東海大學化學研究所

碩士論文

指導教授:賴英煌 博士

功能性二氧化矽薄膜製備固定化金奈米 粒子

Preparation of Silica-Immobilized Gold Nanoparticles by Photocatalytically Functionalized Silica Thin Film

研究生:陳校偉 撰

中華民國 101 年 6 月

東海大學碩士班研究生

論文指導教授推薦書

化學系碩士班 陳校偉 君所提之論文

功能性二氧化矽薄膜製備固定化金奈米粒子

Preparation of Silica-Immobilized Gold Nanoparticle by Photocatalytically Funtionalized Silica Thin

係由本人指導撰述,同意提付審查。

夏英郡 指導教授 101 年 6 月 26 日

東海大學碩士班研究生 論文口試委員審定書

化學系碩士班 陳校偉 君所提之論文

功能性二氧化矽薄膜製備固定化金奈米粒子

Preparation of Silica-Immobilized Gold Nanoparticle by Photocatalytically Funtionalized Silica Thin

中華民國 101 年 6 月 28 日

摘要

覆載有奈米金屬的中孔二氧化矽材料,在催化、感測器和生化等 領域,具有高度應用潛能。因此,其製備方法為近年研究的關注對象 之一。目前合成此材料之方法,多數將煅燒後的中孔二氧化矽,藉孔 壁改質或孔洞吸附等,承載金屬前驅物,最後將其還原。於本研究中, 我們將以多氧金屬酸化合物 (Polyoxometalates, POM)為嵌埋式催 化劑,光催化還原四氯金酸於二氧化矽薄中。四氯金酸藉由與微胞外 的平衡離子交換進入具介觀結構 (mesostructure) 二氧化矽中。並且 改變模板之鍊長,合成不同晶面間距的二氧化矽材。

小角度 X 光散射(Small Angle X-ray Scattering, SAXS)及穿透式 電子顯微鏡 (Transmission Electron Microscopy, TEM) 圖像結果指 出此二氧化矽薄膜具有二維六角晶形結構 (2D hexagonal)。隨著模 板碳鍊長增長,其(10)晶面間距也增大。合成過程中經紫外—可見光 (UV-vis) 吸收光譜量測,觀察於 540 nm 表面電漿共振吸收峰的增長, 確認金奈米粒子形成。金離子加入薄膜以及金奈米粒子形成會使二氧 化矽薄膜轉變成二維中心矩形結構,長短軸比 a/b 為 1.31; X 光繞射 (X-ray Diffraction, XRD) 結果也證實金奈米粒子生成; 熱重分析 (Thermogravimetric Analysis, TGA) 數據估算奈米金與嵌埋 POM 的 二氧化矽之間重量比約等於 2.8; TEM 圖像顯示金奈米粒徑為 1.7± 0.2 nm ,緊密堆疊於薄膜通道中,且金奈米子均匀分佈於薄膜內。
 本研究提供新的合成路徑,製備覆載於中孔二氧化矽薄膜的金奈米粒子,有高均匀且高負載量的特性,且合成過程不需經熱處理。

Abstract

Nanometal-embedded mesoporous silicas have recently attracted attention due to their potential application in wide range field, such as catalysis, sensing, integrated photonics and biomedical application. Therefore, much research is interested in preparation of these materials. Reduction of metal precursors absorbed on mesopore wall or bound to modified wall of template-removed mesoporous silica was used as main preparation method. In this study, polyoxometalates (POM) were used as immobilized catalyst to photocatalytically reduce chloroauric acid in mesoporous silica. Chloroauric acid ions replace ions in counter anion region between silica wall and surfactant by ion exchange. Different carbon chain length surfactants have also been used to synthesize various *d*-spacing materials.

Results of small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) indicate that the mesostructure of as-synthesized silica thin films are 2D-hexagonal, *p6mm*. The *d*-spacing of mesostrucuture increase while the chain length of used surfactant is increased. The 540 nm surface plasmon resonance increasing during photocatalyticall reduction confirms the formation of gold nanoparticles (GNP). Addition of HAuCl₄ and formation of GNP result the mesostructure of silica film change to 2D-rectangular structure which a/b is 1.31 ; X-ray Diffraction (XRD) results also verify the formation of GNPs. The weight ratio estimated from thermogravimetric analysis (TGA) is 2.8/1 for gold/silica. TEM images show the nanogolds which have mean diameter 1.7 ± 0.2 nm pack closely and uniformly in mesostructure. This study provides a novel synthesis route to prepare high and uniform loading nanometal-embedded mesoporous silicas without heat treatment for template removing.

目錄

第1章	引言15
1.1	多氧金屬酸化合物15
1.2	中孔二氧化矽材料18
1.3	二維矩形(2D RECTANGULAR)結構的中孔二氧化矽23
1.4	界面活性劑鍊長對二氧化矽介觀結構的影響25
1.5	中孔薄膜生長方式
1.6	金屬奈米粒子—中孔二氧化矽材複合材料製備與應用27
1.7	動機
第2章	實驗方法與儀器 34
2.1	藥品
2.2	實驗條件與合成方法
2.	2.1 MCM-41 薄膜製備 35
2.	2.2 含多氧金酸化合物混合薄膜製備 36
2.	2.3 複合薄膜 C _x PMS — HAuCl ₄ 與 C _x PMS — GNP (Gold
Ν	anoparticles)製備
2.3	實驗儀器與原理
2.	3.1 紫外—可見光光譜儀 38

	2.3.2	穿透式電子顯微鏡 3	8
	2.3.3	熱重分析儀 3	9
	2.3.4	掠角入射小角度散射 3	9
	2.3.5	弧光燈4	0
	2.3.6	拉曼光譜 4	1
2.	4 樣品	製備與鑑定4	.3
	2.4.1	紫外—可見光吸收光譜 4	3
	2.4.2	小角度 X 光繞射 4	4
	2.4.3	複合材料於矽基板上的掠角入射小角度 X 光散射 4	4
	2.4.4	臨場小角度 X 光繞射 4	4
	2.4.5	熱重分析	4
	2.4.6	穿透式電子顯微圖像 4	5
	2.4.7	臨場掠角入射小角度 X 光散射 4	5
	2.4.8	表面增強拉曼光譜 4	5
第 3	章	結果與討論 4	:6
3.	1 混合	薄膜光學性質4	.6
3.	2 混合	薄膜之介觀結構 (MESOSTRUCTURE)分析5	0
3.	3 臨場	小角度 X 光散射5	7
3.	4 臨場	掠角小角度散射結果6	0

3.5 PMS-GNP 複合材料結構轉變探討67
3.6 熱重分析
3.7 穿透式電子顯微鏡量測72
3.8 廣角度 X 光繞射量測
3.9 由 TEM 圖像及 X-RAY 繞射估算奈米金之含量
3.10 PMS-GNP 複合材料應用於表面增顯拉曼光譜(SERS)81
第4章 結論
參考文獻

圖表目錄

圖	1.1	POM 催化反應系統,(a) 催化氧化反應與(b) 光催化還原
	反原	度 ^[2] 。
圖	1.2	每年有關 POM 研究文獻的發表篇數。Y 軸為對數標度,代
	表]	POM 研究文獻成指數成長 ^{[2]。} 16
圖	1.3	A. Troupis 以矽鎢酸鉀 $K_4SiW_{12}O_{40}$,製備奈米金屬,其吸收
	光言	普 ^[8] 。coll=colloidal,膠體溶液。17
圖	1.4	中孔材料合成路徑 ^{[10]。} 18
圖	1.5	在酸性、鹼性和中性條件下,無機物與界面活性劑頭基間的
	作月	月力。靜電作用力:S ⁺ I ⁻ , S ⁺ X ⁻ I ⁺ , S ⁻ M ⁺ I ⁻ , S ⁻ I ⁺ ; 氫鍵:S ⁰ I ⁰ /N ⁰ I ⁰ ,
	$S^0(Z)$	XI) ^{0[11]} °
圖	1.6	界面活性劑表面堆積參數示意圖。22
圖	1.7	二維六方與中心矩形晶格之示意圖,(a)二維六方對稱晶格,
	a/b	約 1.73 (b) 中心矩形對稱晶格, a/b 小於 1.73 (c) 中心
	矩刑	6對稱晶格,a/b大於1.73。24
圖	1.8	中孔薄膜各種生長方式 ^{[24]。} 26
圖	1.9	含金奈米粒子的二氧化矽改質玻璃碳電極,在 0.1 M

NaOH 中的循環伏安圖, 葡萄糖含量為 0 mM (虛線) 及 10 mM

	(實線) ^[30] 。2	8
圖	1.10 (a) 1.0×10 ⁻² M 4-巯基吡啶/SBA-15 之拉曼光譜 (b) 1.0×10	_
	⁵ M 4-巯基吡啶/Au/SBA-15 之表面增顯拉曼光譜。2	9
圖	1.11 Au/SiO ₂ 與 Au/SBA-16 循環催化苯甲醇酯化反應之回收	
	率。3	0
圖	1.12 直接混合法合成複合材料示意圖 ^[35] 。	2
圖	1.13 經孔壁改質,結合金屬離子示意圖 ^[37] 。	2
圖	1.14 以內鑲還原劑合成金屬奈米粒子之示意圖 ^[39] 。	2
圖	2.1 C _x PMS-GNP 複合薄膜合成路徑示意圖 (方法二)3	7
圖	2.2 GISAXS 量測方法示意圖 ^{[46]。}	0
圖	2.3 高壓 Xe 燈外觀4	1
圖	2.4 彈性散射與非彈性射,電子能階躍遷示意圖。4	2
卫回	3.1 紫外—可見光吸收光譜: (a) 磷鎢酸 (PTA);四氯金酸	
	(HAuCl ₄);四氯金酸與 C ₁₆ TAB 混合溶液; (b) 未煅燒之中孔	•
	二氧化矽薄膜 (as-MCM-41); C ₁₆ PMS :C ₁₆ PMS-HAuCl ₄ (3.	0
_	$\times 10^{-3} \text{ M}$)	7
圖	3.2 紫外—可見光吸收光譜: (a) 黑線: C ₁₈ PMS,紫線: C ₁₈ PM	S
	$-HAuCl_4$ (b) 黑線: $C_{14}PMS$,紫線: $C_{14}PMS-HAuCl_4$ 。4	8
圖	3.3 C ₁₆ PMS (PTA embedded mesostructure silica)-HAuCl ₄ 複	

	合薄膜進行光催化反應時,不同反應時間之紫外—可見光吸收光
	譜,(a) HAuCl4之 LMCT 與 (b) 金奈米粒子之表面電漿共振吸
	收。49
圖	3.4 C ₁₈ PMS-HAuCl ₄ 複合薄膜進行光催化反應時,不同反應時
	間之紫外—可見光吸收光譜,(a) HAuCl4之 LMCT 與 (b) 金奈
	米粒子之表面電漿共振吸收。50
圖	3.5 (a) 未經煅燒 MCM-41 (模板: C ₁₆ TAB)之小角度 X 光繞射
	圖譜; (b) 二維六角晶形結構示意圖,其中A、B所圍之四邊形
	為單位晶格, a、b 長度比 b/a 為 1.73。52
圖	3.6 C ₁₆ PMS之小角度散射 (SAXS)圖譜,由各種多氧金屬酸
	PTA 與界面活性劑 C ₁₆ TAB 莫耳比例合成: 莫耳比 PTA / CTAB
	$=$ (a) 0.14 (b) 0.070 (c) 0.014 (d) 0.0014 \circ 53
圖	3.7 (a) C ₁₄ PMS、(b) C ₁₆ PMS、(c) C ₁₈ PMS 小角度X光散射圖譜。
圖	3.8 二維六角晶形(<i>p6mm</i>)到二維中矩形(<i>c2mm</i>)相轉變X光散射
	圖譜。圖中紅色六方形與藍色矩形分別表示 p6mm 和 c2mm 之繞
	射。
圖	3.9 C ₁₆ PMS 於矽基板上的 GISAXS 圖樣與 <i>p6mm</i> 倒置晶格 (白
	線)。
圖	3.10 C ₁₆ PMS-GNP 於矽基板上的 GISAXS 圖樣與 <i>p6mm</i> / <i>c2mm</i> 10

