SOLUTIONS AND APPLICATIONS OF
HIGHER ORDER FIBONACCI SEQUENCES

by Wan-chen Hsieh

1. Fibonacci Sequences
We call a sequence of non-negative integers aj,ag, -wo+++ee° sAn, *ereeere « a Fibonacci

sequence if it satisfies the recursion relation
an=an—1+an~2 (1)

The applications of the Fibonacci sequence have been discovered not only in the
field of probability theory but also in many other branches.

As in the theory of sequences, we want to have a formula for finding the value of
an directly in terms of n without having to compute the values of a;, ag,-~ An-qe

One of such formulas for finding an of (1) has been found to be (See [1],(5))

1 1
‘ an___l/ 57_.. E(A_l:l/754>u~l (A.!/,_s )u-—i] (2)

In this paper we consider the modified Fibonacci sequences F:r which satisfy

the generalized recursion relation
an=ap-{+an-r r=1,2’3’ ......

For a positive integer r, we call Fr the r-order Fibonacci sequence (Fy; is the
origenal Fibonacci sequence which satisfies (1) ). A specific r-order Fibonacci
sequence will be determined by a set of r initial conditions. For the purpose of
convenience and without loss of generality for applications, we always set up the

initial conditions to be
a,=0, £m1,2, enerenes r—1
ar=1.

Now we write down the first twenty terms of F;,F;,F;,F, and F; in the

following table @



% % % % w f = %
Order F, F, Fj [ F, F;
wa_«_m4;;, _ o | .
Recursion ‘an=an-1+ |an=an-1+ An=anp-;+ ‘wan=au-1+ an=an-i+
. Relation | &y Canesl ags]._ an-4 an-s
Initial | a=0,t<l | av=0,t<2 | a(=0,t<3 i ai=0,t<4 | a,=0,t<5
_Conditions ; a;=1 | ap=1 | az=1 | a,=1 | as=1
a; ! 1 0 0 0 0
ag ‘ 2 1 0 0
as ; 4 1 1 0 0
a, J 8 2 1 1 0
as [ 16 3 1 1 1
ag l 32 5 2 1 1
ay } 64 8 3 1 1
ag i 128 13 4 2 1
aq % 256 21 6 3 1
a1 512 34 9 4 2
as, 1024 55 13 5 3
as 2048 89 19 7 4
a3 | 4096 144 ‘ 28 10 5
Agq ‘f 8192 ! 233 ’ 41 § 14 6
as 16384 i 377 60 é 19 | 8
aig 32768 | 610 88 | 26 11
agy 65536 ; 987 129 } 36 15
asg 131072 1597 189 1 50 20
ale 262144 ; 2584 277 I 69 | 26
aso 524288 } 4181 } 406 } 95 % 34
2. Solution from the Theory of Equations
It is easy to see that
ay=2u-1 ’ 3
is the general term of F; and that of Fy; has been given in the formula (2).
Now let us try to find the general term an for F3; which satisfies the recursion

relation

an=4an~1+t+an.g

C))
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To solve this, let us try a solution of the form

an=c_x“,

where ¢ is a constant independent of n. This leads to a cubic equation

77

p . O U O PR RN creeeren(5)
We call (5) the auxiliary equation of (4). The three roots of (5) are

Xq=

[P

Xg ==~ —+WP+WZQ

3
rom L Wep WO,
3 /294303 3 /29-3y/03 ‘
where P= I = —hA W= P

—1+v73. 1

The general solution of (4), by the method for solving a homoéeneoﬁs difference

equation (See [8], p.40), is

An=0C1X 1"+ Cax2™+Ca%x3",

and the initial conditions aj;=ay=0,
C;x1+62.9(?2+63x3=0,

c1x¥12+cax 2+ c3x,32=0,

C1%13+Cax 3+ eaxyd=1.

