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I 

 

摘要 

現今，NVIDIA 公司的 CUDA 是一種為了撰寫高度平行的應用程式，所發展出

來的通用型可伸縮式的平行程式設計模組。它提供了一些關鍵的抽象化概念：一

個有層次的線程區塊、共享式的記憶體和屏障同步。在整個工業界和學術界的科

學家們已經使用 CUDA 在生產或是研究的程式碼時，有了驚人的加速性。這模

組在編寫在多核心的圖形處理器上運用的多線程程式時，已經證明是非常成功的

了。內建圖形處理器的叢集環境在雲端運算中扮演一個重要的角色。因為一些高

強度運算的程式需要中央處理器及圖形處理器一起運算。本篇論文中，我們以

PCI穿透的技術，使得在虛擬環境中的虛擬機器得以使用 NVIDIA 的顯示卡，進

而可以使用 CUDA 高效能運算。這將使得虛擬機器不僅只能有虛擬的中央處理

器，更可以使用實體的圖形處理器來做運算，虛擬機器的效能將可大幅提升。本

論文中將會量測虛擬機與實體機之間使用 CUDA 的效能差異，以及擁有不同中

央處理器的虛擬機器是否會影響到 CUDA 效能。最後，我們將會比較兩套開源

程式碼的虛擬環境，是否會對經過 PCI穿透所使用的CUDA造成效能上的差異。

透過實驗將可以知道哪個環境將會對在虛擬環境中使用 CUDA 有最佳的效能。 

 

關鍵字：CUDA、圖形處理器虛擬化、雲端計算、PCI穿透 
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Abstract 

Nowadays, NVIDIA’s CUDA is a general purpose scalable parallel programming 

model for writing highly parallel applications. It provides several key abstractions – a 

hierarchy of thread blocks, shared memory, and barrier synchronization. This model 

has proven to be quite successful at programming multithreaded many core GPUs and 

scales transparently to hundreds of cores: scientists throughout industry and academia 

are already using CUDA to achieve dramatic speedups on production and research 

codes. GPU-base clusters are likely to play an important role in future cloud 

computing centers, because some compute-intensive applications may require both 

CPUs and GPUs. In this thesis by using PCI pass-through technology and making the 

virtual machines in a virtual environment are able to use the NVIDIA graphics card, 

and we can use the CUDA high performance computing as well. It makes the virtual 

machine have not only the virtual CPU but also the real GPU for computing. The 

performance of virtual machine is predicted to increase dramatically. This thesis will 

measure the performance differences between virtual machines and physical machines 

by using CUDA; and how virtual machines would varify CPU numbers under 

influence of CUDA performance. At last, we compare two open source virtualization 

environment hypervisor, whether it is after PCI pass-through CUDA performance 

differences or not. Through the experiment, we will be able to know which 

environment will reach the best efficiency in a virtual environment by using CUDA. 

 

Keywords: CUDA, GPU virtualization, Cloud Computing, PCI pass-through 
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Chapter 1  

Introduction 

1.1. Motivations 

GPUs are real “manycore” processors with hundreds of processing elements. A 

graphics processing unit (GPU) is a specialized microprocessor that offloads and 

accelerates graphics rendering from the central (micro-) processor. Modern GPUs are 

very efficient at manipulating computer graphics, and their highly parallel structures 

make them more effective than general-purpose CPUs for a range of complex 

algorithms. We know that a CPU has only 8 cores at single chip currently but a GPU 

has grown to 448 cores. From the number of cores, GPU is appropriate to compute the 

programs suited massive parallel processing. Although frequency of the core on the 

GPU is lower than CPU’s, we believe that massively parallel can conquer the problem 

of lower frequency. As for GPU, it has been used on supercomputers. On top 500 sites 

in November 2010 [1], there are three supercomputers of the first 5 built with 

NVIDIA GPU [2]. 

In recent years, virtualization environment on Cloud [3] becomes more popular 

then ever. The balance between performance and cost is the most important matter we 

focus. In order to live up the potential of the server resourse, virtualization technology 

is the main solution for running more virtual machines on a server and yet the 

resource can be used a lot more effectively. However, the performance of virtual 

machines has their own limitations so that users can be limited by using lots of 

computing on it. 
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Building a virtual environment in a cloud computing system for users has 

become an important trend in the last few years. Proper use of hardware resources and 

computing power to each virtual machine are the Infrastructure as a Service (IaaS) as 

one of the architectures of Cloud Computing. Nevertheless, virtual machine has 

limitation thst system virtual environment does not support CUDA. A new topic-the 

physical GPGPU (General-Purpose computing on Graphics Processing Units) [4] is 

used by virtual machine in the real machine to help compute. Since GPU is real 

manycore processors, the computing power of virtual machines will be increasing. 

