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Detection of Common Long-Range
Dependence Component for Bivariate
Time Series

Nan-Jung Hsu™ Ying-Sen Chen’

Abstact

In this paper, we proposed a new method to identifying common long-range dependent
component in a bivariate time series. A common long-range dependent component exists if
individual series are both long-range dependent but there exists a particular linear combination of the
process which does not have the long-memory property. We first find the linear combinatio;l by the
two-stage least squares procedure and then test the long-memory property for the transformed data
using the method proposed by Geweke and Porter-Hudak (1983). The performance of the proposed
test is investigated via Monte Carlo simulation and compared with the previous method based on the

canonical correlation analysis. The wind speed data are used to illustrate the test procedure.

Keywords: Canonical correlation; common components; long memory; fractionally integrated

ARMA process; two-stage least squares.

1.Introduction

Many multivariate time series data are collected on a cross-sectional basis. For
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instance, many economic indices of a country that are subject to the same source of
variations. Therefore, it is natural to think that the dynamic structures of those individual
processes are similar and might share the common features. In the time series literature, the
common factor is usually modeled as a non-stationary component and this corresponds to
the case of cointegration (Granger, 1981; Engle and Granger, 1987). The
cointegrating relationship can be interpreted as the existence of a long run
equilibrium between series which is stationary with finite variance, even though
the original individual series are non-stationary with infinite variance. Cheung
and Lai (1993) considered the purchasing power parity as fractionally
cointegrated in which the original process is integrated of order one but a certain
linear combination of the process is integrated of order d <. In this paper, we
consider the common component as a stationary process with long-range
dependence. Many empirical studies have found that many processes of interest in
economics and finance exhibit long-range dependence such as interest rate,
exchange rate, returns volatilities. Roughly speaking, the long-range dependence
is that the correlation between lagged observations decays hyperbolically as the
time lag increases. This phenomenon also exists in many other areas, such as the
hydrology and the geophysics. See Beran (1994) and Baillie (1996) for more
references.

Ray and Tsay (1998) have developed a test for determining whether long-range
dependent (CLRD) behavior observed in individual series is common to a cross-section of
series. Their test is constructed based on the canonical correlation analysis between the
original process and its lagged values which is similar to the approaches of Box and Tiao
(1977) and Tiao and Tsay (1989) for detecting the common trend components. They also
found the empirical evidence of common long-range dependence in inflation rates for
Switzerland and Austria and in stock returns volatility for companies having similar annual
sales. However, the implementation of this test requires two pre-selected parameters which
are related to the covariance structure of the individual series. In general, there is no good

guideline about how to choose the pre-selec.ted parameters. Therefore, the test statistic is
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varying subject to the different choices. In this paper, we proposed a new test for detecting
CLRD. The key idea of our test procedtire is that there exists a linear combination of the
multivariate process which does not preserve the long-memory property. Therefore, to
determine the existence of CLRD component is equivalent to find a particular linear
combination of the process which does not have long-memory property. We first estimate
the particular linear combination using the two-stage least squares procedure (2SLS) and
then test the long-memory property based on the corresponding transformed series using
the method by Geweke and Porter-Hudak (1983). This method is referred to as the GPH
method hereafter. Our approach is completely different from the *“two-step” approach by
Engle and Granger (1987) for testing the co-integration system since they use the
“ordinary least squares" method to estimate the co-integrating vector in the first step and
then plug in the estimated co-integrating vector for testing the error correction structure in
the second step. In their approach, the ordinary least squared estimator of the co-integrating
vector is consistent since the individual series is non-stationary. However, the same
estimator won't be consistent in the CLRD component model since the individual series is
stationary.

The rest of the paper is organized as follows: in Section 2, we define the CLRD model
and describe its properties. In Section 3, the test procedures for detecting CLRD are
introduced, including the method proposed by Ray and Tsay (1998) and our approach. In
this study, we particularly concentrate on the bivariate fractionally integrated Gaussian
model with additive noise process. The finite-sample performance of the proposed test
associated with this class of processes is presented in Section 4 via Monte Carlo simulation.
In Section 5, the methodology is used to identify the CLRD component for the wind speed

data in Ireland. Section 6 is the conclusion.
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2.The Bivariate Common Long-Range Dependent
Component Model

Without loss of generality, we consider a zero-mean process since the mean level is

not relevant to the test procedure. Let {y, =(»,,,7, )} be a zero-mean bivariate process

with one common long-range dependence component satisfying
Y= M+ g (D

where A =(1,A) is a 2x] matrix of constants, {x,} is a univariate long-memory process
with long-memory parameter d and &, is a bivariate short-range dependent disturbance.
The first component of A is restricted to be one to ensure that the model is identifiable
(Harvey, 1989). Clearly, the individual series {y,,} and {y,,} share the same component
{x,}, therefore both series are long-range dependent with the same long-memory
parameter d . However their linear combination r, =y, ~ Ay, becomes short-range
dependent since the common component is canceled out.

