ON the Structure of Clifford Algebra

H O
(S. C. Lin)

0. Introduction

The purpose of this paper is to determine the structure of the Clifford algebra. We
express the results in the table at the end of this article. In order to construct this special
kind of algebra, it seems necessary to introduce Graded Algebra, Tensor Algebra and some of
their properties. which are mentioned in the first two sections. In the last section, we also

mention some properties of Clifford algebra which are considered important.

1. Graded Algebra

11 Free Algebra

Let E be an algebra over A generated by a given set of generators (x:) ez Let o= (7
--iy) be a finite sequence of elcments of I and put y,=wx; - x4, The number A is called
the length of ¢. Among the “finite sequences” we always admit the empty sequence oy,
whose length is O, ie., a sequence with no term, and we put y, =1. we define the
composition of finite sequences o= (Fy:=>+eee , 7p) and @/= (e s jx) by oeo’= (il-n,iﬂ,
iy jx) o« For oy, we define op0=00,=c, Evidently, (¢0’)0”=0(0'0"), and we have y,./=ysy.,
Under these assumptions, we can prove that every element of E is a linear combination of

the v,’s, ¢ running over all finite sequences of elements of I.
Definition (1.1.1.): If the y./s are linarly independent over A, then E is called a free

algebra and the set (z)ez is called a free system of generators of E.
1.2 Graded Algebra

Definition (1.2.1): Let I" be an additive group. A I"—graded algebra is an algebra E

which is given together with a direct sum decomposition as a module.
E= reEp E.

where the E,’s are submodules of E, in such a way that
B E/CE

Definition (1.2.2): In a I'—graded algebra E—E L, , an element belonging to I, is
called homogeneous of degree v, Any element x in E can be expressed uniquely by x —Z:cy,
where the z.’s are O except for a finite number of v/s.

Each z, is called the v-component of x.

Definition (1.2.8): A submodule M of a [I'—graded algebra E=3FE, is said to be
homogeneous if the homogeneous components of any element of M still belong to M. This
is equivalent to the condition M=>MNE,, t

Proposition (1.24): I a subm:)dule M or an ideal T of a I"—graded algebra E is
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generated by homogeneous elements, then it is homogeneous. Therefore, M=3M, and
1=311,, where M,=MNE,, I,=INE,. ’
"PROOF: we just prove the case for I. Let S be a set of homogeneous elements which
generates I. As a module, I is spanned by all elements of the form xsy, where x,y¢E and
s €S, Putting 2=3z,, y=3W, , we have asy=(Zx,)s(Zy) “qusyv . Since each =z, x,
is homogeneous, I is also spanned by homogeneous elements x”s z, + Let T be the set of
elements of I whose homogeneous components belong to L Clearly, S cl’cl, It is not
difficult to prove that I’ is a submodule of I. Hence I'=1.1]
Droposition (1.2.6): Let I be an ideal of a I'-graded algebra E generated by homoge-
neous elements. Then the quotient algebra E/I is also a I'—graded.
PROOF: Let % ¢ E/I and 2=3z,, Then
=2, + 1= (x,+1) eX(E,/L)
Hence
E/I=3(E,/L). Furthermofe, if 2,41, el,/I, and
x 1y € Ev/ly,
then (z, +I) (zy+I) =x,2/+] € Euy/Lys, It follows that (E,/L) (E/ /1) C Eu/Las,
By (1.2.1), E/I is a I'—graded algebra. ||
Remark (2.7): (1) The unit 1 in a I'—graded algebra is always homogeneous of
degree O (O is the zero element of I)
(2) Scalars are homogeneous of degree O.
(3) In particular, a free algebra is a Z-graded algebra:Let F be a free algebra. we’may
write F'= EF ,, where I;,=0 for all h<O and F, is the module spanned by the y.s,
¢ being of length h.
(4) The cannonical homomorphism = : E—E/I is a homomorphism of I"—graded
algebra, ie. it is a homomorphism satisfying 7 (E,) CcE,/L,.
1.3 Associated Gradations and the Main Involution.
Let I, 1" be additive groups and let a homomorphism oI
graded algebra E=”CEP E, , we associated the following I"—gradation of E ; for each el

17 be given. To any I'—

put
Eﬁ=2( )E (Ep=0 ifr~1(p) =empty)
ver i(y

Proposition (1.8.1): Notation as above, we have E= Z E; and EseEyCEy, In this way,,

Z E5 can be considered as a F—graded algebra.