Let X1 X2 X3

A= | 212 237 x4

%1% 2% a1

ag=1 give us a system of equations

Then by the elementary symmetric functions in %;,%¢,%3, we have

X1 X X3 ER Xg S | ixl Xg
i |
A=l 292 x| = %2 x? N = ’xlz P
:‘ l
213 X% x38 Cad xe® S’ | ]x13 %98
X1 X3 1 | Xy X9 1
- X2 X932 1 = | x,2 xzz 1
| |
£0—x2 xP—x® -1 1 1 3|
= (%2 —%)(B%1 % +1— (X3 +x1) )= (X3 — %1 )(Bx 1 X2 +%3)
_ (a2 )@+x37)
X3
Similarly, we can derive alternatively
A Fom2)BH0 D) (X1 =%) B+ ")
X1 X2
Hence Xy X3 ] X3 X
|
PP TR PP B
¥ A -3+x12 2 A 3+x22
X1 Xg 1
| X2 x22; 1
Cg == —~rrny s = S o
A 3+x3

1]

1
4

|
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Thus we obtain a solution for (4),
S BT ER BT et v
=gy g T3 e 6
We note that the solution (2) of F; can be written as in the form analogous to (6),

145 1-v5
(G DTS I CBSS
x" X2

n
\=,2,i‘;xl“+ ot x2— ............... crrsrevaee veareesesres evaeane reseree versevsine trersrasensruesrureree (7)
where x; and x5 are the roots of the auxiliary equation
x%2—x~-1=0.
Similarly,the solution (3) of F; can be written as
n
OBl L i eirarreriserssenssnrernbanranesesaessesranrasaesesnnresearessenees (8
asz 2 1+Ix30 » ( )
where x; is the root of the auxiliary equation x—~1—~1=0.
The solutions (6), (7) and (8) give us a suggestion to establish the following
theorem about the general solution of the higher order Fibonacci sequences Fr.

T heovem 1. Let Fr (r=1,2,3,:«.+--¢«,) be the Fibonacci sequences of order r

specified by

an=>ap-i+an.r n>r,
an==1 n=r, veeesetanay sesensans Cearreserirsisesanne sereeauneentiersrarsrse (9)
an=0 n<r.

Then a solution of an is of the form

T 10
a ———— e R R R L R N N R R R LR R A L]
n=i§ r+x‘r_.1 ’ ( )

where x1’s are roots of the auxiliary equation x7—xr~1—-1=0.

Prooy: As a matter of fact, for a known positive integer r (not very large) ,
the candiate-form (10) for the solutin of (9) can be found not difficultly by either
the method given above or the generating function of (9) (See (8], pp.68-73) , and

also we can check that it is a solution of (9). However, the point is how to know
that it is the required solution of (9) for every positive integer r.

Now for an arbitrary integer r, it is easy to see that the solution (10) satisfies
(9) when n > r. Before we prove that an satisfies the initial conditions, it is
necessary to note several facts from the theory of equations (See[7),pp.69—71).

U xy,x9, -+, %r are the distinct roots of the polynomial

f(X)=x"+p1x*~ L4 paar~2f ceeesinfpr,

then, by Taylor’s formula,there is an important identity established as

f(x) ——i=1 X—Xi )

’ by
£7(x) _ I Ceeerri s TRUDRN vereereenns TP an

Furthermore, if we write
T
Se= 3! x¥ k=1,2,000r r,
i=1

then the Newton’s formulas
Skt p1Sx- 1+ paSkogterees APk 1S FRKpr=0 srrrieinciie (12)
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hold for k==1,2,:esc0e ,T.
Now in the case of Theorem 1, let r be an arbitrary positive integer, then the
polynomial function
£Q) =% — AT L] et Crereereresaenrnnsaiess (13)
has all its roots distinct. First, we shall show that ar=1 and a:.;=0. By using