The most commonly used long-memory process is the fractionally integrated ARMA

process (Granger and Joyeux, 1980; Hosking, 1981), which satisfies the following equation
O(B)Y(1- B)! x, = ©(B)p, )

| I D .
where de(—E,E) is the long-memory parameter, {7,}are iid from N(O,a',zl) and

independent of {x,}, ®(z) and ©(z) are polynomials specifying the short-range
dependence. A special characteristics of long-memory process is that the autocovariance
function y (k) decays very slowly with a hyperbolic rate; that is  y (k) ~ h* as h
approaches infinity. As the equivalent result, the corresponding spectral density f, (@) is

unbounded at the zero frequency and behaves like f, (@)~ 0 as w approaches zero.

It is reasonable to consider a common component model as opposed to a full vector
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long-range dependent model for many reasons. First, the CLRD model is more
parsimonious than a model that assumes separate long-memory components for each series.
The corresponding statistical inferer;ce may be simplified because of the dimension
reduction. Moreover, the longer term dynamics between series are preserved for

forecasting.

3.The Test for Detecting CLRD Component

In this section, two approaches are introduced for detecting the existence of CLRD
component—the test proposed by Ray and Tsay in Section 3.1 and the test based on the
2SLS procedure and the GPH method in Section 3.2.

3.1 The Canonical Correlation Approach
First, we define some notations. Let ¥, ,, =(¥,_;, ¥, ;| yes Vi—joist) Where h >0,

j > 0. It represents a collection of /4 past variables after lagging j times. Define
T (W) =cov(y,,¥.,)»
T, (1) = covle, &,,)
G(h, j)=cov(y,.Y, ;).

Under the model defined in (1)— (2), we have I“y(h)=A;/_r(h)Av+F£(h). Since T,

&

decays at a faster rate than y (#), [ (h)= A;/x(h)A' for h large enough. Similarly, we

have
G(h, )~ Aly ()7 G+ Dy 7, G+ A= DIA,

for a sufficiently large j. Fixed 4 and J . the canonical correlations between ¥, and

Y,

n.j, are the squared eigenvalues of the matrix
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A(h, j) = [var)I' Gk, flvary, I [G D] = 50 Ty Ty Zyy B)

Assume 0< p,2 < ,022 <1 are the ordered eigenvalues of A(#, j) . Ray and Tsay proposed

the following test hypothesis
H, :,o,2 =0 against H, 5P|2 >0,
with the test statistic
T, =—(n-mIn(l-p}) > 13, “

under H,, and some regularity conditions, where [)12 is the smaller eigenvalue of the

matrix ,:1(h, J)=Z:" iyy i,_/'y iyy which is the product of the sample variances and

covariances based on the observed data. The existence of a CLRD component is concluded
if the test is not rejected. The similar test procedure is also hold for k -dimensional process
with r CLRD component for & >2 and k> r. Besides, this test procedure is also
applicable for the nonstationary case with d >0.5.

There are two pre-selected parameters j and / in the test procedure. The value of
J should be chosen so that T, does die out after lag ;. The value of A should be
chosen so that the block of series ¥, ;, can capture the most of the dynamic structure of
{y,}. However, it is a hard problem for choosing the values of j and A in real

applications.

3.2 The GPH Approach

Assuming the model defined in Equations (1) —(2) holds which exists a CLRD
component, then {r, =y, — Ay, } is short-range dependent. The same model can be
considered as an errors-in-variables model. It is well known that the ordinary least squared
estimator of A is biased. Instead, a consistgnt estimator can be obtained by using the

instrumental variables. Let Y, = (yil,yiz,...,y,,,)' and E; =(&;,€2,..+€,) be the vectors

of the individual series and the noise process for the i-th series, Z be the vector of
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instrumental variable for Y,. By using the 2SLS procedure, we have a consistent estimator

of A
i =();|‘};|)_l );lvyz ©)

where ¥, =2(Z2'2)'Z'Y,.