PROOF Clearly E2 EF'FD Now, let x= Z z,E. Since each x,eE;, where p=z(v), it
implies that x ¢ EE;‘;. Hence E= ZPE;; . we shall prove Ey*EyCIL; 0 Let xcEjand xpeEyr,
Then z;=Xz, and x,,/—ny. Since ¢(v+y) =t () +c () =9+, for any wver™'(¥) and

vez-1(9) ver1(9)
Ver l(ur), so y+ver (v+17) . Therefore xp- 2y = fox/ £ Epiw ||
Definition (1.8.2): The [—gradation E= z"i‘Z E;s(pcglled the associated F—gradatlon of
E, associated to the I'—gradation E=2FEy. For convenience, we denote this associated
I'—gradation of E with Er, e
Proposition (1.3.3). Every homogeneous element, every homogeneous submodule, and

every homogeneous ideal in E are also homogeneous in £,
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The proof of (L.3. 8) is trivial we omit ;t.

In particular, if I'=1{0,1} and ¢ is onto, E¢ is called the associated semi-gradation (a Z,-
gradation), and write E=E’ = Ez &) Ef instead of E° . Also, we denote z-'(0)=I"y and
v1(1)=I";, Cleary, [y is a subgroup of index 2.

Proposition (1.84): Let EZ%E,, be a ['—graded algebra and let E§:E; @ E; be the
associated semi-gradation of E. Define a map J : E—F by

J(x) =29—2;, where z=xy+2z; , x0€ Ez and x; € Ez
Then J is an automorphism of the I"—gradation E.
PROOF: Evidently. J is linear, one-to-one, onto, and preserves the degree in the ['—
gradation of E. Now. let x=x¢+x; and y=yy+y;, where x;e Ej and v E:, 7=0,1. Then
z-y= (zo+as) (yoty)
= (zoyo+21y1) + (Tey1 +2130) , where zoyp+aiy1 € EZ xoy1 Fa1ye € Ly 80, we have
J(zy) = (@oyo+z1y1) — (@oy1+2130)
= (xo—21) (Yo—y1)
=J (z) -J ()
Hence, we proved that J is an automorphism.]| |
Such J is called the main involution of E ("'J?=1). For convenience, we define symbolic

power J* of the main involation as follows:

(1.3.5) : (1% J* = {J Zf vel ™y . ‘ . )
2 if vel'y where 1 is the identity map of E.
-1 if UGPl
0y (_ 7Yy —
(2 (=1) { 1 if vely

Remark (1.3): we have the following identities:
) Jr e JY=Jer
i) (-1)*(=2)"=(-2)""
ir) (J)7=(J")"
iv) ((-2)")=((-1)")"
/v) If:c:ggc,,, then J(z) =”§ (-1)*zx,
1.4 Derivations.

In this section, we assume that a fixed subgroup Iy of I" with index 2 has been given.
Let E, B’ be two I"—graded algebras over A and let ¢ be a homomorphism of E into
E

Definition (14.1): Letd:E—E’be a linear map and v any element in /7. i is called
homogeneous of degree v if A(E,) CE,,, for all yel".

Definition (1.4.2): A p—derivation D of E into I’ means a linear mapping D:E—F/,
homogeneous of some given vel’, such that

D(zy) =D (x) 9 () +9 (J>2) D (y)
where x,yeE and J’ is the power of the main involution.
Proposition (1.4.3): For every p—derivation D, we have D(I) =0.
PROOF:D(I) =D (1) ¢ (1) +¢(J*1)D (1)
=D(1)+D(1)
This implies immediately that D(1) =0O.]|
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Proposition (1.4.4):Let D be a ¢—derivation of E into E’, F (or I) a homogeneous
subalgebra (or ideal) of E, S a set of homogeneous generators of I (or I), and let ¥’ (or
I) be a homogeneous subalgebra (or ideal) of E. Then if D(S) € F' and ¢(S)CF, we
have D (F) cF (or D) cT) and ¢(F)CF’ (or o(l)cl),