1.2. Goal and Contribution 

In this thesis, we introduce some hypervisor environments for virtualization and 

different virtualization types on cloud system. Several types of hardware 

virtualization are introduced as well. This thesis focuses on GPU virtualization and 

implements a system with virtualization environment and uses PCI pass-through [5] 

technology which lets the virtual machines on the system use GPU accelerator to 

increase the computing power. We do several experiments to compare the differences 

between virtual machine with GPU virtualization (PCI pass-through) and native 

machine with GPU. At last, we show the performance of GPU between virtual 

machines and native machine and compare virtual machine with native machine again. 

Moreover, we analyze other GPU virtualization technologies. The experiment results 

present the difference between PCI pass-throughs with other GPU virtualization 

technologies. 
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1.3. Thesis Organization 

The rest parts of this work are organized as follows. Chapter 2 describes a background 

review of Cloud Computing, Virtualization technology, and CUDA (Compute Unified 

Device Architecture) [6]. Chapter 3 describes the system implementation, Tesla 

C1060’s architecture and its specification and end-user’s interface. Chapter 4 presents 

experimental environment and the methods we use and results of GPU virtualization 

and show that the proposed approach improved performance. Finally, conclusions are 

discussed in Chapter 5.  
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Chapter 2  

Background ReviewCloud Computing 

Cloud Computing [3] is a computing approach base on the Internet, which is world in 

recent years lively discussion. That means use software service and data storage in 

remote server. It is a new service architecture that brings new a selection of software 

or data storage service to users. Users no longer need to find out the “Cloud” in 

details of the infrastructure, no necessary to know the professional knowledge, 

without direct control the real machine.  

National Institute of Standards and Technology, aka NIST, define five basic 

features for Cloud Computing at April 2009[7]. 

 On-demand Self-service 

 Broad Network Access 

 Resource Pooling 

 Rapid Elasticity 

 Measured Service 

Cloud computing can be considered include the three levels of service: 

Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a 

Service (SaaS) [3]. 

 Infrastructure as a Service (IaaS): Users can follow the required level of 

computer and network equipment and other resources, to the service 

provider subscription service, and may require changes to settings, and 

provider by users of the CPU, memory, Disk space, network load to 

calculate the costs. 
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 Platform as a Service (PaaS): development of services vendors who rent to a 

computer, this computer has all the necessary hardware and software 

developers environment; or to provide application developers to marker, in 

accordance with the amount of traffic with the use of resource Developer 

fees. 

 Software as a Service (SaaS): the software stored in the data center to 

provide users network access services, according to provide or 

pay-per-order the type of charge. 

Mosso

Google App 

Engine

Rails One

Joyent

Amazon Web 

Svcs

Niranix

Xcalibre

Akamai

Salesforce

Gmail

Gliffy

PaaS SaaS Iaas

Cloud Computing

Grid Computing

Utility Computing

Cluster Computing Super Computing

Infrastructure
 

Figure 2-1. Architecture of Cloud Computing 
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2.2. Virtualization 

Virtualization technology [8] is a technology that creation of a virtual version of 

something, such as a hardware platform, operation system, a storage device or 

network resources. The goal of virtualization is to centralize administrative tasks 

while improving scalability and overall hardware-resource utilization. By using 

virtualization, several operating systems can be run on a single powerful server 

without glitch in parallel. The virtualization diagram is shown on Figure 2-2. 

Hardware 

Hypervisor

Virtual 

hardware

Virtual 

hardware
Virtual 

hardware

Guest OS Guest OS Guest OS

Application Application Application

 

Figure 2-2. Virtualization Diagram 
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Figure 2-3. The General Operation System 

 

The case of the general operation of the operation system is shown on Figure 2-3, 

the protection of instruction, there are four different levels of permissions. The user’s 

applications are the implementation of the Ring 3 in the CPU part, and the 

implementation of the operating system and then operate in Ring 0 in the control of 

CPU and hardware, the hardware is in direct implementation by the operating system 

and user application are to the instructions. 
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Figure 2-4. The Virtualization Operation System 

 

Figure 2-4 shows the virtualization operation system. User’s applications are 

still the implementation of the Ring 3, and the virtual operation system (Guest OS) is 

the implementation of the Ring 1. The original operation system becomes a Virtual 

Machine Manager (VMM). Guest OS is not to be executed directly by the CPU, but to 

use VMM making a translation to CPU and other hardware for the implementation.. 

2.2.1. Full-Virtualization 

Unlike the traditional way that put the operation system kernel to Ring 0 level, 

full-virtualization use hypervisor instead of that. Hypervisor manage all instructions 
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to Ring 0 from Guest OS. Full-virtualization [9] uses the Binary Translation 

technology to translate all instructions to Ring 0 from Guest OS and then send the 

requirement to hardware. Hypervisor virtualized all hardware until, Guest OS access 

the hardware just like a real machine. It has highly independence. But Binary 

Translation technology reduces the performance of virtual machine. 

