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The Nonparametric MLE as an
Inverse-Probability-of Truncation Weighted
Average

Pao-Sheng Shen™

Abstract

For randomly censored data, Satten and Datta (2001) showed that the Kaplan-Meier
estimator can be expressed as an inverse-probability-of censoring weighted estimator. In
this article, it is shown that the truncation product-limit estimate, first introduced by
Lynden-Bell( 1971), can also be expressed as an inverse-probability-of truncation weighted

average, where the weights are related to the distribution function of truncation variables.
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1. Introduction

The Kaplan-Meier estimator (product-limit estimator, PLE) for the survival
function of randomly censored time-to-event data (Kaplan and Meier (1958) ) is
often introduced as the maximizer of a nonparametric maximum likelihood (see
Kalbfleisch and Prentice (1978) : Wang (1987) ) . In a series of papers, Robins and
coworkers proposed a class of estimators using a data-reweighting scheme

( Robins and Rotnitzky (1992) ; Robins(1993) ; Robins and Finkelstein(2000) ). An outcome
of their approach applied to survival analysis is an inverse-of probability-of

censoring representation of the Kaplan-Meier estimator. Satten and Datta (2001)
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give two demonstrations of this representation. In this article, it will be shown
that the truncation product-limit estimate, first introduced by Lynden-Bell
(1971) , can also be expressed as an inverse-probability-of-truncation weighted
average, where the weights are related to the distribution function of truncation

variables.

2. The Truncation Product-Limit Estimator

Let U'and V' be the target and truncation variables with distribution
functions F and G respectively. Assume that U’and V' are independent.
Under random truncation, both U"and V* are observable only when U* >2V".
Let (UI,V,), oo (U,,,V,,) denote the truncated sample. Hence, H (u,v)=
P(U,- <u, V, Sv)= P(U' <u, V' Sv| U’ ZV') . Let I5; be the indicator
function of the event A. Let F;(u)=n"'Y" Iy<)> Gi(v)=n"T ]y, and
R, (u) =G, (u)— FE; (u —) =n""21 Iiy,<usu] - The truncation product-limit estimates
of F and G, first introduced by Lynden-Bell (1971) , can be viewed as a
nonparametric method for dealing with delayed entry of uncensored life table
data, as well as truncated astronomy data (see Wang, Jewell, and Tsai (1986) :
Woodroofe (1985) : He and Yang (1998) ) . The nonparametric maximum likelihood

estimates (MLE) of F(x) and G(x) are given by

F,(x)= l—g[l—}%'é;‘/}_n]

and

én(x)=n[1— G} ]

v>x R,, (v)/n
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where Fy {u}=F;(u)-F;(u-) and G {v}=F; (v)-F;(v-).

Under the semiparametric model, V* is assumed to have distribution
function G(y;&), where G is specified, e ® and @ can be a vector. For
the semiparametric model, the MLE of F (x), derived by Wang (1989) , is

1 B I[U.-Sx]
(; G(U,;Q)J ; G(U,;a) ................ @.1

Note that this weighted average (2.1) is actually the MLE described by Vardi
(1985) , with G a weight function. Similarly, when U’is assumed to have
distribution function F(x;A1), where F 1is specified, A€ A and Acan be a

vector. For the semiparametric model, the MLE of G(x) is

1 - Iy <]
Visx]l 2.2
(.Z-l—F V,-;/l)) 21°F Vi;A) @2

In the following Sections, we give two demonstrations of the equivalence
of the inverse-probability-of-truncation weighted estimator and the Lynden-
Bell’s (1971) estimator. First, substitution of G, U,) for G(U;0) in (2.1) leads

to

-1
ﬁ'w(x)=(z _ l ] I[U,-Sx]

16, (U)) T6,)

Next, substitution of }:“,,(x) for F (V,-;/l) in (2.2) leads to

éw(x)z[z 1 J Z I[V,-sx]

F1-F,0)) T1-E@)’
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In Section 3, we show that E, is equivalentto F,.

3. Equivalence of F, and F,

Theorem 3.1 £, = F,
Proof :

Note that both ﬁ'w and I:Z, are step right-continuous functions. Thus, ﬁ’w
and F, are the same if the magnitudes of the jumps in the two functions are
equal. The jumps occur at the distinct order statistics Uq) <U) <...<Uj,) of

the sample U,,U,,...,U,. The jump in E, attime Uy is given by

d,/G.(Uw)

F,Uy)-F,U¢0)= ¢ ,
W)~ F. W) ' .d; /G (U)

where d,=E,'(U(,~))—E,'(U(,-_1)) for 1<i<r.

Now, by Corollary 2.4 of He and Yang (1998) , we have

d,-/(;’,,gU(,-)) - d,-ll-_—FA',,gU(,-_.))J/Ig,,(U(,-))
Z?=1d1/ G.(Uy) T4, ll ~F,U (J—l))l/ R, (U)

Since

idjll—ﬁ’n(U(;-l))=iﬁ‘(R..(U<k))—d,,)( d; )

A R Al RUE) \RUG)
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_ iﬁ(Rn(U(k))—dk ][1- R"(U(i))_dj]

- Rn (U(k)) R" (U(J))

- $[F.00)- Fu g1

we have

d; ll—ﬁ,,(U(,_,))]

=F,(Uy)-F.(U.n).
FX(y Uy)-F(Uey)

F,(Uy)-F,(U)=

~ ~

Thus, F, and F, are the same.

4. Equivalence of G, and G,

Theorem4.1 G, =G,
Proof :

Note that both Gw and Gn are step right-continuous functions. Thus,
G, and G, are the same if the magnitudes of the jumps in the two functions
are equal. The jumps occur at the distinct order statistics V) <Vjy) <...<W,) of

the sample ¥,V,...,V,. The jump in G, attime M, is givenby

fi/l.l - ﬁn(V(j))J 5
Shi S/ - (V)]

éw (V(,-))— éw (V(,-_,))=

where f, =G (V(,))-Gi(V,-)) for 1<i<r.
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Now, by Corollary 2.4 of He and Yang (1998) , we have

nll-E0) __ £600)/RE)
i fi/ll-FVw)] 2 £6.0w) R V)

Since

'(Rn(V(:))—fi Y, Rn(V(:))—f,-]
R(0w) )| RO)

- 3[6.04)- 6.Wun)] =1

we have

1Gu(Vy
(j_l))= JiG.(Vip)

6. lV))= G V)= T 5= Guli) = GuVir).

Thus, Gw and Gn are the same.

5. Discussion

Following recent work by Satten and Datta (2001) , this article extends the
weightrd-average from of the PLE to the data subject to left-truncation. We have
given two demonstrations of the equivalence of the inverse-probability-of-

truncation weighted average and product-limit representations of the Lynden-
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Bell’s estimator. In survival analysis, the weighted-average approach can lead to
useful generalizations, primarily to more general censoring or truncated models

where censoring or truncation need not be identically distributed.
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