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I. Introduction

(1.1) A space X is locally compact if and only if each point of X has
a compact neighborhood.

(1.2) A space X is locally compact if and only if each point of X has
a closed compact neighborhood.

(1.3) A space X is locally compact if and only if each point of X has
a neighborhood basis consisting of compact subsets of X.

The first two definitions, (1.1) and (1.2), of local compactness were discussed in “class-ro
om note”’[6); The third definition (1.3) of local compactness was discussed recently by J. L.
Gross [3]. In this paper, we show in section two that if those three definitions are restrict
to Hausdorff or regular space are equivalent and any closed subset of those three spaces is
hereditary. Since locally connectedness is defined as the same way as (1.3) ; so that to section
three; we can apply this definition to prove that there is a discontinuous function which
preserves compactness and connectedness. To the last section; we use this definition to the
uniform space and also extend the partitionable in metric space to uniform space, so that
we get the conclusion if X is a uniform space which is locally connected and partitionable,

then X has property S.

S

I1. Equivalence and Hereditary

(1) Equivalence

Theorem 1. In a Hausdorff space or regular space, the three definition of locally
compactness are equivalent. But in an arbitrary spaces need not be equivalent.
Proof:

Since X is (1-1)-locally compact, PeX, has a compact neighborhood K in X. Let N
be an arbitrary neighborhood of P in X. we are going to prove the existence of a clo
sed compact neighborhood M of P contained in N. First, assume that X is regular.
There exists a closed neighborhood M in X contained in KNN. As a closed subset
of a compact space K, M is also compact. Next, assume X to be a Hausdorff space.

then K is a normal Hausdorff space and hence is also regular. Since KNN is now a
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neighborhood of P in a regular space K, there is a closed neighborhood M of P in K
contained in KNN. But K is closed. Hence, M is both closed and cbmpact m X.
Since K itself is a neighborhood of P in X, it follows that A{ is also a neighborhood
of Pin X. In both cases, M is a closed compact neighborhood of P in X contained
in N. This proves (1.1)===(1.2), the following proves (1.2)==)(1.8) is seen by (7; p.
90]; it is also easily to get the converse implication (1.3) == (1.1). Thus, we get the
conclusion.
counterexamples:

Example 1 (1.1) j;? (1.2)

Let S denote the set of real numbers and let J be the topology determined by {Up|P
is real and Up={zx|x=p}} as base. Each point P has a compact neighborhood; namely, Up
which, by the way, is not closed; Further, {or all neighborhoods of P, the closure of these
" neighborhoods are also not compact. Thus (1.1) not equivalent to (1.2).

Example 2 (1.2) > (1.3)

Let Y={(zy) |0<x <k, 0<y<k, keN}

Define Bla,b) ={(zy) Y| y<— (%)x+b, a, beRp} where Rp={x|xeR, x>0}

Bla,b) consists of all points of ¥ which are below or on the straight line through (4,0,
0,).

then P={B(a,) |a, beRp} is a subbase for a topology on Y. Clearly Y is the only open
subset of Y which contains the point (££). Thus Y itself is a member of every opon cover
of Y, and so Y is compact. But then Y also satisfies (1.2). On the other hand, B(%k) is a
neighborhood of the point (£,0). Let U be any neighborhood of (%0) such that UCB(kE).
We will show that U is not compact. Suppose that V is a member of the base for the
topology such that VCU and (£,0)¢V say

V=Blay, by) () ereeeerens N Blay, by
Since (,,0)eBlay, b;) for j=1, 2,-eeeeeeee )
We have a;>k
Hence for each j, B(kb;) <Blay, b;), Take
by=min{b;- - b} Thus Bk, by) S Bla;, b;) for each j,
and so Bk, &) €V, Now define
Q={B(# —+b)} U (Bl — ~, no1) |n=tt1, k42,
We will show that Q covers B(k,k) and hence U.
clearly, (%0) B (k,-;wbo)

if (#5) is any other point of B{kk) then x<k choose an integer

S >~ﬁ—+ %, Then

k—x
S

b=a =g (k=) = (5= 1) (k=) <g-(b—2)—1
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But (x,y) eB(kk) implies Y <k—x. Hence

s—1

x4+ (s—1)
P

S

Y<—

k , s —1). This shows Q covers B(kk) and therefore Q covers U.

S

and so (zy)eB(k —
1

A

If my<my, then B(k—_v_ﬁT’ my—1) S B(k—

> mg— 1),
hence,if Q contains a finite sub’cover of U,

then there is an integer M > % + 1 such that

US B (k—ibo) UB (k= M—1).

k

But the point (% — e —2b—]{’4~) is in B(k, by), and therefore in U.