PROOF: we just prove the case for subalgebras. Clearly ¢ (F) CF’, for ¢ is a homomo-
rphism’. To prove D(F)CF/, let Iy={xcF|D(x)el’} - Then F; is closed under addition and
scalar multiplication. Also i z=Xx,eF; , then D(x)=3D(xz,) ', By hypothesis, each
y-component of x must be in F; - Therefore F, is a homogeneous submodule of F. And
so xcF; implies J*(x)eF; , where v is the degree of D. Now, for x,y¢F; , we have

D{(xzy) =D{(x) ¢ (y) +¢ (J°x) D(y)
and since D(x), ¢(y),0(J” %), D(y) all belong to F’, we have xye F;, Thus F,is a
subalgebra of F containning S. Hence F; =F.||

Proposition (1.4.5): Let E, E’ be ['—graded algebras, ¢ a homomorphism E—F’, and
D a ¢-derivation of E——FE’. Also let I and I’ be homogeneous ideals in E and E’

respectively such that D(I) CT" and ¢(I) CT". Under these assumptions, the induced mapping
D: E/I—E//I obtained from D is a p—derivation. where ¢ means the induced homomor-
phism E/I—FE’/I’ obtained from ¢,

PROOF: Obviously, Zo aand D are well defined, linear Eg D
and make the right diagram commute. First, we shall E ; Be

0 (z.5) =0 () =¢ () =9 )¢ (y)
= (@) 9 (y) =¢ (@) ¢ (5)

Also, if # el,/I, , then wxeE, , Since ¢(x)el,, o¢(z)=

prove ¢ is a homomorphism. Let Z, 7E/I. Then TT! . x
G, D

o(@)e E',/I’, , Hence ¢ is a homomorphism. Next, let us E ..__..‘.L.-—,E
consider the induced map J: E/T—E/], obtained from J 1"1 -
Since I is homogeneous, J(I)=I. Therefore J is also an J
automorphism of E/I. we shall prove that J is also a main E/1 ~———) /1

involution of E/I. For any zeE/I, it can be expressed by
Z=xotx1=Fe+ I , where x=xo+xy, xek, xteEz , i=0,1.
According the statements in (1.8), we have
zo (E/I), and ¢ (E/D),.
Since J (&) =J () =xo—21=Zg— %1
we proved that J is also a main involution. From (1.8.5), it is easily seen that (J)’=J>,
Finally, we shall prove that D is a ¢-derivation Let D be homogeneous of degree v,
Then evidently D is also homogeneous of degree v , For any #,5¢E/I, we have
D(z,5) =D (xy)
=D (x)p(y) -+ x)D(y)
=D (z)¢(y) +¢J'z) D)
=D(@)¢(y) +ol(J)*21D(3)
This completes the proof. ||
Remark (1.4):(1°) In case E=FE' and ¢p=identity, D is called a derivation.
(2% If I'=Z and D is a derivation, then
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D(xy) =D (@)y+ (-1)™z-D(y) ; zeky , yek.
1.5 Existence of derivations in free Algebras.
Let I'=2F;, be a free algebra with a free system of generators (z;):; over a ring A,

heZ
as mentioned in Remark (1.1). Let E be a Z-graded algebra over A and ¢ a homomorphism

F—F,

Proposition (1.5.1) : Assume that for each ie/, a homogeneous element y;k of degree
v-+1 is preassigned arbitrarily, where v is a fixed integer. There exists one and only one
p—derivation D of F into E, which is of degree v and satisfies D (x;) =y,

PROOF: Uniqueness; Assume D’ is another ¢—derivation of E into E’, having the
same degree as D’s and satisfying D’ (z;) =y; - Then (D—D’) (z;) =0 for each generator
z;o Let Ii={xel| (D—D') (x) =0}, Using the same method as we did in the proof
(1.44), we can prove that F; is a subalgebra of F containing the set of generators, () ser-
Since F is generated by (z;), Fi should be equal to F. Hence D=D.

