

東海大學

資訊工程研究所

碩士論文

指導教授：楊朝棟 博士

使用 PCI 穿透於圖形處理器虛擬化之實作

On Implementation of GPU Virtualization Using PCI

Pass-Through

研究生：王顯義

中華民國一○一年七月

I

摘要

現今，NVIDIA 公司的 CUDA 是一種為了撰寫高度平行的應用程式，所發展出

來的通用型可伸縮式的平行程式設計模組。它提供了一些關鍵的抽象化概念：一

個有層次的線程區塊、共享式的記憶體和屏障同步。在整個工業界和學術界的科

學家們已經使用 CUDA 在生產或是研究的程式碼時，有了驚人的加速性。這模

組在編寫在多核心的圖形處理器上運用的多線程程式時，已經證明是非常成功的

了。內建圖形處理器的叢集環境在雲端運算中扮演一個重要的角色。因為一些高

強度運算的程式需要中央處理器及圖形處理器一起運算。本篇論文中，我們以

PCI穿透的技術，使得在虛擬環境中的虛擬機器得以使用 NVIDIA 的顯示卡，進

而可以使用 CUDA 高效能運算。這將使得虛擬機器不僅只能有虛擬的中央處理

器，更可以使用實體的圖形處理器來做運算，虛擬機器的效能將可大幅提升。本

論文中將會量測虛擬機與實體機之間使用 CUDA 的效能差異，以及擁有不同中

央處理器的虛擬機器是否會影響到 CUDA 效能。最後，我們將會比較兩套開源

程式碼的虛擬環境，是否會對經過 PCI穿透所使用的CUDA造成效能上的差異。

透過實驗將可以知道哪個環境將會對在虛擬環境中使用 CUDA 有最佳的效能。

關鍵字：CUDA、圖形處理器虛擬化、雲端計算、PCI穿透

II

Abstract

Nowadays, NVIDIA’s CUDA is a general purpose scalable parallel programming

model for writing highly parallel applications. It provides several key abstractions – a

hierarchy of thread blocks, shared memory, and barrier synchronization. This model

has proven to be quite successful at programming multithreaded many core GPUs and

scales transparently to hundreds of cores: scientists throughout industry and academia

are already using CUDA to achieve dramatic speedups on production and research

codes. GPU-base clusters are likely to play an important role in future cloud

computing centers, because some compute-intensive applications may require both

CPUs and GPUs. In this thesis by using PCI pass-through technology and making the

virtual machines in a virtual environment are able to use the NVIDIA graphics card,

and we can use the CUDA high performance computing as well. It makes the virtual

machine have not only the virtual CPU but also the real GPU for computing. The

performance of virtual machine is predicted to increase dramatically. This thesis will

measure the performance differences between virtual machines and physical machines

by using CUDA; and how virtual machines would varify CPU numbers under

influence of CUDA performance. At last, we compare two open source virtualization

environment hypervisor, whether it is after PCI pass-through CUDA performance

differences or not. Through the experiment, we will be able to know which

environment will reach the best efficiency in a virtual environment by using CUDA.

Keywords: CUDA, GPU virtualization, Cloud Computing, PCI pass-through

III

Acknowledgements

It is a pleasure to thank many people who made this thesis possible. It is difficult to

overstate my gratitude to my supervisor, Prof. Chao-Tung Yang, who support my

work and show me the way on this thesis, also give me a deep influence and

inspiration. Prof. Yang gave me a lot of help on my study. I would like to thank Prof.

Ching-Hsien Hsu, Prof. Wen-Chung Shih, Prof. Kuan-Chou Lai, and Prof.

Cheng-Chung Chu for their valuable comments and advice given while serving on my

reading committee. I also want to thank all HPC members who gave me lots of help,

and to accompany me these days. And they share their knowledge with me selfless.

Finally, thanks to my family who support me whole my life.

IV

Table of Contents

摘要.. I

Abstract .. II

Acknowledgements ... III

Table of Contents .. IV

List of Tables .. VI

List of Figures ... VII

Chapter 1 Introduction .. 1

1.1. Motivations ... 1

1.2. Goal and Contribution ... 2

1.3. Thesis Organization .. 3

Chapter 2 Background Review ... 4

2.1. Cloud Computing .. 4

2.2. Virtualization ... 6

2.2.1. Full-Virtualization .. 8

2.2.2. Para-Virtualization ... 10

2.2.3. Xen ... 11

2.2.4. KVM .. 12

2.3. CUDA ... 13

2.4. Virtualization on GPU ... 15

2.5. Green Computing .. 18

2.6. Related Work ... 19

Chapter 3 System Implementation ... 24

3.1. System Architecture .. 24

3.2. Tesla C1060 Computing Processor Board .. 26

3.3. Tesla C2050 Computing Processor Board .. 28

3.4. End User’s Operating Interface ... 28

3.5. System Environment ... 31

Chapter 4 Experimental Methods and Results ... 34

4.1. Experimental Methods .. 34

4.2. Experimental Results .. 35

Chapter 5 Conclusions and Future Work .. 52

V

5.1. Concluding Remark .. 52

5.2. Future Work .. 53

Bibliography ... 54

Appendix ... 58

A. Setup Xen on CentOS .. 58

B. Setup PCI passthrough ... 59

C. CUDA Installation ... 60

VI

List of Tables

Table 3-1. Hardware/Software Specification .. 31

Table 3-2. Hardware/Software Specification of Virtual Machine 32

Table 3-3. GPU Software Environments ... 33

Table 4-1. Data transfers of Benchmarks .. 34

VII

List of Figures

Figure 2-1. Architecture of Cloud Computing .. 5

Figure 2-2. Virtualization Diagram ... 6

Figure 2-3. The General Operation System .. 7

Figure 2-4. The Virtualization Operation System ... 8

Figure 2-5. Full-Virtualization .. 9

Figure 2-6. Para-Virtualization.. 10

Figure 2-7. Host and Hypervisor Type .. 11

Figure 2-8. Domain0 and DomainU.. 12

Figure 2-9. Architecture of KVM ... 13

Figure 2-10. CUDA Programming Model from nVidia[2] ... 14

Figure 2-11. Processing Flow on CUDA from Wiki[16] .. 15

Figure 2-12. User Space Device Emulation .. 16

Figure 2-13. Hypervisor-Based Device Emulation ... 17

Figure 2-14. Pass-through within the Hypervisor ... 18

Figure 2-15. Front-End and Back-End .. 20

Figure 2-16. Architecture of rCUDA .. 21

Figure 2-17. The vCUDA Architecture ... 22

Figure 3-1. IOMMU On .. 24

Figure 3-2. System Architecture ... 25

Figure 3-3. User Architecture .. 26

Figure 3-4. Tesla T10 .. 27

Figure 3-5. PCI Pass-through Successful .. 29

Figure 3-6. Shows in Pietty ... 30

Figure 3-7. Shows in VNC .. 30

Figure 3-8. Using lspci .. 31

Figure 4-1. Execution Time between Native and VM with C1060............................. 36

Figure 4-2. Execution Time between Native and VM with C2050............................. 36