the equation xa*—x**!—1=0 and the formula (11),

S T 2t i1 Xt 1+r—’r_-_1_r
ar= er-(—xx' ! i§1“r'+x1r r Z" r4xi7!
1
=r+(1-r) 2 r+x1r" =r+(1—r) Z IR B
=1 r—
1—-x1
r - T
mrdon) 3 T e (b 3
i=1r(-2:—-) i=1(1-—-=)
,ab
=r+A-00 1+ 5~ =7
fA---)
-1
e g 1 r (T et ey (2
=r+(1~-r) 1+ 5 -
r r—l p JEp— __r»_,,_]'_; r=-1__
e R
G—1)r=1_(r— 1):-—
rr=2 rr-—
=r+(1-r) [1+“;2‘ r:}_y-___ “)r-l 1
r
=r+{1-r)=1
1
In the proof above, we note that }__}1 TEReeT = =],
thus,?'l'ny the equatiou x*—x7~1—1=0, we also have
X xr—t .
ar'1=i4§1m_o.
In order to show that at=0, for t=1,2,sccers ,(r—2),

we observe that
pl—_:—l’ p2=p3=---u-pt’1=0, pr=_1.
From (12), we have Syx=1 for k=1,2,:--+-" ,(r—2).
For j=0,1,2,:,(xr—2), let P(j) be the statement:
r Zirtd
j=p rtEtT!
For j >({x—2), let P(j) be any true statement.
Now, for j=0,1,2,: ,(r—2),
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S LS S RV R L I
rtxr-t o +xi7t

i=1 i=1 i=1
=Sip1—rajy
We have shown that P(0) is true, But
. .
Xi*

Dyt e ST

r
This implies that a = 3! ~_—ﬂf~f =(, For j=1, by the equation
j=1r+x*”

xHl gt x=0, we have
grrt 7 x17 r X1
ISy 2 ’"";:1"+ R | ~=1.
i=1 r+x1 j=1r+x: j=1 r+xi
Hence P(1) is true, Also

r okl
X3
»1'—¥“ '.1;:1"'—‘“82"1'&2—‘1

i=]
. - . r xiz
This implies ag———i?l;;‘;}i’{:r= 0
Further, suppose that P(j) is true for some j<(r—2),i.e.,
r xtHs
) 1";4;;5;:*1“=Sj+1*ras+1=1
i=

T xlj’}'l
This implies that ajp;= 3 Trxr=1=0. Look at
i=1 '

LY S T E | T el r PR 2!

. et T 2 et 2 =1,

i=1 i=1 i=1
we see that P(j+1) is true. By induction, P(}) is true for all non-negative integer j.
Furthermore, in the process we have carried above, we also see that

Q1==Qg == seeeer =ar-2=0
Therefore the proof of our theorem is complete.
3. Solutions from the Theory of Probability
In this section, we shall give F: an alternative solution with the form

&S
5 <n~—m(r—1)~1)’

an= —
me1 m—~1

. . R
where [ I;—j is the greatest integer in g and

‘ {
(nyo !
J) m—-pli!
Also, by convention, an=0 if I;< 1, and 0!=1. The motivational reasons for

considering such a solution are from the theory of probability. But the discussion
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of these reasons will be given in the next section.

BFEILRR
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Theorem 2. Let Fr (r=1,2,8, 00 ) be the Fibonacci sequence of order

r specified by

an=an.i;+an-r, n=r4+1,r+2,0eees ;

an=1, n=r;

an=0, D=1,2, errreee r—1.
Then

(o .
an= m}]=1 * mlgr__ll) ) eerrrrennenninreen e b s bassesane rerenrrerenin (14)

is a solution for Fr.