Existence: Obviously, the elements p,=z;,+++ » « &y, form a base of F, where o= (7, s
in) runs over the set X} conmsisting of all finite sequences taken from I we define d(ps)e E

such that
(1) 6{ps)=0(1)=0 if ¢,=empty sequence
(2) 5(1)‘,):5(@.” ...... , xih):(j(xi“ """»”Cn-,)w(xi,)—l—go[J”(xz. ...... s l’z“)]yi» if 5(10./) has

already been defined for every ¢’ with length less than h.
In the case where 2=1, we have & (x;) =y; . From the definition, 0 (p») is homogeneous of

degrec /it if ¢ has length h. For, if 2=1, 6(x;) =y; is of degree v+ by hypothesis, and
if this property has already been proved up to h-l, the degrees of the two terms on the
right side of (2) are (A—I1+v)+1 and (hA—1)-v+2 which are both equal. Hence 6 (ps) is of
degree h+v, . ‘

Now, we define a mapping D: F——E such that D(p,) =6(p.,) for all oe3. Since (p,)
forms a base of F, such D always exists and is uniquely determined. From the definition,

D is linear and homogeneous of degree v , Next, we shall prove D holds the following

condition.
(8) D (uv) =D (x) o (v) +o (J'u) D (v) for any u,veF.
Let us first consider the image of ux; under D, where u:ﬂ%a.,pg is in F and x; is an
arbitrarily generator of F. Then, we have
D(uxz) =D (Zaapnxi)
=Na.D (pex;)
=a,[D(ps) o (2:) +¢ (S ) D (2:) ] (by(2))
=D(Xaops) ¢ (x:) F ol (Zasps) 1- D (z:)
=D () - p(x:) +¢ (Ju) - D ()
ie.
(4) D(uz:) =D (w) - (x:) + o (Ju) - D(xy)
Now, we denote by I, the set of all elements of F which satisfy the condition (8) for

all u. And we shall prove Fy =F. From (4), we see that each generator z; is in F; and
also 1 is in Fy , We claim that v eFy implies vx; eFy, For if veFy, then
Dl (vas) J=D (wv) x;)



182 ko $ om + & X

=D (uv) p (x:) + o (J* (uv) ) D (x:)

=[D (@) ¢ (v) +¢ (Ju) Dolp(x:) +¢ (J'w) ¢ (J'0) D ()

=D () ¢ (vx:) +¢ (J'w) (Dvg (1) +¢ (J*0) D (1) ]

=D (u) o (vz:) +¢ (Jou) -D’(vx/;)
It follows that vaeF; , Applying this fact and that each z;eFy , finally we can prove I
contains all the bases p,=x;+-x; . Hence Fi=F, And hence D is a ¢—derivation of F
into E, ||

2. Tensor Algebra.

2.1 Graded Structure of Tensor Algebras.

Let M be a module over A.. Let F =’§Fn be a free algebra over A freely generated
by M. In this case, we may identify A with F, and M with F,, To distinguish the addition,
substruction and scalar multiplication in F from those in M, we denote the formers by
-I.—, ;,ﬁnd a-z(aeA), Also, let I be the ideal of F generated by the set of all the elements
of the forms;

1 (:H.—y) - (x-+y) for any x,y ¢ M

(2) a~x—. (ax)

From (1.2.4), we see that I is homogeneous. Hence we may define a tensor algebra as
follows.

Definition (2.1.1): The quotient algebra T=F/I=3T,, where T,=F,/INF, , is called a
tensor algebra over M. e

According (1.25). T is a Z-graded algebra. Furthermore, it preserves the following
universal property.

Proposition (2.1.2): If 2 is a linear mapping of M into an algebra E over A, then 2
can be extented to a homomorphism of T into E which makes the diagram (II) commute.