Figure 4-3. Execution Time between Native and VM with NVS295 37

Figure 4-4. Execution Time between 1 Core and 2 Core VM with C1060 38

Figure 4-5. Execution Time between 1 Core and 2 Core VM with C2050 38

Figure 4-6. Execution Time between 1 Core and 2 Core VM with NVS295 39

Figure 4-7. Execution Time between 2 Core and 4 Core VM with C1060 39

Figure 4-8. Execution Time between 2 Core and 4 Core VM with C2050 40

Figure 4-9. Execution Time between 2 Core and 4 Core VM with NVS295 40

Figure 4-10. User Time with C1060 ... 41

Figure 4-11. User Time with C2050 .. 41

VIII

Figure 4-12. User Time with NVS295 .. 42

Figure 4-13. System Time with C1060 ... 43

Figure 4-14. System Time with C2050 ... 43

Figure 4-15. System Time with NVS295 .. 44

Figure 4-16. Bandwidth Test with C1060 ... 45

Figure 4-17. Bandwidth Test with C2050 ... 45

Figure 4-18. Bandwidth Test with NVS295 .. 46

Figure 4-19. Execution time of VecAdd with C1060 .. 47

Figure 4-20. Execution time of VecAdd with C2050 .. 47

Figure 4-21. Execution time of VecAdd with NVS295 .. 48

Figure 4-22. Execution time of MatrixMul with C1060 ... 49

Figure 4-23. Execution time of MatrixMul with C2050 ... 49

Figure 4-24. Execution time of MatrixMul with NVS295 .. 50

Figure 4-25. Compare with rCUDA ... 50

Figure 4-26. Compare with vCUDA ... 51

1

Chapter 1

Introduction

1.1. Motivations

GPUs are real “manycore” processors with hundreds of processing elements. A

graphics processing unit (GPU) is a specialized microprocessor that offloads and

accelerates graphics rendering from the central (micro-) processor. Modern GPUs are

very efficient at manipulating computer graphics, and their highly parallel structures

make them more effective than general-purpose CPUs for a range of complex

algorithms. We know that a CPU has only 8 cores at single chip currently but a GPU

has grown to 448 cores. From the number of cores, GPU is appropriate to compute the

programs suited massive parallel processing. Although frequency of the core on the

GPU is lower than CPU’s, we believe that massively parallel can conquer the problem

of lower frequency. As for GPU, it has been used on supercomputers. On top 500 sites

in November 2010 [1], there are three supercomputers of the first 5 built with

NVIDIA GPU [2].

In recent years, virtualization environment on Cloud [3] becomes more popular

then ever. The balance between performance and cost is the most important matter we

focus. In order to live up the potential of the server resourse, virtualization technology

is the main solution for running more virtual machines on a server and yet the

resource can be used a lot more effectively. However, the performance of virtual

machines has their own limitations so that users can be limited by using lots of

computing on it.

2

Building a virtual environment in a cloud computing system for users has

become an important trend in the last few years. Proper use of hardware resources and

computing power to each virtual machine are the Infrastructure as a Service (IaaS) as

one of the architectures of Cloud Computing. Nevertheless, virtual machine has

limitation thst system virtual environment does not support CUDA. A new topic-the

physical GPGPU (General-Purpose computing on Graphics Processing Units) [4] is

used by virtual machine in the real machine to help compute. Since GPU is real

manycore processors, the computing power of virtual machines will be increasing.

1.2. Goal and Contribution

In this thesis, we introduce some hypervisor environments for virtualization and

different virtualization types on cloud system. Several types of hardware

virtualization are introduced as well. This thesis focuses on GPU virtualization and

implements a system with virtualization environment and uses PCI pass-through [5]

technology which lets the virtual machines on the system use GPU accelerator to

increase the computing power. We do several experiments to compare the differences

between virtual machine with GPU virtualization (PCI pass-through) and native

machine with GPU. At last, we show the performance of GPU between virtual

machines and native machine and compare virtual machine with native machine again.

Moreover, we analyze other GPU virtualization technologies. The experiment results

present the difference between PCI pass-throughs with other GPU virtualization

technologies.

3

1.3. Thesis Organization

The rest parts of this work are organized as follows. Chapter 2 describes a background

review of Cloud Computing, Virtualization technology, and CUDA (Compute Unified

Device Architecture) [6]. Chapter 3 describes the system implementation, Tesla

C1060’s architecture and its specification and end-user’s interface. Chapter 4 presents

experimental environment and the methods we use and results of GPU virtualization

and show that the proposed approach improved performance. Finally, conclusions are

discussed in Chapter 5.

4

Chapter 2

Background ReviewCloud Computing

Cloud Computing [3] is a computing approach base on the Internet, which is world in

recent years lively discussion. That means use software service and data storage in

remote server. It is a new service architecture that brings new a selection of software

or data storage service to users. Users no longer need to find out the “Cloud” in

details of the infrastructure, no necessary to know the professional knowledge,

without direct control the real machine.

National Institute of Standards and Technology, aka NIST, define five basic

features for Cloud Computing at April 2009[7].

 On-demand Self-service

 Broad Network Access

 Resource Pooling

 Rapid Elasticity

 Measured Service

Cloud computing can be considered include the three levels of service:

Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a

Service (SaaS) [3].

 Infrastructure as a Service (IaaS): Users can follow the required level of

computer and network equipment and other resources, to the service

provider subscription service, and may require changes to settings, and

provider by users of the CPU, memory, Disk space, network load to

calculate the costs.

5

 Platform as a Service (PaaS): development of services vendors who rent to a

computer, this computer has all the necessary hardware and software

developers environment; or to provide application developers to marker, in

accordance with the amount of traffic with the use of resource Developer

fees.

 Software as a Service (SaaS): the software stored in the data center to

provide users network access services, according to provide or

pay-per-order the type of charge.

Mosso

Google App

Engine

Rails One

Joyent

Amazon Web

Svcs

Niranix

Xcalibre

Akamai

Salesforce

Gmail

Gliffy

PaaS SaaS Iaas

Cloud Computing

Grid Computing

Utility Computing

Cluster Computing Super Computing

Infrastructure

Figure 2-1. Architecture of Cloud Computing

6

2.2. Virtualization

Virtualization technology [8] is a technology that creation of a virtual version of

something, such as a hardware platform, operation system, a storage device or

network resources. The goal of virtualization is to centralize administrative tasks

while improving scalability and overall hardware-resource utilization. By using

virtualization, several operating systems can be run on a single powerful server

without glitch in parallel. The virtualization diagram is shown on Figure 2-2.

Hardware

Hypervisor

Virtual

hardware

Virtual

hardware
Virtual

hardware

Guest OS Guest OS Guest OS

Application Application Application

Figure 2-2. Virtualization Diagram

7

Host Computer System

Hardware

User Apps

OS

Ring 3

Ring 2

Ring 1

Ring 0

Direct

Execution

of User

and OS

Requests

Figure 2-3. The General Operation System

The case of the general operation of the operation system is shown on Figure 2-3,

the protection of instruction, there are four different levels of permissions. The user’s

applications are the implementation of the Ring 3 in the CPU part, and the

implementation of the operating system and then operate in Ring 0 in the control of

CPU and hardware, the hardware is in direct implementation by the operating system

and user application are to the instructions.

8

Host Computer System

Hardware

User Apps

OS

Ring 3

Ring 2

Ring 1

Ring 0

Direct

Executio

n of User

and OS

Requests

Guset

OS

Direct

Execution

of User

and OS

Requests

Figure 2-4. The Virtualization Operation System

Figure 2-4 shows the virtualization operation system. User’s applications are

still the implementation of the Ring 3, and the virtual operation system (Guest OS) is

the implementation of the Ring 1. The original operation system becomes a Virtual

Machine Manager (VMM). Guest OS is not to be executed directly by the CPU, but to

use VMM making a translation to CPU and other hardware for the implementation..

