
1. Introduction

The Cox (1972) proportional hazards model has been widely used to study the effects
of covariates on a failure time T (Cox (1975); Tsiatis (1981); Andersen and Gill (1982)).
Another commonly-used model in survival analysis is the proportional odds model (Bennett
(1983); Dabrowska and Doksum (1988); Murphy et al. (1996); Yang and Prentice (1999)).
The two models are special cases of linear transformation models given as follows:

SF (t|Z) = g{h(t) + βTZ}, (1.1)

where Z = [z1, . . . , zp]
T is the p-dimensional covariate vector, SF (t|Z) = P (T > t|Z) is the

survival function of T given Z, the continuous, strictly decreasing link function g(.) is given
or specified up to a finite-dimensional parameter, h(.) is a completely unspecified strictly
increasing function, and β is a p× 1 vector of unknown regression coefficients. Further, note
that model (1.1) has an equivalent form

h(T ) = −βTZ + ε,

where the distribution of the error ε is P (ε ≤ x) = Fε(x) = 1− g(x). Note that when g(.) =
exp{−exp(.)}, (1.1) gives the Cox proportional hazard model, and when g(.) = 1/{1+exp(.)}
it corresponds to the proportional odds model.

Typically, the failure time T is subject to right censoring. Let C be the censoring time.
We assume conditional independence of T and C given Z. Let X = min(T,C) and δ = I[T≤C],
where I[.] is the indicator function. For right-censored data, when g(.) is completely specified,
Cheng et al. (1995) proposed a class of estimation procedures for estimating regression
parameter β in model (1.1). The method was further developed by Cheng et al. (1997),
Fine et al. (1998) and Cai et al. (2000). A key step of their approach is the estimation
of survival function for censoring variable by Kaplan-Meier estimator. Its validity relies
on the assumption that the censoring variable is independent of the covariates. Under the
independence of T and C given Z, using martingale arguments, Chen et al. (2002) proposed
an estimation procedure for the analysis of right-censored data. Under i.i.d sampling, Chen
et al. (2002) derived the asymptotic variance of the proposed estimators. The specific goal
of the paper is to extend the methods of Cheng et al. (1995) and Chen et al. (2002) to the
case when the sample has been drawn from a population using a complex design.

In population-based surveys, the sample is usually drawn from a finite survey population
via a complex design, such as stratified multi-stage sampling. The design parameters for
the survey are often related to the true hazard function, but are not explicitly part of the
model being fitted. In this case, the i.i.d. assumption no longer holds. Binder (1992)
considered a procedure for fitting proportional hazards models to survey data, which has
been implemented in statistical analysis software packages, such as SUDAAN. Lin (2000)
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provided a formal justification of Binder’s method. Furthermore, he presented an alternative
approach which regards the survey population as a random sample from an infinite universe
and accounts for this randomness in the statistical inference. Boudreau and Lawless (2006)
fitted the proportional hazard model to data from both informative and non-informative
designs for stratified clustered super-population. They estimated the baseline cumulative
hazard function and proposed another variance estimator. For informative designs, they
relied on the results given by Lin (2000). In Section 2, based on the approach of Cheng et al.
(1995) and Chen et al. (2002), we propose design-based estimators for regression parameter.
Furthermore, similar to the approach of Lin (2000), we regard the survey population as a
random sample from an infinite universe and accounts for this randomness in the statistical
inference. In Section 3, we report some simulation results.

2. The Proposed Estimators

Let (Ti, Ci, Xi, δi, Zi), for i = 1, . . . , N , denote the survey population values of (T,C,X, δ, Z).
In this article, similar to the approach of Lin (2000), we regard the survey population as
a random sample from the joint distribution of (T,C,X, δ, Z) rather than as fixed quanti-
ties. This was referred as the superpopulation inference by Lin (2000) as opposed to the
finite-population inference of Binder (1992). Since the survey population is from an infinite
universe, the population size N can go to infinity, which allow us to make analytic inference
about superpoulatoin parameters β and h(.) of model (1.1) by taking into account the sam-
pling of the survey population from the superpopulation as well as that of the survey sample
from the survey population.