Hardware

Host OS

Hyperviosr

Guest OS Guest OS Guest OS…
…

 

Figure 2-5. Full-Virtualization 
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2.2.2. Para-Virtualization 

In para-virtualization [10], does not virtualize all hardware until. There is a unique 

Host OS called Domain0. Domain0 is parallel with other Guest OS and use Native 

Operating System to manage hardware driver. Guest OS accessing the real hardware 

by calling the driver in Domain0 through hypervisor. The requirement sent by Guest 

OS to hypervisor is called Hypercall. To make the Guest OS sending the hypercall 

instead of sending requirement directly to hardware, the Guest OS’s kernel needs to 

rewrite, so that some non-open-sourced operation systems can not support. 

Unlike full-virtualization using Binary Translation, para-virtualization let the 

Guest OS using hardware through Domain0. Although the performance of virtual 

machines enhance obviously, but the driver of hardware is binding on Domain0, and 

the kernel on Guest OS needs to rewrite, the independence is lower than 

full-virtualization. 

Hardware

Driver+Hypervisor

Modified 

Guest OS 

Domain1

Modified 

Guest OS 

Domain2

Modified 

Guest OS 

DomainU
……Modified 

Host OS 

Domain0

 

Figure 2-6. Para-Virtualization 
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2.2.3. Xen 

There are two types of host virtualization software shown in Figure 2-7, Host OS 

type and Hypervisor type. The VM Layer of Host OS type deploys on Host OS, such 

like Windows or Linux, and then install other operation system on top of VM Layer. 

The operation systems on top the VM Layer are called Guest OS. Xen’s hypervisor is 

installed directly in the host, and the other operation systems we want deploy are on 

top of it. It is easier to manage CPU, Memory, Network, Storage and other resource. 

The main purpose of Xen [11] uses hypervisor type and its VMM (Virtual Machine 

Monitor) is more efficient and safety to control the host CPU, Memory and other 

resource. 

VM Layer

Host OS

Server

Guest OS

VM Layer

Full Virtualization

Server

Guest OS 

Need to  configuration

Hypervisor typeHost OS type

VM Layer

Full Virtualization

Server

Guest OS 

Need to  configuration

VM Layer

Full Virtualization

Server

Guest OS 

Need to  configuration

 

Figure 2-7. Host and Hypervisor Type 

 

There are two types of hypervisor that Xen uses, Para-Virtualization and 

Full-Virtualization. The feature of these two types virtualization is at the section 2.2.1 

and section 2.2.2. 
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Figure 2-8. Domain0 and DomainU 

Xen uses an unit called Domain to manage virtual machines. Domain is divided 

into two types as shown in Figure 2-8, one of them is called Domain0, played like 

Host OS, has control AP of Xen, used for management. Another type called DomainU 

is a field that Guest OS installed on it. When using physical resource, DomainU can 

not call the hardware driver directly, it must be through Domain0 to deal with. 

In industry, Xen have been used in SUSE Linux Server (SLES) by Novell 

company and in Red Hat Enterprise Linux (RHEL) and in other commercial Linux 

version. In addition, Oracle also introduced a virtualization product called Oracle VM, 

and xVM Server released by Sun Microsystem, all base on Xen. That is shown that 

Xen have been supported by the system vendors widely in many virtualization 

software. 

 

2.2.4. KVM 

Kernel–based Virtual Machine (KVM) [12] is a part of architecture in Linux core. For 

now, KVM support native virtualization architecture, and hardware-assisted 
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virtualization is supported by CPU. This virtualization technology in Intel is called 

VT-x, and in AMD is called AMD-V. These two CPUs use different module to support 

KVM, kvm-intel.ko and kvm-amd.ko in Linux. 

Currently KVM is running only on i386/x86_64 CPU in the system. Running on 

PowerPC and IA64 are still in development. Linux kernel have been include KVM 

since 2.6.20 and later. FreeBSD uses the way that kernel module to support KVM. 

KVM’s architecture consists of two parts: 

 Kernel Device Driver – Used to manage and simulation virtual machine 

hardware. 

 User Space Process – QEMU is a PC hardware emulator, become kqemu 

after modified by KVM. 

Normal User 

Process

Normal User 

Process

KVM Driver

Guest 

mode

Guest 

mode

Qemu I/O Qemu I/O

Linux Kernel

 

Figure 2-9. Architecture of KVM 

 

2.3. CUDA 

CUDA (Compute Unified Device Architecture) [6][13][14][15][16][17][18][19] is 
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architecture of parallel computing developed by NVIDIA. It is an official name that 

NVIDIA face to GPGPU. It is the first time that use C-complier as a develop 

environment for GPU. CUDA’s programming model maintains a low learning curve 

for programmer familiar with standard programming languages such as C and 

FORTRAN shown in Figure 2-10. The architecture of CUDA is compatible with 

OpenCL [20][21][22] and C-complier from its own. The instructions are transformed 

into PTX code by driver no matter they come from CUDA C-language or OpenCL, 

and then calculate by graphics cores. 

 

Figure 2-10. CUDA Programming Model from nVidia[2] 
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Figure 2-11. Processing Flow on CUDA from Wiki[16] 

 

CUDA’s processing flow is described in Figure 2-11. The first step: to copy the 

data which are on the main memory of CPU to the memory of GPU. The second: to 

instruct the process to GPU by CPU. The third: to parallel execute in each core on 

GPU. The last: to copy the result from the memory of GPU to the main memory of 

CPU. 