2.2.1. Full-Virtualization

Unlike the traditional way that put the operation system kernel to Ring 0 level,

full-virtualization use hypervisor instead of that. Hypervisor manage all instructions

9

to Ring 0 from Guest OS. Full-virtualization [9] uses the Binary Translation

technology to translate all instructions to Ring 0 from Guest OS and then send the

requirement to hardware. Hypervisor virtualized all hardware until, Guest OS access

the hardware just like a real machine. It has highly independence. But Binary

Translation technology reduces the performance of virtual machine.

Hardware

Host OS

Hyperviosr

Guest OS Guest OS Guest OS…
…

Figure 2-5. Full-Virtualization

10

2.2.2. Para-Virtualization

In para-virtualization [10], does not virtualize all hardware until. There is a unique

Host OS called Domain0. Domain0 is parallel with other Guest OS and use Native

Operating System to manage hardware driver. Guest OS accessing the real hardware

by calling the driver in Domain0 through hypervisor. The requirement sent by Guest

OS to hypervisor is called Hypercall. To make the Guest OS sending the hypercall

instead of sending requirement directly to hardware, the Guest OS’s kernel needs to

rewrite, so that some non-open-sourced operation systems can not support.

Unlike full-virtualization using Binary Translation, para-virtualization let the

Guest OS using hardware through Domain0. Although the performance of virtual

machines enhance obviously, but the driver of hardware is binding on Domain0, and

the kernel on Guest OS needs to rewrite, the independence is lower than

full-virtualization.

Hardware

Driver+Hypervisor

Modified

Guest OS

Domain1

Modified

Guest OS

Domain2

Modified

Guest OS

DomainU
……Modified

Host OS

Domain0

Figure 2-6. Para-Virtualization

11

2.2.3. Xen

There are two types of host virtualization software shown in Figure 2-7, Host OS

type and Hypervisor type. The VM Layer of Host OS type deploys on Host OS, such

like Windows or Linux, and then install other operation system on top of VM Layer.

The operation systems on top the VM Layer are called Guest OS. Xen’s hypervisor is

installed directly in the host, and the other operation systems we want deploy are on

top of it. It is easier to manage CPU, Memory, Network, Storage and other resource.

The main purpose of Xen [11] uses hypervisor type and its VMM (Virtual Machine

Monitor) is more efficient and safety to control the host CPU, Memory and other

resource.

VM Layer

Host OS

Server

Guest OS

VM Layer

Full Virtualization

Server

Guest OS

Need to configuration

Hypervisor typeHost OS type

VM Layer

Full Virtualization

Server

Guest OS

Need to configuration

VM Layer

Full Virtualization

Server

Guest OS

Need to configuration

Figure 2-7. Host and Hypervisor Type

There are two types of hypervisor that Xen uses, Para-Virtualization and

Full-Virtualization. The feature of these two types virtualization is at the section 2.2.1

and section 2.2.2.

12

Server

Xen VMM

Host OS Guest OS Guest OS

Xen control AP

Device

Driver
Front end

Driver

Backend

Driver

AP

Front end

Driver

Domain0 DomainUDomainU

AP

Figure 2-8. Domain0 and DomainU

Xen uses an unit called Domain to manage virtual machines. Domain is divided

into two types as shown in Figure 2-8, one of them is called Domain0, played like

Host OS, has control AP of Xen, used for management. Another type called DomainU

is a field that Guest OS installed on it. When using physical resource, DomainU can

not call the hardware driver directly, it must be through Domain0 to deal with.

In industry, Xen have been used in SUSE Linux Server (SLES) by Novell

company and in Red Hat Enterprise Linux (RHEL) and in other commercial Linux

version. In addition, Oracle also introduced a virtualization product called Oracle VM,

and xVM Server released by Sun Microsystem, all base on Xen. That is shown that

Xen have been supported by the system vendors widely in many virtualization

software.

2.2.4. KVM

Kernel–based Virtual Machine (KVM) [12] is a part of architecture in Linux core. For

now, KVM support native virtualization architecture, and hardware-assisted

13

virtualization is supported by CPU. This virtualization technology in Intel is called

VT-x, and in AMD is called AMD-V. These two CPUs use different module to support

KVM, kvm-intel.ko and kvm-amd.ko in Linux.

Currently KVM is running only on i386/x86_64 CPU in the system. Running on

PowerPC and IA64 are still in development. Linux kernel have been include KVM

since 2.6.20 and later. FreeBSD uses the way that kernel module to support KVM.

KVM’s architecture consists of two parts:

 Kernel Device Driver – Used to manage and simulation virtual machine

hardware.

 User Space Process – QEMU is a PC hardware emulator, become kqemu

after modified by KVM.

Normal User

Process

Normal User

Process

KVM Driver

Guest

mode

Guest

mode

Qemu I/O Qemu I/O

Linux Kernel

Figure 2-9. Architecture of KVM

2.3. CUDA

CUDA (Compute Unified Device Architecture) [6][13][14][15][16][17][18][19] is

14

architecture of parallel computing developed by NVIDIA. It is an official name that

NVIDIA face to GPGPU. It is the first time that use C-complier as a develop

environment for GPU. CUDA’s programming model maintains a low learning curve

for programmer familiar with standard programming languages such as C and

FORTRAN shown in Figure 2-10. The architecture of CUDA is compatible with

OpenCL [20][21][22] and C-complier from its own. The instructions are transformed

into PTX code by driver no matter they come from CUDA C-language or OpenCL,

and then calculate by graphics cores.

Figure 2-10. CUDA Programming Model from nVidia[2]

15

Figure 2-11. Processing Flow on CUDA from Wiki[16]

CUDA’s processing flow is described in Figure 2-11. The first step: to copy the

data which are on the main memory of CPU to the memory of GPU. The second: to

instruct the process to GPU by CPU. The third: to parallel execute in each core on

GPU. The last: to copy the result from the memory of GPU to the main memory of

CPU.

2.4. Virtualization on GPU

Virtualization is more and more popular in recent days. The requirement of

virtualization is also increase. Common virtual machines are inadequate for our use,

16

because the environment of the virtual machines is through virtualization after all.

Figure 2-12 and Figure 2-13 show the two common virtual types to emulate devices

and how to support I/O.

Hardware Platform

Hypervisor (VMM)

User -space device

emulation
Guest OS (VM) Guest OS (VM)

Physical device

Physical driver

Emulated device Guest driver Guest driver

Figure 2-12. User Space Device Emulation

Figure 2-12 shows that the virtualization of user-space device emulation. Guest

OS most through the emulated device created in Host OS to communicate with

physical device. Rather than the device emulation being embedded within the

hypervisor, it is instead implemented in user space. QEMU [23] which provides not

only device emulation but a hypervisor as well, provides for device emulation and is

used by a large number of independent hypervisors such as Kernel –based Virtual

Machine (KVM) and VirtulaBox [24].

17

Hardware Platform

Hypervisor (VMM)

Physical device

Physical driver

Guest OS (VM) Guest OS (VM)

Guest driver Guest driver

Emulated device

Figure 2-13. Hypervisor-Based Device Emulation

Figure 2-13 shows the other way to emulate devices. All devices or I/O in the

virtual machine are emulated by hypervisor. This is a common method implemented

within an operation system-based hypervisor. In this model, the hypervisor includes

emulations of common devices that the various guest operating systems can share,

including virtual disks, virtual network adapters, and other necessary platform

elements.

18

Hardware Platform

Hypervisor (VMM)

Physical device

Physical driver

Guest OS2 (VM)

Physical driver

Emulated device

Physical device

Guest OS1 (VM)

Guest driver

p
a

s
s
th

ro
u

g
h

Figure 2-14. Pass-through within the Hypervisor

Unlike the two kinds of emulation of devices before, device pass-through is

about providing an isolation of devices to a given guest operating system shown in

Figure 2-14. Assigning devices to specific guests is useful when those devices can not

be shared. For performance, near-native performance can be achieved using device

pass-through.