If all the population values (Ti, Ci, Xi, δi, Zi) (i = 1, . . . , N) are available, the parameters
β and h(t) can be estimated by solving the following two equations (see Chen et al. (2002)):

U1(β, h) =
N∑
i=1

∫ τ

0

Zi[dNi(t)− Yi(t)dΛ(βTZi + h(t))] = 0, (2.1)

and

U2(β, h) =
N∑
i=1

[dNi(t)− Yi(t)dΛ(βTZi + h(t))] = 0 (t ≥ 0), (2.2)

where Λ(·) is cumulative hazard function of the distribution function 1−g(.), Yi(t) = I[Xi≥t],
Ni(t) = I[Xi≤t,δi=1] and τ = inf{t : P (Xi > t) = 0}.

Suppose that a sample of size n is drawn from the population of N units through a
complex design. Let Pi denote the inclusion probability of the ith element of the sample. Let
Wi = 1/Pi (i = 1, . . . , n) denote the the sampling weight of the ith element. Based on (2.1)
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and (2.2), we then propose to estimate β and h(t) by solving the following two equations:

Û1(β, h) =
n∑
i=1

Wi

∫ τ

0

Zi[dNi(t)− Yi(t)dΛ(βTZi + h(t))] = 0, (2.3)

and

Û2(β, h) =
n∑
i=1

Wi[dNi(t)− Yi(t)dΛ(βTZi + h(t))] = 0 (t ≥ 0). (2.4)

Let H denote be the collection of all nondecreasing step functions on [0,∞) with jumps only
at observed noncensoring times. We denote by (β̂, ĥ(t; β̂)) the solution of (2.3) and (2.4).
Note that ĥ(t; β̂) is a step function in t that rises at the distinct jump points of {I[Xi≤t,δi=1]; i =
1, . . . , n}. For the special case of Cox model, i.e. g(·) = exp−exp(·) and Λ(t) = exp(t), it then
follows from (2.4) that d[exp(h(t))] =

∑
i=1WidNi(t)/

∑t
j=1WjYj(t)exp(βTZj). If we plug

this into (2.3), we obtain

Û1(β, h) =
n∑
i=1

∫ ∞
0

Wi

{
Zi −

∑n
j=1WjZjYj(t)exp(βTZj)∑n
j=1WjYj(t)exp(βTZj)

}
dNi(t) = 0,

which is the weighted estimating equation proposed by Binder (1992). Equations (2.3) and
(2.4) suggest the following iterative algorithms for computing β̂ and ĥ(t; β̂):

Step 0: Choose an initial value of β, denoted by β̂(0).

Step 1: Let t1 < t2 < · · · < tnd
< τ denote the distinct uncensored points and W d

1 , . . . ,W
d
nd

be their corresponding weights. Based on (2.4), we obtain ĥ(0)(t1; β̂
(0)) by solving

n∑
i=1

WiYi(t1)Λ(βTZi + h(t1)) = W d
1 ,

with β = β̂(0). Then, obtain ĥ(tk) for k = 2, . . . , nd, one-by-one by solving the equation

n∑
i=1

WiYi(tk)Λ(βTZi + h(tk)) = W d
k +

n∑
i=1

WiYi(tk)Λ(βtZi + h(tk−)),

with β = β̂(0), where W d
k the corresponding weight of tk .

Step 2: Obtain a new estimate of β by solving (2.3) with h(tk) = ĥ(0)(tk; β̂
(0)).

