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Abstract

Upon to the intensive competition, enterprise
should not only to gain the competitive advantages but
also sustain the competition. However, due to the fast
advanced technology movement, the competence of an
enterprise is partly shifted to the capability of aligning
her operations management with the strategies and the
mechanism of diagnosis and prediction the operational
processes. The capability of knowing the possible
catastrophes and knowing the causes of those
catastrophes becomes the wining features of any
success enterprise.
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Performance Indexes (Pls) Management has been
adopted along with this paradigm. However, those Pls
were used to be managed independently.Most of the
enterprises were suffered by the conflicting PIs. In this
research, we believed that all the Pls should be
considered, somewhat, dependently for goal
congruence, and thus, proposed a Performance Index
Network (PIN) architecture.

In this research, we combined the domain expert
knowledge and the Bayesian network methodologies
to develop the temporal and dynamic mechanism. A
real aerospace industry application was adopted to
justify the result of the proposed method.

Keywords: Performance Index Network, Bayesian
Network, Temporal Node Bayesian
Network, diagnosis and prediction.
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