2.5. Green Computing

Green computing [25][26] is to effectively use the resources such as implementation

of energy-efficient CPU, servers and peripherals as well as reduce resource

consumption. Green computing use virtualization technology and power management

to reach energy saving and carbon emission reduction. Virtualization is one of the

19

most effective tools for more cost-effective, greener-energy efficient computing where

each server is divided into multiple virtual machines that run different applications.

2.6. Related Work

In recent years, virtualization environment on Cloud become more and more popular.

The balance between performance and cost is the most important point that everybody

focused. For more effective to use the resource on the server, virtualization

technology is the solution. Running many virtual machines on a server, the resource

can be more effective to use. But the performance of virtual machines has their own

limit. Users will limited by using a lot of computing on virtual machine. Therefore,

there is a new topic that let the virtual machines using the physical GPGPU

(General-Purpose computing on Graphics Processing Units) in the real machine to

help computing.

There are some approaches that pursue the virtualization of the CUDA Runtime

API for VMs such as rCUDA[27][28][29], vCUDA[30], GViM[31] and gVirtuS[32].

The solutions feature a distributed middleware comprised of two parts, the front-end

and the back-end[33].

20

Hardware Platform

Hypervisor (VMM)Back-end

middleware Physical driver

Guest OS2 (VM)

Front-end

middleware

Emulated device

Physical device

Guest OS1 (VM)

Guest driver

Physical device

Figure 2-15. Front-End and Back-End

Figure 2-15 shows that the front-end middleware is installed in the virtual

machine, and the back-end middleware with direct access to the acceleration hardware,

is running by host OS with executing the VMM.

rCUDA using Sockets API to let the client and server have communication with

each other. And client can use the GPU on server through that. It is a production-ready

framework to run CUDA applications from VMs, based in a recent CUDA API

version. We can use this middleware to make a customized communications protocol

and is independent [27]. The architecture is shown in Figure 2-16.

Unlike rCUDA, GViM and vCUDA are not at expense of losing VMM

independence.

21

DeamonApplication

CUDA Runtime wrapper library

Sockets API

Sockets API CUDA Driver API

GPU

Network

Client Server

Figure 2-16. Architecture of rCUDA

The key idea in vCUDA is: API call interception and redirection. With API

interception and redirection, applications in VMs can access graphics hardware device

and achieve high performance computing applications. It allows the application

executing within virtual machines to leverage hardware acceleration. They explained

how to access graphics hardware in VMs transparently by API call interception and

redirection. Their evaluation showed that GPU acceleration for HPC applications in

VMs is feasible and competitive with those running in a native, non-virtualized

environment [30]. The architecture is shown in Figure 2-17.

22

Figure 2-17. The vCUDA Architecture

GViM is a system designed for virtualization and managing the resources of a

general purpose system accelerated by graphics processors. GViM uses Xen-specific

mechanisms for the communication between front-end and back-end middleware. The

GViM virtualization infrastructure for a GPGPU platform enables the sharing and

consolidation of graphics processors. Their experimental measurements of a

Xen-based GViM implementation on a multicore platform with multiple attached

NVIDIA graphics accelerators demonstrate small performance penalties for

virtualized vs. non-virtualized settings, coupled with substantial improvements

concerning fairness in accelerator use by multiple VMs [31].

VMGL [34] is the OpenGL hardware 3D acceleration for virtual machines,

OpenGL apps can run inside a virtual machine through VMGL. VMGL can be used

on VMware guests, Xen HVM domains (depending on hardware virtualization

extensions) and Xen paravirtual domains, using XVnc or the virtual frame buffer.

23

VMGL is available for X11-based guest OS's: Linux, FreeBSD and OpenSolaris.

Finally, VMGL is GPU-independent: we support ATI, NVidia and Intel GPUs.

In J. Duato’s work, he uses remote GPU for virtual machine. Although his

virtualization technique noticeably increases execution time when using a 1 Gbps

Ethernet network, it performs almost as efficiently as a local GPU when higher

performance interconnects are used. Therefore, the small overhead incurred by our

proposal because of he remote use of GPUs is worth the savings that a cluster

configuration with less GPUs than nodes reports [29].

Atsushi Kawai and Kenji Yasuoka proposed DS-CUDA, a middleware to

virtualize a GPU cluster as a distributed shared GPU system. It simplifies

development of a code that uses multiple GPUs distributed on a network. Results with

good scalability were shown in their paper. Also the usefulness of the redundant

calculation mechanism is confirmed.

24

Chapter 3

System Implementation

3.1. System Architecture

To use GPU accelerator on virtual machines, this thesis plans using PCI-pass-through

to implement the system for better performance. For performance, near-native

performance can be achieved using device pass-through. This technology is perfect

for networking applications or those that have high disk I/O or like using hardware

accelerator that have not adopted virtualization because of contention and

performance degradation through the hypervisor. But assigning devices to specific

guests is also useful when those devices can not be shared. For example, if a system

included multiple video adapters, those adapters could be passed through to unique

guest domains.

VT-d Pass-Through is a technique to give a DomU exclusive access to a PCI

function using the IOMMU [35] provided by VT-d. It is primarily targeted at HVM

(fully virtualized) guests because Para-Virtualized pass-through does not require

VT-d .There is an important thing that your hardware must support that. In addition to

the motherboard chipset and BIOS also your CPU must have support for IOMMU IO

virtualization (VT-d). VT-d is disabled by default, to enable it, need 'iommu'

parameter to enable it.

Figure 3-1. IOMMU On

25

Hardware Platform

GPU

Hypervisor (VMM, Xen or KVM)

GPU

Guest OS (VM)

Physical driver

Guest OS (VM)

Physical driver
p

a
s
s
th

ro
u

g
h

p
a

s
s
th

ro
u

g
h

Figure 3-2. System Architecture

This thesis using Xen or KVM as a hypervisor. And implement PCI passthrough

passing through the GPUs to those virtual machines on the hypervisor in the whole

system. Figure 3-3 shows the user’s architecture. Users can through the internet to

use the GPU accelerator when the GPU virtualization environment is setting up.

26

Hardware Platform

GPU

Hypervisor

(Xen or KVM)

Guest OS (VM)

Physical driver

p
a

s
s
th

ro
u

g
h

Internet

User

Figure 3-3. User Architecture

3.2. Tesla C1060 Computing Processor Board

The NVIDIA Tesla™ C1060 [36] transforms a workstation into a high-performance

computer that outperforms a small cluster. This gives technical professionals a

dedicated computing resource at their desk-side that is much faster and more

energy-efficient than a shared cluster in the data center. The details of NVIDIA

Tesla™ C1060 computing processor board’s specification is shown below.

 One Tesla T10

27

 240 CUDA cores

 1.296 GHz core frequency

 933 Gflops Single Precision

 78 Gflops Double Precision

 4 GB GDDR3 memory at 102 GB/s bandwidth

 800 MHz memory frequency

A computer system with an available PCI Express ×16 slot is required for the

Tesla C1060. For the best system bandwidth between the host processor and the Tesla

C1060, it is recommended (but not required) that the Tesla C1060 be installed in a

PCI Express ×16 Gen2 slot. The Tesla C1060 is based on the massively parallel,

many-core Tesla processor, which is coupled with the standard CUDA C

programming [15] environment to simplify many-core programming. The architecture

of Tesla T10 is shown in Figure 3-4.

