DUAL TOPOLOGICAL SPACES

by Wan-chen Hsieh

1. Introduction.

In the family of all topologies on a set X, there is a subfamily F with the

property that if @&F, then

(D)= {U| (X-Ued} €F
where, and throughout this paper, (X—U) is the complement of the set U relative
to X. The elements of F are called dual topologies on X, For any nonempty set X,
each topology on X containing a finite number of elements is a dual topology. So if
X is finite, then every topology on X is a dual topology. Moreover, a dual topology
can also be determined by the following equivalent condition.

For each x&X, there exists an element Bx&® containing x such that for any
Uz:ED containing x, it must have BxC Ux.

Since a dual topology is itself a cotopology (see Cullen (5], p. 17) the above
local characterization of the dual topology can be easily proved with the help of the
‘DeMorgan’s laws.

Because of the clearness we shall use this local characterization as the defini-
tion of the dual topology. We call (X,D) or X the dual topological space, and Bx the
local base for x. It is not difficult to see that the family 5 of all such Bx forms a
base for @. Furthermore, let & be any base for . If EE@, then for each x&€E,
the local base Bx for x is a subset of E. Hence we call B the fundamental base
for Q. ‘

The purpose of this paper is to discuss some basic problems about the dual
topological spaces. In Section 2, we shall point out a necessary and sufficient con-
dition for a component, the equivalence between the notions of component and quasi-
component, and also that the pathwise connectedness is identical with connectedness
in a dual topological space. In Section 3, we shall find a number of characterizations
of the regularity for a dual topological space. Finally, a method of compactification

for a dual T,-space will be given in Section 4.
2. Connectedness.

A space (X,7J) is connected iff it contains no proper subsets that are both
open and closed. Clearly, connectedness can also be characterized by the concept of
separation. Two sets A and B form a separation of X, written X=A|B, when (1) X=
AUB and (2) A+ $ B, and (3) ANB=BNA=$ where A is the closure of A. So, a
space (X,7J) is connected iff it has no separation. A subset ECX is connected iff
the subspace (E, ) is connected. From this definition, we find that each element
By of the fundamental hase § is connected. The maximal connected subsets are

called the components of X. The components are always closed (see Bourbaki [31],
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p.111), but on the other hand, an example shows that the components of X are not
open in general.

Example 1. Let (X,7J) be the space of all rational numbers with the induced
topology from the reals. Evidently, 7J is not the discrete topology on X, and hence
for each x&X, {x! is not an open set. On the other hand, (X,7J) is totally
disconnected (see Bourbaki [3], p.111), and so every {x} is a component of X.

This example also shows that a component and its complement may not form a
separation, however, the result will be different in a dual topological space.

Theorem 1. Let E be a connected proper subset of (X,9). Then E is a
component of X iff X=E|(X-E).

Proof ; (1) Necessity.

If E is a component of X, then as we have mentioned above, E is closed. On
the other hand, if x€E, then there exists a local base Bx for x such that BxUE
is connected. This implies that BxCE, and hence E is open. Since E+# 5 %X, it must
have X=E|(X-E).

(2) Sufficiency. .

Assume that X=E|{(X~E). If there exists a connected subset KDE, then it
must have K=E|(K~E). By the connectedness of K, we obtain (K~E)=¢, so
K=E. This shows that E is a component of X. |

The quasi-components of X are defined by the equivalence classes under the
equivalence relation

R= {(x,y) | If X=A|B, then (x,y)EAXA or (x,y)EBxB} .
It is easy to see that each component of X is contained in some quasi~component,
and every quasi-component is closed in X (see Cullen [5],pp. 225-226). Unfortunately,
the quasi-components are not connected in general.

Example 2. Let (X,7J) denote the subspace of the plane R? consisting of the
two points (0,0), (0,1) and all points of the set §(7111—,y) |0£Ly £1, n ranges over all
natural numbers}{ . Obviously, no separation X=A{[B has the property that
(0,0)eA and (0,1)eB. Thus Q= {(0,0),(0,1){ is a quasi-component. However, Q
is not a connected subset of X,

In a compact Ty-space (X;Tj), quasi-components are components (see Cullen
{51,pp. 268-269). Further, we shall show in the next theorem that a quasi-component
of a dual topological space (X,®) is not only a connected set but also identical with
a component of (X,D).