PROOF: Define a mapping ¢: F——E such that L
o (pa) =@ (xsey ) M -—-——b?
=2(z,) weeee Az '
where p,=x;,-, x;, is a basis in F. By the consruc- A 5 9
tion of a free algebra in 1.1., it is easily seen that ¢ v
is a homomorphism of F——E. which extends 2, (1) E
Next, we shall prove ¢ (I) =0, where I is an ideal of F defined as above. Since
o (@hy— (@) (ayeM) P
=¢(x) +o(y) —p(a-ty) T
—2(2) +2(3) —(w+y) v 0

=0 ("2 ix finear) F
and i ‘ \K

¢ (a z—ax) ‘ M =y B
=g (az) —¢(az) >
=ap(x) —¢(ax)
=al(x) —A{ax) =0
we have ¢ (I) =0. Hence ¢ defines a homomorphism ¢ : T——E which extends ¢, ie.

(m)
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(Goz) () = (x) =1 (x) V zeM ,

Remark (2.1): (1°) The definition of a tensor algebra in (2.1.1) coincides with that in

[2) . For convenience, we prefer to use the later one in the next section. (3)
2.2 Derivations in a tensor Algebra.

Let M be a module over A and T:MZZT; the tensor algebra over M. we shall prove the
following. '

Proposition (2.2.1): M A is a linear mapping : M—T 1 (v : any integer >-1), then
A can be extended uniquely to a derivation in T (of degree v).

PROOF: Evidently, M generates T. Using the same method in the proof of (1.5.1), we
can prove the uniqueness. we shall prove the existence. Denote by = the canonical map :
Foor—>T s, where Toyy =I,41/INF, 1+ For each weM, we select an element A (z) ek, 1+ such
that 2(z) ==z (4(x)). This defines a map 4: M —F,.; such that the diagram in (I} is

commutative. Since M is a free system of generators A
. . . M ——¥ T
of F, by (1.5.1), there exists uniquely a derivation D 4
of F such that D(x)=4(x) {for every xeM. Note
that D is of degree v + Now, we shall prove that A v
1) D)y’
In fact, we have : F
z(D{zty+ (x+y))), xyeM ¥ D F
=z[D(z) +D(y) —D(z+y)]
=ald(x) +A(y) —A(x+y)] w w
= (zo4) (@) + (o) () = (o) () 5 L
=2(x) +a(y) — 2 (z+y) P T
=0 (*s2 is linear)

This implies that D(x—.ky* (x+9))e kerm=I Similarly D(a*xz—az)e 1. By (1.4.4), we
have D({I) cI. From (1.4.5), we see that the induced map D : T—T, obtained from D, is
a derivation of T. To prove that D extends 2, let xeM. Then x=r(x) and

D(x)=D(z(z)) =a(D(x) =r(4(x)) =2(z).]]

3. Clifford Algebra

3.1 Quadratic Forms
Definition (8.1.1): Let M be a module over the besic ring A. A quadratic form over
>A such that

M is a mapping Q : M

1) Qlax)=a’Q(2)

(2) The mapping B : MxM——A defined by

Blzy) =Q(z+y) ~Q(x) ~Q()

is bilinear. B is called bilinear form associated to Q.

Definition (8.1.2): Let x,y ¢ M. They are called orthogonal each other if B(xz,y)=0,
ie. Qx+y) =Q (=) +Q1).

Definition (3.1.8): Let R* be a k-space over real numbers R. The mapping Q;: R¥——R,
defined by
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Qi (geeoe ,:c,)=~2x z€R
is a quadratic form over R. It 1s called definite negative form.
Another quadratic form Q,,=—Q, is called definite positive form.
Definition (3.1.4): Let E=E @FE, be a module, where I, are submodules of E. Also let
Q be a quadratic form over E. Then E=E®FE, is called an orthogonal decomposition of E
relative to Q if for every xck, and every yeE, x and y are orthogonal each other.

3.2. Clifford Algebra.
Let k be a commutative field and Q a quadratic form over a k-module E. Let 7(E) =

4 factors
ET‘E be the tensor algebra over E, where T°E~k, T'E~E, and TiE= m Also,
Iet 1(Q) be the ideal of T (E) generated by the set of all elements of the form 2Qz—Q (x) -1,
zeE. Then I(Q) is homogeneous, by (1.2.4). Hence we may define the following.
Definition (8.8.1) : The quotient algebra C(Q)=T(E)/I(Q) is called the Clifford algebra

of Q.
Proposition (3.2.2): Define i, : E—C(Q) to be the canonical map given by the

composition E——I—>T(E) i >»C(Q), where I is inclusion and = is the canonical homomorp-
hism. Then i, is injective.