Tesla T10

Bridge System Memory

Work Distribution

`

SMC

``

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

Texture Unit

Tex L1

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

`

SMC

``

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

Texture Unit

Tex L1

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

`

SMC

``

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

Texture Unit

Tex L1

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

`

SMC

``

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

Texture Unit

Tex L1

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

`

SMC

``

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

Texture Unit

Tex L1

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

`

SMC

``

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

Texture Unit

Tex L1

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

`

SMC

``

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

Texture Unit

Tex L1

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

`

SMC

``

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

Texture Unit

Tex L1

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

`

SMC

``

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

Texture Unit

Tex L1

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

`

SMC

``

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

Texture Unit

Tex L1

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

Host CPU

Interconnection Network

SM

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

Figure 3-4. Tesla T10

28

3.3. Tesla C2050 Computing Processor Board

The NVIDIA Tesla™ C2050[38] is based on the next-generation CUDA™

architecture codenamed “Fermi”, the 20-series family of Tesla GPUs support many

“must have” features for technical and enterprise computing including c++ support,

Ecc memory for uncompromised accuracy and scalability, and a 7X increase in

double precision performance compared Tesla 10-series GPUs.

Compared to the latest quad-core CPUs, Tesla C2050 computing Processors

deliver equivalent supercomputing performance at 1/10th the cost and 1/20th the

power consumption. The specification is shown below.

 One Tesla core

 448 CUDA cores

 1.15 GHz core frequency

 1.03 Tflops Single Precision

 515 Gflops Double Precision

 3GB GDDR5 memory at 144 GB/s bandwidth

 1.5 GHz memory frequency

3.4. End User’s Operating Interface

When users create a virtual machine and pass the GPU through to virtual machine

successful, users can through an application called “virtual machine manager” in

Linux to see the result. In Figure 3-5, the GPU pass-through is successful and virtual

is running.

29

Figure 3-5. PCI Pass-through Successful

On the other way, users can also use pietty or VNC. Users must be prepared to

internet connection and VNC connection, and then set the IP and port as long as you

can connect to the virtual machine. In the console, users can use the command “lspci”

to see the PCI pass-through is working or not. The setup is shown in Figure 3-6,

Figure 3-7 and Figure 3-8.

30

Figure 3-6. Shows in Pietty

Figure 3-7. Shows in VNC

31

Figure 3-8. Using lspci

3.5. System Environment

Previously, we have conducted the design principle and implementation methods. We

present here several experiment conducts on two machines. The node’s hardware

specification is listing in Table 3-1.

Table 3-1. Hardware/Software Specification

Hardware/Software Specification

 CPU Memory Disk OS Hypervisor GPU

Node1 Xeon

E5506

12GB 1TB CentOS

6.2

Xen Quadro

NVS 295/

Tesla

C1060/

Tesla

C2050

32

In Table 3-1, we use two machines with the same hardware specification. And

the hypervisor which one is Xen, another is KVM. The purpose is compare the

performance between these two hypervisor using PCI pass-through with the same

GPU. Quadro NVS 295 [37] is using for primary graphics card. Tesla C1060 is the

one we using for computing and passing through to virtual machine.

Table 3-2. Hardware/Software Specification of Virtual Machine

Hardware/Software Specification of Virtual Machine

 CPU Memory Disk OS Hyperviso

r

GPU Virtualizatio

n

VM1 1,2,4 1GB 12GB CentOS6.2 Xen Quadro

NVS

295

Full

VM2 1,2,4 1GB 12GB CentOS6.2 Xen Tesla

C1060

Full

VM3 1,2,4 1GB 12GB CentOS6.2 Xen Tesla

C2050

Full

Table 3-2 is the hardware/software specification of virtual machines. We create

three virtual machines with the same specification but in different CPU number and

different GPU. We want discuss that the CPU number will or not affect the

performance of virtual machine in PCI pass-through. So we will use 1, 2 or 4 CPUs in

our virtual machine to see the difference between each other. These of two virtual

machines’ virtualization type are full, because we found out that PCI pass-through is

not working in para-virtualization in our research. Table 3-3 shows the GPU software

33

environment.

Table 3-3. GPU Software Environments

GPU Software Environments

Driver 285.05.33

Cuda toolkit 4.1.28

CUDA SDK 4.1.28

34

Chapter 4

Experimental Methods and Results

4.1. Experimental Methods

We set up ten comparison benchmarks: alignedTypes, asyncAPI, BlackScholes, clock,

convolutionSeparable, fastWalshTransform, matrixMul, Bandwidthtest,

matrixmul-sizeable and VecAdd. The first seven benchmarks are ports of CUDA SDK

[13]. From benchmarks in the suite, we select 7 representative SDK benchmarks of

varying computation loads and data size which use different CUDA features. These

benchmarks are executed with the default. Another two benchmarks are selected as

matrixmul-sizeable and VecAdd which the problem size can be set with high

computation loading. All SDK benchmarks’ execution time is measured by the

command ‘time’ in the CentOS [39]. Table 4-1 shows the data transfering size of each

benchmark.

Table 4-1. Data transfers of Benchmarks

SDK name Data transfers

Aligned Types 413.26MB

Async API 128.00MB

Black Scholes 76.29MB

Clock 2.50KB

Convolution Separable 36.00MB

Fast Walsh Transform 64.00MB

35

Matrix Mul 79.00KB

The first experiment is the comparison between native and virtual machine

performance. We present how much GPU performance reduced with PCI

pass-through. The second experiment is the comparison between virtual machines

with 1 CPU, 2 CPUs and 4 CPUs performance whether presenting CPU numbers in

virtual machines would affect the GPU performance or not. The final experiment is

the comparison between the two common virtualization hypervisors performance. We

will display which one has better GPU performance with PCI pass-through than the

others.

4.2. Experimental Results

We first analyze the performance of the CUDA SDK benchmarks running in a VM

using PCI pass-through, and compare their execution times with those in a native

environment —i.e., using the regular CUDA Runtime library in a non-virtualized

environment. The results of these experiments are reported as below.

36

Figure 4-1. Execution Time between Native and VM with C1060

Figure 4-2. Execution Time between Native and VM with C2050

0

1

2

3

4

5

real user sys real user sys

native Xen_1core

 t
im

e
(s

e
co

n
d

)
Tesla C1060

alignedTypes

asyncAPI

BlackScholes

clock

convolutionSeparable

fastWalshTransform

matrixMul

0

1

2

3

4

5

real user sys real user sys

native Xen_1core

 t
im

e
(s

e
co

n
d

)

Tesla C2050

alignedTypes

asyncAPI

BlackScholes

clock

convolutionSeparable

fastWalshTransform

matrixMul

37

Figure 4-3. Execution Time between Native and VM with NVS295

Figure 4-1, Figure 4-2 and Figure 4-3 show that the execution time on

processing the SDK benchmark in native and virtual machine using one CPU on Xen.

We can see the real time of these benchmarks on virtual machine is less than native

machine.

