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(Performance Index Network; PIN)

Temporal Node Bayesian Network

Abstract

Upon to the intensive competition, enterprise
should not only to gain the competitive advantages but
also sustain the competition. However, due to the fast
advanced technology movement, the competence of
an enterprise is partly shifted to the capability of
aligning her operations management with the
strategies and the mechanism of diagnosis and
prediction the operational processes. The capability of
knowing the possible catastrophes and knowing the
causes of those catastrophes becomes the wining
features of any success enterprise.

Performance Indexes (Pls) Management has been
adopted along with this paradigm. However, those Pls
were used to be managed independently. Most of the
enterprises were suffered by the conflicting Pls. In
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this research, we believed that al the Pls should be
considered, somewhat, dependently for goa
congruence, and thus, proposed a Performance Index
Network (PIN) architecture.

In this research, we combined neural network
method, the domain expert knowledge and the
Bayesian network methodologies to develop a
tempora and dynamic model. A rea aerospace
industry application was adopted to justify the result
of the proposed method.

Keywords: Performance Index Network, Bayesian
Network, Neural Network, Temporal
Node Bayesian Network, diagnosis and
prediction.
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