Yet ( “Eﬁ? “2]11?2) is neither in B(k,%—) nor in B(% "1&%" M—1)

Hence Q does not contain a finite subcover of U, so U is not compact,

Thus Y is not locally compact: (1.3)

Example 3 (1.3)=(1.2)

Let X be the interval [—1, 1Jin R. Consider the following equivalence relation S on R;
if x£+#:+1, the equivalence class of x contains of x and—x; the equivalence class of 1 (resp.
—1) consists of 1 (resp. —1) alone. Thus S is open and that the quotient space X/S is
accessible [7;p134] but not Hausdorff, then every point of X/S has a compact neighborhood;
and that the images a,8 of 1 and ~1 in Y have compact neighborhoods which are not clo
sed. Those three above counterexamples tell us that in arbitrary spaées, they are not equiv-

alent.

(2) Hereditary

Let (R,g) be the space of rationals with the relative topology and let (x, g% be the
one point compactification of (R, 7). We know that (X, g%*) is(1~1)-locally compact space,
but the subspace (R,J) is not (1.1) -locally compact space. Since (X, g*) is a C-C space
(example 1, 12], so that (X, 9*) is also (1-2)- locally compact space, and that (R, g) is
also not (1-2)- locally compact space. From [Exercise 2, p. 89, 111, we also know that an
arbitrary subspace of (1-3)- locally compact space need not be (1-3)- locally compact space.
Combine the above statement, we can get the following conclusion.

Theorem 2. Any closed subspace of each (1-i)-locally compact space, where (1=1,2,3), is

3
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hereditary. But that an arbitrary subspace of a (1-i) -locally compact space, where (i=1,2,3),
need not bé (1~1) -locally compact space. Proof:

(i) Let E be a closed subset of (1.1)-space X and let P be an arbitrary point in E.
Since X is (1.1) -space, there is a compact neighborhood K of P in X. Let H=KNE. As a
closed subset of K, H is compact. Since K is a neighborhood of P in X, it follows that H
is a neighborhood‘of P in E. This implies that £ is locally compact at P.

(ii) Let R* be a closed set of (1.2)-space R and aeR*. select neighborhood U of a in
the space R such that U is compact, we shall show that the neighborhood U*=UNR* of
the péint a in the space R* has compact closure U* in R* Indeed U*=UNR* is the
intersection of two closed subsets of the space R and is itself closed. But also U*cU, so
that U* is a closed set in the space U. Since the latter is compact, it follows that U* is
compact too.

(iii) Prove that a closed subset of (1.3)-locally compact space is also (1.3) -locally compact

space is similar as (i).

II1. Locally Connectedness in Discontinuous Funection

In ordinary general topological books, we know that a function f from a topological space
X to a topological space Y preserves compactness if for each compact set KX the set
F(K)is compact. Similarly we define functions that preserve connectedness. Howeves in{5) it
is shown that if X is locally-connected-first countable space and Yis regular, then every
function f: X—Y that preserves compactness and connectedness is necessarily continuous. It
is also show in [5] that this result fails if any one of these hypothesis on X, Y is omitted.
But, it is well known that a function which preserves compactness and connectedness may not
be continuous (7; p. 61, Exercise 23]. This section works on that if on some suitable cond-
itions, we can find a discontinuous function which preserve compactness and connectedness.

Theorem 3. If X is any completely regular space that is not locally connected, then there
is a discontinuous function f: X—R which preserves compactness and connectedness.

Proof:

Since X is not locally connected. We can choose a point 2y X and an open neighborhood
U of x, that does not contain a connected neighborhood of xy. Since X is completely regu-
lar, we can choose a continuous function ¢: X—R such that ¢{xe) =0 ¢ (X\U) = {5} ¢(X)
< 05 A

Let F be the component of ¢$71((0,4)) that contains z,. Then F is closed, and F is not a
neighborhood of z; since it is a connected subset of U. Put

V=gt (101))\F
and define a: R—R by a(#)=cos(nt/2).
Now define f:X—R by
ad (), if x€X\V

f(x):{ ¢o, | if zev

Clearly, f is discontinuous at o, since f{x¢) =1 and every neighborhood of z, contains a
point of V. Also note that f is continuous when restricted to X\F, since f is continuous on
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¢ ((1,5)) and £=0 on ¢~1((0,1))\F

Now suppose that K is a compact set in X.

then F(K)=f(KNV)UF(E\V)

Since K is compact and V is open, K\ V is compact and therefore £ (K\V ) is compact
because f is continuous on K\V. Also f{(KNV)=¢ or{0} so it now follows that f is comp-
act. Hence f preserves compactness. '

Let C be a connected set in X. We show that f(C) is connected by considering three
cases: '

(1) CNV=¢ in this case f(C) is connected because f is continuous on C.