The instrumental variable Z can be chosen arbitrarily but should satisfy the
following two conditions: (i) lim(Z'Y, /n) is a non-zero constant; (ii) lim(Z'Ez /n)=0.
The natural choice of instrument would be the lagged variables {y,,_;}; that is to set
Z=(0,...,0,yll,ylz,..-,yL,,-',»)' for some j. Fixed ;, the value of A1 is estimated by
Equation (5) and the corresponding transformed data r, = y,, —iy,, can be obtained. Then,
the GPH method is applied to {7, } for determining its memory property. Simply speaking,
the GPH method is an estimation procedure in which the property of the spectral density
around frequency zero are used. The estimate of the long-memory parameter d is

obtained through a regression of the log periodogram ordinates on the log frequencies
In{(w) = By + B Infdsin’(w, /2)]+u,, k=12,...m,

where [(w,) is the periodogram ordinate at the Kk -th Fourier frequency for {7},
m=[n"] with 0<a <1. Geweke and Porter-Hudak (1983) have showed that the least
squares estimator of [, provides a consistent estimator of —d . Therefore, to test
Hy:d <0 is equivalent to test H;:f, >0 based on the ¢ statistic of the regression
coefficient. Although we use the estimated {r,} instead of the real interested but
unobserved variables {r,} in the testing procedure, the GPH test is still valid for making
inference about {r,} because of the consistency of . Initially, the GPH test was built for
the fractionally integrated process but the same test is also valid for various long-memory
processes satisfying f(w)~/1-e™ |2? f*(w) with a bounded function /M oas o
approaches to zero.

In this testing procedure, the instrument Z should satisfy
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P 1 < .
;Z Yl :; Zyllyl,l—'_/ _)r\(j) )

1= j+l

1 ' I n
—ZEy,=— Zgzlyl‘,‘j - COV(SQ,,ELI-,‘)’

h h 1=j+l

in which the matrix T',(/) is always a non-zero scalar for arbitrary fixed ;. But j
should be chosen carefully so that cov(g|,_,,£,,) =0 that is the covariance between two
noise components should die out after lagging ; times. As we can see that ; here plays
the same role as that in Ray and Tsay's method. There is a guideline on finding a suitable
value of j by looking at the sample correlation of z, and 7 under a fixed ;. A small

value of the sample correlation could indicate that the choice of j would be appropriate.

4.Simulation Results

To investigate the performance of the proposed test for detecting CLRD component in
the bivariate Gaussian case, a finite-sample simulation is conducted. We consider a
bivariate CLRD model defined in Equations (1) and (2). The design parameters in the
simulation study include the long-memory parameter d , the signal-to-noise ratio (the
ratio of the variances of the long-memory component to the short-memory component) and
those specified for the short-range dependent structure. We consider the following setups.
The long-memory parameter is examined for the case with d =0.3 and d =04 . Three
models for {g,} are studied, which are (i) {St} is a white noise process; (ii) {St} is a

MA(D); (i) {&,} is an AR(1). The signal-to-noise ratio (SNR) is set at either one or five.

The value of A4 is set at 0.5 in all cases. For each case, 500 realizations are simulated

independently, each having sample size »#=1000.

~

Both tests described in Section 3 are applied to each realization for testing the

existence of CLRD component. In Ray and Tsay's procedure, the values of j and 4 are

both set to be five which are suggested by the authors. The value of 7 is set to be
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[#n%]1=63 in the GPH procedure. First, the value of A is estimated based on both the
canonical correlation approach (through the eigenvector corresponding to the smallest
eigenvalue) and the 2SLS procedure. The bias and the root mean square error (RMSE) of
the estimator of A for each process 'c.lre shown in Tables 1—3. The actual sizes of both
tests are also recorded and compared with the nominal size a =0.05. The results are also
presented in Table 1-3.