 

2.4. Virtualization on GPU 

Virtualization is more and more popular in recent days. The requirement of 

virtualization is also increase. Common virtual machines are inadequate for our use, 
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because the environment of the virtual machines is through virtualization after all. 

Figure 2-12 and Figure 2-13 show the two common virtual types to emulate devices 

and how to support I/O. 

Hardware Platform

Hypervisor (VMM)

User -space device 

emulation
Guest OS (VM) Guest OS (VM)

Physical device

Physical driver

Emulated device Guest driver Guest driver

 

Figure 2-12. User Space Device Emulation 

 

Figure 2-12 shows that the virtualization of user-space device emulation. Guest 

OS most through the emulated device created in Host OS to communicate with 

physical device. Rather than the device emulation being embedded within the 

hypervisor, it is instead implemented in user space. QEMU [23] which provides not 

only device emulation but a hypervisor as well, provides for device emulation and is 

used by a large number of independent hypervisors such as Kernel –based Virtual 

Machine (KVM) and VirtulaBox [24]. 
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Figure 2-13. Hypervisor-Based Device Emulation 

 

Figure 2-13 shows the other way to emulate devices. All devices or I/O in the 

virtual machine are emulated by hypervisor. This is a common method implemented 

within an operation system-based hypervisor. In this model, the hypervisor includes 

emulations of common devices that the various guest operating systems can share, 

including virtual disks, virtual network adapters, and other necessary platform 

elements. 
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Figure 2-14. Pass-through within the Hypervisor 

 

Unlike the two kinds of emulation of devices before, device pass-through is 

about providing an isolation of devices to a given guest operating system shown in 

Figure 2-14. Assigning devices to specific guests is useful when those devices can not 

be shared. For performance, near-native performance can be achieved using device 

pass-through.  

2.5. Green Computing 

Green computing [25][26] is to effectively use the resources such as implementation 

of energy-efficient CPU, servers and peripherals as well as reduce resource 

consumption. Green computing use virtualization technology and power management 

to reach energy saving and carbon emission reduction. Virtualization is one of the 
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most effective tools for more cost-effective, greener-energy efficient computing where 

each server is divided into multiple virtual machines that run different applications. 

2.6. Related Work 

In recent years, virtualization environment on Cloud become more and more popular. 

The balance between performance and cost is the most important point that everybody 

focused. For more effective to use the resource on the server, virtualization 

technology is the solution. Running many virtual machines on a server, the resource 

can be more effective to use. But the performance of virtual machines has their own 

limit. Users will limited by using a lot of computing on virtual machine. Therefore, 

there is a new topic that let the virtual machines using the physical GPGPU 

(General-Purpose computing on Graphics Processing Units) in the real machine to 

help computing. 

There are some approaches that pursue the virtualization of the CUDA Runtime 

API for VMs such as rCUDA[27][28][29], vCUDA[30], GViM[31] and gVirtuS[32]. 

The solutions feature a distributed middleware comprised of two parts, the front-end 

and the back-end[33]. 
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Figure 2-15. Front-End and Back-End 

 

Figure 2-15 shows that the front-end middleware is installed in the virtual 

machine, and the back-end middleware with direct access to the acceleration hardware, 

is running by host OS with executing the VMM. 

rCUDA using Sockets API to let the client and server have communication with 

each other. And client can use the GPU on server through that. It is a production-ready 

framework to run CUDA applications from VMs, based in a recent CUDA API 

version. We can use this middleware to make a customized communications protocol 

and is independent [27]. The architecture is shown in Figure 2-16. 

Unlike rCUDA, GViM and vCUDA are not at expense of losing VMM 

independence. 
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Figure 2-16. Architecture of rCUDA 

 

The key idea in vCUDA is: API call interception and redirection. With API 

interception and redirection, applications in VMs can access graphics hardware device 

and achieve high performance computing applications. It allows the application 

executing within virtual machines to leverage hardware acceleration. They explained 

how to access graphics hardware in VMs transparently by API call interception and 

redirection. Their evaluation showed that GPU acceleration for HPC applications in 

VMs is feasible and competitive with those running in a native, non-virtualized 

environment [30]. The architecture is shown in Figure 2-17. 
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Figure 2-17. The vCUDA Architecture 

 

GViM is a system designed for virtualization and managing the resources of a 

general purpose system accelerated by graphics processors. GViM uses Xen-specific 

mechanisms for the communication between front-end and back-end middleware. The 

GViM virtualization infrastructure for a GPGPU platform enables the sharing and 

consolidation of graphics processors. Their experimental measurements of a 

Xen-based GViM implementation on a multicore platform with multiple attached 

NVIDIA graphics accelerators demonstrate small performance penalties for 

virtualized vs. non-virtualized settings, coupled with substantial improvements 

concerning fairness in accelerator use by multiple VMs [31]. 