Theorem 2. In a dual topological space (X,D), the two notions of component
and quasi—component are equivalent. ’

Proof : (1) Component=>quasi~component. 4

Let E be a component of X. As we have noted above, there is a quasi-component
Q of X such that ECQ. Suppose that EsQ. Then there must exist two points x,ycQ
such that x€EcQ and ye(Q-E)c(X-E), respectively. From Theorem 1, we obtain
X=E|(X-E). This contradicts the definition of a quasi-component. Hence E=0Q,
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and therefore E is a quasi~component.
(2) Quasi-component=>component.

Let Q be a quasi-component of X. If Q=X, then X is connected, so Q is a
component. Now we assume that Q=£X, it is clear that X is not connected. Let E be
a maximal connected subset of Q. Suppose that E is not a component of X. Then
there must exist a component K of X such that ECK and K=#£Q. Since K#X, .it
follows from Theorem 1 that X=K|(X-K) ; therefore, it must have QCK. On the
other hand, there always exists a quasi-component P of X such that KCP. Thus we
obtain a contradiction that two equivalence classes P and Q have the relation Q&P.
Hence E is a component of X, so it follows that X=E|(X-E). Thus it must have
E=0Q.] ,

Let A be a subset of a space (X,77). Then A is pathwise connected iff for
every two points x,y=A, there exists a continuous function f:[(0,1]—A such that
f(0)=x and f(1)=y, respectively. Further, if for each point x€A and each open set
Ux containing x, there exists a pathwise connected open set Gx containing x such
that GxCUx, then A is said to be locally pathwise connected. In a topological space
(X,7J), a pathwise connected set is also connected (see willard [6],p.197), but the
converse is not true in general. The following example contains a subset of a space
which is connected but not pathwise connected.

Example 3. Let (X,J) be the topological space with the usual topology on
the plane X=R?2, Let

Ag={(x,7) | | v | £1, x=0},

and for each natural number n, let

A=l | Iy | 41, x=—— 1},
1 1
Ba={(x,y) |y=— 1, Qﬁiéxé “on b

1
Co={(x,y) | y=1, on £ Xéle_ji}-

oo

It is clear that H;=A,; and Hy=U (A.UBnUC:) are both connected subsets of X.
n=1

Further, every point of H; is an accumulation point of Hp, and Hp=H;UH;. Hence

H, is a connected subset of X (see Pervin [2],p.52). Now suppose that ¥, is path-
wise connected. Let us consider the two points (0,1)eH; and (1,1) €H;. Then there
exists a continuous function f from [0,1] into s such that f(0)=(0,1) and f(1)=(1,1).
Let £((0,1)=K. Since H, is closed in X, KNH;# ¢ is closed in K. It follows from
the continuity of f that f-*(KMNH,) is closed in [0,1]. Further, let t be an arbitrary
point of -1 (KNH)C(0,1] and £(t)=(0,a)e(KNH). Let V={(x,y)eK | | x| <0.1,
| y—a| <0.1} be an open set in K which contains (0,2). Then there exists an open
interval U of tin [0,1) such that {(U)CV.Since U is connected in [0,1] (see Bourbaki
[3],pp. 336-337), f(U) is also a connected subset of V under the continuous function
f. Let G be a component of V which contains (0,a). It must have GCH,;. Thus
f(UVCGCKNH, or UCf-Y(KNH,). This means that {-!'(KNH,) is open in [0,1]
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as well.

We have shown that f‘l(KﬂHl);éqﬁ is both open and closed in (0,1]. Because
of the connectedness of [0,1], it must have f"1(KONH{)={0,1} or £{{0,11)=KCH, -
But {(1)=(1,1)¢H, « This contradiction shows that ¥, is not pathwise connected.

This counterexample shows the fact that connectedness does not imply pathwise
connectedness in general. However, these two concepts are identical in a dual topo-
logical space.

Theorem 3. A subset in a dual topological space is pathwise connected iff
it is connected. '

Proof : As we have pointed out above, a pathwise connected subset is also
connected. On the other hand, a connected subset which is also locally pathwise
connected must be pathwise connected (see willard (6], p.199). Thus to show the

converse part of our theorem is sufficiently to show that a dual topological space
is always locally pathwise connected.

For an arbitrary x€X, by the nature of the fnudamental base, the proof will
be complete if we can show that Bx is pathwise connected. We shall prove this by
the following three possible cases.

(1) If p#x and g#x are two distinct points of Bx, then we define a function
f from [0,1) into Bx by

£(00,32))={p},

f(1h)=x, .

(2,1 ={q}.

Now we shall show that f is a continuous function on[0,1]. Let Ux be an open
set in Bx which contains x. Then it must have Bx=Uyx .+« The entire set [0,1] is the
open set containing 14 such that f({0,11)={p,q,x}CBx » Hence f is continuous at 4.
For y=(0,1%4), the constant function f((0,%))={p}CBy ensures that f is continuous
on [0,145), Similarly, f is also continuous on (14,13. Hence f is a continuous function
from [0,1] into Bx such that f(0)=p and (1) =q.