臨場小角度 X 光散射圖譜: (a) 熟成 1.5 小時之 C₁₆PMS 圖 3.11 於C₁₆PMS 中加入 HAuCl₄ (於 25 分加入) (c) C₁₆PMS (b) -HAuCl4 經 30 分光催化還原之圖譜 , 左右兩圖分別為不同 q 圖 3.12 臨場小角度 X 光散射圖譜: (a) 熟成 1.5 小時之 C₁₄PMS 於 C_{14} PMS 中加入 HAuCl₄ (於 25 分加入) (c) C_{14} PMS (b) -HAuCl4 經 30 分光催化還原之圖譜 , 左右兩圖分別為不同 q 圖 3.13 臨場小角度 X 光散射圖譜: (a) 熟成 1.5 小時之 C₁₈PMS (b) 於C₁₈PMS 中加入 HAuCl₄ (於 25 分加入) (c) C₁₈PMS -HAuCl4 經 30 分光催化還原之圖譜 , 左右兩圖分別為不同 q 圖 3.14 C₁₆PMS 之 GISAXS 圖形。......61 圖 3.15 C₁₆PMS- HAuCl₄之 GISAXS 圖形, 所加入 HAuCl₄ 濃度 分別為 (a) 1.0×10^{-1} M (S10) 、 (b) 1.0×10^{-2} M (S1) 、 (c) 圖 3.16 C₁₆PMS-GNP之GISAXS 圖形, 所加入HAuCl₄ 濃度分 別為 (a) 1.0×10^{-1} M (S10) 、 (b) 1.0×10^{-2} M (S1) 、 (c)

圖 3.17 S10, In situ GISAXS 延 qz 方向之強度積分圖譜。(a) 熟成 1.5 小時之 C₁₆PMS (b) 於 C₁₆PMS 中加入 1 毫升 1.0 × 10⁻¹

M HAuCl₄ (c) C₁₆PMS-HAuCl₄ 經高壓 Xe 燈照射。......65

圖 3.18 S1, In situ GISAXS 延 q_z 方向之強度積分圖譜。(a) 熟成

1.5 小時之 C_{16} PMS (b) 於 PMS 中加入 1 毫升 1.0×10^{-2} M

HAuCl₄ (c) C₁₆PMS-HAuCl₄ 經高壓 Xe 燈照射。......66

圖 3.19 S0.25, In situ GISAXS 延 qz 方向之強度積分圖譜。(a) 熟

成 1.5 小時之 PMS (b) 於 PMS 中加入 1 毫升 2.5 × 10⁻³ M

HAuCl₄ (c) PMS-HAuCl₄ 經高壓 Xe 燈照射。.....67

- 圖 3.21 熱重損失分析圖譜 : (a) C₁₈PMS 、 (b) C₁₈PMS-GNP、 (c)

- $C_{14}PMS \cdot (d) C_{14}PMS GNP \circ \dots 71$
- 圖 3.22 (a)C₁₆PMS-GNP 複合薄膜之 TEM 影像, (b)(a)中黄

線之線圖譜。......73

圖	3.23(a)C ₁₄ PMS-GNP 複合薄膜之 TEM 影像, (b)(a)中黄線
	之線圖譜。73
圖	3.24(a)C ₁₈ PMS-GNP 複合薄膜之 TEM 影像, (b)(a)中黄線
	之線圖譜。74
圖	3.25 (a)、(b) C ₁₆ PMS-GNP 複合薄膜之 HRTEM 影像 (c) (a)
	圖中,金奈米粒子之局布放大圖,晶面間距為 0.23 nm (d)(b)
	中黃線之數據譜 (line profile)。75
圖	3.26 C ₁₆ PMS-GNP之X光能量散佈(EDX)圖譜。76
圖	3.27 廣角度 X 光粉末繞射圖譜, (a) C ₁₆ PMS-GNP 複合薄膜
	(b) 未經煅燒之 MCM-41 (c)、(d)、(e) C ₁₆ PMS-GNP 繞射訊號
	之契合曲線 (f) 金的繞射峰所在位置78
圖	3.28 金奈米粒子與 c2mm 單位晶格示意圖。
圖	3.29 金奈米粒子於二氧化矽薄膜中之腑瞰示意圖。
圖	3.30 棒狀與球狀奈米金之面積示意圖。80
圖	3.31 C ₁₆ PMS-GNP之 TEM 影像(左)與像素對強度統計圖(右),
	綠色像素強度於 8.0×10 ² 以下(奈米金),所佔比例為 0.231。81
圖	3.32 1.0×10 ⁻² M 4-MBA/C ₁₆ PMS-GNP 的表面增顯拉曼光譜。

表 1.1 界面活性劑堆積參數與中孔結構的關係^{[10]。}......22

表	1.2	由不同鍊長模板合成之 MCM-41 材料,其晶面間距和孔徑大
	小	估計值 ^[23] 。25
表	1.3	覆載不同奈米金屬的中孔二氧化矽與催化應用 ^{[32]。} 31
表	2. 1	藥品資料與縮寫34
表	3. 1	不同 HAuCl4 濃度下合成之複合薄膜,其繞射點位置,
	Sig	mal _{add} 為額外繞射峰64
表	3.2	各樣品熱重分析結果, Final / Initial weight (%) 為不考慮物理
	吸	附水後,樣品之殘留重量百分比。71

第1章 引言

1.1 多氧金屬酸化合物

1826年,Berzelius 初次發表多氧金屬酸化合物,Polyoxometalate (POM)^[1],具有獨特的分子結構及物理化學特性。POM 通常由金屬 氧化物(化學通式:(MO_x)_n)組成,其中 M 為 Mo, W, V 或 Nb,而氧 數目 x 為 4-7^[2]。數個金屬氧化物會與無機酸(如:SiO₄²⁻, PO₄³⁻), 以共角或是共邊的方式,依不同比例聚合形成籠狀化合物。1991年, Pope 和 Műller 發表一篇 POM 的回顧文獻^[3],詳述 POM 在各領域的 高度應用潛力,如催化(包括光催化,圖 1.1)、生化(電子傳導 抑制)、藥物(抗腫瘤、抗病毒)、固態元件等,使得 POM 受到關 注,引起研究熱潮,如圖 1.2。

圖 1.1 POM 催化反應系統, (a) 催化氧化反應與 (b) 光催化還原 反應^[2]。

圖 1.2 每年有關 POM 研究文獻的發表篇數。Y 軸為對數標度,代表 POM 研究文獻成指數成長^[2]。

POM,和金屬氧化物相似,作為氧化劑和電子傳遞跳板的角色, 參與催化反應^[4]。POM 同時具有接收或釋放電子的能力,使其具有 催化還原能力,而各種 POM 的還原電位皆不同。POM 也被稱作可溶 解的陽極^[5],特別在光照下,產生 O 到 M 的電子轉移,可氧化多數 的有機化合物^[6]。過程中,電子逐漸累積至 POM,驅使其還原能力 上升,最後與溶質發生還原反應。。2001 年,A. Troupis 等人將利用 POM 的光催化還原特性,還原銅離子為亞銅離子^[7],如 eq.(1)(2):

$$\mathbf{POM} + \mathbf{S} \xrightarrow{hv} \mathbf{POM} (\mathbf{e}^{-}) + \mathbf{S}_{\mathbf{ox}}$$
(1)

$$POM (e^{-}) + M^{n+} \rightarrow POM + M^{(n-1)}$$
(2)

A. Troupis 等人,於 2002 年更將 POM 此光催化特性,用於奈米

粒子製備,成功將金屬離子(Ag⁺、AuCl⁴⁻、PtCl₆²⁻、Pd²⁺)還原為金 屬原子^[8]。

圖 1.3為A. Troupis 等人以照光後鎢酸鉀離子 SiW₁₂O₄₀⁵⁻溶液製 備奈米金屬之吸收光譜。於具還原性的 SiW₁₂O₄₀⁵⁻溶液中加入 Ag⁺、 AuCl₄⁻、PtCl₆²⁻、Pd²⁺,隨著 730 nm 還原態矽鎢酸離子的吸收峰消 失,溶液逐漸轉為黃 (Ag),紫 (Au),或棕黑色 (Pd、Pt),生成 金屬膠體溶液。

圖 1.3 A. Troupis 以矽鎢酸鉀 K₄SiW₁₂O₄₀,製備奈米金屬,其吸收 光譜^[8]。coll=colloidal,膠體溶液。

1.2 中孔二氧化矽材料

Mobil 公司 (Mobil Corporation)於 1992 年,發表新式中孔二氧 化矽材料^[9]。 因具有高比表面積、高孔隙體積、有序孔洞結構、高 熱穩定性等,此材料受到熱烈關注。孔徑大小可由反應條件與合成方 法控制,範圍約在 15 到 100 Å 。中孔二氧化矽的合成方式,是將界 面活性劑所成的微胞,做為模板。於二氧化矽縮合過程中與模板以自 組裝方式生成具有序結構的二氧化矽;因此晶面間距介於微觀 (<1 nm)與巨觀(>100 nm)之間,便將其稱為介觀結構(mesostructure)。 最後將模板移除,便得到具有孔洞的二氧化矽材料,如圖 1.4。,此 類中孔材料也因合成條件不同,具有多種孔洞結構,如二維六角晶形 (2D hexagonal),空間群 p6mm,三維六角晶形 (3D hexagonal) $P6_3/mmc$,三維立方晶形 (3D cubic) $Pm\bar{3}m$, $Pm\bar{3}n$, 雙連續立方 晶形 (bicontinuous cubic) $Ia\bar{3}d$ 等^[10]。

圖 1.4 中孔材料合成路徑^[10]。

合成中孔二氧化矽過程中,矽酸鹽類與界面活性劑經由自組裝方 式結合。不同種類的界面活性劑具有不同電性,而矽酸鹽在不同 pH 值條件下也會帶有不同電荷。界面活性劑與無機物二氧化矽之間的自 組裝作用力可分為六大類^[11],如圖 1.5。S 為界面活性劑、I 為矽酸 鹽。

- 一、S⁺I⁻:在鹼性條件下,二氧化矽上的矽醇基帶負電。若以陽離 子型界面活性劑進行自組裝,與二氧化矽間則以正負相吸之靜 電作用力,如圖 1.5(a)。
- 二、S⁺X⁻I⁺:在酸性條件下,二氧化矽上的矽醇基帶正電。若採用
 陽離子型界面活性劑,界面活性劑與矽酸鹽會將溶液中的陰離
 子(通常為鹵素離子)作為架橋,產生正負正的靜電吸引力,如
 圖 1.5(b)。
- 三、S⁻M⁺I⁻:與第二類相仿,在鹼性條件下,矽酸鹽上的矽醇基帶 負電荷。若使用陰離子型界面活性劑行自組裝,界面活性劑與 矽酸鹽間會透過溶液中的陽離子(通常是金屬離子)產生負正 負的靜電作用力,如圖 1.5(c)。
- 四、S⁻I⁺:在鹼性條件下,矽酸鹽上的矽醇基帶負電荷。若採用陽 離子型界面活性劑進行自組裝,界面活性劑陽離子與矽酸鹽陰 離子會經產生靜電作用力,如圖 1.5(d)。

- 五、S⁰I⁰:若使用非離子型界面活性劑。在 pH 值在等電點時, 矽酸 鹽呈電中性,界面活性劑與二氧化矽間改以氫鍵為自組裝作用 力,如圖 1.5(e)。
- 六、S⁰(XI)⁰:若使用非離子型界面活性劑。在酸性條件下,矽酸鹽 上的矽醇基帶正電。矽酸鹽與溶液中陰離子進行電荷平衡,並 且與界面活性劑產生氫鍵作用力,如圖 1.5(f)。

由上述六類可見,界面活性劑與矽酸鹽間的自組裝,主要透過靜 電作用力或氫鍵達成,取決於界面活性劑種類及環境 pH 值。

圖 1.5 在酸性、鹼性和中性條件下, 無機物與界面活性劑頭基間的 作用力。靜電作用力: S⁺I⁻, S⁺X⁻I⁺, S⁻M⁺I⁻, S⁻I⁺; 氫鍵: S⁰I⁰/N⁰I⁰, S⁰(XI)^{0[11]}。

通常中孔材料的結構預測與解釋,都以界面活性劑表面堆積參數 說明^[12]。其值常以 g 表示, g = $V/(a_0 \times l)$,V 代表疏水鍊間所佔體 積, a_0 代表親水頭基在微胞表面提供的有效表面積,l則是疏水端的 動態鍊長 (kinetic length),如圖 1.6。當 g 值範圍不同時,預計會 生成不同結構的中孔材料。 g < 1/3 為立方晶形與三維六角晶形, 1/3 < g < 1/2為二維六角晶形, 1/2 < g < 2/3為雙連續立方 晶形,g = 1 則是層狀 (Lamellar)結構。 界面活性劑種類會明顯 影響 g 值範圍,合成條件也是影響因素之一 (如濃度、溫度、pH 值 等),因此合成不同結構中孔材料時,通常使用不同模板或合成條件, 如表 1.1。