VMGL [34] is the OpenGL hardware 3D acceleration for virtual machines, 

OpenGL apps can run inside a virtual machine through VMGL. VMGL can be used 

on VMware guests, Xen HVM domains (depending on hardware virtualization 

extensions) and Xen paravirtual domains, using XVnc or the virtual frame buffer. 
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VMGL is available for X11-based guest OS's: Linux, FreeBSD and OpenSolaris. 

Finally, VMGL is GPU-independent: we support ATI, NVidia and Intel GPUs. 

In J. Duato’s work, he uses remote GPU for virtual machine. Although his 

virtualization technique noticeably increases execution time when using a 1 Gbps 

Ethernet network, it performs almost as efficiently as a local GPU when higher 

performance interconnects are used. Therefore, the small overhead incurred by our 

proposal because of he remote use of GPUs is worth the savings that a cluster 

configuration with less GPUs than nodes reports [29]. 

Atsushi Kawai and Kenji Yasuoka proposed DS-CUDA, a middleware to 

virtualize a GPU cluster as a distributed shared GPU system. It simplifies 

development of a code that uses multiple GPUs distributed on a network. Results with 

good scalability were shown in their paper. Also the usefulness of the redundant 

calculation mechanism is confirmed. 
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Chapter 3  

System Implementation 

3.1. System Architecture 

To use GPU accelerator on virtual machines, this thesis plans using PCI-pass-through 

to implement the system for better performance. For performance, near-native 

performance can be achieved using device pass-through. This technology is perfect 

for networking applications or those that have high disk I/O or like using hardware 

accelerator that have not adopted virtualization because of contention and 

performance degradation through the hypervisor. But assigning devices to specific 

guests is also useful when those devices can not be shared. For example, if a system 

included multiple video adapters, those adapters could be passed through to unique 

guest domains. 

VT-d Pass-Through is a technique to give a DomU exclusive access to a PCI 

function using the IOMMU [35] provided by VT-d. It is primarily targeted at HVM 

(fully virtualized) guests because Para-Virtualized pass-through does not require 

VT-d .There is an important thing that your hardware must support that. In addition to 

the motherboard chipset and BIOS also your CPU must have support for IOMMU IO 

virtualization (VT-d). VT-d is disabled by default, to enable it, need 'iommu' 

parameter to enable it. 

 

Figure 3-1. IOMMU On 
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Figure 3-2. System Architecture 

 

This thesis using Xen or KVM as a hypervisor. And implement PCI passthrough 

passing through the GPUs to those virtual machines on the hypervisor in the whole 

system. Figure 3-3 shows the user’s architecture. Users can through the internet to 

use the GPU accelerator when the GPU virtualization environment is setting up.  
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Figure 3-3. User Architecture 

3.2.  Tesla C1060 Computing Processor Board 

The NVIDIA Tesla™ C1060 [36] transforms a workstation into a high-performance 

computer that outperforms a small cluster. This gives technical professionals a 

dedicated computing resource at their desk-side that is much faster and more 

energy-efficient than a shared cluster in the data center. The details of NVIDIA 

Tesla™ C1060 computing processor board’s specification is shown below. 

 One Tesla T10 
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 240 CUDA cores 

 1.296 GHz core frequency 

 933 Gflops Single Precision 

 78 Gflops Double Precision 

 4 GB GDDR3 memory at 102 GB/s bandwidth 

 800 MHz memory frequency 

 

A computer system with an available PCI Express ×16 slot is required for the 

Tesla C1060. For the best system bandwidth between the host processor and the Tesla 

C1060, it is recommended (but not required) that the Tesla C1060 be installed in a 

PCI Express ×16 Gen2 slot. The Tesla C1060 is based on the massively parallel, 

many-core Tesla processor, which is coupled with the standard CUDA C 

programming [15] environment to simplify many-core programming. The architecture 

of Tesla T10 is shown in Figure 3-4. 
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Figure 3-4. Tesla T10 
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3.3. Tesla C2050 Computing Processor Board 

The NVIDIA Tesla™ C2050[38] is based on the next-generation CUDA™ 

architecture codenamed “Fermi”, the 20-series family of Tesla GPUs  support many 

“must have” features for technical and enterprise computing including c++ support, 

Ecc memory for uncompromised accuracy and scalability, and a 7X increase in 

double precision performance compared Tesla 10-series GPUs. 

Compared to the latest quad-core CPUs, Tesla C2050 computing Processors 

deliver equivalent supercomputing performance at 1/10th the cost and 1/20th the 

power consumption. The specification is shown below. 

 One Tesla core 

 448 CUDA cores 

 1.15 GHz core frequency 

 1.03 Tflops Single Precision 

 515 Gflops Double Precision 

 3GB GDDR5 memory at 144 GB/s bandwidth 

 1.5 GHz memory frequency 

3.4. End User’s Operating Interface 

When users create a virtual machine and pass the GPU through to virtual machine 

successful, users can through an application called “virtual machine manager” in 

Linux to see the result. In Figure 3-5, the GPU pass-through is successful and virtual 

is running.  
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Figure 3-5. PCI Pass-through Successful 

 

On the other way, users can also use pietty or VNC. Users must be prepared to 

internet connection and VNC connection, and then set the IP and port as long as you 

can connect to the virtual machine. In the console, users can use the command “lspci” 

to see the PCI pass-through is working or not. The setup is shown in Figure 3-6, 

Figure 3-7 and Figure 3-8. 



