converges almost surely to zero and the delete-1 jackknife

variance estimator, nV,(A4,(Uy)) (k=1,..,n-1), converges almost surely to the

limit variance of v7A,(Uy)

In order to study the estimate F,(x), expand the logarithm

mFx)=-Am+1y L e ®
2U(i)sx n;

Now, jackknife and observe that the result of jackknifing the second and higher
terms of (3) lead to expressions which are o,(1/n). Hence, the jackknife
version of InF,(x) has the same asymptotic (normal) distribution as — A,(x).
Since exp|lnF,(x)|=F,(x) and the exponential function is smooth, the
difference between V; (F;(x)) and [F,,(x)]zV‘(A,,(x)) will tend to zero as n
tends to infinity. Hence, the delete-1 jackknife estimate of variance of InF,(x),

|14 (Fn (x)) converges almost surely to the correct variance.

We report on the results of some simulation investigations, comparing
confidence limits for the survival probability F(x) obtained via the delete-d

jackknife with the Greenwood's formula.

Using jackknife method an approximate 1-2a confidence interval for

F(x) is given by
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Fl(d)(x) ity N Va (Fn(x)) s

where ¢, ,, is the a upper percentile point of a ¢ distribution with n-1

degrees of freedom.

Similarly, using Greenwood's formula an approximate 1-2a confidence

interval for F(x) can be constructed as

F(x) 2 2,y Vo(F(x)) .

where VG(F;,(x))-—-[F’,,(x)]zZUmsx[l /n(n,—-1)] and 2z, is the a upper

percentile point of the standard normal distribution.

The X/s and Y’s distributions are the same as those used in Section 2.
The values of n, x and d are chosen as 25, 2 and 13, respectively. The
significance level, a, is set at 0.025 and the replication is 3,000 times. (Tab.2)
shows the results of the empirical coverages (E.C.) of confidence intervals
based on the three estimators ¥V (F_,, (2)), VI(F_,, (2)) and V; (17,, (2)), which are
denoted by Cg;, C, and C,, respectively. (Tab.2) also shows the relative
bias l§,- / )f, , where 3 ; denotes the observed empirical variance of F',,(x) , and

f?,- is the empirical bias of the estimator.
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(Tab.2) Empirical coverages (confidence level = 0.95) and relative biases
for n=25, x=2, Y~W(B,,5,)

ﬁi/j‘i E.C.

E@) WE@) nE@) G C C;
025 10 13 -0.001 0.153 0.102 0.915 0.932 0.930
025 40 13 -0.112 0.075 0.052 0.907 0.918 0.921
1.0 10 13 -0.117 0.174 0.168 0.884 0.917 0.915
10 40 13 -0.419 0.192 0.177 0.784 0.881 0.899
40 10 13 -0.124 0.254 0.216 0.870 0.904 0.906
40 40 13 -0.538 0.532 0.375 0.520 0.696 0.753

The results of {Tabl.2) can be summarized as follows. VG(F,,'(Z))
underestimates, ¥;(F,(2)) and V;(F,(2)) overestimate the variance of F,(2).
Compared to VI(F,, (2)), V(;(F,, (2)) have the advantages of smaller bias. The
C; is worse than C, and C;. The C, and C; are very close except for
B, =8, =4, which is the case when the bias of FJ( 5(2) is smaller than that of
Fip(2).

References

Efron, B. (1982), “The jackknife, the bootstrap and other resampling plans”,
Society for industrial and applied mathematics. Philadelphia, Pennsylvania
19103.

Lynden-Bell, D. (1971), “A method of allowing for known observational
selection in small samples applied to 3CR quasars”, Mon. Not. R. Astr. Soc.,
155 : 95~118.

Tsai, W.Y., N.P. Jewell, and M.C. Wang (1987), “A note on the product-limit
estimator under right censoring and left truncation”, Biometrika, 74 * 883~



184 RAEEEHE FZAF-#

886.
Tukey, J. (1958), “Bias and confidence in not quite large samples”, Ann. Math.
Statist., 29 : 614.

Wang, M.C., N.P. Jewell and W.Y. Tsai (1986), “Asymptotic properties of the
product-limit estimate under random truncation”, Ann. Statist., 14 : 1597~

1605.

Woodroofe, M. (1985), “Estimating a distribution function with truncated data”,
Ann. Statist., 13 : 163~177.



Jackknife Methods for Truncated Data 185

BERENT B

hEE" RS

WHE
AXTYRDAHXRAELZEFEBAEGERRF FG - ERREHT > #
BEX2V o FEERBEE X fr Y o Lynden-Bell (1971) 4% F(x) # Jk £ 8 & A #%
i f5 118 (nonparametric MLE) » F,(x) = I [l-dA,(2)] » 9 A,(2) BEHER B &
o AXH > RITREER dEN A Q) B IEHE - Rt BAEF () B3t
%t BHFRC)ER—ENETE T EHUREAESF -

MsksE) - BEEH - WAk -

*

* %

KRBT RAER
EBENALILSG AR



186 £ EEITH FZAE-M