圖 1.6 界面活性劑表面堆積參數示意圖。

表 1.1 界面活性劑堆積參數與中孔結構的關係^[10]。

			$g = V/a_0 l \rightarrow$		
< 1/	3	1/3 < 1/5	1/2 < 2/3	1	>1
spherical r	nicelles	cylindrical micelles	3D cylindrical micelles	lamellar micelles	reversed micelles
single-chain s with large he e.g., C_nH_{2n+1} (n = 12) $18B_{4-}$ $C_{n-s-1}(n = 1)$	surfactants adgroups, $N(C_2H_5)_3X$ -18), 3^{-1} , 12-18)	single-chain surfactants with small headgroups, e.g., $C_nH_{2n+1}N(CH_3)_3X$ (n = 8-18)	single-chain surfactants with small headgroups, e.g., CTAB special surfactants with large hydrophobic polar head and double-chain surfactants with large headgroups and flexible chains, e.g., $C_{16}H_{33}(CH_3)_2N(CH_2)(C_6H_5)$, Gemini C_{m-12-m}	double-chain surfactants with small headgroups or rigid, immobile chains, e.g., $C_nH_{2n+1}N(CH_3)_3X$ (n = 20, 22), $C_{16-2-16}$	double-chain surfactants with small groups
SBA-6 (cubic Pm3n)	SBA-7 (3D hexagonal P6 ₃ /mmc)	MCM-41 (2D hexagonal <i>p6mm</i>)	Basic Synthesis MCM-48 (cubic <i>Ia</i> 3 <i>d</i>)	MCM-50 (lamellar structure)	
SBA-1 (cubic Pm3n)	SBA-2 (3D hexagonal P6 ₃ /mmc)	SBA-3 (2D hexagonal <i>p6mmc</i>	Acidic Synthesis	SBA-4 (lamellar structure)	

1.3 二維矩形(2D Rectangular)結構的中孔二氧化矽

相同界面活性劑,在不同溫度、濃度條件下會形成不同結構的液晶相,常見為二維六方晶相(2D hexagonal phase)與層狀相(lamellar phase)。而 在界面活性劑一水所形成的液晶相系統中,將介於二維 六方晶相與層狀相之間的非方晶相稱「中間相」(intermediate phase) ^[13-15]。帶狀相(ribbon phase)為中間相其中一類,由非圓形(橢圓形)的棒狀微胞堆積,形成二維矩形晶格(2D rectangular lattice)^[13-15]。帶 狀相對稱性可分為四類,其中三類為基矩形對稱(primitive rectangular symmetry) p2mm, p2gg, p2, 另一類為中心矩形對稱(centered rectangular symmetry) c2mm^[16]。帶狀相中的中心矩形相,與二維六方晶 相的差異在於晶格長短軸比不同,如下圖。圖 1.7 中 a 軸為單位晶 格中之長軸,b為短軸。二維六方晶相中,長短軸比值為1.73。中心

•

 p6mm c2mm c2mm

 $a/b = \sqrt{3}$ $a/b < \sqrt{3}$ $a/b > \sqrt{3}$

 圖 1.7 二維六方與中心矩形晶格之示意圖,(a) 二維六方對稱晶格,

 a/b約 1.73 (b)中心矩形對稱晶格, a/b小於 1.73 (c)中心矩形

 對稱晶格, a/b大於 1.73。

矩形晶相可視為二維六方晶相之變形,長短軸伸長或壓縮後,使 a/b 比值改變。圖 1.7(b) 可視為 a 軸壓縮或 b 軸伸長,而圖 1.7(c) 則為 a 軸伸長或 b 軸壓縮。根據長短軸的壓縮或伸長比不同,二維中 心矩形會有不同的 a/b 比值^[17-19]。

在一般中孔二氧化矽合成條件下,不易合成具「中間相」結構的 二氧化矽。目前研究文獻中合成二維矩相結構二氧化矽大致以調控溫 度及環境以得到此類的二氧化矽^[20,21],以及使用特殊界面活性劑或共 界面活性劑形成帶狀相的晶胞為主^[17,18,22]。1999 年, Stucky, G. D.等 人使用特殊的雙頭基界面活性劑(gemini surfactants)以及雙頭基共界 面活性劑,分別合成中心矩形結構的中孔二氧化矽,SBA-8及M α 。 其 a/b 比值為 1.5 與 2.06^[17]。2008年,Yang,C.M.等人利用共界面活 性劑,十六烷基三甲基溴化銨(cetyltrimethylammonium bromide)及四 甘醇十二烷醚 (tetraethylene glycoldodecyl ether),合成螺旋狀的二維 中心矩形中孔二氧化矽,MMT-1。可藉由共界面活性劑比例調整 a/b 比值,由 1.73 至 2.73。

1.4 界面活性劑鍊長對二氧化矽介觀結構的影響

1999年, C. G. Sonwane 和 S. K. Bhatia 使用不同鍊長之烷基三甲 基銨鹽(alkyltrimethylammonium halides)(碳數:8-18)為模板,合成各 種晶面間距及中孔直徑大小之 MCM-41 材料^[23],如表 1.2。結果顯 示,隨著模板鍊長增長,其中孔直徑及晶面間距也隨之增加。模板大 小為影響孔徑之重要因素之一。

表 1.2 由不同鍊長模板合成之 MCM-41 材料,其晶面間距和孔徑大 小估計值^[23]。

模板鍊長	(10)晶面間距 ^a	中孔直徑 b
	(nm)	(nm)
C_8	2.89	2.30.
C_{10}	2.92	2.73

C ₁₂	3.12	2.96
C_{14}	3.47	3.38
C ₁₆	3.79	3.78
C ₁₈	4.33	4.36

^a 晶面間距由 XRD 實驗值估計;^b 孔洞直徑自氣體吸附數據估計。

1.5 中孔薄膜生長方式

中孔薄膜因具有高度方向性與有序性,其應用潛力較一般中孔材 料高。此類薄膜生長主要分為兩大類:支撐物成長類型與無支撐物 (free-standing)成長類型,圖 1.8 為中孔洞薄膜材料於基材表面及兩 相界面成長之示意圖。

圖 1.8 中孔薄膜各種生長方式^[24]。

支撐物成長:常用方法為,將含表面活性劑為模版的溶膠,以浸泡塗佈(dip-coating)、旋轉塗佈(spin-coating)或逐層組裝(layer-by-layer, LBL)等技術,塗佈於基材上。運用旋轉及浸泡塗佈技術時,微胞在 支撐物上以有組織的方式堆積,在溶劑揮發過程,誘導模板及無機反 應物自組裝生成中孔材料。無支撐物成長:反應物直接在界面上進行 薄膜成長,空氣-溶液或是不同極性的液-液界面皆可進行孔洞材料 的合成^[25,26]。在氣-液界面中,溶液中的無機物和表面活性劑微胞相 互作用形成較大的液體狀顆粒,最後形成介觀結構 (mesostructure)。 隨著粒子遷移到界面,氣-液界面上便產生薄膜。二維、三維六方堆 積及立方堆積的二氧化矽薄膜都可在空氣及水溶液界面製備。無支撐 物成長的薄膜比起支撐物成長技術,因是透過自發性有序結構的堆積, 效率較高,從奈米到微米尺度中,其成膜速度較快。

1.6 金屬奈米粒子-中孔二氧化矽材複合材料製備與應用

中孔二氧化矽材料自 Mobil 公司 (Mobil Corporation) 於 1992 年 發表以來^[9],因其高度的孔洞有序性、極高的比表面積與孔隙率、高 穩定的物理、化學特性,以及可由反應物或反應條件改變,輕易調節 孔徑大小與結構等特性^[27],引起各研究領域之重視,如催化、吸附、 分離、模板、奈米反應器,藥物傳遞等^[28]。在諸多領域中,有許多研 究嘗試將金屬奈米粒子與中孔二氧化矽材結合,利用中孔材料的高比 表面積、高穩定性等,形成高應用性之複合材料。

此類材料的應用包含,催化、感測 (sensor)、生化等,下面列舉 一些應用例子 。Yu 等人^[29],合成含金奈米粒的中孔二氧化矽,並 用於葡萄糖的電催化氧化,可用於葡萄糖-氧氣燃料電池,和葡萄糖 感測器^[30]。圖 1.9 為葡萄糖感測實驗結果,此方法線性範圍在 0.2 到 70 mM 間,偵測極限 0.1 mM。Lü 等人^[31],也利用 Au 奈米粒/中 孔二氧矽,進行環已烷的選擇性催化氧化研究。結果指出此催化氧化 法,對環已酮產物的選擇性可達 76%,16%為環已醇。此外,最高的 催化轉化數為: 11214 h⁻¹。另外 Taguchi 與 Schüth 也在回顧文獻中 ^[32],整理近年此類材料的催化應用。隨著覆載的奈米金屬改變,中孔 複合材料能催化多種反應,見表 1.3。

圖 1.9 含金奈米粒子的二氧化矽改質玻璃碳電極,在 0.1 M NaOH 中的循環伏安圖,葡萄糖含量為0 mM (虛線)及10 mM (實線)^[30]。

另一方面, Tewodros Asefa 等人, 將 Au/SBA-15 複合材料用於表

面增顯拉曼光譜(Surface enhanced Raman spectroscopy, SERS), 偵 測4-巯基吡啶(Mpy)^[33], 藉奈米金粒子造成的電磁增強作用, 大幅 增強。

圖 1.10 為實驗結果,圖中可見Mpy拉曼訊號經Au/SBA-15增強後, 訊號強度顯著提高,其增強系數 (enhancement factor) 約為 10⁴。低 拉曼訊號強度的分子,經此類複合材料表面增強後,能以拉曼訊號偵 測濃度變化。

圖 1.10 (a) 1.0×10⁻² M 4-巯基吡啶/SBA-15 之拉曼光譜 (b) 1.0×10⁻⁵ M 4-巯基吡啶/Au/SBA-15 之表面增顯拉曼光譜。

於催化領域中,Hengquan Yang 等人將金奈米粒子/SBA-16 複合 材料用於氧化催化,酯化苯甲醇^[34]。下圖為 Au/SBA-16 複合材料與 Au/SiO₂ 奈米金和市售二氧矽,經八次催化後的結果。圖中顯示 Au/SiO₂在第四次反應後,轉化率開始下降,於第七次反應以不具催 化效果。而 Au/SBA-16 經八次反應後,仍維持初始轉化率。SBA-16 於本反應中扮演穩定催化劑的角色,使奈米金屬維持穩定,進而使催 化次數得以增長。

圖 1.11 Au/SiO₂ 與 Au/SBA-16 循環催化苯甲醇酯化反應之回收率。

	Catalysis
Pt	CO oxidation
Dh (Dh Di)	Water-gas shift reaction, alkene hydrogenation
An	CO oxidation
	co oxidation
	CO oxidation
Ru, Ru–Sn, Ru–Pt, Cu–Ru	Hydrogenation
Pd	Heck reaction
	Phenol hydrogenation
Pd, Au	CO oxidation
Со	
Co, Co–Ru	CO hydrogenation, Fischer-Tropsch
Ni	Benzene hydrogenation

表 1.3 覆載不同奈米金屬的中孔二氧化矽與催化應用^{[32]。}

下面列舉幾個方法,常用於合成金屬奈米粒子與中孔二氧化矽材 複合材料:(1)直接混合法(inclusion method):將金屬奈米粒子膠 體溶液與中孔二氧化矽材直接混合,使奈米粒子吸附於孔洞內^[35],如 圖 1.12。(2) 還原孔洞內金屬離子:利用孔洞物理吸附能力^[36],或 將孔壁改質,利用化學鍵結^[37],將金屬離子吸附於孔洞內,再以還原 劑還原孔內金屬離子,如圖 1.13。(3)利用內鑲還原劑(internal reducing agent)還原金屬離子:在孔壁上嫁接(Grafted)還原劑, 使金屬離子於孔洞中還原^[38,39],如圖 1.14。其中以內鑲還原劑方法 所得之金屬,被認為分散性最佳,這是由於還原反應中心位於孔洞中, 金屬容易在孔洞通道中還原,並且堆積生成奈米粒子。相較其它方法, 較能得到分散均勻的奈米粒子。