PROOF: we shall prove that o#xell implies iy(x) #o. Let () ., be a base of E. Also,
let 0 #x=23a,xek, aeeK. Then a;#0 for somea;cK. Now, we define a mapping 1 : E—K
such that the image of an element in E under 2 is the coefficient of z; in that element;
ie. if y=3) bx;, then A(y)=b; « Evidently 2 is linear and 2(z)=a,#0. By (2.2.1), there
exists a c{grivation 01 in T (E) (of degrec—1), which extends A. Since

L (xR2—Q (x).1), xcL=T*{(E)

=0; (2Qz) —Q (x) 6. (1) E I ) T(E) T IC(Q)

=0, (xQx) (*702(1) =0,by (1.4.3))

=0, {x) Qz—2R0,(x) (by (1.3.5), > 16;\’ dh
Jr=g,0 0 (@) = (@) =—a) i T

=0;(x) (x—x) =

so, 0: (1(Q)) =0. Therefore, by (1.4.5), 6 induces a derivatron d; of C{@), which makes the
diagram commute. Hence, for this given x, we have,
(deor) (I (2)) = (zd,) (I (x))
=z (5:01) (2}
=z[(Te) ()]
=g (a;+ 1) #0 CT°ENIQ) =0 and a;+#0)
ie. dilis(x)) #0

It follows that 4,{x) 0. Hence 7, is injective.

From (3.2.2), we may identify E with i,(E) cC@Q).

Froposition (8.2.8): Let ¢ : »A be a linear map of E into a k-algchra with unit,
say A, such that for all zeL, the identity ¢(x)?=Q{x) 1 is valid. Then there exists a
unique homomorphism ¢: C(Q)—— A,such that dois=g. Such ¢ is called the exension of ¢ -

PROOF: By (2.1.2), ¢ can be extended to a homomorphism A: T(E) >A, If xekE, we
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have, C(Q)
Az @ 2—Q(z): 1) "‘ \
=[A(z) = Q) 4(Q1) ' N \\ 'y
—($(®) P —Q (@) 1=0 2(s) 9
This implies that A(I(Q)) =0. Thus 4 defines a ‘ : \\4 \‘\
homomorphism ‘ ‘ I I "‘.:‘g
: C(Q)— A, such that g-z=A1 E mﬁ A

It follows that gois=gomel=Aol=4g. ||
Applying the argucment in (1.3) The following becomes trivial.
Proposition (8.2.4) : C(Q) canbe decomposed as a Zs-graded algebra. That is

(1) C(Q)=C*(Q)® C'(Q) where C°(Q) = image of STHE

=0
CHQ) = image of .Z?OT””E
i=0

@ C(Q) ZECi(Q), CHQ) =TL/I(Q) NT*L

If x; € CHQ), vC(Q), then xyye C*(Q), k=i+j (mod 2)

Definition (3.2.5): Let E=E, ®F, and E'=F, @ E’, be two Z-graded algebras. Then
EQE=(EQ I, ® L & FIDE Q E, ® E ® E,) is also a Z-graded algebra. A skew
tensor product of E and E’ is defined as follows:

(1) As a module, it has the same structure with E & E’.

(2) For any u®u’, v&v’ in it, we define its multiplication by

(uXu) . (vQv') = (1) YuvQu'v', w'e E'; and veky
we denote it by E @) E’. Such an algebra is also a Z-graded algebra.
Proposition (8.2.6) : Suppose that E=E, ® E, is an orthogonal decomposition of E

relative to Q and let Q; denote the restriction of Q to E;. Then there is an isomorphism.