Proof : Let r be an arbitrary positive integer. By our convention,
when n<r,
I
- n—m(r—D~1y _n.
an m2=1( me—1 ) =03
when n=r,
—~(r—1)~1 0!
an=:(r (ro) )——- 0’ —1;
when n > r, we shall break the proof into two parts.
(a) If n=rp, p is an arbitrary positive integer, then
Antanpr. (= Z (P m(r 1D~ 1) T Z‘ (rp-{-r—l m(r—l) 1)
m=1 -1 m=1 m-—1
p-1 - _ -
_ p—m(r—1)—1 rp—p(r—1)—1
Z‘ (rp-!—r m(r 1D~ 2) + (rp 1)
m=2 m—1
p-1 . - —1)—
_ p—m(r—1)—1 rp+r—(m+1D(—-1)—~2
= RCPTREIDT 4 ¢ m +DG 1+

P+ CTD

- ZE<rp m(rll) 1)+(

m

rp—m(r—1)—1
m+1—1

-5 apmGDy Py + (2D
m=1

P —(m—1)(r—1
2 TR s s

p+1
=m§1 (rp+r~—n1:1_(—r - 1)

ChED

Z (n-l-r—m(r 1~ 1)

m—1

m==1

1+ Oy + (B

= ands4r
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(b) If n=rp+j,where j=1,2,0-e ,(r—1), then

antanpre1= }% (rp-l-j—m(r—-l)-l) - pg}l (rp+j+r-11n——_n;(r~—1)—1)

m=1 m—1 me=]1
P . +1 .
_ rp+j—m@(r~1)-—-1 p rp+jtr—1-m(r—-1)—1
o= C m-1 ) 2« m—1 ) *
(1'p+0J""1)
p - .
rp+j—m(r~1)—~1 rp+jtr—1-(m+DGE-1D~-1
L2 T e >+ m+1-1 I+
(rp+0]-—l>
& pti-mGr—1) rp+j—1
I R
p+1 " . .
- pti—(m—~1(r—1) rp+j—1
RN m—1 >+ P
p+1 . .
- rp+j+r—m@-1)—1 rp+j
b2l omS ) + (B
- p§1 (n+r~—m(r—~1)-—-1)
m=1 m-1
= Angr.

From (a) and (b), we see that
an +an+r- 1 =andr
is true for all n>r. Hence we have concluded the proof of the theorem.

A consequence of Theorem 1 and Theorem 2 is a set of identities between those
elements of probability theory and theory of equations which seem to be entirely
unrelated, however, they are connected by the Fibonacci sequences. This is another
point of this paper. We shall state it as the following corollary.

Corollary For any positive integer r, the relation
n

r T n
n~mQ—-1)~-1 _ X
BTGP - 5 e

- . . . .. n
holds for all positive integer n, where [vr;] is the greatest integer in -~ and
xi’s are roots of gr—xr~1—-1=0.

4, Applications

In this section, we shall give two problems in the theory of probability to
explain the applications of the Fibonacci sequences.
Problem 1. We toss an unbiased coin n times so that the two elementary

outcomes, heads and tails, are equally likely at each throw. Find the number of

sequences of heads and tails:
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(a) Of all possible cases.
(b) Which have no isolated outcomes.
(¢) Which have their consecutive outcomes unchanged at least r times.

The question (a) can be eésily seen in the theory of probability that a,=2=,
However, we shall give an instructive answer so that it will act as a clue for
solving (b) and (c)

Let H=head and T=tail. Suppose we have known an, then the (an+1)-th outcome
is either H or T. Hence we have
an+1=2an=an+an
From Theorem 1, we have an=22*1, But the initial condition of (a) is
a;=2, and therefore an=22,
To solve the question (b), let us consider a sequence of length n-+2. The tail

portion with no isolated outcomes must be:

or (i) eeeeerens HHI,  ceeveeenr TTT.

In (i) we allow sequences of length n followed by HH if the n-th outcome is
T, and TT otherwise. In (ii) we allow sequences of length n-+1 followed by H
if the n-th and (n-+1)-th outcomes are HH, and followed by T if preceded by TT.
Since the sequences in (i) and (ii) behave as sequences with no isolated -outcomoes
of length n and n+1, respectively, and these are the only possible ways to get
anps. Thus we have

angg=an-+anyi.