0

2

4

6

8

10

12

14

16

real user sys real user sys

native Xen_1core

 t
im

e
(s

e
co

n
d

)

Quadro NVS 295

alignedTypes

asyncAPI

BlackScholes

clock

convolutionSeparable

fastWalshTransform

matrixMul

38

Figure 4-4. Execution Time between 1 Core and 2 Core VM with C1060

Figure 4-5. Execution Time between 1 Core and 2 Core VM with C2050

0

1

2

3

4

5

real user sys real user sys

Xen_1core Xen_2core

 t
im

e
(s

e
co

n
d

)
Tesla C1060

alignedTypes

asyncAPI

BlackScholes

clock

convolutionSeparable

fastWalshTransform

matrixMul

0

1

2

3

4

5

real user sys real user sys

Xen_1core Xen_2core

 t
im

e
(s

e
co

n
d

)

Tesla C2050

alignedTypes

asyncAPI

BlackScholes

clock

convolutionSeparable

fastWalshTransform

matrixMul

39

Figure 4-6. Execution Time between 1 Core and 2 Core VM with NVS295

Figure 4-4, Figure 4-5 and Figure 4-6 show that the different execution time

between virtual machines which has one CPU, and the other has two CPUs. In this

figure, we can see that the number of CPUs does not affect the user time, which

means the GPU computing time is not changed when CPU increases from one to two.

Figure 4-7. Execution Time between 2 Core and 4 Core VM with C1060

0

2

4

6

8

10

12

14

16

real user sys real user sys

Xen_1core Xen_2core

 t
im

e
(s

e
co

n
d

)
Quadro NVS 295

alignedTypes

asyncAPI

BlackScholes

clock

convolutionSeparable

fastWalshTransform

matrixMul

0

1

2

3

4

5

real user sys real user sys

Xen_2core Xen_4core

 t
im

e
(s

e
co

n
d

)

Tesla C1060

alignedTypes

asyncAPI

BlackScholes

clock

convolutionSeparable

fastWalshTransform

matrixMul

40

Figure 4-8. Execution Time between 2 Core and 4 Core VM with C2050

Figure 4-9. Execution Time between 2 Core and 4 Core VM with NVS295

Figure 4-7, Figure 4-8 and Figure 4-9 show that the execution time between

two CPUs and four CPUs in virtual machines based on Xen. In this figure, it is

obvious to see that the number of CPU does not affect the performance of GPU.

From Figure 4-1 to Figure 4-9, we can demonstrate the execution time is very

0

1

2

3

4

5

real user sys real user sys

Xen_2core Xen_4core

 t
im

e
(s

e
co

n
d

)

Tesla C2050

alignedTypes

asyncAPI

BlackScholes

clock

convolutionSeparable

fastWalshTransform

matrixMul

0

2

4

6

8

10

12

14

16

real user sys real user sys

Xen_2core Xen_4core

 t
im

e
(s

e
co

n
d

)

Quadro NVS 295

alignedTypes

asyncAPI

BlackScholes

clock

convolutionSeparable

fastWalshTransform

matrixMul

41

close; only the system time is different significantly.

Figure 4-10. User Time with C1060

Figure 4-11. User Time with C2050

0

0.5

1

1.5

2

2.5

3

3.5

 t
im

e
(s

e
co

n
d

)

Tesla C1060

native user

Xen_1core user

Xen_2core user

Xen_4core user

0

0.5

1

1.5

2

2.5

3

3.5

 t
im

e
(s

e
co

n
d

)

Tesla C2050

native user

Xen_1core user

Xen_2core user

Xen_4core user

42

Figure 4-12. User Time with NVS295

In Figure 4-10, Figure 4-11 and Figure 4-12, we pick the user time in each SDK

benchmark execution time. The user time in this figure means the GPU computing

time. No matter the native or virtual machines, the performance of GPU is the same

even through the PCI pass-through. There is only a slight different between native and

virtual machines -simply 0.001 second. User time of benchmark called “clock” are all

under 0.001 second; therefore, it is not obvious to tell in this figure.

0

2

4

6

8

10

12

14

16
 t

im
e

(s
e

co
n

d
)

Quadro NVS 295

native user

Xen_1core user

Xen_2core user

Xen_4core user

43

Figure 4-13. System Time with C1060

Figure 4-14. System Time with C2050

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

 t
im

e
(s

e
co

n
d

)

Tesla C1060

native sys

Xen_1core sys

Xen_2core sys

Xen_4core sys

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

 t
im

e
(s

e
co

n
d

)

Tesla C2050

native sys

Xen_1core sys

Xen_2core sys

Xen_4core sys

44

Figure 4-15. System Time with NVS295

In Figure 4-13, Figure 4-14 and Figure 4-15, the system time of each SDK

benchmark. Using the GPU accelerator to help compute and the system inner

communication is also important. The native machine’s system time is obviously

much longer than virtual machines. And system time of the virtual machine with

one CPU is shorter than the others which means if we run a program with heavily

GPU computing, we can simply use one CPU in our virtual machine to save more

resource on the host server for other users.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
 t

im
e

(s
e

co
n

d
)

Quadro NVS 295

native sys

Xen_1core sys

Xen_2core sys

Xen_4core sys

45

Figure 4-16. Bandwidth Test with C1060

Figure 4-17. Bandwidth Test with C2050

0

500

1000

1500

2000

2500

3000

3500

4000

4500

BandWidthTest

MB/s

Tesla C1060

native H2D

native D2H

Xen_1core H2D

Xen_1core D2H

Xen_2core H2D

Xen_2core D2H

Xen_4core H2D

Xen_4core D2H

0

500

1000

1500

2000

2500

3000

3500

4000

4500

BandWidthTest

MB/s

Tesla C2050

native H2D

native D2H

Xen_1core H2D

Xen_1core D2H

Xen_2core H2D

Xen_2core D2H

Xen_4core H2D

Xen_4core D2H

46

Figure 4-18. Bandwidth Test with NVS295

In Figure 4-16, Figure 4-17 and Figure 4-18, the H2D means “Host to Device”,

the D2H means “Device to Host”. There is another value called D2D, means “Device

to Device” which the values are almost the same so we skip the discussion here. It is

more obvious to see the bandwidth of native is higher than others. In this figure, the

CPU numbers of virtual machines do not affect the bandwidth. PCI pass-through is

the main reason that really affects some bandwidth between virtual machine and GPU

accelerator- the virtual machine’s bandwidth is about 400 MB/s lower than native.

0

500

1000

1500

2000

2500

3000

3500

4000

BandWidthTest

MB/s

Quadro NVS 295

native H2D

native D2H

Xen_1core H2D

Xen_1core D2H

Xen_2core H2D

Xen_2core D2H

Xen_4core H2D

Xen_4core D2H

47

Figure 4-19. Execution time of VecAdd with C1060

Figure 4-20. Execution time of VecAdd with C2050

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

128 256 512 1024

VecAdd

 t
im

e
(s

e
co

n
d

)

problem size

Tesla C1060

native

Xen_1core

Xen_2core

Xen_4core

0

0.2

0.4

0.6

0.8

1

1.2

128 256 512 1024

VecAdd

 t
im

e
(s

e
co

n
d

)

problem size

Tesla C2050

native

Xen_1core

Xen_2core

Xen_4core

48

Figure 4-21. Execution time of VecAdd with NVS295

In Figure 4-19, Figure 4-20 and Figure 4-21, the application is VecAdd. We use

128, 256, 512 and 1024 to be our problem size. The difference of these four

environments is very slight. Even the execution time of virtual machine is shorter than

native machine. We think it is caused by the difference of real machine and virtual

machine. Besides, the GPU performance results between these four are all the same.