 

30 

 

 

Figure 3-6. Shows in Pietty 

 

 

Figure 3-7. Shows in VNC 
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Figure 3-8. Using lspci 

 

3.5. System Environment 

Previously, we have conducted the design principle and implementation methods. We 

present here several experiment conducts on two machines. The node’s hardware 

specification is listing in Table 3-1. 

 

Table 3-1. Hardware/Software Specification 

Hardware/Software Specification 

 CPU Memory Disk OS Hypervisor GPU 

Node1 Xeon 

E5506 

12GB 1TB CentOS 

6.2 

Xen Quadro 

NVS 295/ 

Tesla 

C1060/ 

Tesla 

C2050 



 

32 

 

In Table 3-1, we use two machines with the same hardware specification. And 

the hypervisor which one is Xen, another is KVM. The purpose is compare the 

performance between these two hypervisor using PCI pass-through with the same 

GPU. Quadro NVS 295 [37] is using for primary graphics card. Tesla C1060 is the 

one we using for computing and passing through to virtual machine. 

 

Table 3-2. Hardware/Software Specification of Virtual Machine 

Hardware/Software Specification of Virtual Machine 

 CPU Memory Disk OS Hyperviso

r 

GPU Virtualizatio

n 

VM1 1,2,4 1GB 12GB CentOS6.2 Xen Quadro 

NVS 

295 

Full 

VM2 1,2,4 1GB 12GB CentOS6.2 Xen Tesla 

C1060 

Full 

VM3 1,2,4 1GB 12GB CentOS6.2 Xen Tesla 

C2050 

Full 

 

Table 3-2 is the hardware/software specification of virtual machines. We create 

three virtual machines with the same specification but in different CPU number and 

different GPU. We want discuss that the CPU number will or not affect the 

performance of virtual machine in PCI pass-through. So we will use 1, 2 or 4 CPUs in 

our virtual machine to see the difference between each other. These of two virtual 

machines’ virtualization type are full, because we found out that PCI pass-through is 

not working in para-virtualization in our research. Table 3-3 shows the GPU software 
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environment. 

Table 3-3. GPU Software Environments 

GPU Software Environments 

Driver 285.05.33 

Cuda toolkit 4.1.28 

CUDA SDK 4.1.28 
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Chapter 4  

Experimental Methods and Results 

4.1. Experimental Methods 

We set up ten comparison benchmarks: alignedTypes, asyncAPI, BlackScholes, clock, 

convolutionSeparable, fastWalshTransform, matrixMul, Bandwidthtest, 

matrixmul-sizeable and VecAdd. The first seven benchmarks are ports of CUDA SDK 

[13]. From benchmarks in the suite, we select 7 representative SDK benchmarks of 

varying computation loads and data size which use different CUDA features. These 

benchmarks are executed with the default. Another two benchmarks are selected as 

matrixmul-sizeable and VecAdd which the problem size can be set with high 

computation loading. All SDK benchmarks’ execution time is measured by the 

command ‘time’ in the CentOS [39]. Table 4-1 shows the data transfering size of each 

benchmark. 

  

Table 4-1. Data transfers of Benchmarks 

SDK name Data transfers 

Aligned Types 413.26MB 

Async API 128.00MB 

Black Scholes 76.29MB 

Clock 2.50KB 

Convolution Separable 36.00MB 

Fast Walsh Transform 64.00MB 
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Matrix Mul 79.00KB 

 

The first experiment is the comparison between native and virtual machine 

performance. We present how much GPU performance reduced with PCI 

pass-through. The second experiment is the comparison between virtual machines 

with 1 CPU, 2 CPUs and 4 CPUs performance whether presenting CPU numbers in 

virtual machines would affect the GPU performance or not. The final experiment is 

the comparison between the two common virtualization hypervisors performance. We 

will display which one has better GPU performance with PCI pass-through than the 

others. 

4.2.  Experimental Results 

We first analyze the performance of the CUDA SDK benchmarks running in a VM 

using PCI pass-through, and compare their execution times with those in a native 

environment —i.e., using the regular CUDA Runtime library in a non-virtualized 

environment. The results of these experiments are reported as below. 
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Figure 4-1. Execution Time between Native and VM with C1060 

 

 

Figure 4-2. Execution Time between Native and VM with C2050 
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Figure 4-3. Execution Time between Native and VM with NVS295 

Figure 4-1, Figure 4-2 and Figure 4-3 show that the execution time on 

processing the SDK benchmark in native and virtual machine using one CPU on Xen. 