Here the initial conditions are a;=0, a;=2, by Theorem 1, we have

2 1 5 -v'5"
an=y Sy (T B yner A2V B ey,

As to the question (¢), we note that it is a general case of (a) and (b). By

the similar discussion, we have

o @Angr=an-angr~q, n=1,2,:000e .3
al=az=.........=ar_1=0 b
ar=2,

Hence by Theorem 1 again,

xi®

iy
an= 22} Tqxr-1>
i=1

where xi’s are roots of x*—xr~1—1=0.
Problem 2. On a long rectangular tray with partitioning dividers and

cross~section

1 2 8 seceiveciannnns m m-+1
l l | | l

we place n balls in the m troughs between m+1 dividers. Find the ways for all

possible m if the restriction is (See [(6]):
(a) At least 1 ball in each trough.
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(b) At least 2 balls in each trough.

(c) At least r balls in each trough.
To solve these questions, it is convenient to look at the trivial case that if
we make no restriction on the number of balls in each trough, we are merely

arranging n balls and m-1 dividers arbitarily. This can be done in
(a+m—-1D1 (m —|—m—1)
n!{(m—-11 m-—1
ways for a fixed m.
Now, in question (a), we have n—m balls and m-1 dividers to arrange, for
which there are
_ (ammim=1) o n—1,
(a—m) | (m—1)1 m—1
ways for each possible m. As m=1,2,:. n, the total number of ways is

n n—1
an= Z ( m~1 )
m=1

We note that such an is the general term of the Fibonacci sequence F;, thus by
Theorem 2,
an=au_1+an—1. )
In question (b), we have n~2m balls and m-1 dividers to arrange, thus for each
possible m, there are

—2m+m—1 —m@~1)~1 ~m—1
@m2mim=ly _ @-m@-D-1y | @emoly

ways and therefore
n

- [g @omTh

an= m—1 7°

By ’I:};eorem 2 again,
an==an.j-tan-g.
The question (¢) is the general case of (2) and (b). By a similar discussion,
we have
(23
an= 31 (n-m(r-1)——1>’

me=1 m—1

and in this case the connection between an’s is
an=an-1-+an_r.
We note that both solutions of Problem 1 and Problem 2 satisfy the Fibonaceci
sequences. Thus there must be a similarity between them.
It is due to this similarity, in Theorem 2, we had the motivation to try the

solution (14) for F:.
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an-j3tan-»r, n==(r+1),(r+2),--- .
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SOLUTIONS AND APPLICATIONS OF

HIGHER ORDER FIBONACCI SEQUENCES

by Wan-chen Hsieh

The Fibonacci seguence {an} is defined by the recursion relation
0, n=1;
an= Y1, n=2;
an-1--an-g, n=3,4,-
The solution of an in terms of n has been found to be

an= At Y S ynmi— (7Y ey,
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and its applications have been discovered not only in the field of probability but

also in many other branches.

In this paper, we consider the r-order Fibonacci sequences Fr which satisfy the

generalized recursion relations

0, n=1,2,+ (r-1);

-

an= Y1, n=r;
an-i+tan~-r, n=(1‘+1),(1‘+2),“'

We give and prove two entirely different types of solutions for Fr,
r xit
an= 3} Thgr-1
i==1

and
EnJ
E(n m(r 1) 1)

m=1

an=

in Section 2 and Section 3 respectively, where xi’s are roots of the

—~xr=1-1 =0, [»rn—f] is the greatest integer function, and

n nl! i
(2= (a—m)!Iml"
As a consequence we get a set of identities

n

r X2 _ Zr} (n«mn(lr_-—ll)—l)

) R

i=1 m==]

for a given positive integer r.

The applications of Fr are discussed in the Section 4.

equation