First, we consider {g,} being iid from N(0,Y) with a diagonal matrix Y. . The
results are summarized in Table 1. The estimator of 1 based on the 2SLS procedure
performs better than the estimator in the other approach in terms of the smaller RMSE. The
actual sizes of both tests are close to their nominal size 0.05. The performance of A is
slightly improved as d increases which is the case exhibiting stronger long-range
dependence. Besides, both estimators have better performance as the SNR increases.
However, there is no clear difference in the actual size when the SNR or d changes.
Secondly, we consider {¢,} being a MA(1) process satisfying &, =(1+©B)u, where
{u,} areiid N(0,07/) and © is a diagonal matrix with elements 0.5 and 0.8. The results
are summarized in Table 2. Most of the results are similar to the previous case. However,
the actual size based on Ray and Tsay's method seems to be smaller than the nominal size.
That is, the corresponding test tends to reject the hypothesis of existing CLRD component
not as often as it should be. Then, we consider the AR(]) process satisfying
(1-®B)e, =u, where {u,} areiid N(0.0/) and @ is a diagonal matrix with elements
0.5 and 0.8. The results are summarized in Table 3. For AR cases, most of results are
similar to the previous two cases except the RMSE of 2SLS estimator is much smaller than
that of the other estimator.

The second part of the simulation study concentrates on examining the power

of both tests. We consider the following model

1 0
Yi = 2 1x1+5/ )

where x, = (x,,,x5,) in which each component x, satisfies (1-B)"x,=n, with
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var(x,)=1; {x,} is independent of {x,,}, the variance of each disturbance component
is also one. We examined the power of the tests under the model in (6) for several
situations: (i) d,=d, =04 or d,=04;d, =02 (ii), 4=0.5 1 or 2; (iii) {g} is
white noise, MA(1), MA(3), or AR(1). Under (6), the asymptotic distribution of the test
statistic in Ray and Tsay's procedure is not the same as that in the model (1)--(2), therefore
the theoretical power is unknown. But the t-test in GPH procedure is still valid, so that the
power is exactly 0.95 under the given size « =0.05. The empirical results of the power
for both procedures are summarized in Table 4. The empirical powers of both tests are very
high. There is no clear evidence that one test is superior to the other in terms of the power.
In this simulation study, the long-memory parameters are set to be 0.3 and 0.4.  For
the case with larger d which is encountered in most of empirical studies, the
performance of both tests is slightly improved. However, the SNR is the important factor to

affect the performance but not the value of .
5.Application

We apply our test procedure to determine the existence of CLRD component for the
wind speed data in Ireland which were first studied by Haslett and Raftery (1989). The data
are hourly wind speeds at 12 meteorological stations during 1961-1978; each series contain
6570 observations. The data are adjusted for the seasonal effects by subtracting the
smoothed daily average over all years and stations. We examined the memory property for
each of the 12 seasonally adjusted series using GPH method and found that all of them are
long-range dependent. The estimated long-memory parameters are reported in Table 5. The
long-memory characteristics at Birr, Dublin, Claremorris and Clones are most significant
and some of them are similar. These four stations are all located in central Ireland; see the
map in Haslett and Raftery (1989). We apply botlt tests to each pair (k =2) of these four
stations and found that none of them can be reduced to only one CLRD component. In the

southeast area, the wind speeds at Roche's Pt., Rosslare and Kilkenny have smaller but
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similar long-memory parameters. Since these three stations are located closely, we are
interested to examine if they share the same source of long-memory process. Both tests are
applied and the results are summarized in Table 6. Both tests cannot reject the existence of
only one CLRD component for wind speeds at Roche's Pt. and Rosslare. In fact, these two
stations are very close and both nearby the Ocean therefore it seems reasonable to have the
common structure. For the other bivariate processes, two test results are different. Our test
result indicates that there is another source of variation with long-memory property but the

corresponding evidence does not show up in Ray and Tsay's method.

6.Conclusions

We have proposed a new test for detecting the CLRD component for a bivariate long-
memory process. The method is very easy to implement and its finite-sample performance
is competitive with the previous method by Ray and Tsay. In addition, the estimation for
A can be made accurately at the same time in the proposed procedure which can not be
achieved by the previous method. The proposed test can be extended for higher-
dimensional process under the similar procedures but with sequential steps. For further
research, we will derive our test procedures for the more general case which is to detect »

CLRD components for the & -dimensional model with r <k .
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Table 1. The actual sizes of the Ray and Tsay’s test and the GPH test for detecting the
existence of CLRD component for bivariate fractionally integrated Gaussian

process with uncorrelated noise (7 = 1000, 500 replications).