We can see the real time of these benchmarks on virtual machine is less than native 

machine. 
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Figure 4-4. Execution Time between 1 Core and 2 Core VM with C1060 

 

 

Figure 4-5. Execution Time between 1 Core and 2 Core VM with C2050 
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Figure 4-6. Execution Time between 1 Core and 2 Core VM with NVS295 

Figure 4-4, Figure 4-5 and Figure 4-6 show that the different execution time 

between virtual machines which has one CPU, and the other has two CPUs. In this 

figure, we can see that the number of CPUs does not affect the user time, which 

means the GPU computing time is not changed when CPU increases from one to two. 

 

Figure 4-7. Execution Time between 2 Core and 4 Core VM with C1060 
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Figure 4-8. Execution Time between 2 Core and 4 Core VM with C2050 

 

 

Figure 4-9. Execution Time between 2 Core and 4 Core VM with NVS295 

Figure 4-7, Figure 4-8 and Figure 4-9 show that the execution time between 

two CPUs and four CPUs in virtual machines based on Xen. In this figure, it is 

obvious to see that the number of CPU does not affect the performance of GPU. 

From Figure 4-1 to Figure 4-9, we can demonstrate the execution time is very 
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close; only the system time is different significantly. 

 

Figure 4-10. User Time with C1060 

 

 

Figure 4-11. User Time with C2050 
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Figure 4-12. User Time with NVS295 

In Figure 4-10, Figure 4-11 and Figure 4-12, we pick the user time in each SDK 

benchmark execution time. The user time in this figure means the GPU computing 

time. No matter the native or virtual machines, the performance of GPU is the same 

even through the PCI pass-through. There is only a slight different between native and 

virtual machines -simply 0.001 second. User time of benchmark called “clock” are all 

under 0.001 second; therefore, it is not obvious to tell in this figure. 
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Figure 4-13. System Time with C1060 

 

 

Figure 4-14. System Time with C2050 
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Figure 4-15. System Time with NVS295 

In Figure 4-13, Figure 4-14 and Figure 4-15, the system time of each SDK 

benchmark. Using the GPU accelerator to help compute and the system inner 

communication is also important. The native machine’s system time is obviously 

much longer than virtual machines.  And system time of the virtual machine with 

one CPU is shorter than the others which means if we run a program with heavily 

GPU computing, we can simply use one CPU in our virtual machine to save more 

resource on the host server for other users. 
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Figure 4-16. Bandwidth Test with C1060 

 

 

Figure 4-17. Bandwidth Test with C2050 
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Figure 4-18. Bandwidth Test with NVS295 

In Figure 4-16, Figure 4-17 and Figure 4-18, the H2D means “Host to Device”, 

the D2H means “Device to Host”. There is another value called D2D, means “Device 

to Device” which the values are almost the same so we skip the discussion here. It is 

more obvious to see the bandwidth of native is higher than others. In this figure, the 

CPU numbers of virtual machines do not affect the bandwidth. PCI pass-through is 

the main reason that really affects some bandwidth between virtual machine and GPU 

accelerator- the virtual machine’s bandwidth is about 400 MB/s lower than native. 
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Figure 4-19. Execution time of VecAdd with C1060 

 

 

Figure 4-20. Execution time of VecAdd with C2050 
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Figure 4-21. Execution time of VecAdd with NVS295 

In Figure 4-19, Figure 4-20 and Figure 4-21, the application is VecAdd. We use 

128, 256, 512 and 1024 to be our problem size. The difference of these four 

environments is very slight. Even the execution time of virtual machine is shorter than 

native machine. We think it is caused by the difference of real machine and virtual 

machine. Besides, the GPU performance results between these four are all the same.  
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Figure 4-22. Execution time of MatrixMul with C1060 

 

 

Figure 4-23. Execution time of MatrixMul with C2050 
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Figure 4-24. Execution time of MatrixMul with NVS295 

In Figure 4-22, Figure 4-23 and Figure 4-24, the execution time of MatrixMul. 

In this figure, we can see the similar result as the previous. The execution times of 

these four environments are very close. The execution time of virtual machine is also 

shorter than real machine. The execution time of problem size 256 is shorter than 0.1 

second so it is difficult to see clear in this figure. 

 

 

Figure 4-25. Compare with rCUDA 
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Figure 4-26. Compare with vCUDA 

Also we compare with rCUDA and vCUDA. Figure 4-25 and Figure 4-26 show 

the comparison. The time in the figure is the time that we minus from the execution 

time before GPU virtualization and after. We use the time after GPU virtualization 

minus before GPU virtualization. The execution time is taken from [27] [30]. From 

these two figures, we can see that using PCI pass-through dose not add too much time. 

Compare with these two technologies, PCI pass-through is more efficient. 
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Chapter 5  

Conclusions and Future Work 

5.1. Concluding Remark 

In our work, we can see the GPU performance is the same in native and virtual 

machine. No matter how many CPUs in virtual machine, the GPU provide the same 

performance by PCI pass-through. Even if we use virtual machine, the system time is 

less than real machine; the system time of the virtual machine with one CPU is less 

than four CPUs. The inner communication in virtual machine is not through the real 

hardware but simply relies on the memory of the real machine. 