Step 3: Set β̂(0) to be the estimate obtained in Step 2 and repeat Steps 1 and 2 until
prescribed convergence criteria are met.
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To facilitate theoretical development, we rewrite (2.3) and (2.4) as

Û1(β, h) =
N∑
i=1

ζi
pi

∫ τ

0

Zi[dNi(t)− Yi(t)dΛ(βTZi + h(t))] = 0, (2.5)

and

Û2(β, h) =
N∑
i=1

ζi
pi

[dNi(t)− Yi(t)dΛ(βTZi + h(t))] = 0 (t ≥ 0), (2.6)

where ζi indicates, by the values 1 versus 0, whether or not the ith unit of the survey
population is selected into the sample, and pi is the inclusion probability for the ith unit.
Notice that pij = P (ζiζj = 1) is the joint inclusion probability for both unit i and j, and ζi
and ζj can be dependent to each other, i.e. pij 6= pipj. It is assumed that pi > 0 for all i.
Let Yi(t) = I[Xi≥t] and Ni(t) = I[Xi≤t,δi=1]. Let Ft denote the filtration generated by

σ{Zi, Yi(x), δiI[Xi≤t], I[Xi≤x], x ≤ t; i = 1, . . . , N},

where σ(A) denote the complete σ-field generated by A. Let β0 and h0(·) denote the true
values of β and h(·), respectively. Since U1(β, h) and U2(β, h) are the estimating equations for
β0 calculated from a random sample of size N and N−1Û1(β, h) and N−1Û2(β, h) converges
to the same limit as N−1U1(β, h) and N−1U2(β, h), respectively, it follows by Proposition
of Chen et al. (2002) that the estimators β̂ and ĥ(·; β̂) of are consistent estimators of β0
and h0(·), respectively. Let Mi(t) = Ni(t)−

∫ t
0
Yi(s)dΛ(βT0 Zi + h0(s)) (i = 1, . . . , N). Under

model (1.1), since

E[dNi(t)|Zi,Ft−] = P (t ≤ Ti < t+ dt, Ti < Ci|Zi,Ft−)

= Yi(t)dΛ(βT0 Zi + h0(t)),

we have

E[dMi(t)|Zi,Ft−] = E[dNi(t)|Zi,Ft−]− Yi(t)dΛ(βT0 Zi + h0(t)) = 0.

It follows that Mi(t) is a martingale process with respect to Ft, Let Gi(t) (i = 1, . . . , N) be
a p× 1 vector of predictable process with respect to Ft and define

MG(t) =
N∑
i=1

∫ t

0

Gi(s)dMi(s)

and

MG,ε(t) =
N∑
i=1

∫ t

0

Gi(s)I[|Gi(s)|>ε]dMi(s).
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Similar to proposition of Chen et al. (2002), under suitable regularity conditions, we can
show the following asymptotic theorem.

Theorem 1. Suppose that the regularity conditions (Fleming and Harrington, 1991) for en-
suring the central limit theorem for counting process martingales holds, i.e. (i) the predicable
process 〈MG〉(t)

p−→VG(t) for all t ∈ [0, τ ] as N → ∞, where VG(0) = 0 and VG(t) − VG(s)
is positive semidefinite for all 0 ≤ s ≤ t ≤ τ , and (ii) 〈MG,,ε〉(t)

p−→0 for ε > 0 as N → ∞;
(iii) N−1/2

∑N
i=1

∫ τ
0
ζi−pi
pi

ZidMi(t) is asymptotically zero-mean normal. Then, we have that

N
1
2 (β̂ − β0)→ N(0,Σβ̂) in distribution, as N →∞, where Σβ̂ is given by

Σβ̂ = D−1(β0)[Σ1(β0) + V (β0)]D
−1(β0), (2.7)

where D(β0) = limN→∞
1
N

∂
∂β
U1(β, ĥ(·, β))

∣∣
β=β0

. The proof is complete.