圖 1.12 直接混合法合成複合材料示意圖^{[35]。}

圖 1.13 經孔壁改質,結合金屬離子示意圖^[37]。

圖 1.14 以內鑲還原劑合成金屬奈米粒子之示意圖^{[39]。}

1.7 動機

上述文章提到,覆载金屬奈米粒子的中孔二氧化矽在催化及感測 器上有高應用潛力^[29-32]。因此,此材料的特性及製備改善極具研究價 值。目前的製備方法中,多數先將剛合成的二氧化矽煅燒。得到中孔 性質後,再金屬前驅物置於中孔內(可能經孔璧改質),最後還原 金屬離子為奈米金屬。於本研究中,我們將 POM 預先與模板結合, 在氣液界面上合成內嵌光催化劑且具介觀結構(mesostructure)的功 化性二氧化矽薄。接著金前驅物以離子交換方式,進入微胞外的平衡 電子區域。最後利用 POM 的光催化特性,還原金前驅物為奈米粒子。 此方法製程簡單,不需經高熱處理流程。並且還原反應中心及前驅物 處在同一區域,我們預期此製備法的奈米金應具有高均勻性及高負載 量。
第2章 實驗方法與儀器

2.1 藥品

本實驗所用藥品為,四乙基矽 (98%)、十六烷基三甲機溴化胺 (98%)(Aldrich), 鹽酸 (32%)、磷鎢酸、異丙醇 (99.5%)(Merck), 四氯金酸 (≧99.9%) (Sigma-Aldrich),藥品詳細資料與縮寫如表 2.1 。實驗用水均為二次去離子水,比阻抗值為 18.2 MΩ・cm 。

表	2.1	藥品	資料	與縮	寫
· · · -		JN	25 1 1	/ Y Y H	

中文名稱	英文名稱	化學式與簡寫	CAS No.	
四乙基矽	Tetraethyl orthosilicate	Si(C ₂ H ₅ O) ₄ TEOS	1978/10/4	
十六烷基三	Cetyltrimethylammoium	CH ₃ (CH ₂) ₁₅ N(CH ₃) ₃ Br	57 09 0	
甲基溴化胺	Bromide	C ₁₆ TAB	57-09-0	
十四烷基三	Myristyltrimethylammoium	CH ₃ (CH ₂) ₁₃ N(CH ₃) ₃ Br	4574 04 2	
甲基溴化胺	Bromide	C ₁₄ TAB	43/4-04-3	
十八烷基三	Octadecyltrimethylammoium	CH ₃ (CH ₂) ₁₇ N(CH ₃) ₃ Br	1120 02 1	
甲基溴化胺	溴化胺 Bromide C ₁₈ TAB		1120-02-1	
鹽酸	Hydrochloric acid	HC1	7647-01-0	

磷鎢酸	Phosphotungstic acid	$H_{3}(PW_{12}O_{40}) \cdot x H_{2}O$ PTA	12067-99-1
四氯金酸	Gold(III) chloride hydrate	HAuCl4 • 3H2O HAuCl4	16961-25-4
異丙醇	2-Propanol, isopropanol	CH ₃ COHCH ₃	67-63-0

2.2 實驗條件與合成方法

2.2.1 MCM-41 薄膜製備

MCM-41 合成參考 J. L. Ruggles 等人的製備條件^[40,41],並稍加修 改。此合成方法以陽離子界面活性劑, C_xTAB 為模板,X = 18、16 或 14;在 HCI 所提供的酸性條件下,加入 TEOS 進行水解縮合反應, 過程中伴隨著二氧化矽、氯離子與 C_xTA^+ 微胞的自組裝。最後,在 氣液界面上形成具二維六角晶形結構之二氧化矽薄膜。詳細實驗步驟 如下,將 0.4g C_xTAB 溶在稀釋後的 HCI 水溶液中,經攪拌使 C_xTAB 溶解。接著在劇烈攪拌下加入 TEOS,並維持攪拌 5 分鐘,將溶液倒 至培養皿中,加蓋,並熟成 24 小時。取出生長於氣液界面之 as-MCM-41 薄膜。使用的化學品莫耳比為 H₂O: C_xTAB : HCI: TEOS = 100: K: 1.6: 0.28 。K = 0.019, 0.10, 0.45 對應 X = 18, 16, 14

2.2.2 含多氧金酸化合物混合薄膜製備

0

多氧金酸化合物混合薄膜,PTA embedded mesostructure silica (PMS)film,在MCM-41的製備過程中,額外加入PTA。將0.4g $C_xTAB 溶在稀釋後的 HCl 水溶液中,經攪拌使 C_xTAB 溶解。加入$ PTA 水溶並攪拌 5 分鐘。接著在劇烈攪拌下加入 TEOS,並維持攪拌 5 分鐘,將溶液倒至培養皿中,加蓋,熟成24 小時。取出生長於氣 液界面之 as-MCM-41 薄膜。使用的化學品莫耳比為 H₂O:C_xTAB: HCl:TEOS:PTA = 100:K:1.6:0.28:0.014。

2.2.3 複合薄膜 C_XPMS - HAuCl₄ 與 C_XPMS - GNP

(Gold Nanoparticles) 製備

於本論文中,C_xPMS-HAuCl₄製備分兩種方法。方法一,將熟成 24 小時之 C_xPMS 薄膜取出,以去離子水離心洗淨兩次。將 C_xPMS
置入 10 毫升 HAuCl₄ 水溶液中,濃度為 3.0×10⁻³、3.0×10⁻⁴ 或 7.5×10⁻⁴ M。靜置 8 小時後,將複合薄膜取出,以去離子水離心洗淨三次。,得 C_xPMS-HAuCl₄。將此薄膜放置於 20 毫升異丙醇中,以

高壓 Xe 燈照射 3 小時, 離心後即為 C_xPMS-GNP。方法二, 在 C_xPMS 合成過程中, 當熟成時間 2 小時後,由薄膜上面緩慢加入 1 毫升 HAuCl₄ 水溶液,濃度為 1.0×10⁻¹, 1.0×10⁻²或 2.5×10⁻³ M。靜置 3.5 小時後,此薄膜為 C_xPMS-HAuCl₄。接著從薄膜上方緩慢加入 500 微升異丙醇。由薄膜上方,以 300W 高壓 Xe 燈照射 1.5 小時,此 薄膜為 C_xPMS-GNP; 合成示意圖如圖 2.1。

圖 2.1 C_xPMS-GNP 複合薄膜合成路徑示意圖 (方法二)

2.3 實驗儀器與原理

2.3.1 紫外--可見光光譜儀

紫外-可見光光譜^[42,43](Ultraviolet-visible spectroscopy, UV-vis spectroscopy)為吸收光譜,波長範圍在紫外光與可見光之間。分析化 學領域經常使用 UV-vis 光譜於各種分析物定量或定性量測。如過渡 金屬離子,高共振結構的有機化合物及生物巨分子。光譜分析通常針 對溶液形態的樣品,不過也有少數用於固態或氣態樣品。過渡金屬溶 液多具有顏色,這是因其 d 電子可以可見光激發,躍升至激發態;而 激發波長受到金屬離子週遭的物質強烈影響,如溶液中的陰離子,與 金屬之配位基 (ligand)。而特定金屬奈米粒子因具有表面漿共振吸 收的特性^[44],在 UV-vis 波段具有吸收光性質,也常經吸收光譜法鑑 定。

本實驗使用 J&M TIDAS S 500 / MCS UV/NIR 光譜儀,波長範 圍: 190 nm 至 1010 nm。

2.3.2 穿透式電子顯微鏡

穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM)為 顯微觀察技術,以電子束照射超薄試片,與試片產生繞射、散射作用。 繞射與散射後的電子束經不同路徑通過透鏡與光圈等,形成明暗對比的影像。影像再以螢光板或 CCD (Charge-coupled device) 相機收集。

JEOL JEM-1400 與 JEM-2100 為本實驗中使用之穿透式電子顯 微鏡,操作電壓分別為 120 KV 與 200 KV。

2.3.3 熱重分析儀

熱重分析(Thermogravimetric analysis, TGA)方法為量測樣品隨 溫度上升時的重量變化。此種方法需要高準確的重量、溫度與溫度變 化分析。當樣品溫度持續升高時,其組成物質開使蒸發,裂解、氧化 等,樣品重量會隨之損失。

本實驗使用 TG 儀器為, Exstar 6000 TG/DTA 6200 , 樣品載盤為 Pt 材質。

2.3.4 掠角入射小角度散射

掠角入射小角度散射(Grazing Incidence Small Angle X-Ray Scattering, GISAXS)為新穎且多功能的奈米量測技術。可觀測薄膜、厚膜表面與基板表面之結構形態。GISAXS 由兩種技術組合成:GID

(Grazing Incidence diffraction),利用反射元件,使X光以極小夾角照射於樣品表面,觀測其繞射現象;SAXS(Small Angle X-ray Scattering),以穿透方式量測樣品結構,其量測範圍約在1至100 nm^[45]。
圖 2.2為GISAXS量測示意圖。

GISAXS 使用國家同步輻射研究中心 (National Synchroton Radiation Research Center) BL23A 實驗站之裝置。X 光能量為 10 keV,入射角為 0.12°。

圖 2.2 GISAXS 量測方法示意圖^[46]。

2.3.5 弧光燈

弧光燈,又稱為電弧燈,是一種人造燈具,以電弧產生光源,屬

於氣體放電燈的一種。含有兩個電極,通常是以鎢製成,在電極之間 以氣體隔開。於燈泡中充填氣體,通常分成氖、氩、氪、氙、鈉、鹵 化物及水銀等,當燈管被點燃後,兩端電極將會因電弧放電而產生光 線。

本實驗所使用的弧光燈為 ORIEL 66983 Xe Arc Source , 功率: 300 w,波長範圍: 200~2500 nm , 如圖 2-19。圖中右側為操控面 板, 左側為燈源, 右側為電源供應器。

圖 2.3 高壓 Xe 燈外觀

2.3.6 拉曼光譜

當光子與物質相互碰撞造成非彈性散射,所產生的光譜稱為拉曼 光譜;見圖 2.4,入射光與物質作用後,基態、振動激發態或轉動激 發態電子受入射光影響,躍遷至受激虛擬態能階。由於受激虛態能階 不穩定,虛態電子會迅速返回較穩定的能階態,並將吸收的能量以光 形式釋放,產生散射光。若虛態電子返回初始能階,則散射光能量等 於入射光能量,為彈性散射,又稱雷利(Rayleigh)散射。若散射光能 量不等於入射光能量,則為非彈性散射。非彈性散射又可分為兩種, 虛態電子降至較初始能階高的能階態時,則為斯托克斯(Stokes)散射, 散射光能量比入射光能量低;虛態電子降至較初始能階低時,稱反斯 托克斯(Anti-Stokes)散射,散射光能量較高。

圖 2.4 彈性散射與非彈性射,電子能階躍遷示意圖。

常溫下,由於處於基態的分子遠多於處在振動激發態的分子,因此 Stokes 訊號比 Anti-Stokes 強許多。拉曼光譜藉由拉曼位移(Raman shift),即入射光與散射光能量差,得知分子的振動和轉動能級。

表面增強拉曼光譜 (Surface-enhanced Raman scattering, SERS),

可將拉曼訊號增強約 10⁶倍。低濃度樣品能獲得高強度拉曼訊號,使 拉曼光譜能用於低濃度樣品的定量分析上。表面增強拉曼機機制可簡 單分為兩類,一是電磁增強(electromagnetic effect),另一為化學增強 (chemical effect)^[47,48]。電磁效應指金屬的粗糙表面與入射電磁波產 生電磁共振及針尖效應,使得表面電場大幅增強。化學效應意指分子 吸附於金屬表面後,產生新的電荷轉移能階,使整體有效極化率增加。 由於電磁效應源於電磁波與粗糙金屬表面相互作用,是一種普遍性的 增強效應,增強因子約在 10⁴至 10⁶。而化學增強效應是指吸附分子 與金屬間的作用,只有特定分子才有化學增強效應。其增強作用較電 磁效應弱,一般增強因子約為 10 到 10²。

本研究使用的拉曼光譜儀為 Uni-Ram, 雷射波長 532 nm。

2.4 樣品製備與鑑定

2.4.1 紫外--可見光吸收光譜

將薄膜樣品分散於水中,置於石英樣品槽內 (寬:45 mm)以穿透 方式量測樣品吸收光譜。波長範圍:200 nm 至 1000 nm。

C_xPMS - HAuCl₄ 光催化反應時間變數量測(Time dependent measurement),將複合薄膜 C_xPMS-HAuCl₄ (方法一,HAuCl₄為
7.5×10⁻⁴ M)浸泡於 20 毫升異丙醇中,以 300W 高壓 Xe 燈照射。在