Data transfer time is shorter than rCUDA because rCUDA is network related and 

the seed of network is the key of rCUDA. Code needs to be rewriten if using rCUDA, 

but not PCI pass-through. Though rCUDA can let the virtual machine run not only in 

local GPU, but also in remote GPU by network. 

Taking PCI pass-through is more direct if we want to make comparison of 

vCUDA. vCUDA uses the middleware as the connect point but it takes more time 

than PCI pass-through. Using the PCI pass-through to implement that computing with 

GPU accelerator in virtual machines can save more resource but has the same high 

performance in real machine overall. 
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5.2. Future Work 

In the future, we may test more GPU board for PCI pass-through and implement GPU 

hot-plug to virtual machine. GPU hot-plug is very useful for virtual machine and the 

whole system. There is an opensourced monitor system called OpenNebula that the 

interface of virtual machine can be controled through webpage. Therefore, we may 

use OpenNebula to control our virtual machine with GPU PCI pass-through. 
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Appendix 

A. Setup Xen on CentOS 

I. Make sure that SELinux is disabled or permissive 

# vi /etc/sysconfig/selinux 

# reboot 

II. Creating A Network Bridge 

# yum install bridge-utils 

# vi /etc/sysconfig/network-scripts/ifcfg-br0 

III. Modify /etc/sysconfig/network-scripts/ifcfg-eth0 

# vi /etc/sysconfig/network-scripts/ifcfg-eth0 

# /etc/init.d/network restart 

IV. Installing Xen 

# yum install http://au1.mirror.crc.id.au/repo/kernel-xen-release-6-3.noarch.rpm 

# yum install kernel-xen xen 

Edit /boot/grub/menu.lst 

# vi /boot/grub/menu.lst 

Replace the first word ‘kernel’ and ‘initrd’ with module 

Then add the line kernel /xen.gz dom0_mem=1024M cpufreq=xen 

dom0_max_vcpus=1 dom0_vcpus_pin after the root line 

V. Install the libvirt and make a patch 

# yum install libvirt python-virtinst 

# yum groupinstall 'Development Tools' 

# yum install python-devel xen-devel libxml2-devel xhtml1-dtds readline-devel 

http://au1.mirror.crc.id.au/repo/kernel-xen-release-6-3.noarch.rpm
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ncurses-devel libtasn1-devel gnutls-devel augeas libudev-devel 

libpciaccess-devel yajl-devel sanlock-devel libpcap-devel libnl-devel avahi-devel 

libselinux-devel cyrus-sasl-devel parted-devel device-mapper-devel 

numactl-devel libcap-ng-devel netcf-devel libcurl-devel audit-libs-devel 

systemtap-sdt-devel 

# mkdir /root/src 

# cd /root/src 

# wget 

http://vault.centos.org/6.2/os/Source/SPackages/libvirt-0.9.4-23.el6.src.rpm 

# rpm -i libvirt-0.9.4-23.el6.src.rpm 

# wget http://pasik.reaktio.net/xen/patches/libvirt-spec-rhel6-enable-xen.patch 

# cd /root/rpmbuild/SPECS 

# cp -a libvirt.spec libvirt.spec.orig 

# patch -p0 < ~/src/libvirt-spec-rhel6-enable-xen.patch 

# rpmbuild -bb libvirt.spec 

# cd /root/rpmbuild/RPMS/x86_64/ 

# rpm -Uvh --force libvirt-0.9.4-23.el6.x86_64.rpm 

libvirt-client-0.9.4-23.el6.x86_64.rpm libvirt-python-0.9.4-23.el6.x86_64.rpm 

# reboot 

B. Setup PCI passthrough 

I. Enable iommu 

# vi /boot/grub/menu.lst 

Add ‘iommu=1’ at the end of kernel 

http://vault.centos.org/6.2/os/Source/SPackages/libvirt-0.9.4-23.el6.src.rpm
http://pasik.reaktio.net/xen/patches/libvirt-spec-rhel6-enable-xen.patch
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II. Binding Devices to pci-stub 

# lspci –n 

Get the Device ID like ‘01:00.0 0200: 8086:10b9 (rev 06)’ 

Then 

# echo "8086 10b9" > /sys/bus/pci/drivers/pci-stub/new_id 

# echo "0000:01:00.0" > /sys/bus/pci/devices/0000:01:00.0/driver/unbind 

# echo "0000:01:00.0" > /sys/bus/pci/drivers/pci-stub/bind 

Viewing Devices 

# xm pci-list-assignable-devices 

III. Add Devices to VM 

Through a software in linux ‘VM Manager’ or command like  

# virt-install --host-device=HOSTDEVS 

C. CUDA Installation 

I. Download gpu driver from nVidia website 

Install it  

# sh gpudriver.sh 

II. Download cudatoolkit from nVidia website 

Install it 

# sh cudatoolkit.sh 

Setup PATH 

III. Download CUDA SDK from nVidia website 

Install it 

$ sh SDK.sh 
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$ cd SDK/C 

$ make 