The covariance matrix Σ1(β0) can be consistently estimated by

Σ̂1(β̂) =
1

N

N∑
i=1

[∫ τ

0

ζi
pi

[Zi − µ̂Z(t; β̂)]⊗2λ(ĥ(t; β̂) + β̂T )Yi(t)]dĥ(t; β̂)

]
,

a⊗2 = aaT , µ̂Z(t; β̂) =

∑N
i=1

ζi
pi

[Ziλ(hP (Xi) + β̂TZi)Yi(t)B̂(t;Xi)]∑N
i=1

ζi
pi

[λ(ĥ(t; β̂) + β̂TZi)Yi(t)]
,

and

B̂(t, s) = exp

(∫ t

s

∑N
i=1

ζi
pi

[λ̇(ĥ(x; β̂) + β̂TZi)Yi(x)]∑N
i=1

ζi
pi

[λ(ĥ(x; β̂) + β̂TZi)Yi(x)]
dĥ(x; β̂)

)
.

The matrix D(β0) can be consistently estimated by

D̂(β̂) =
1

N

∂

∂β
U1(β, ĥ(·, β))

∣∣
β=β̂

.

Next, let Varm denote the variance with respect to model, i.e. the variation from one survey
population to another, and Varp|m denote the conditional variance with respect to design
given model (i.e. given the observations Xi, δi, Zi(i = 1, . . . , N) from one survey population).
Now, V (β0) = V1(β0) + V2(β0), where

V1(β0) = lim
N→∞

N−1Varm
(
Ep|m

[ N∑
i=1

Vi(t; β0)
])

and

V2(β0) = lim
N→∞

N−1Em[Varp|m
( N∑
i=1

Vi(t; β0)
)
].
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Since Ep|m[Vi(t; β0)] = −
∫ τ
0
µZ(t; β0)dMi(t), we have

V1(β0) = lim
N→∞

N−1
N∑
i=1

∫ τ

0

µZ(t; β0)
⊗2dMi(t),

which can be consistently estimated by

V̂1(β̂) = N−1
N∑
i=1

ζi
pi

∫ τ

0

µ̂Z(t; β̂)⊗2dNi(t).

Next, let pij = P (ζiζj = 1|F). Then

V2(β0) = lim
N→∞

N−1Em

[
Varp|m

( N∑
i=1

Vi(t; β0)

)]

= lim
N→∞

N−1
N∑
i=1

N∑
j=1

Em

[
pij − pipj
pipj

(ZiMi(τ))⊗2
]
,

which can be consistently estimated by

V̂2 = N−1
N∑
i=1

N∑
j=1

ζiζj
pij − pipj
pijpipj

(ZiNi(τ))⊗2.

Hence, Σβ̂ can be consistently estimated by Σ̂β̂ = D̂−1(β̂)[Σ̂1(β̂) + V̂1(β̂) + V̂2]D̂
−1(β̂).

Notice that assumption (i) of Theorem 1 requires that the Gi(s) function must be ap-
propriate standardized, assumption (ii) of Theorem 1 is a Lindeberg-type condition which
essentially guarantees that he influence of any single process is negligible in the limit, and
assumption (iii) of Theorem 1 is needed to permit the application of central limit theorem
(C.L.T.) to the normalized Horvitz-Thompson estimator; i.e.,

N−1/2
∑N

i=1

∫ τ
0
ζi−pi
pi

ZidMi(t) is asymptotically zero-mean normal. As far as we know, there
does not exist a general theory on the conditions required for the C.L.T. of Horvitz-Thompson
estimator. However, for some particular sampling procedures, conditions for asymptotic
normality can be found in the literature. We list some cases as follows. For simple random
sampling without replacement conditions required for the C.L.T. to hold are found in Hájek
(1960), Hájek (1961) and Scott and Wu (1981); for rejective sampling in Hájek (1964); for
random replacement sampling in Rosén (1967); for unequal probability sampling without
replacement in Rosén (1972) and Prák̃ová (1984); for stratified random sampling in Krewski

6



and Rao (1981) and Bickel and Freedman (1994); and for two-stage sampling in Ohlsson
(1989).