#: CQ—CQ) § CQ)

PROOF‘: Define a mapping +» : E—C(Q,) ®C(Q,) by .
Yl2) =z, @ 1+1 ® z, £ —2__5 C(Q)
where z=x, + z, and x:¢E:. Then, we have: |
Y@= (o ® 141 ® @) .(v @ 141 ® a) |~
=(z.x) Q@ I+x, Xz, + 1 & (z.z) \? :\y
—z, Rz, (by (8.2.5)) y
=Q,(x) IR + Q.(x).(IR1) A
cQ,)
=[Q, () + Q. (x)J(IRL) «wervervren 1) ClQl) ® (Qz

where Z&1 is the identity in C(Q,) (>/<)\ C(Q,). By hypothesis,

Bz,z,) =Q(x) —Q,(x,) —Q,(x,) =0
Therefore, (1) becomes Yr(z)’'=0Q(x)-1. From (3.2.3), v can be extended to a homomorphism
¥ : C(Q)—C(Q) @ C(Q,) such that 1];01'”:\&' . Next, we define a mapping

$:CQ) B CQ)—C(Q)

by ¢ (@&v) =u-v, whereu e C(Q,) and v ¢ C(Q,). From the diagram next, we see that u-v
¢ C(Q). Hence ¢ is well-defined. We shall prove that ¢ is a homomorphism of k-algchra.
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Let u @ v, & ® v'e C(Q) & C(Q,), where ve C1(Qy),
we CHQ), ij=0,1.

Then, we have Ei " "—’T(Ei) ? :(Qi)
L@ o) (o @)1= () 0’ 2) l""" l !, &)
We need the following lemma;

Lemma: For any zcE, and yeE,, we have zy=(-1)yz. B ——3T(E) ~———C(Q)
Pl: (z+y) =2 +y +ay+yz
=Q,(x) . 1+Q,(y) I+yx+ay
=Q(@+y) 1+yz-tay
=Q(z+y) -1
It follows that xy = (-2)yx.
Now, let us consider u’ and v in (2).
(1% If ve C°(Q,), we may write w=wv, v, where viels, and wv; # v, Applying
Lemma, we got

Wo=d (0, a)
T (= 2) B0 (e o) (v weCi (@)
=vu

Therefore, (2) becomes
L&) . (W'QV) J=ud vv' = (uv) . (w0
=6 (u®v) -4 (W' RQv’).
Similarly for #’¢C°(@,).
(2 I #/eC'(Q,), and v € C'(Qy)again using the same method in (1°). We got wv

=-py’, Therefore
(2) becomes

B (u®0). (' @ o))

=(-1) wd v = wo. v =¢ Q). ¢ WRv).

Thus, we proved that ¢ is a homomorphism of k-algebra. It remains to prove rog=

JC(QI)Oc(Qz) and ¢op=1gq> . Let u=u, -+ uneC (@), wieE. Also, let w;=u;1+uis, u,:¢k;, Then
e (1) = o 2t -+ 20)
=) )
=) () T L) (etm) ]
= (¢ (0, L+ IRu,,) Jveoe- £ (stms QLA+ I ttnz)
(uu 4 u“) ...... (s + umu)
=il
=U

Therefore, ¢O«‘~b:10<@). Let v=uv, vp. Then
o (@) = (w.0)

—_\b'( ...... Um0, 'Un) (UiGEz)

= (w) oo Ao (utm) o (0,) o Ao (on)

= (Ul ® 1) """ (t4m ® 1) (1 ® vl) """ (1 16%9) V)
=[(ueevum) @ 202 @ (v,eevvn) )

=@ 1.1 ® v)
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=y Qv (by (8.2.5))
Therefore, :P‘Oqs:'lo(q‘) é)\ e+ Hence ;b- is an isomorphism.
The following property is trivial.
Proposition (8.27): Define a map a : E~——C(Q) by a(x) = —i(x) for all xz¢E. Then
« extends to an automorphism of C(Q), denoted also by « , It is called the canonical

automorphism of C(Q).
33 The Algebra C;.
We are more interested in the algebras C(Qx), where Q; is the definite negative form

as we defined in (3.1.3). From now on, we denote by C; the Clifford algebra of Q. and
identify Ry with z'Qk (R®)cCy and R with R-1cC;. For k=0, Cy=R. Also, denote the

k-tuple (0,-+++-+ y Tyreeees , 0) with 1 in the ith position by e;.
Proposition (8.8.1) : The algebra C: is isomorphic to C (the complex numbers) conside-
red as an algebra over R. Further
A A A
Ck§C1 ® C1 ® """ ® C (k factors)
PROOF: Define a linear map ¢: R'——C such
that

1 lee
!
é(e,) =i, where = -1, e,=(1)
Then, we have
¢ (x)i=ap(e)? , x=aeeR', aeR ¢
=-g'1 ; c
=Q(x) -1 N 5
By(3.2.8), 3 a homomorphism ¢:C;——C which extends ¢, Trivially, ¢ is an isomorphism.