43

照光時間為0、2、5、11、40、100、180 分鐘時,取出樣品,量測 UV-vis 吸收光譜。

2.4.2 小角度 X 光繞射

將薄膜樣品分散於水溶液中,注射至 SAXS 樣品槽中 (厚度,3 mm)進行量測。

2.4.3 複合材料於矽基板上的掠角入射小角度 X 光散射

將合成之C₁₆PMS 覆載於矽基板上,加入2.5×10⁻³ M HAuCl₄, 進行光照還原反應,分別製備 C₁₆PMS, C₁₆PMS-HAuCl₄, C₁₆PMS-GNP 於矽基板上。

2.4.4 臨場小角度 X 光繞射

合成 C_xPMS 步驟中, 在加入 TEOS 攪拌 5 分後, 取 0.06 毫升至 SAXS 樣品槽中。熟成 1.5 小時後, 加入 0.04 毫升 1.0×10⁻² M HAuCl₄。待 2 小時後, 以高壓 Xe 燈照射 30 分。總反應過程中, 持 續進行量測 (照光時除外)。

2.4.5 熱重分析

薄膜樣品先於 80 ℃下,乾燥3小時。實驗條件,升溫速率:5℃/

min ,分別於100℃與800℃時,持溫10分鐘和20分鐘。

2.4.6 穿透式電子顯微圖像

將薄膜樣品分散於水中,滴於碳膜銅網上,於室溫、室壓乾燥 24 小時。

2.4.7 臨場掠角入射小角度 X 光散射

合成 C_xPMS 步驟中, 在加入 TEOS 攪拌 5 分後, 取 11 毫升至鐵 弗龍樣品槽中, 待熟成 1.5 小時後,由薄膜上方緩慢加入 1 毫升四氯 金酸水溶液,濃度為 1.0×10⁻¹、1.0×10⁻²或 2.5×10⁻³ M。一段時 間後, 從上方加入 0.5 毫升異丙醇,接著以 300W 高壓 Xe 燈照射, 行光催化還原反應。複合薄膜製備過程中,持續進行 GISAXS 量測。

2.4.8表面增強拉曼光譜

將 C₁₆PMS-GNP 浸泡於 3 ml, 1.0×10⁻¹ M 4-MBA 24 小時後,於 80℃下,乾燥 3 小時。將樣品置於矽基板上,量測拉曼光譜。使用的 拉曼光譜儀為 Uni-Ram, 雷射波長 532 nm, 光點大小 1.2 mm, 光強 為 70 mW/cm²。

第3章 結果與討論

3.1 混合薄膜光學性質

本篇論文在合成具介觀結構(mesostructure)二氧化矽薄膜時,加 入多氧金屬酸化合物,PTA,產生新式混合薄膜,C_xPMS,接著與金 屬前驅物作離子交換,透過光催化還原金屬離子;磷鎢酸(PTA)之標 準還原電位為 0.221 V,而 AuCl₄³⁻/Au⁰標準還原電位則是 1.00V。預 期四氯金酸還原反應能進行。

為了確定混合薄膜能如期反應,我們對一系列混合薄膜進行吸收 光譜量測。未經煅燒的二氧化矽薄膜,as-MCM-41與C₁₆PMS互相比 較,如圖 3.1(b),發現C₁₆PMS在275nm有一額外吸收,此為C₁₆PMS 中 PTA之LMCT(Ligand to Metal Charge Transfer)吸收^[49]。其吸收波 長與PTA水溶液(254nm),圖 3.1(a)有些微差距。PTA在C₁₆PMS 中與水溶液中,處於不同環境,且PTA受到四級銨鹽離子之作用, 使得吸收波長紅位移;另一方面,四氯金酸水溶液在216與284nm有 LMCT吸收峰,而當四氯金酸與四級銨鹽界面活性劑結合後,吸收 峰位移至256nm和405nm^[50,51],如圖 3.1(a)。而在圖 3.1(b)、及 中,C₁₆PMS加入HAuCl₄後,在226nm和325nm出現吸收峰,代 表四氯金酸與C₁₆PMS中的陽離子界面活性劑CTA⁺產生靜電作用力。 並且,在圖 3.2中也指出 C₁₈PMS 與 C₁₄PMS 具有 PTA⁻特徵吸收峰。 加入 HAuCl₄後,產生 CTA⁺AuCl₄⁻吸收峰 256 nm 及 408 nm。證實 金屬離子可進入 C_xPMS 中^[50]。

圖 3.1 紫外-可見光吸收光譜: (a) 磷鵭酸 (PTA);四氯金酸 (HAuCl₄);四氯金酸與 C₁₆TAB 混合溶液; (b) 未煅燒之中孔二氧 化矽薄膜 (as-MCM-41); C₁₆PMS :C₁₆PMS-HAuCl₄ (3.0×10⁻³ M)

圖 3.2 紫外—可見光吸收光譜: (a) 黑線: C₁₈PMS,紫線: C₁₈PMS —HAuCl₄ (b) 黑線: C₁₄PMS,紫線: C₁₄PMS—HAuCl₄。

為了進一步證實 C_xPMS-HAuCl₄可藉由光催化法產生 C_xPMS 與金奈米粒子之複合材料,我們對不同照光時間之 C₁₆PMS-HAuCl₄ 混合薄膜進行吸收光譜量測,結果顯示,在照光時間 5 分時,由四氯 金酸與 C₁₆TA⁺貢獻之吸收峰迅速下降,如圖 3.3 (a),指出四氯金酸 在 C₁₆PMS 中的含量快速下降,而隨著照光時間增長,在約 540 nm 處 有一寬廣吸收帶增長。在 C₁₆PMS-GNP 中的金奈米粒子,由 TEM 圖 像 (3.7 節)推測,粒徑小於 2 nm。在此粒徑下,其表面電漿共振吸 收峰極不明顯^[52,53]。若表面電漿共振偶合的現象發生於粒徑小於 5 nm 的金奈米粒子時,會使吸收峰的強度增強及最大吸收波長紅位移^[54]。 因此,圖 3.3 (b) 的吸收增強代表金奈米粒子在 C₁₆PMS 中分佈密度 隨著光催化還原反應進行而提高,粒子間的距離變近,產生表面電漿 共振偶合。圖 3.4為C₁₈PMS-HAuCl4隨照光時間變化之吸收圖譜, 與圖 3.3相同四氯金酸吸收峰隨時間下降,在540nm逐漸出現奈米 金的表面電漿共振吸收。在吸收光譜結果中,圖 3.1、圖 3.3及圖 3. 4, 指出我們所提出C₁₆PMS-GNPs(gold nanoparticles)複合材料合 成路徑可以實現,金前驅物離子會與離子界面活性劑(C₁₆TA⁺)作用, 進入PMS中,而光催化還原反應也如期進行。

圖 3.3 C₁₆PMS (PTA embedded mesostructure silica) – HAuCl₄ 複
合薄膜進行光催化反應時,不同反應時間之紫外—可見光吸收光譜,
(a) HAuCl₄之 LMCT 與 (b) 金奈米粒子之表面電漿共振吸收。

圖 3.4 C₁₈PMS-HAuCl₄ 複合薄膜進行光催化反應時,不同反應時 間之紫外-可見光吸收光譜, (a) HAuCl₄之 LMCT 與 (b) 金奈米粒子 之表面電漿共振吸收。

3.2 混合薄膜之介觀結構 (mesostructure)分析

本研究合成之二氧化矽薄膜屬 Mobil 公司 M41S 系列中的 MCM-41^[9],其中孔結構為二維六角晶型(2D hexagonal),其(10) 面之晶面間距(d_{10})約為 2.7 到 3.5 nm,隨著四級銨鹽界面活性劑碳 鍊長變化^[9,40,55],圖 3.5(a)為未經煅燒 MCM-41(as-MCM-41)之小 角度 X 光繞射分析結果,散射波向量變化 q = $4\pi\lambda^{-1}\sin\theta$,由波長 與散射角 θ 決定,繞射峰位於 q = 0.150 、 0.260 、 0.300 Å⁻¹, 分別為(10)、(11)、(20)晶面之繞射,晶面間距(d-spacing) 為 4.19 、 2.42 、 2.09 nm,且(10)與(11)晶面間距比為 1.73, 屬典型二維六角晶形結構^[9,56]。

0

圖 3.6 為以不同多氧金屬酸化物與界面活性劑莫耳比,合成之 C₁₆PMS,其小角度散射圖譜。當 PTA 含量上升時,於 q=0.180Å⁻¹ 處出現一寬帶繞射峰,PTA 包覆 CTAB 微胞,增強親水端之電子密度, 以致外圈高電子密度之微胞產生繞射訊號^[57],其強度隨著 PTA 量增 多而上升。結果也指出,隨 PTA 含量上升,繞射強度減低。於 PTA/ CTAB 比為 0.070 與 0.14 時,(11) 晶面繞射訊繞消失,兩者都代表 C₁₆PMS 之介觀結構(mesostructure)有序性會隨 PTA 含量增加而降低。 因此,於本研究中,以 PTA/ CTAB 莫耳比 0.0014 條件製備 C₁₆PMS 混合薄膜,而在圖 3.3 吸收圖譜中指出在此條件下,C₁₆PMS 仍具有 光催化還原四氯金酸為金奈米粒子之能力。

圖 3.5 (a) 未經煅燒 MCM-41 (模板: C₁₆TAB)之小角度 X 光繞射 圖譜; (b) 二維六角晶形結構示意圖,其中 A、B 所圍之四邊形為單 位晶格, a、b 長度比 b/a 為 1.73。

SAXS pattern of $\rm C_{16}PMS$ with varios PTA/CTAB ratio

圖 3.6 C₁₆PMS之小角度散射 (SAXS)圖譜,由各種多氧金屬酸
PTA與界面活性劑C₁₆TAB莫耳比例合成:莫耳比PTA/CTAB = (a)
0.14 (b) 0.070 (c) 0.014 (d) 0.0014。

圖 3.7 為不同模板 PMS 的 SAXS 圖譜,圖中可見 C₁₄PMS、 C₁₆PMS、C₁₈PMS 之(10)繞射峰分別位於 q=0.159、0.145、0.132 Å ⁻¹;晶面間距 d=2π/q,各為 3.95、4.33、4.76 nm。隨著模板碳鏈 增長,六角晶形結構的繞射訊繞峰往低q值位移。代表晶面間距隨模 板鍊長增長而增大。

圖 3.7 (a) C₁₄PMS、(b) C₁₆PMS、(c) C₁₈PMS 小角度X光散射圖譜。

圖 3.8 為複合材料 C₁₆PMS、C₁₆PMS-HAuCl₄、C₁₆PMS-GNP 於矽基板上的掠角入射 X 光散射圖譜,可以觀察出三種複合材料的 圖譜有顯著差異。圖譜中,紅色六方形為二維六方晶(*p6mm*)之繞射, 藍色矩形為二維中心矩形(*c2mm*)之繞射^[17,22],其長短軸比值 a/b = 1.31。圖 3.9 及圖 3.10 為 C₁₆PMS 與 C₁₆PMS-GNP 的 GIXSAS 圖 樣,白線及黑線為 *p6mm* 及 *c2mm* 之倒置晶格。由圖中可見,C₁₆PMS -GNP 產生的額外訊號階在 *c2mm* 倒置晶格上,且二維六方晶的(11) 及(02)繞射訊號消失,代表結構幾乎轉為 *c2mm*。

隨著四氯金酸加入,產生低訊號強度的 c2mm 訊號,部份結構開 使由 p6mm 轉為 c2mm,並且有額外訊號峰產生於 q = 0.32 Å⁻¹處。 當金前驅離子還原為金奈米粒子後, q = 0.32 Å⁻¹處訊號消失, c2mm 訊號大幅增強,並且 p6mm 訊號大幅降低,結構幾乎轉為二維 中心矩形。這指出 C_{16} PMS-GNP 合成過程中,結構產生改變,轉變 為二維中心矩形結構。

我們認為在 as-MCM-41 加入四氯金酸,會造成電子密度的改變, 產生 q = 0.32 訊號峰,以及少部份相轉變(p6mm 到 c2mm)。而當 金離子還原為金奈米粒子時,微胞形狀產生改變,整體結構被壓縮, 並且晶格長短軸比例改變。使原本的二維六方晶相幾乎轉為二維中心