0
2
4
6
8

10
12
14
16
18
20

128 256 512 1024

VecAdd

 t
im

e
(s

e
co

n
d

)

problem size

Quadro NVS 295

native

Xen_1core

Xen_2core

Xen_4core

49

Figure 4-22. Execution time of MatrixMul with C1060

Figure 4-23. Execution time of MatrixMul with C2050

0

2

4

6

8

10

12

14

16

18

20

22

24

256 512 1024 2048

MatrixMul

 t
im

e
(s

e
co

n
d

)

problem size

Tesla C1060

native

Xen_1core

Xen_2core

Xen_4core

0

20

40

60

80

100

120

256 512 1024 2048

MatrixMul

 t
im

e
(s

e
co

n
d

)

problem size

Tesla C2050

native

Xen_1core

Xen_2core

Xen_4core

50

Figure 4-24. Execution time of MatrixMul with NVS295

In Figure 4-22, Figure 4-23 and Figure 4-24, the execution time of MatrixMul.

In this figure, we can see the similar result as the previous. The execution times of

these four environments are very close. The execution time of virtual machine is also

shorter than real machine. The execution time of problem size 256 is shorter than 0.1

second so it is difficult to see clear in this figure.

Figure 4-25. Compare with rCUDA

1

4

16

64

256

1024

4096

256 512 1024 2048

MatrixMul

 t
im

e
(s

e
co

n
d

)

problem size

Qusdro NVS 295

native

Xen_1core

Xen_2core

Xen_4core

-2

-1

0

1

2

3

4

 t
im

e
(s

e
co

n
d

)

Compare with rCUDA

PCI passthrough

rCUDA

51

Figure 4-26. Compare with vCUDA

Also we compare with rCUDA and vCUDA. Figure 4-25 and Figure 4-26 show

the comparison. The time in the figure is the time that we minus from the execution

time before GPU virtualization and after. We use the time after GPU virtualization

minus before GPU virtualization. The execution time is taken from [27] [30]. From

these two figures, we can see that using PCI pass-through dose not add too much time.

Compare with these two technologies, PCI pass-through is more efficient.

-5

5

15

25

35

45

55

65
 t

im
e

(s
e

co
n

d
)

Compare with vCUDA

PCI passthrough

vCUDA

52

Chapter 5

Conclusions and Future Work

5.1. Concluding Remark

In our work, we can see the GPU performance is the same in native and virtual

machine. No matter how many CPUs in virtual machine, the GPU provide the same

performance by PCI pass-through. Even if we use virtual machine, the system time is

less than real machine; the system time of the virtual machine with one CPU is less

than four CPUs. The inner communication in virtual machine is not through the real

hardware but simply relies on the memory of the real machine.

Data transfer time is shorter than rCUDA because rCUDA is network related and

the seed of network is the key of rCUDA. Code needs to be rewriten if using rCUDA,

but not PCI pass-through. Though rCUDA can let the virtual machine run not only in

local GPU, but also in remote GPU by network.

Taking PCI pass-through is more direct if we want to make comparison of

vCUDA. vCUDA uses the middleware as the connect point but it takes more time

than PCI pass-through. Using the PCI pass-through to implement that computing with

GPU accelerator in virtual machines can save more resource but has the same high

performance in real machine overall.

53

5.2. Future Work

In the future, we may test more GPU board for PCI pass-through and implement GPU

hot-plug to virtual machine. GPU hot-plug is very useful for virtual machine and the

whole system. There is an opensourced monitor system called OpenNebula that the

interface of virtual machine can be controled through webpage. Therefore, we may

use OpenNebula to control our virtual machine with GPU PCI pass-through.

54

Bibliography

[1] TOP 500, http://www.top500.org/

[2] nVidia, http://www.nvidia.com

[3] Cloud computing, http://en.wikipedia.org/wiki/Cloud_computing

[4] GPGPU, http://en.wikipedia.org/wiki/GPGPU

[5] PCI-pass-through,

http://www.ibm.com/developerworks/linux/library/l-pci-passthrough

[6] CUDA, http://www.nvidia.com.tw/object/cuda_home_new_tw.html

[7] National Institute of Standards and Technology, http://www.nist.gov/index.html

[8] Virtualization, http://en.wikipedia.org/wiki/Virtualization

[9] Full Virtualization, http://en.wikipedia.org/wiki/Full_virtualization

[10] Para Virtualization, http://en.wikipedia.org/wiki/Paravirtualization

[11] Xen, http://www.xen.org/

[12] KVM, http://www.linux-kvm.org/page/Main_Page

[13] NVIDIA CUDA SDK, http://developer.nvidia.com/cuda-cc-sdk-code-samples

[14] Download CUDA, http://developer.nvidia.com/object/cuda.htm

[15] NVIDIA CUDA Programming Guide,

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUD

A_C_Programming_Guide.pdf

[16] CUDA-wiki, http://en.wikipedia.org/wiki/CUDA

[17] Fred V. Lionetti, Andrew D. McCulloch and Scott B. Baden, “Source-to-Source

Optimization of CUDA C for GPU Accelerated Cardiac Cell Modeling,” Lecture

Notes in Computer Science, 2010, Volume 6271, Euro-Par 2010 - Parallel

Processing, Pages 38-49.

[18] Sungbo Jung, “Parallelized pairwise sequence alignment using CUDA on

multiple GPUs,” BMC Bioinformatics, 2009, Volume 10, Supplement 7, A3.

[19] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,

Kevin Skadron, “A Performance Study of General-Purpose Applications on

http://www.top500.org/
http://www.nvidia.com/
http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/GPGPU
http://www.ibm.com/developerworks/linux/library/l-pci-passthrough
http://www.nvidia.com.tw/object/cuda_home_new_tw.html
http://www.nist.gov/index.html
http://en.wikipedia.org/wiki/Virtualization
http://en.wikipedia.org/wiki/Full_virtualization
http://en.wikipedia.org/wiki/Paravirtualization
http://www.xen.org/
http://www.linux-kvm.org/page/Main_Page
http://developer.nvidia.com/cuda-cc-sdk-code-samples
http://developer.nvidia.com/object/cuda.htm
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://en.wikipedia.org/wiki/CUDA

55

Graphics Processors Using CUDA,” Journal of Parallel and Distributed

Computing, Volume 68, Issue 10, October 2008, Pages 1370-1380.

[20] OpenCL, http://www.khronos.org/opencl/

[21] OpenCL-wiki, http://en.wikipedia.org/wiki/OpenCL

[22] M.J. Harvey, G. De Fabritiis, “Swan: A tool for porting CUDA programs to

OpenCL,” Computer Physics Communications, Volume 182, Issue 4, April 2011,

Pages 1093-1099.

[23] QEMU, http://wiki.qemu.org/Main_Page

[24] VirtualBox, https://www.virtualbox.org/

[25] Chia-Tien Dan Lo, Kai Qian, "Green Computing Methodology for Next

Generation Computing Scientists," Proceedings of IEEE 34th Annual Computer

Software and Applications Conference, pp.250-251, 2010.

[26] Benjamin Zhong, Ming Feng, Chung-Horng Lung, “A Green Computing Based

Architecture Comparison and Analysis”, GREENCOM-CPSCOM '10

Proceedings of the 2010 IEEE/ACM Int'l Conference on Green Computing and

Communications & Int'l Conference on Cyber, Physical and Social Computing,

pp.386-391, 2010.

[27] J. Duato, A. J. Pe˜na, F. Silla, R. Mayo, and E. S. Quintana-Ort´ı, “rCUDA:

Reducing the number of GPUbased accelerators in high performance clusters,”

Proceedings of the 2010 International Conference on High Performance

Computing & Simulation (HPCS 2010), Jun. 2010, pp. 224–231.

[28] J. Duato, A.J. Pena, F. Silla, J.C. Fernandez, R. Mayo, E.S. Quintana-Orti,

“Enabling CUDA acceleration within virtual machines using rCUDA,”

Proceedings of High Performance Computing (HiPC), 2011 18th International

Conference, 2010, Pages 1-10.