SNR=1
Long-memory Test Estimation for A Actual Size
Parameter Procedure Bias RMSE of Test
d=03 Ray & Tsay 0.044 0.378 0.040
2SLS & GPH 0.015 0.094 0.048
d=04 Ray & Tsay 0.012 0.118 0.042
2SLS & GPH 0.005 0.057 0.046
SNR=5
Long-memory Test Estimation for A Actual Size
Parameter Procedure Bias ‘ RMSE of Test
d=03 Ray & Tsay 0.018 0.141 0.044
2SLS & GPH 0.003 0.028 0.048
d=04 Ray & Tsay 0.001 0.042 0.058
28LS & GPH 0.001 0.020 0.042

Table 2. The actual sizes of the Ray and Tsay’s test and the GPH test for detecting the

existence of CLRD component for bivariate fractionally integrated Gaussian

process with MA(1) noise (1 = 1000, 500 replications).

SNR=1
Long-memory Test Estimation for A Actual Size
Parameter Procedure Bias RMSE of Test
1=03 Ray & Tsay -0.029 0.534 0.028
2SLS & GPH 0.046 0.407 0.054
J=04 Ray & Tsay 0.014 0.121 0.032
2SLS & GPH 0.005 0.092 0.058
SNR=5
Long-memory Test Estimation for 4 Actual Size
Parameter Procedure Bias RMSE of Test
J=03 Ray & Tsay 0.008 0.091 0.034
2SLS & GPH 0.001 0.020 0.042
Yy Ray & Tsay 0.002 0.044 0.052
2SLS & GPH 0.002 0.030 0.048
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Table 3. The actual sizes of the Ray and Tsay’s test and the GPH test for detecting the
existence of CLRD component for bivariate fractionally integrated Gaussian

process with AR(1) noise (11 = 1000, 500 replications).

SNR=]
Long-memory Test Estimation for A Actual Size
Parameter Procedure Bias RMSE Of Test
X Ray & Tsay 0.107 1.313 0.036
4=03 2SLS & GPH 0.006 0.079 0.064
Ray & Tsay 0.009 0.111 0.052
4=04 2SLS & GPH 0.003 0.064 0.058
SNR=5
Long-memory Test Estimation for A Actual Size
Parameter Procedure Bias RMSE Of Test
Ray & Tsay 0.026 0.369 0.040
4=03 2SLS & GPH 0.001 0.026 0.058
Ray & Tsay 0.001 0.039 0.058
4=04 2SLS & GPH 0.001 0.019 0.052

Table 4. The actual power of the Ray and Tsay’s test and the GPH test for detecting the
existence of CLRD component for bivariate fractionally integrated Gaussian

process with additive noise (# = 1000, 500 replications).

Long- WN MA(D) | MA@3) | AR(1)
memory | Test Procedure
A=05] A=1 | A=2 | A=05] 2=05|1=05
Parameter
d =04 |Ray & Tsay| 0946 | 0952 | 0.944 | 0.952 0.954 0.966
dy =04 [ 2SLS & GPH | 0.938 | 0.964 | 0944 | 0.956 0.948 0.946
d,=04 |Ray & Tsay | 0946 | 0.940 | 0.956 | 0.972 0.958 0.972
dy, =02 [ 2SLS & GPH | 0932 | 0.946 | 0962 | 0.958 0.958 0.946




124 RiENTw F—EF5-8

Table 5. The GPH estimates of the long-memory parameter for the seasonally adjusted
wind speed data in Ireland.

Station C;GI’H
Roche’s Pt. 0.124
Valentia 0.148
Rosslare 0.125
Kilkenny 0.165
Shannon 0.163
Birr 0.255
Dublin 0.229
Claremorris 0.308
Mullingar 0.137
Clones 0.230
Belmullet 0.106
Main Head 0.172

Table 6. The test statistics and p-values (in parentheses) for examining CLRD component
for the seasonally adjusted wind speeds at Roche’s Pt., Rosslare and Kilkenny.

Test Roche’s Pt. Kilkenny vs. Kilkenny vs.
Procedure vs. Rosslare Roche’s Pt. Rosslare
T=4.33 T=8.34 T=7.32
Ray & Tsay
(0.888) (0.500) (0.604)
asis & Gpr | 42 =0063 d,=0.124 d, =0.124
(0.134) (0.036) (0.040)
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