矩形相。

圖 3.8 二維六角晶形(p6mm)到二維中矩形(c2mm)相轉變X光散射 圖譜。圖中紅色六方形與藍色矩形分別表示 p6mm 和 c2mm 之繞射。

圖 3.9 C₁₆PMS 於矽基板上的 GISAXS 圖樣與 *p6mm* 倒置晶格 (白線)。

圖 3.10 C₁₆PMS-GNP 於矽基板上的 GISAXS 圖樣與 *p6mm* /*c2mm* 倒置晶格 (白線/黑線)。

3.3 臨場小角度 X 光散射

圖 3.11 為金奈米粒子— C_{16} PMS 複合材料合成時,臨場小角度 X 光散射量測圖譜,當四氯金酸加至 C_{16} PMS 時, C_{16} PMS 其(10)及 (20) 繞射峰由 q = 0.144 、 0.288 Å⁻¹ 往低 q 方向 q = 0.139 、 0.282 Å⁻¹ 位移,代表著晶面間距增大, d_{10} 由 4.36 變為 4.52 nm,這 是由於四氯金酸離子體積較氯離子龐大,當其進入 C_{16} PMS 平衡離子 (counterion) 區取代氯離子後, $C_{16}PMS$ 之二維六角結構被撐大,導 致晶面間距增大^[40],過去也有文獻指出,當 $C_{16}TA^+$ 之平衡離子由 Cl - 換成 Br⁻後,晶面晶會增大。此 q = 0.139 Å⁻¹ 繞射訊號會隨著 時間拉長而降低,並在(10) 繞射峰原處 q = 0.144 Å⁻¹產生訊號 峰,我們認定這是因為 $C_{16}PMS$ -HAuCl₄在 X 光照射下,發生光催化 還原反應。由於四氯金酸含量隨還原反應發生而降低,才使得二維六 角結構回到原本的大小,逐漸驅向照光還原後的結構。並且,在四氯 金酸加入之時,位於 q = 0.320 Å⁻¹處有一新繞射訊號產生,此訊號 應是四氯金酸所貢獻,當高電子密度的金錯合物進至 PMS 介觀結構 中,使得內部電子密度產生變化,進而產生新繞射訊號。而此訊號也 隨著時間增長而降低,代表 X 光可促進光催化還原反應發生。

圖 3.11 及圖 3.12 為 C₁₄PMS 與 C₁₈PMS 的臨場小角度 X 光散 射圖譜。與上述 C₁₆PMS 圖譜相同, C₁₄PMS 與 C₁₈PMS 在四氯金酸 加入之時, 位於 q = 0.345 和 0.294 Å⁻¹處有一新繞射訊號產生。此 訊號峰隨著模板鍊長變長而往低 q 值位移,且與 (10)繞射峰比值約 為 2.2。由此推論,因四氯金酸加入產生的繞射訊號,是由六角晶形 結構的電子密度變化或結構改變所造成。另外,C₁₄PMS 和 C₁₈PMS 六角晶型結構晶面間距變化也與上述之 C₁₆PMS 相同。隨著四氯金酸 離子加入而往低 q 值位移,並且產生新繞射訊號。

圖 3.11 臨場小角度 X 光散射圖譜: (a) 熟成 1.5 小時之 C₁₆PMS (b) 於 C₁₆PMS 中加入 HAuCl₄ (於 25 分加入) (c) C₁₆PMS-HAuCl₄ 經 30 分光催化還原之圖譜 ,左右兩圖分別為不同 q 範圍之 繞射圖譜

圖 3.12 臨場小角度 X 光散射圖譜: (a) 熟成 1.5 小時之 C14PMS

(b) 於 C₁₄PMS 中加入 HAuCl₄ (於 25 分加入) (c) C₁₄PMS –
HAuCl₄ 經 30 分光催化還原之圖譜 ,左右兩圖分別為不同 q 範圍之
繞射圖譜

圖 3.13 臨場小角度 X 光散射圖譜: (a) 熟成 1.5 小時之 C₁₈PMS (b) 於 C₁₈PMS 中加入 HAuCl₄ (於 25 分加入) (c) C₁₈PMS-HAuCl₄ 經 30 分光催化還原之圖譜 ,左右兩圖分別為不同 q 範圍之 繞射圖譜

3.4 臨場掠角小角度散射結果

於 In situ GISAXS 實驗中,藉由改變 HAuCl₄ 濃度,合成三種
 C₁₆PMS-GNP。並觀察四氯金酸與 GNP 對 C₁₆PMS 薄膜結構的影響。
 HAuCl₄濃度: 1.0×10⁻¹ M、1.0×10⁻² M 和 2.5×10⁻³ M,將此三

種樣品命名為 S10、 S1 及 S0.25 PMS。圖 3.14 是 C₁₆PMS 之 GISAXS 圖譜,能見到清楚的繞射點而非繞射環,代表薄膜之介觀結 構具高度方向性。薄膜生長於氣液界面上,由繞射圖譜可得知,介觀 結構為二維六角晶形,柱狀微胞平行於液面,且六角晶形之對角線與 薄膜法線之最小夾角為 30°。於 (01)、(10) 上方,有一寬帶繞射環, 由 PTA 造成。PTA 進入微胞外側並取代平衡離子,使得整體電子密 度改變,造成額外繞射訊^[57,58]。

圖 3.14 C₁₆PMS 之 GISAXS 圖形。

圖 3.15 為 S10、S1 與 S0.25 加入 HAuCl₄ 後的繞射圖形, 從圖中可發現, C₁₆PMS 加入 HAuCl₄後,於 (02) 點上方, q = 0.311、 0.322、0.325 Å⁻¹(見表 3.1),有額外繞射點。且此繞射點強度 隨 HAuCl4濃度上升而上升,可推斷其由 HAuCl4造成。四氯金酸離 子進入 C16PMS後,也造成整體電子密度改變。並且四氯金酸與 PTA 離子體積不同,與微胞頭基間作用力也不同,造成與 PTA 不同之額 外繞射。此外,S10 C16PMS- HAuCl4 繞射圖形變為繞射環,代表 薄膜結構方向性變差。

圖 3.15 $C_{16}PMS - HAuCl_4 之 GISAXS 圖形 , 所加入 HAuCl_4 濃度 分別為 (a) <math>1.0 \times 10^{-1}$ M (S10) 、 (b) 1.0×10^{-2} M (S1) 、 (c) 2.5×10^{-3} M (S0.25) 。

圖 3.16 $C_{16}PMS-GNP \gtrsim GISAXS$ 圖形 , 所加入 HAuCl₄ 濃度分 別為 (a) 1.0×10^{-1} M (S10) 、 (b) 1.0×10^{-2} M (S1) 、 (c) 2.5×10^{-3} M (S0.25) 。

S10、S1、S0.25 C₁₆PMS-GNP 之 GISAXS 繞射,如圖 3.16,結果 可見,於 (01) 上方, HAuCl₄ 造成的額外繞射,經光催化還原反應 後,強度減低。另外 S0.25 經照光後,產生繞射點,於 $q_z = 0.215$ Å⁻¹ 與 $q_{xy} = 0.176$ Å⁻¹ 處,為 c2mm 結構之 (02) 與 (11) 繞射訊號。此 條件下,金奈米粒子形成後 C₁₆PMS 二維六角結構逐漸轉為二維中心 矩形結構 (2D centered rectangular structure),形成混相結構,造成此 二額外繞射點。

表 3.1 不同 HAuCl4 濃度下合成之複合薄膜,其繞射點位置,

Sample	(02) (Å ⁻¹)	(10) (Å ⁻¹)	Signal _{add} 1 (Å ⁻¹)	Signal _{add} 2 (Å ⁻¹)	Water surface (\AA^{-1})
S10 PMS	0.294	0.147			
S10 PMS-HAuCl	0.287	0.144	0.311		
S10 PMS-GNP	0.290	0.145		0.200	
S1 PMS	0.296	0.149			
S1 PMS-HAuCl ₄	0.300	0.150	0.322		
S1 PMS-GNP	0.298	0.149	0.319		
S0.25 PMS	0.296	0.148			
S0.25 PMS-HAuCl ₄	0.300	0.150	0.325	0.215	0.176

Signal_{add}為額外繞射峰

S0.25 PMS-GNP	0.300	0.150		0.214	0.176
------------------	-------	-------	--	-------	-------

圖 3.17、圖 3.18、圖 3.19 為 S10、 S1、 S0.25 ,其 q_z 繞 射強度對時間變化圖。由圖中可確認,HAuCl₄加入 C₁₆PMS 後,在 $q_z = 0.311$ 、 0.322、 0.325 Å⁻¹ 有繞射產生,且強度與四氯金酸濃 度相關。當 HAuCl₄ 還原為金奈米粒子時,此繞射強度降低。另外, 在 S0.25 條件下,金奈米粒子的生成伴隨著結構轉變。這些 GISAXS 結果,都證實本實驗所提合成路徑能確實達成。

圖 3.17 S10, In situ GISAXS 延 qz方向之強度積分圖譜。(a) 熟

成 1.5 小時之 C₁₆PMS (b) 於 C₁₆PMS 中加入 1 毫升 1.0×10⁻¹ M HAuCl₄ (c) C₁₆PMS-HAuCl₄ 經高壓 Xe 燈照射。

圖 3.18 S1, In situ GISAXS 延 qz方向之強度積分圖譜。(a) 熟成
1.5小時之C₁₆PMS (b) 於 PMS 中加入1毫升1.0×10⁻² M HAuCl₄
(c) C₁₆PMS−HAuCl₄ 經高壓 Xe 燈照射。

圖 3.19 S0.25, In situ GISAXS 延 qz 方向之強度積分圖譜。(a) 熟成 1.5 小時之 PMS (b) 於 PMS 中加入 1 毫升 2.5 × 10⁻³ M HAuCl₄
(c) PMS-HAuCl₄ 經高壓 Xe 燈照射。

3.5 PMS-GNP 複合材料結構轉變探討

由 3.2 至 3.4 中可發現 PMS 薄膜在氣液界面(3.4)與矽基板上(3.2) 時,其結構為二維六方晶形, p6mm。若加入四氯金酸並使其還原為 金奈米粒子後(PMS-GNP),部份薄膜結構由二維六方晶形轉為二維 中心矩形, c2mm。四氯金酸進入平衡陰離子區造成微胞與二氧化矽

間的平衡產生變化以致結構轉變。然而,在溶液中,PMS 與 PMS-GNP 皆為二維六方晶形(3.3)。PMS-GNP 在氣液界面上、矽基板上與溶 液中最大不同點為水份含量。在溶液中,二氧化矽與界面活性劑微胞 之間有相當數量的水分子。水分子能穩定微胞與二氧化矽間結構平衡, 使溶液中的 PMS-GNP 保持二維六方晶形。若失去水分子後,微胞 與二氧化矽間平衡呈不穩定狀態。此時,若四氯金酸進入平衡陰離子 區,便會導致結構轉變。我們認為這是造成 PMS-GNP 在不同環境中 結構相異的主因。過去也有學者認為界面活性劑/二氧化矽界面間的 水分子數量是影響介觀結構二氧化矽結構轉變的因素[59]。在氣液界面 上,由於水份揮發,使得界面表層薄膜的水份含量較溶液中的二氧化 矽低。造成 PMS-GNP 在溶液中維持二維六方晶形結構,而氣液界面 上的 PMS-GNP 部份轉變為二維中心矩形結構。另一方面,相較於矽 基板上的乾燥薄膜, 氯液界面上的薄膜仍有較高的水份含量, 使得砂 基板上的 PMS-GNP 薄膜結構轉變較完全。

3.6 熱重分析

圖 3.20 為各樣品之熱重曲線,實驗時溫度範圍為 25-800℃, 升溫速率為 5℃/min,於 100 和 800℃ 時各自維持十與二十分鐘; 熱重損失計算如表 3.2,結果顯示,界面活性劑 C₁₆TAB,在 195 至 495℃ 間有大幅重量損失,這是碳氫鍊及銨鹽的分解,而當溫度達 800 ℃時,殘於重量為 0.05%, C₁₆TAB 盡乎分解。而在各複合二氧化 矽材的結果中,195 至 495 ℃ 也有大幅重量損失,這絕大數是二氧 化矽材中模板分解所致。而 PTA 在 100 ℃ 後有一段 4.28 % 損失, 由 PTA 結晶水分解造成。經初步觀察,PMS 比起未煅燒 MCM-41, 重量損失較低,這是因為 C₁₆PMS 多了 PTA 成份,而 PTA 在 800 ℃ 之重量損失僅為 4.28 %,所以 PMS 整體重量損失較低。同樣,C₁₆PMS —HAuCl₄ 與 PMS 相比,重量損失又更低,基於相同原因,其成份又 多出金奈米粒子,而金奈米粒子於 800 ℃幾乎不會有重量損失,造成 C₁₆PMS—HAuCl₄複合薄膜整體重量損失較 C₁₆PMS 低。