3. Simulation Studies

A simulation study is conducted to investigate the performance of β̂.

Case 1: Proportional odds model

We generated a population of N = 5000 lifetimes T using the proportional odds model
with h(t) = log(t/10) and β0 = (β01 = 1, β02 = 2)T . The resulting T has the survivorship
function

P (T > t|Z1, Z2) =
1

1 + exp{log(t/10) + Z1 + 2Z2}
,

where Z1 is an ordinal variable with P (Z1 = i) = 0.25 for i = 1, 2, 3, 4, Z2 is a Bernoulli
random variable with probability 0.5 and Z1 is independent of Z2. Note that the median of
T at baseline Z = (0, 0)T is 10 in this setting. We generated right censoring variable U was
generated from U(0, θ). The values of θ are set at 0.5, 2 and 8. We suppose that the survey
was originally designed to estimate the median of T , i.e. 10exp(−Z1−2Z2). However, only a
related size measure, exp(−Z3−2Z2), was available, where Z3 = Z1 +U(0, 3) is a continuous
random variable and the correlation between Z3 and Z1 is equal to 0.79. The population
was stratified into four strata by ordering the size measure exp(−Z3 − 2Z2) such that the
subpopulation sizes of the four strata are equal to N1 = 2000, N2 = 1500, N3 = 1000, and
N4 = 500, respectively. For each stratum, total samples of size n = 100, 200 were drawn
using simple random sampling without replacement. Hence, the inclusion probability of the
elements in the ith stratum is equal to n/Ni. For each replication, we generated N = 5000
right-censored observations (Xi, δi, Zi) (i = 1, . . . , 5000). To obtain the estimator β̂, the
value of τ was set at the largest values of Xi’s. The R-code was used to generate the
simulations. For each simulated dataset, we obtained the estimators β̂ = (β̂1, β̂2)

T . Repeat
this procedure 1000 times. Table 1 shows the simulated biases, simulated standard deviations
(std), the estimated standard deviation based on the estimated asymptotic covariance matrix
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Σ̂β̂ (denoted by sd(β̂i)). An approximate 1−α confidence interval for β0i is also constructed

using β̂i ± zα/2sd(β̂i), where zα/2 is the α/2 upper percentile point of the standard normal

distribution. Table 1 shows the results of the empirical coverage (denoted by C(β̂i) and C(β̃i)
of 1 − α = 0.95 confidence intervals. Based on the estimator ĥ(t; β̂), we also estimate the
baseline survival function S0(t) = 1/(1 + t/10) at t = 5, 20, denoted by Ŝ0(t) = 1

1+exp{ĥ(t;β̂)} .

Table 2 shows the simulated biases and simulated standard deviations (std) of the estimator
Ŝ0(t). Tables 1 and 2 also show the proportion of right-censoring (denoted by pc).

Case 2: Cox model

We generated a population of N = 1000 lifetimes T using the Cox odds model with
hazard function h(t|Z1, Z2) = h0(t)e

β1Z1+β2Z2 , with h0(t) = et, β1 = −9, β2 = −5, Z1

is an ordinal variable with P (Z1 = i) = 0.25 for i = 1, 2, 3, 4, Z2 is a Bernoulli random
variable with probability 0.8 and Z1 is independent of Z2. We generated right censoring
variable C was generated from exponential distribution with mean µc equal to 100 and
50. We suppose that the survey was originally designed to estimate the median of T , i.e.
log(− log(0.5)) + 9Z1 + 5Z2. However, only a related size measure, 9Z3 + 5Z2, was available,
where Z3 = Z1 + N(0, 0.1) is a continuous random variable and the correlation between Z3

and Z1 is equal to 0.96. The population was stratified into four strata by ordering the size
measure 9Z3+5Z2) such that the subpopulation sizes of the four strata are equal to N1 = 100,
N2 = 200, N3 = 350, and N4 = 350, respectively. For each stratum, total samples of size
n = 25, 50, 75 were drawn using simple random sampling without replacement. Hence,
the inclusion probability of the elements in the ith stratum is equal to n/Ni. For each
replication, we generated N = 1000 right-censored observations (Xi, δi, Zi) (i = 1, . . . , 1000).
The simulation results are reported in Table 3.
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Table 1. Simulated biases and std of β̂