(2) If p#x and q=x (or p=x and q#x) ar;z two distinct points of Bk, then
we define .

£C00,1))={p},

f(1)=x=q.

The proof for the continuity of f in this case is similar to that in the case
(1), and £(0)=p and f(1)=q.

(3) If p=q==x, then there is nothing to prove.

We have shown that By is really a pathwise connected subset. Thus the proof
of our theorem is complete. |

As we have pointed out in the beginning of this section and in the proof of the
last theorem that the local base Bx of a point x in a dual topological space (X,D) is
connected, so (X,D) is also locally connected. Thus the necessity part of the
Theorem 1 is an immediate consequence of the fact that the components of a locally

connected space are both open and closed (see Willard (63,p.200).
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2. Regularity.

Separation axioms give many interesting and important results which make
points and sets of a space topologically distinguishable. Unfortunately, a dual topo-
logical space is T, iff it is a discrete space. This follows from the fact that each
subset which contains one point in such space is both open and closed (see Pervin
(2], p.70). Thus we shall discuss, in this Section, the axioms which do not connect
with the T,-axiom. A space (X,7J) is regular iff for any closed subset H of X and
any point x&X not in H, there exist two disjoint open sets U and V such that xeU
and HCV. One of the characterizations of the regularity for a dual topological
space will be given in the following theorem, and another will be used as a
lemma in the proving of this theorem.

Theorem 4. A dual topological space is regular iff every open set is closed.

Proof: Let us first establish a local characterization of the regularity for
a dual topological space which will be useful in the proving of our theorem. A dual
topological space is regular iff each local base Bx is both open and closed.

To show this characterization we assume that (X,9) is regular. Then for each
Be, H=(X-B:x) is a closed subset and x%H. Thus there exist two disjoint open
sets U and V such that x€U and HC V. Since Bx is the smallest open set containing
x it must have BxCU. Suppose that H#V. Then we have (X-V)Z(X-H)=B.CU.
This means that there exists a point y€U such that y&(X-V), and so yeUNV.
This contradiction follows that H=(X-Bx)=V is open. Hence Bx is both open and
closed.

Conversely, let us assume that each local base Bx is both open and closed,
and let x be a point not in a closed set H. Then x belongs to the open set (X-H).
By the fact that Bx is the smallest open set containing x, it must have BxC(X-H),
and hence HC(X-Bx). It is clear that Bx and (X-Bx) are the desired disjoint open
sets containing x and H, respectively. Hence (X,®) is regular.

Now we shall give a general proof about the necessary condition of our theorem.
Let G be an arbitrary open set of the regular space (X,®). Suppose that there exists
a point x&(G-G). Then it must have x%G and B:NG#¢ with the local base Bx of
x. Thus there exists a point z#x and its local base B, such that zeB.CBxNG. From
the local characterization we have just proved above, B, is a closed subset and
x#B;. Thus, by regularity, there exist two disjoint open sets U and V such that
B:.CU and x&BxCV. But z&€B.CU and z€B,CV. This contradiction shows that
G=G, and hence G is both open and closed. '

The sufficient condition of our theorem can be easily proved by the local
characterization. Hence the proof of our theorem is complete. |

Remarks:

(1> The last theorem shows that a regular dual topological space which is not
indiscrete will never be connected.

(2) An important characterization of the regularity for a general topological
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space (X,7J) is that every point x&X and open set G containing x, there exists an
open set E such that xeECECG (see pervin [2],pp.87-88). The local characteri-
zation of regularity for a dual topological space can be proved as an immediate
consequence of this fact.

(3) In a general topological space, there is no implication between regularity
and normality (see Willard {6],p.100). However, in a dual topological space, Theo-
rem 4 shows that regularity implies normality. But the converse implication is not
true. For example, let X={a,b,c} and D={¢ ,{a},{b},{a,b},X}. Then (X,D) is a
normal dual topological space because no two proper closed subsets are disjoint. On
the other hand, we consider the point b&X and the closed subset H={a,c}. It is clear
that the only one open set containing the point ¢ is X. Hence (X,9) is not regular.