為了進一步估算複合材料中成份之重量百分比,我們先做兩個假設,第一,假設複合材料由100- 800 ℃之重量損失由 C₁₆TAB 與 PTA 造成;第二,假定在複合材料合成過程中,C₁₆TAB 不會損失。我們以 Final / Initial weight (%)為主,在不考慮水的情況下,將各樣品分為兩種成份 A、B 來處理,其中 A_{loss} 為 A 之損失重量比,A_{remain} 為 A 之殘留重量比,B 也是如此,而 A、B 之含量比以 X、Y 表示。得出以下兩式,式 3.1 、 式 3.2:

X + Y = 1 式 3.1+

 $[\]frac{(\mathbf{x} \times A_{remain} + \mathbf{Y} \times B_{remain})}{\mathbf{x}^{(A_{remain} + A_{loss}) + \mathbf{Y}(B_{remain} + B_{loss})}} \times 100\% = \text{Final/initial weight}(\%) \qquad \text{ } \vec{\mathfrak{X}} \quad \textbf{3. } 2$
將兩式代入,解聯立方程後,即可得A、B之含量比,X、Y。將A、 B代入,as-MCM-41 與PTA後可得,C₁₆PMS中PTA重量百分比為 27%,更進一步能算出,PTA與C₁₆TAB之莫耳比值約為0.08,這與 合成時加入的PTA/C₁₆TAB莫耳比 0.014在同一數量級,代表此估 算具一定準確性。另外,將A、B代入,PMS、GNP(gold nanoparticles), 估算金奈米粒子於複合材料中重量比,其中令GNP_{loss}為零,即金奈 米粒子在800℃時無重量損失。粗略估算出GNP/C₁₆PMS重量比為 2.8。同樣,圖 3.21為C₁₈PMS與C₁₄PMS系列之熱重損失分析圖譜, 可估算GNP/C₁₈PMS與GNP/C₁₄PMS重量比各為3.0和2.7。

圖 3.20 熱重損失分析圖譜 : 溫度範圍 25 - 800 ℃,升温速率 為5℃/min,(a) 未煅燒之 MCM-41、(b) C₁₆PMS、(c) C₁₆PMS

與四氯金酸複合薄膜 C₁₆PMS-HAuCl₄、 (d) C₁₆PMS 與金奈米粒 子複合薄膜 C₁₆PMS-GNPs ,0 至 109 ℃時,為吸附水之重量損 失。

圖 3.21 熱重損失分析圖譜 : (a) C₁₈PMS 、 (b) C₁₈PMS-GNP、 (c) C₁₄PMS、 (d) C₁₄PMS-GNP。

表 3.2 各樣品熱重分析結果, Final / Initial weight (%) 為不考慮物理 吸附水後, 樣品之殘留重量百分比。

Sample	Initial temp (°C)	Initial weight (%)	Final temp (°C)	Final weight (%)	Weight loss(%)	Final/ initial weight (%)
MCM-41	109	95.96	800	36.42	59.54	37.95
PTA	109	93.22	800	88.94	4.28	95.41

CTAB	109	99.86	800	0.050	99.81	0.05
PMS	109	94.26	800	51.70	42.56	54.84
PMS- HAuCl4	109	81.83	800	61.12	20.71	74.69
PMS – GNPs	110	75.32	800	66.14	9.18	87.81
C ₁₄ PMS	109	95.04	800	58.57	36.47	61.63
C ₁₄ PMS – GNP	109	84.81	800	76.14	8.67	89.78
C ₁₈ PMS	109	95.84	800	38.96	56.88	40.65
C ₁₈ PMS – GNP	109	76.70	800	68.97	7.73	89.92

熱重分析結果顯示,在複合材料的合成過程中,每當加入新成份, PTA、HAuCl₄、GNP時,複合材料100-800℃重量損失便減少, 這是由於添加的新成份在此溫度範圍的熱穩定性較高,也證實了這些 成份能與二氧化矽材 as-MCM-41 結合,產生新式複合材料。

3.7 穿透式電子顯微鏡量測

圖 3.22 為 C₁₆PMS-GNP 複合材料薄膜進行穿透式電子顯微 圖像,結果可見,延平行薄膜方向有層狀排列,且具有高度有序性; 柱狀模板與薄模平行。其平均晶面間距為 3.2±0.2 nm。圖 3.23 和圖 3.24 為 C₁₄PMS-GNP 與 C₁₈PMS-GNP 之 TEM 圖像。同樣可見 層狀排列。。C₁₄PMS-GNP 晶面間距為 3.0±0.1 nm,而 C₁₈PMS-GNP 晶面間距為 3.6±0.4 nm。SAXS 圖譜與 TEM 圖像皆指出不同模 板之 PMS 具有不同晶面間距,且晶面間距隨著模板鍊長增長而變大, 證實模板大小與介觀結構大小緊密關聯。

圖 3.22 (a) C₁₆PMS-GNP 複合薄膜之 TEM 影像, (b)(a)中黄 線之線圖譜。

圖 3.23(a)C₁₄PMS-GNP 複合薄膜之 TEM 影像, (b)(a)中黄線

圖 3.24(a)C₁₈PMS-GNP 複合薄膜之 TEM 影像, (b)(a)中黄線 之線圖譜。

為了更進一步證實金奈米粒子存在於 PMS 介觀結構中 7,我們對 PMS-GNP 複合材料進行高解析穿透電子顯微鏡(HRTEM)與 X 光 能量散佈(EDX)分析。TEM 與 EDX 是此類材料常用的分析方法,能 觀測金屬原子在材料內的分佈情況^[60]。HRTEM 結果如圖 3.25 。由 圖 3.25 (a) 可清楚觀察出,金奈米粒子以極高密度分佈於 PMS 介觀 結構中,黃圈內即為金奈米粒子,且其粒徑為 1.7±0.2 nm 。圖 3.25 (b)中,可看出,金奈米粒子延著二維結構之通道方向分佈。圖 3.25 (c)為 (b) 放大圖,可觀察到 0.23 nm 晶面間距之 Au (455)面^[61]。且 圖 3.25 (d) 顯示金奈米粒子間呈現有序排列。另一方面,X 光能量 散佈圖譜,圖 3.26 顯示薄膜材料中的元素組成,PMS 主要組成: Si,O,W 以及金屬: Au,證實金粒分佈於 PMS 薄膜中。(EDX 圖譜 中 C, Cu 訊號源自試片基材, 鍍碳銅網)。

圖 3.25 (a)、(b) C₁₆PMS-GNP 複合薄膜之 HRTEM 影像 (c) (a) 圖中,金奈米粒子之局布放大圖,晶面間距為 0.23 nm (d) (b)中黃 線之數據譜 (line profile)。

EDX spectra

圖 3.26 $C_{16}PMS-GNP 之 X 光能量散佈 (EDX) 圖譜。$

3.8 廣角度 X 光繞射量測

為了證實金奈米能分佈於 C₁₆PMS 中,對 C₁₆PMS-GNP 進行廣 度 X 光粉末繞射量,確認此複合材料是否有金的繞射訊號,並且藉 由繞射峰的分析,對金奈米粒子體積大小進行估算。XRD 結果如圖 3. 27 ,未經煅燒之 MCM-41,因其不含金奈米粒子,所以在廣角度並 無繞射訊號;而 C₁₆PMS-GNP 於 38.0°、45.1°、65.1°處各有寬廣 繞射峰。這三個繞射峰分別為金的(111)、(200)、(220)繞射峰。 寬廣的訊號峰表示金奈米粒子的尺寸相當小。藉由 Debye-Scherrer equation,如式 3.3 ,可計算各晶面之晶粒大小 (crystallite size), 其中 K 為常數 0.9,λ為 X 光波長,β 為繞射峰半高寬,θ為布拉格 繞射角^[62]。估算之 (111)、(200)、(220)晶粒大小分別為 8.5 nm、 1.4 nm、1.8 nm。TEM 觀測到的金奈米粒子大小為 1.7± 0.2 nm ,而 TEM 圖像上也可見部份棒狀奈米金。由造成 XRD (111)的估算晶粒 大小 8.5 nm,可推測此奈米棒應是由(111)延伸堆疊而成。由於 $C_{14}PMS-GNP$ 與 $C_{18}PMS-GNP$ 的奈米金之粒徑大小與 $C_{16}PMS-$ GNP 相近,且此粒徑範圍的繞射峰半高寬由 Debye-Scherrer equation 推算,約在 4°到 6°。屬非常寬廣之訊號峰,繞射峰極不明顯。故舉 $C_{16}PMS-GNP$ 的 X 光繞射譜圖為代表性圖譜。 XRD

圖 3.27 廣角度 X 光粉末繞射圖譜, (a) C₁₆PMS−GNP 複合薄膜
(b) 未經煅燒之 MCM-41 (c)、(d)、(e) C₁₆PMS−GNP 繞射訊號之契
合曲線 (f) 金的繞射峰所在位置

3.9 由 TEM 圖像及 X-ray 繞射估算奈米金之含量

由 X 光繞射結果得知,在 PMS 薄膜横截 面中,應可見 c2mm 二維單位晶格,圖 3.28 金奈米粒子與 c2mm 單位晶格示意圖。。圓 形金奈米粒子所佔體積比為 $2\pi r^2 / a \cdot b$, a= 5.98 nm, b=4.58 nm。若由上方腑瞰, 即視 角與 c2mm 單位晶格平行, 如圖 3.29 金奈 米粒子於二氧化矽薄膜中之腑瞰示意圖。。於 估算模型中,先假設奈米金為長方體結構(虛 線)。可得腑瞰圖中,長方體於虛擬晶格之面 積比, 2r. L / 3.61. L。由 TEM 影像中可得知, 奈米金應為粒子狀結構,且粒子間距為 X,如 圖 3.30 棒狀與球狀奈米金之面積示意圖。。x 可由下式求得:

$$\frac{\pi r^2}{4r^2 + 2xr} = \frac{A_p}{A_r}$$

A_p: 虛擬晶格內粒子狀奈米(黃色)所佔面積比
 A_r: 虛擬晶格內圓柱狀奈米金(黃色加橘色)所
 佔面積比

圖 3.28 金奈米粒子與 c2mm 單位晶格示意圖。

圖 3.29 金奈米粒子於二氧化矽薄膜中之腑瞰示意圖。

Ap可由 TEM 圖像估算,得知 x 值後可進一步求得粒子 與圓柱體之體積比:

$$V_{p/r} = \frac{4/3 \cdot \pi r^3}{\pi r^2 \cdot 2r + \pi r^2 \cdot x}$$

金奈米子與二氧化矽重量比即:

$$\frac{2\pi r^2 \cdot L \cdot V_{p/r}}{(a \cdot b - 2\pi r^2) \cdot L} \cdot \frac{\rho_{Au}}{\rho_{silicate}}$$

ρ_{Au}: 金密度,為 19.30 g·cm⁻³

 $\rho_{silicate}$: 二氧化矽密度,為 2.648 g·cm⁻³

由 TEM 圖像中得知, 奈米金粒子平均粒徑為 1.7 nm(半徑為 0.85 nm)。像素對強度統計圖中顯示低強度像素(金)與高強度像素(二氧化 矽)數量比為 0.231, 圖 3.31 C₁₆PMS-GNP 之 TEM 影像(左)與像素 對強度統計圖(右), 綠色像素強度於 8.0×10² 以下(奈米金),所佔比例 為 0.231。。將其帶入上述模型中,可估得金與二氧化矽之重量比為 1.02。

此估算模型中最大誤差來源有兩項。一,PMS內仍含界面活性劑, 二氧化矽所佔實際體積應小於估算體積。二,此模型中的體積計算中,

圖 3.30 棒狀與球 狀奈米金之面積示

意圖。

使用奈米金半徑的算術平均值進行非線性運算。由於奈米金粒徑非單一數值,以平均值進行非線線運算後,會與實際值有顯著的差異。

圖 3.31 C₁₆PMS-GNP之 TEM 影像(左)與像素對強度統計圖(右),線 色像素強度於 8.0×10²以下(奈米金),所佔比例為 0.231。

3.10 PMS-GNP 複合材料應用於表面增顯拉曼光譜

(SERS)

引言中曾提及金屬/二氧化矽複合材料的應用領域,表面增顯拉曼 光譜為其中之一。SERS 是一種良好的定性分析技術,能藉由振動能 譜得知金屬表面分子的資訊。目前常用於 SERS 研究的分子為硫醇、 羧酸、芳香羧酸等。為了探討複合薄膜於表面增顯拉曼分析的應用潛 能,本研究使用 4-MBA 為分析樣品。當 4-MBA 分子與複合薄膜內 金奈米粒子接觸或靠近時,會產生表面增顯作用。圖 3.32 為4-MBA 在 C_{16} PMS-GNP中的表面增顯拉曼光譜。1601及1078 cm⁻¹是對位 苯環、芳香羧酸及其衍生物的拉曼特徵峰,由4-MBA芳香環的對稱 伸縮振動 ν_{8a} 與 ν_{12} 造成^[63-65]。1295、1188和800 cm⁻¹分別為CH的 ν_{7a} 、 δ_{9a} 與 π_{11} 振動^[64]。