[29] J. Duato, A. J. Pe˜na, F. Silla, R. Mayo, and E. S. Quintana-Orti, “Performance of

CUDA virtualized remote GPUs in high performance clusters,” Proceedings of

International Conference on Parallel Processing (ICPP), Sep. 2011, Pages

365-374.

[30] L. Shi, H. Chen, and J. Sun, “vCUDA: GPU accelerated high performance

computing in virtual machines,” Proceedings of IEEE International Symposium

on Parallel & Distributed Processing (IPDPS’09), 2009, Page 1-11.

http://www.khronos.org/opencl/
http://en.wikipedia.org/wiki/OpenCL
http://wiki.qemu.org/Main_Page
https://www.virtualbox.org/

56

[31] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche, N. Tolia, V. Talwar, and P.

Ranganathan, “GViM: GPU-accelerated virtual machines,” in 3rd Workshop on

System-level Virtualization for High Performance Computing. NY, USA: ACM,

2009, pp. 17–24.

[32] G. Giunta, R. Montella, G. Agrillo, and G. Coviello, “A GPGPU transparent

virtualization component for high performance computing clouds,” in Euro-Par

2010 - Parallel Processing, ser. LNCS, P. D Ambra, M. Guarracino. D. Talia,

Eds. Springer Berlin / Heidelberg, 2010, vol. 6271, pp. 379–391.

[33] Front and back ends, http://en.wikipedia.org/wiki/Front_and_back_ends

[34] VMGL, http://sysweb.cs.toronto.edu/vmgl

[35] Nadav Amit, Muli Ben-Yehuda and Ben-Ami Yassour, “IOMMU: Strategies for

Mitigating the IOTLB Bottleneck,” Lecture Notes in Computer Science, 2012,

Volume 6161, Computer Architecture, Pages 256-274.

[36] NVIDIA Telsa C1060 Computing Processor,

http://www.nvidia.com/object/product_tesla_c1060_us.html

[37] NVIDIA Quadro NVS 295,

http://www.nvidia.com.tw/object/product_quadro_nvs_295_tw.html

[38] NVIDIA Telsa C2050 Computing Processor,

http://www.nvidia.com.tw/object/product_tesla_C2050_C2070_tw.html

[39] CentOS, http://www.centos.org/

[40] H. A. Lagar-Cavilla, N. Tolia, M. Satyanarayanan, and E. de Lara,

“VMM-independent graphics acceleration,” in VEE ’07: Proceedings of the 3rd

international conference on Virtual execution environments. NewYork, NY, USA:

ACM, 2007, pp. 33–43.

[41] C.T. Yang, C.L. Huang and C.F. Lin, “Hybrid CUDA, OpenMP, and MPI Parallel

Programming on Multicore GPU Clusters,” Computer Physics Communications,

Vol. 182, Issue 1, pp. 266-269, June 25, 2010.

[42] C.T. Yang, C.L. Huang, C.F. Lin and T.C. Chang, “Hybrid Parallel Programming

on GPU Clusters,” Proceedings of International Symposium on Parallel and

Distributed Processing with Applications (ISPA) 2010, pp. 142-147, Sept. 2010.

[43] C.T. Yang; T.C. Chang; H.Y. Wang; Chu, W.C.C.; C.H Chang, “Performance

Comparison with OpenMP Parallelization for Multi-core Systems,” Proceedings

http://en.wikipedia.org/wiki/Front_and_back_ends
http://sysweb.cs.toronto.edu/vmgl
http://www.nvidia.com/object/product_tesla_c1060_us.html
http://www.nvidia.com.tw/object/product_quadro_nvs_295_tw.html
http://www.centos.org/

57

of Parallel and Distributed Processing with Applications (ISPA), 2011 IEEE 9th

International Symposium, 2011, pp.232-237.

58

Appendix

A. Setup Xen on CentOS

I. Make sure that SELinux is disabled or permissive

vi /etc/sysconfig/selinux

reboot

II. Creating A Network Bridge

yum install bridge-utils

vi /etc/sysconfig/network-scripts/ifcfg-br0

III. Modify /etc/sysconfig/network-scripts/ifcfg-eth0

vi /etc/sysconfig/network-scripts/ifcfg-eth0

/etc/init.d/network restart

IV. Installing Xen

yum install http://au1.mirror.crc.id.au/repo/kernel-xen-release-6-3.noarch.rpm

yum install kernel-xen xen

Edit /boot/grub/menu.lst

vi /boot/grub/menu.lst

Replace the first word ‘kernel’ and ‘initrd’ with module

Then add the line kernel /xen.gz dom0_mem=1024M cpufreq=xen

dom0_max_vcpus=1 dom0_vcpus_pin after the root line

V. Install the libvirt and make a patch

yum install libvirt python-virtinst

yum groupinstall 'Development Tools'

yum install python-devel xen-devel libxml2-devel xhtml1-dtds readline-devel

http://au1.mirror.crc.id.au/repo/kernel-xen-release-6-3.noarch.rpm

59

ncurses-devel libtasn1-devel gnutls-devel augeas libudev-devel

libpciaccess-devel yajl-devel sanlock-devel libpcap-devel libnl-devel avahi-devel

libselinux-devel cyrus-sasl-devel parted-devel device-mapper-devel

numactl-devel libcap-ng-devel netcf-devel libcurl-devel audit-libs-devel

systemtap-sdt-devel

mkdir /root/src

cd /root/src

wget

http://vault.centos.org/6.2/os/Source/SPackages/libvirt-0.9.4-23.el6.src.rpm

rpm -i libvirt-0.9.4-23.el6.src.rpm

wget http://pasik.reaktio.net/xen/patches/libvirt-spec-rhel6-enable-xen.patch

cd /root/rpmbuild/SPECS

cp -a libvirt.spec libvirt.spec.orig

patch -p0 < ~/src/libvirt-spec-rhel6-enable-xen.patch

rpmbuild -bb libvirt.spec

cd /root/rpmbuild/RPMS/x86_64/

rpm -Uvh --force libvirt-0.9.4-23.el6.x86_64.rpm

libvirt-client-0.9.4-23.el6.x86_64.rpm libvirt-python-0.9.4-23.el6.x86_64.rpm

reboot

B. Setup PCI passthrough

I. Enable iommu

vi /boot/grub/menu.lst

Add ‘iommu=1’ at the end of kernel

http://vault.centos.org/6.2/os/Source/SPackages/libvirt-0.9.4-23.el6.src.rpm
http://pasik.reaktio.net/xen/patches/libvirt-spec-rhel6-enable-xen.patch

60

II. Binding Devices to pci-stub

lspci –n

Get the Device ID like ‘01:00.0 0200: 8086:10b9 (rev 06)’

Then

echo "8086 10b9" > /sys/bus/pci/drivers/pci-stub/new_id

echo "0000:01:00.0" > /sys/bus/pci/devices/0000:01:00.0/driver/unbind

echo "0000:01:00.0" > /sys/bus/pci/drivers/pci-stub/bind

Viewing Devices

xm pci-list-assignable-devices

III. Add Devices to VM

Through a software in linux ‘VM Manager’ or command like

virt-install --host-device=HOSTDEVS

C. CUDA Installation

I. Download gpu driver from nVidia website

Install it

sh gpudriver.sh

II. Download cudatoolkit from nVidia website

Install it

sh cudatoolkit.sh

Setup PATH

III. Download CUDA SDK from nVidia website

Install it

$ sh SDK.sh

61

$ cd SDK/C

$ make