Cc
|
I
|
[
I

N
Ci=Cy ®---/Q<\)C1 follows from repeated application of (3.2.6).
Proposition (8.8.2): The basis {e;};=1, ", » of R* satisfies the relations

ey=—1, eestee=0if i#j
PROOF:
¢;=Qu (es) 1=-1
and
(es —I-ej)z:e:-l—ej—l—eiej +eje,;
=—14(=1) +e;e; +eje;
=Qz (e +ey).1
=—2
Hence ¢;e;+eje; =0.]]
Remark (8.8):
(°) {e:} generates Cy.
(2°) Dim (Cy) =2%,
3.4. Determination of the Algcbras Cy.

Let R, C and H respectively be real, complex and quarternion number fields, If F is
any one of these fields, F(n) will be the full nxn matrix algebra over F. The following are
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well-known identities among these:
F(n)==R (n) @ F, R(n) & O R{m) =R (mm)
(3.4.1) cgccec
HRIC=C(2)
HEH=~R (4)
Let C,=C(Q}), where Q) is the positive definitc form. Now, we will determine Cy
with respect to R, C and H.
Proposition (84.2) : There exist isomorphisms:
CrRC==Crys
CrQCs22Crys
PROOF: Consider the linear map : «f» : R¥+*

»Cip® C, defined by
F61

6. Ree, if 2<i<k+2
Wle) = A
1Rke; if 1<4<2
Since
Yle)?=(e,..Ree)?, 2<i<k 2
=el, ® (ee,)?
=e!, ® (—~cie;)  (by (33.2))
=[x (e...) *1IR[— (Q} () -Q5 () »1]
=1®1
=Qry2(e) + (1R1)
and
Wle) *=1Qe; , 1<i<2
=1R0Q (e:) +1]

=1®1=Qa(e) « (1X1)
by (3.2.3), 4/ can be extended to a homomorphism :Cryr——Cy®C;, Because Dim (C, vo) =
Dim (CiQRCy) =2%+2, @tmust be an isomorphism.

Rk+2"""""""“" cr
Similarly, we can prove €z ® C; 22 Chyse ) k2

]
The following are trivial. : ~
[cl ~ C Ly

Co = H !
(43)\:C/£R®R "cécé

L 2 R k R

Now, applying (3.4.1), (3.4.2) and (3.4.3), we got the followings:
CG=2C1®CG2 ROR QH=H®H
Co=C®C =R(2 ® H= H?®
Ci=2CRC, 2y ® Cy == C,
CB§C/6®(/25‘=’C4®C/2®C2

=2 CQ C

= H(?2) ® H(2)

2
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[

R(2 ® H® H® R(2)
R(2) ® R(4) ® R(2)
2 R(16)

Cliaa @ Co 2 C ® C2 @ Cy =2 Cp & C,

Clive @ Co 22 Cips ® C2e @ Cr 22 G @ G © ® C;
> C ® Ce ® C
= G ® Cs

Propositon (8.4.4): If Cy=2F(m), then Cris=F(16m)

PROOF: Ciis = C; ® Ce= F(m) @ R(16)=F(16m).

Now, we summarize the results in the following table:

R

!

Cria
Crss

IR

k C, .
1 C RO®R
2 H(1) R(2)
3 H)DH1) c@)
4 H(2) H(2)
5 C4) H(Q)DH(2)
6 R(8) H(4)
7 RBYDR(8) C(8)
8 R(16) R(16)

From (3.4.4), we see that both columns above are in a quite definite sense of period
8. If we move up eight steps, the field is left unaltered, while the dimension is multiplied
by 16.
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