β̂1
θ n pc bias std sd(β̂1) C(β̂1)

0.5 100 0.57 0.036 0.305 0.288 0.933
0.5 200 0.57 0.024 0.229 0.217 0.938
2.0 100 0.35 0.027 0.271 0.258 0.934
2.0 200 0.35 0.019 0.194 0.190 0.942
8.0 100 0.18 0.018 0.240 0.234 0.939
8.0 200 0.18 0.012 0.176 0.174 0.946

β̂2
θ n pc bias std sd(β̂2) C(β̂2)

0.5 100 0.57 0.043 0.476 0.463 0.932
0.5 200 0.57 0.028 0.353 0.377 0.937
2.0 100 0.35 0.032 0.429 0.418 0.936
2.0 200 0.35 0.019 0.321 0.315 0.941
8.0 100 0.18 0.023 0.386 0.374 0.938
8.0 200 0.18 0.015 0.277 0.286 0.945

Table 2. Simulated biases and std of Ŝ0(t)

Ŝ0(5) Ŝ0(20)
θ n pc bias std bias std

0.5 100 0.57 0.015 0.087 0.018 0.063
0.5 200 0.57 0.014 0.066 0.014 0.049
2.0 100 0.35 0.015 0.083 0.012 0.056
2.0 200 0.35 0.013 0.061 0.011 0.040
8.0 100 0.18 0.012 0.076 0.011 0.053
8.0 200 0.18 0.007 0.054 0.008 0.034
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Table 3. Simulated biases and std of β̂
β̂1

µc n pc bias std sd(β̂1) C(β̂1)
50 100 0.50 0.036 0.305 0.288 0.933
50 200 0.50 0.024 0.229 0.217 0.938
50 300 0.50 0.024 0.229 0.217 0.938

100 100 0.20 0.018 0.240 0.234 0.939
100 200 0.20 0.018 0.240 0.234 0.939
100 300 0.20 0.012 0.176 0.174 0.946

β̂2
µc n pc bias std sd(β̂2) C(β̂2)
50 100 0.50 0.043 0.476 0.463 0.932
50 200 0.50 0.043 0.476 0.463 0.932
50 300 0.50 0.028 0.353 0.377 0.937

100 100 0.20 0.023 0.386 0.374 0.938
100 200 0.20 0.023 0.386 0.374 0.938
100 300 0.20 0.015 0.277 0.286 0.945

Based on the results of Tables 1 and 2, we have the following conclusions:

(i) For the estimation of βi (i = 1, 2), the standard deviations of β̂1 and β̂2 increase as
the proportion of right-censoring pc increases. When n = 100, the estimated asymptotic
standard deviations are smaller than the empirical standard deviations for all the cases
considered, which makes the coverage of 95% confidence intervals smaller than the nominal
level. However, when n = 200 and censoring is light (i.e. pc = 0.18), the coverage of 95%
confidence intervals is close to the nominal level.

(ii) For the estimation of baseline S0(t), the standard deviations of both estimators S0(5)
and S0(10) increase as the proportion of right-censoring pc increases. When n = 200 and
censoring is light (i.e. pc = 0.18) the biases and standard deviations of S0(t) are small.
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4. Conclusion

In this article, we have demonstrated that the approach of Chen et al. (2002) can be used
to analyze survey data. Simulation study indicates that the proposed estimator performs
adequately with moderate sample size. Using the superpopulation approach of Lin (2000), we
can make inferences about parameters which have clear probabilistic interpretations. Further
research is required for fitting semiparametric linear model to survey data with left-censored
or left-truncated observations.
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