4. Compactification.

‘Compact spaces play an important role in all branches of mathematics. Though
not every topological space is compact, yet it is possible to bring noncompact spaces
within reach of some advantages of compactness by the device called compactificati-
on. A compactification of a space (X,J) is a compact space (X*,J*) such that (X,7J)
is homeomorphic to a dense subset of (X¥,J*). The Wallman compactification
and the Stone-Cech compactification are established on the basis of T -spaces and
Tychonoff spaces, respectively (see Thron (4], pp.139-142 ; Steiner (10], pp. 295-304).
As we have pointed out that a dual topological space which is T, is the discrete
space, so that it is not of much interest for us to study these compactifications
here. Another important compactification is the one-point compactification which
is meaningful for all topological spaces (see Bushaw (1], p.90). However,this com~
pactification is somewhat unsatisfactory since, for instance, the one-point compacti-
fication of a Ty-space needs not be a Ty-space. Furthermore, the following example
shows that the one~point compactification of a dual topological space is not a dual
topological space.

Example 4. Let X=N, the set of all natural numbers, and @  be the
discrete topology on X. It is obvious that (X,®) is a dual noncompact space.

Now X*=XUf{co} and @*={G*|G*=GeP or G*=GU{w} where (X-G) is a
closed and compact set in X}. We note that {oo}@D*;and for each neN, G¥=(X-
{nUfoo} is an open set in X*, It is clear that the smallest open set containing the
point co must be {oo}. Hence (X*,%*) is not a dual topological space by definition.
We shall give a compactification of a dual topological space, in this section, under
which the properties of a dual topological space are preserved.

Theorem 5. Let (X,9) be a dual Ty-space. Then there exists a compacti-
fication which is also a dual Tg-space. -

Proof: We shall break our proof into a number of parts.

(1) Let us first consider the subcollection @={Bx x&€X, Bx& B{CD. Then we
define the function @:X—®& by @(x)=Bx. It is clear that @ is onto. We now
show that @ is 1-1. Assume that Bx=B, with x3z, then by the fundamental base,

- all open sets containing one of x and z must contain the other. This contradicts
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to the Ty-axiom. Thus we have shown that @ is a 1-1 and onto function.

(2) Let us next consider the family Qg of all sets P[Gl={H|H=1) Bx,
xel

¢ #1CG}, where G# ¢ ranges over all of @. We note that P[¢ ] is empty, and each
P[G] is a subset of @*=(D-{¢}). Furthermore, the family Q forms a base for

a topology J* on ®* because it satisfies the following conditions:
(a) P[X])=@*,
(b) PLG,INPL(G;1=PL(G;NG;]

Since HS={Bx x=X} is a base for &, P[X]={H | H= ﬂBx, ¢ #ICX}=
xel

(@t ¢ 1)=0% Hence the condition (a) is true.
If HEP[GijﬂP[GZJ, then H is a nonempty subset of X. We note that for any

KeP(G], if a chain C={I; | K=UBxs I;c G} is ordered by ascending inclusion, then
x=1;

UI; is again an element of C. Hence, by Zorn’s lemma, there is a max1ma1 nonemp-

ty subset IiC Gi(k=1,2) respectively such that H={Bx = UB.. Now for any x&1,,
XEII ZEIz

suppose that x¢&I, s by the fact that x€BxcH={B, s there exists z&l, such that
ZEIZ

x&EBz + It follows from the nature of the fundamental base that x&BxCB.C G, and

H=UB.UBx+ This contradicts to the maximality of I;+ Thus it must have x=I, »
ZEIg
This means that I;CI;. Obviousely, we can conclude tha I,=I,. This fact ensures

that P{G,JNPLG:ICP(G;NG,]. The proof of the converse inclusion is simple. Thus
the condition (b) holds. '
(8) To show that ¢ is a homeomorphism from X onto @, we first establish
that, for any open set GCX,
2(G)=0NPLG].
Let x=G. Then Bx&® and also Bx=P[G]. Hence @(G)COMNPIG]. On the
other hand, if Bxe®MNPL[G], then By €P[G). Thus there exists a subset ICG such

that Bx= U B., and therefore, x&B,CBx for some z€I. But BxCB, ¢ so Bxi=B,
zel
As we have noted before, it must have x=2z&IcG. This means that Bxe@(G), and

thus @ (G)DO®NPLG].

Now since the 1-1 condition of @ has been proved in the part (1), the equality
@(G)=@NPLG) ensures that @~! is a continuous function from @ onto X.
Applying @ ~! to both sides of @(G)=®NP[G), we obtain @~ (BNPIG)=G. Since
®NPLG) forms a base for the subspace (&,77), we conclude that @ is continuous
(see Cullen [3], p.31). g

(4) In this part we shall show that ® is a dense subset of (®*,J*), If £
is a nonempty open set of (®@%*,7*), then £ contains at least one base eclement
P{G). By the definition of P[G], every P[G] contains all Bxe® with x=G. Since
G+ %, it must have PLGIN®CLN®% 5. Thus ® is a dense subset of (®@*,7T%),
Up to this part, we have shown that (g, (®*,77%)) is an extension of (X,D) (see
Thron [3],p.132).