(2) CNF=¢ we have already observed that f is continuous on X\F, which in this

case consists C, so again f(C) is connected.

(3) CNV+#¢ and CNF # ¢

In this case FUC is connected and properly larger than F and must therefore contain a
point #€X\¢™1 ([0,4))=¢"1((4,5]), because F is the component of z, in ¢~ ((0,4]).
Choose any point veCnV. Since ¢ is continuous we have ¢(C) D¢ (v), ¢ (u) 1 D[ 1,4
J. Finally, since f=a¢ in ¢! ([1,4)) we deduce that £ (C)>D [ —1,1] and therefore f(C

) = [—1,1] Hence f preserves connectedness.

VI. Locally Connectedness In Uniform Space

Let X be a non-empty set. For each finite partition W= (4, 1<j<k of X, let V& den-
ote U A; X Aj The sets V5 form a fundamental system of entourages of a uniformity %
on X For if W is any finite partition of X we have ACVgand Vi oVy = T—/'w =Vs {7, p.
1711; and if W= (B) and W”=(C,) are two finite partitions of X, then those of the sets
B; NC;, which are not empty form a finite partitions W of X, and we have Vi CVur NVar

Definition (VI. 1) A uniform space X is said to have property S if for each Ue %, the
set X is covered by a finite family of connected U-small sets.

Definition (V1.2) A uniform space X is said to be partitionable if and only if there exists
a finite partition W= (4;) such that each A; with induced uniformity has property S.

Using the above definition (VL 1) and (VI. 2), we can prove directly the following.

Theorem 4: If(X, /) is locally connected and partitionable then X has property S.
Proof: )

Suppose that Ue 2/, We want to show that X is covered by a finite family of connected
U-small sets. By hypothesis, there exists a finite partition W = (A,)5-1 such that each A,
with induced uniformity. has property S. It is easy to verify that there ex1sts a symmetric
entourage Ve %/ such that VoVclU Let V,;=VNA,;xA; where 1<;j<k, then U Vj c V Now
consider each V. since V; is an entourage of induced uniformity %/ of A; and A; has pr-

operty .5, we have A; is covered by a finite family of connected V; -small sets. i. e. there

exists a finite number of points zy;, Xgj - Zayed; such that A;= U Czy; whereCzyy 1ska
connected neighborhood of @;; in A; and Czy;XCxy;CV; for 14 <7zj Therefore X= U
Hl Cxi; and Czy; CV; (zs) €V () for all 1<j<k, 1<i<n; Moreover, for each paj;r
(¢.), there exists an open set O;; in X such that Cx;y; © Oy © V(xyy). Let Dxyy be the
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component of O;; which x;; belongs to, then Da;; is open for each component of an open

set in a locally connected space is also open. Hence Dx;; is an open connected neighborho-

“od of x;; in X. Since Cxy; is a connected set containing ;; in /; which implies, it is

a connected set containing x;; in X and Cxy; C Oy, by the definition of component of Oy

to which z;; belongs, we obtain that Cx;; € Day,. It {ollows immediately that X= U U

e My
Cxyj; U U Day and Dxyy is a connected neighborhood of xy; and Day; X Dayj
=11

(@) XV (w) CVoVcUforall<j<tl<i<n, Q. E D

Remarks:

{1) Notice that the space Y of (I1.1.2) is normal but not regular. It is normal because
all nonvoid closed subsets of Y contain the point (£k£). It is not regular because
(0,0) is in every open subset of Y.

(2) Using the condition (VIL2) we can simplify Lemma 1 and Lemma 2. (4]
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ON THE PROPERTIES OF LOCALLY COMPACTNESS
AND LOCALLY CONNECTEDNESS

Kwang-fu Li

Locally compactness was discussed in three different ways. They can be proved equivalent
in Hausdorff space and regular space. ’

Ordinarily, continuous function preserve compactness and connectedness. But in this paper,
one will find a discontinuous function which preserve these properties. Since partitionable
was defined in uniform space and it joins the condition of locally connectedness, the imp-

ortant result was derived that uniform space has property S.

VAR S S LI I - SR U
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KR RF (Locally compactness) h=AiRFAMEHR N HEMIE A (Hausdorlt spa-
ce) FNEMIZEM (regular space) MIMLZAEEHER, MH, AH MR T LARIRMEBAR
MR, AR IR R T R IR, fRTESEZEH] (uniform space )
MEHTHS (partitionable ), FEATMA B AR RERAR —EIRSH, MHIRMAGHE
HSo