圖 3.32 1.0×10⁻²M 4-MBA/C₁₆PMS-GNP 的表面增顯拉曼光譜。

一般而言, SERS 增顯效果與金屬奈米粒子的粒徑有關, 在約 100 nm 範圍內, 粒徑越大增強效果越明顯^[66,67]。複合薄膜內的金奈米粒 子直徑為 1.7 nm, 但在 SERS 中仍可見到明顯的 4-MBA 訊號。這是 由於金奈米粒子處於薄膜二維結構通道內,且粒子間間隙極小,約 0.5 nm (於 3.8 節中估算)。高密度的金奈米粒子使得 4-MBA 分子受到 較高的增強效應^[33];此圖譜也印證了此類複合材料在 SERS 上的應用 潛力。

第4章 結論

本研究成功以嵌埋式光催化劑,製備覆載於二氧化矽薄膜的金奈 米粒子,並且藉由改變界面活性劑模板,調整晶面間距大小。由 SAXS 顯示 C14PMS, C16PMS, C18PMS 其(01) 晶面間距為 3.95, 4.33, 4.76 nm。 C16PMS 與 C16PMS-HAuCl4 在吸收光譜中, PTA 和 AuCl4 的 LMCT 吸收 (279 和 325 nm),以及 GISAXS 中 q = 0.180 Å⁻¹ 之寬帶繞射 與 $q_z = 0.325$ Å⁻¹之繞射點,都證實 PTA、HAuCl₄ 位於二氧化矽的介 觀結構。當 C16PMS-HAuCl4 行光催化還原反應後,經吸收光譜中 355 nm 吸收峰與 GISAXS $q_z = 0.325 \text{ Å}^{-1}$ 繞射點的消失以及 540 nm 表面電漿共振吸收峰的增長,可確認金奈米粒子形成,並且由散射圖 譜可得知金離子加入薄膜與金奈米粒子形成會使二氧化矽薄膜轉變 成二維中心矩形結構,長短軸比 a/b 為 1.31。TEM 圖像顯示不同模板 有不同的晶面間距, $LC_{16}PMS-GNPs$ 金奈米粒子徑為 1.7 ± 0.2 nm, 緊密堆疊於薄膜通道中;金奈米子均勻分佈於薄膜內。TGA 數據估 算奈米金與 C14PMS, C16PMS, C18PMS 重比約等於 2.7, 2.8, 3.0。此材 料用於 4-MBA 的 SERS 也印證了複合薄膜的應用潛力。本實驗所合 成之覆載金奈米粒子的中孔二氧化矽薄膜,具有高均匀且高負載量的 特性,且合成過程不需經熱處理。

參考文獻

(1) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. *Nature* **1992**, *359*, 710.

(2) Long, D. L.; Tsunashima, R.; Cronin, L. Angew. Chem.-Int. Edit. 2010, 49, 1736.

(3) Pope, M. T.; Muller, A. Angew. Chem. Int. Ed. Engl. 1991, 30, 34.

(4) Pope, M. T. *Inorganic Chemistry Concepts*; Springer Verlag: West Berlin, 1983; Vol. 8.

(5) Eberson, L.; Wistrand, L.-G. *Acta Chem. Scand. Ser. B* **1980**, *34*, 349.

(6) Papaconstantinou, E. Chem. Soc. Rev. 1989, 16, 1.

(7) Troupis, A.; Hiskia, A.; Papaconstantinou, E. *New J. Chem.* **2001**, *25*, 361.

(8) Troupis, A.; Hiskia, A.; Papaconstantinou, E. Angew. Chem.-Int. Edit. 2002, 41, 1991.

(9) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. *J. Am. Chem. Soc.* **1992**, *114*, 10834.

(10) Wan, Y.; Zhao, D. Y. Chem. Rev. 2007, 107, 2821.

(11)Hoffmann, F.; Cornelius, M.; Morell, J.; Froba, M. Angew. Chem.-Int. Edit. **2006**, 45, 3216.

(12)Huo, Q. S.; Margolese, D. I.; Stucky, G. D. Chem. Mater. 1996, 8, 1147.

(13)Hagslätt, H.; Söderman, O.; Jönsson, B. Liq. Cryst. 1992, 12, 667.

(14)Hagslätt, H.; Söderman, O.; Jönsson, B. *Liq. Cryst.* **1995**, *18*, 545.

(15)Husson, F.; Mustacchi, H.; Luzzati, V. Acta Crystallogr **1960**, *13*, 668.

(16)Qiu, H. B.; Sakamoto, Y.; Terasaki, O.; Che, S. N. Advanced Materials **2008**, *20*, 425.

(17)Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Kim, J. M.; Han, Y. J.; Stucky, G. D. *Chem. Mat.* **1999**, *11*, 2668.

(18)El Haskouri, J.; Cabrera, S.; Caldes, M.; Guillem, C.; Latorre, J.; Beltran, A.; Beltran, D.; Marcos, M. D.; Amoros, P. *Chem. Mat.* **2002**, *14*, 2637.

(19)Grosso, D.; Balkenende, A. R.; Albouy, P. A.; Ayral, A.;

Amenitsch, H.; Babonneau, F. Chem. Mater. 2001, 13, 1848.

(20) Tanaka, S.; Hillhouse, H. W. Chem. Lett. 2006, 35, 928.

(21)Bollmann, L.; Urade, V. N.; Hillhouse, H. W. *Langmuir* **2007**, *23*, 4257.

(22) Yang, C. M.; Lin, C. Y.; Sakamoto, Y.; Huang, W. C.; Chang, L. L. *Chem. Commun.* **2008**, 5969.

(23)Sonwane, C. G.; Bhatia, S. K. Langmuir 1999, 15, 2809.

(24) Pevzner, S.; Regev, O.; Yerushalmi-Rozen, R. Curr. Opin.

Colloid Interface Sci. 1999, 4, 420.

(25)Huo, Q. S.; Zhao, D. Y.; Feng, J. L.; Weston, K.; Buratto, S. K.; Stucky, G. D.; Schacht, S.; Schüth, F. *Advanced Materials* **1997**, *9*, 974.

(26) Yang, H.; Coombs, N.; Ozin, G. J. Mater. Chem. 1998, 8, 1205.

(27) Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Angew. Chem. Int. Ed. **1999**, *38*, 56.

(28) Trewyn, B. G.; Slowing, I. I.; Giri, S.; Chen, H.-T.; Lin, V. S.-Y. Acc. Chem. Res. 2007, 40, 846.

(29) Yu, J. J.; Lu, S.; Li, J. W.; Zhao, F. Q.; Zeng, B. Z. J. Solid State *Electrochem.* **2007**, *11*, 1211.

(30)Hsiao, M.; Adzic, R.; Yeager, E. J. Electrochem. Soc 1996, 143, 759.

(31)Lü, G.; Zhaoa, R.; Qiana, G.; Qia, Y.; Wanga, X.; Suoa, J. *Catalysis Letters* **2004**.

(32) Taguchi, A.; Schüth, F. *Microporous and Mesoporous Materials* **2005**, 77, 45.

(33)Silva, R.; Biradar, A. V.; Fabris, L.; Asefa, T. J. Phys. Chem. C **2011**, *115*, 22810.

(34)Hao, Y. J.; Chong, Y. Z.; Li, S. R.; Yang, H. Q. J. Phys. Chem. C **2012**, *116*, 6512.

(35)Rioux, R. M.; Song, H.; Hoefelmeyer, J. D.; Yang, P.; Somorjai, G. A. J. Phys. Chem. B 2005, 109, 2192.

(36) Tsung, C. K.; Hong, W. B.; Shi, Q. H.; Kou, X. S.; Yeung, M. H.; Wang, J. F.; Stucky, G. D. *Adv. Funct. Mater.* **2006**, *16*, 2225.

(37)Hao, Y.; Chong, Y.; Li, S.; Yang, H. **2012**, *116*, 6512.

(38) Xie, Y. W.; Quinlivan, S.; Asefa, T. J. Phys. Chem. C 2008, 112,

9996.

(39)Sun, J. M.; Ma, D.; Zhang, H.; Liu, X. M.; Han, X. W.; Bao, X. H.; Weinberg, G.; Pfander, N.; Su, D. S. *J. Am. Chem. Soc.* **2006**, *128*, 15756.

(40)Ruggles, J. L.; Holt, S. A.; Reynolds, P. A.; White, J. W. *Langmuir* **2000**, *16*, 4613.

(41)Simister, E. A.; Lee, E. M.; Thomas, R. K. J. Phys. Chem. 1992, 96, 1373.

(42)Skoog, D. A.; Holler, F. J.; Crouch, S. R. *Principles of Instrumental Analysis*; 6th ed ed.; Thomson Brooks/Cole., 2007.

(43)Misra, P.; Dubinskii, M. Ultraviolet Spectroscopy and UV Lasers; New York, 2002.

(44) Hutter, E.; Fendler, J. H. Adv. Mater. 2004, 16, 1685.

(45)Smilgies; D.M. Characterization of Polymer Thin Films with Small-Angle X-ray Scattering under Grazing Incidence; Synchrotron Radiation News, 2002.

(46) Frömsdorf, A.; Čapek, R. J. Phys. Chem. B 2006, 110, 15166.

(47) Moskovits, M. Reviews of Modern Physics 1985, 57, 783.

(48)Zeman, E. J.; Schatz, G. C. *Journal of Physical Chemistry* **1987**, *91*, 501.

(49)G., V. J.; Papaconstantinou, E.; Pope, M. *Inorganic Chemistry*, 9, 662.

(50)Torigoe, K.; Esumi, K. Langmuir 1992, 8, 59.

(51)Gangopadhayay, A. K.; Chakravorty, A. J. Chem. Phys. 1961, 35, 2206.

(52)Garcia-Martinez, J. C.; Crooks, R. M. J. Am. Chem. Soc. 2004, 126, 16170.

(53) Kim, Y. G.; Oh, S. K.; Crooks, R. M. Chem. Mat. 2004, 16, 167.

(54) Wang, D. W.; Kowalczyk, B.; Lagzi, I.; Grzybowski, B. A. J.

Phys. Chem. Lett. 2010, 1, 1459.

(55)Kruk, M.; Jaroniec, M.; Sakamoto, Y.; Terasaki, O.; Ryoo, R.; Ko, C. H. *J. Phys. Chem. B* **2000**, *104*, 292.

(56)Klotz, M.; Albouy, P.-A.; Ayral, A.; Ménager, C.; Grosso, D.; Arie Van der Lee; Babonneau, V. C. F.; Guizard, C. *Chem. Mater.* **2000**, *12*, 1721.

(57)Flodström, K.; V., C.; Teixeira; Amenitsch, H.; Alfredsson, V.; Lindén, M. *Langmuir* **2004**, *20*, 4885.

(58) Impéror-Clerc, M.; Davidson, P.; Davidson, A. J. Am. Chem. Soc.

2000, 122, 11925.

(59)Liu, M. C.; Sheu, H. S.; Cheng, S. J. Am. Chem. Soc. 2009, 131, 3998.

(60)Chassagneux, F.; Bois, L.; Simon, J. P.; Desroches, C.; Brioude, A. *Journal of Materials Chemistry* **2011**, *21*, 11947.

(61)Rousset, S.; Repain, V.; Baudot, G.; Garreau, Y.; Lecoeur, J. J. *Phys.-Condes. Matter* **2003**, *15*, S3363.

(62)Cullity, B. D.; Stock, S. R. *Elements of X-Ray Diffraction*; 3rd Ed ed.; Prentice-Hall Inc., 2001.

(63) Michota, A.; Bukowska, J. J. Raman Spectrosc. 2003, 34, 21.

(64)Osawa, M.; Matsuda, N.; Yoshii, K.; Uchida, I. *Journal of Physical Chemistry* **1994**, *98*, 12702.

(65)Park, H.; Lee, S. B.; Kim, K.; Kim, M. S. *Journal of Physical Chemistry* **1990**, *94*, 7576.

(66)Fang, P. P.; Li, J. F.; Yang, Z. L.; Li, L. M.; Ren, B.; Tian, Z. Q. J. *Raman Spectrosc.* **2008**, *39*, 1679.

(67)Njoki, P. N.; Lim, I. I. S.; Mott, D.; Park, H. Y.; Khan, B.; Mishra, S.; Sujakumar, R.; Luo, J.; Zhong, C. J. J. Phys. Chem. C 2007, 111, 14664.