(8) To show that (@*,F*) is a compactification of (X,D), it remains to show
that (@*,7*) is a compact space. We note that XZP[(G) for any element Ge(®-—
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{X}). This means that X belongs to one and only one base element P[(X)=@®* which
is the ground set. Thus every open set containing P(X) is P[X] itself. It is clear
that any open covering of ®* must contain P[X]. Hence (@*,7*) is compact.

(6) In this part we shall show that (®@%,J%*) is a Ty-space. Let G;#G, be any
two distinct points in ®*, Without loss of generality, we assume that there exists
x€Gy such that x£Gy. Then P[G;y] is an open set which contains Gy but not Gj.
To prove this fact, we suppose that G,=P[G;y]. Then there exists a subset ICG,

such that G;=UB,. From the nature of the fundamental base, every B, with

ze1l
z&l is a subset of Gy. Thus we have G;=UB.CG;. This is a contradiction.
zel

Hence (®*,J*) is a Tg-space.
(7) Finally, the proof of our theorem will be complete if we can show that
(®*%,J*%) is a dual topologicol space. To do this is fo find the fundamental bas o for

the space (®*,7%)., Now we consider the base (M={P[G]!GESD,G¢¢} which is

given in the part (2). Let Ge®* arbitrarily. Then Gz % is an open set in X. As
“ we have pointed out in the part (6), for any open set HCX which does not contain
G as a subset, it must have G%P[H]. On the other hand, if GCH, then G&P[GIC
P[HJ.Thus P(G] is the smallest open set containing G. We have proved that 3y is

not only a base but also the fundamental base for (®%*,7*). Hence (®*,J%*) is a
dual topologicol space. |

Remarks:

(1) In establishing the base (s for J* in the part (2) of the last theorem,

one may naturally hope that the family Q)={P[Bx]1xEX, Bxe £} could form a base

for J* so that there would be more closer relations between the two spaces (X,%)
and (®*,7J*). Unfortunately, this is not true. For example, we consider the set
X={a, b, ¢, d} and the fundamental base S={{b},{c},{a,b,c},{b,c,d}} for a dual
topology @ on X. It is clear that (X,9D) is a Tyo-space. Now P[{a,b,c}INP[{b,c,d};)
=P[{b,c}]= {{b},{c}, {b,c}}. It is obvious that the only possible way to make
PC{b,c}] as a union of the elements of ()7 is to consider the elements P[{b}) and

P{{c}). However, P[{b}IJUP[{c})= § $b} , $c } } # Pl{b,c}], so () is not a base

for J* (see Bushaw [1],p.47).
(2) Once we have established that the family QU= PGl GeED,.G# ¢} is a

base for J*, it seems reasonable to hope that U might be not only a base but a

topology on ®* because D is a topology already. However, this is not true. For the
same example given in the remark (1), X= {a,b,c,d}{ and &= {5, §b} , {c},
tb,e} , ta,b,el , fa,b,d} ,X} . Now we consider the union P{{b}IJUP[{c}]=
f iby , fci § . Then it is clear that { {b} , {c} }&(Qy, and so(Qy is not a topology.

(3) It should be noted that if the property “ ¢ =2I1CG” for defining the set P[G)
in the part (2) is replaced by "ICG”, the family (s also forms a topology J** on

the set ®**=Q but not on G*. However in this case, ® is not a dense subset of
(@**, J**) because P[4 )= { 5} is an open subset of @** and P[4 IN® is empty.
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DUAL TOPOLOGICAL SPACES

Wan-chen Hsieh

In the family of all topologies on a set X, there is a subfamily F with the
property that if @& F then the collection @(D) of all complements of the elements
of @ is also a topology on X, i.e., (D)= {U[(X-Dedi €F. We call & a dual
topology on X, and (X,®) a dual topological space. This paper is to discuss some
basic problems about the dual topological spaces.

In the section 2, we shall point out on a dual togoiogical space (1) a necessary
and sufficient condition for a component, (2) the equivalence between the notions of
component and quasi-component, and (3) the equivalence between the notions of
connectedness and pathwise connectedness. In the section 3, we shall find a number
of characterizations of the regularity of a dual topological space. Finally, a method

" of compactification for a dual Ty-space will be given in the section 4.



