
ABSTRACT

Left truncation often arises when patient information, such as time of diagnosis, is gath-

ered retrospectively. In some cases, the distribution function, say G(x), of left-truncated

variables can be parameterized as G(x; θ), where θ ∈ Θ ⊂ Rq, and θ is a q-dimensional

vector. Under semiparametric transformation models, we demonstrated that the approach

of Chen et al. (2002) can be used to analyze this type of data. The asymptotic properties

of the proposed estimators are derived. A simulation study is conducted to investigate the

performance of the proposed estimators.
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1. Introduction

Randomly truncated data occur in many areas like astronomy, economics (see Woodroofe

(1985), Fiegelson and Babu (1992)), epidemiology and biometry (see Keiding et al. (1987)

and Lagakos et al. (1988)). Consider the following applications. For instance, in epidemiol-

ogy, a prevalent cohort is defined as a group of diseased individuals who are recruited for a

prospective study. The main interest of a research project is to study the natural history of

the disease for individuals who developed the disease during the calendar time period (τ0, τ),

τ0 < τ . Consider the sampling under which all of the individuals in the area who have

experienced the first event (e.g. HIV infection) between τ0 and τ and have not experienced

a second event (e.g. diagonsed with AIDS) are recruited at the time τ for a prospective

follow-up study. Let Ts denote the initial time of the first event and T be the time from Ts

to the second event. Let V denote the time from Ts to τ . Hence, random left truncation

occurs since one observes pair (V, T ) only if T ≥ V .

For non-infectious diseases, it may be reasonable to assume that the incidence process

(denoted by N(t)) of a disease is regular, i.e. P (N(t+ ∆t)−N(t) > 1) = o(∆t) as ∆t→ 0,

the unordered incidence times on a given interval [u, u+k] are independent, and the intensity

function of the process is constant. Under this case, the distribution of V , say G(x) = P (V ≤
x), can be parameterized as G(x) = x/θ for x ∈ (0, θ), the so-called stationarity assumption

or length-biased sampling (see Wang (1991) and Asgharian et al. (2002)). For a new disease,

however, one might prefer to parameterize G so that the parameterization reflects the growth

of the disease over time, i.e. G(x) = G(x; θ), where θ ∈ Θ ⊂ Rq, and θ is a q-dimensional

vector. Assume for each individual, data is available on some covariates Z. It is important

to investigate the association between these covariates and survival rate.

Following the notations in Example, let T and V denote the lifetime and truncation

time, respectively. Let Z = [Z1, . . . , Zp]
T represent a p× 1 vector of covariates. Assume that

given Z, T and V are independent of each other. For left-truncated data, one can observe

nothing if T < V and observe (T, V, Z) if T ≥ V . In this article, we consider the following

transformation model:

S(t|Z) = g{h(t) + βTZ}, (1.1)

where S(t|Z) = P (T > t|Z) is the survival function of T given Z, the continuous, strictly
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decreasing link function g(·) is given or specified up to a finite-dimensional parameter, h(·)
is a completely unspecified strictly increasing function, and β is a p × 1 vector of unknown

regression coefficients. Note that when g(·) = exp{−exp(·)}, (1.1) gives the Cox proportional

hazard model (Cox, 1972), and when g(·) = 1/{1+exp(·)} it corresponds to the proportional

odds model (Bennett (1983); Murphy et al.(1997); Ying and Prentice (1999)). Furthermore,

model (1.1) has an equivalent form (see Cheng et al. (1995))

h(T ) = −βTZ + ε,

where the distribution of the error ε is P (ε ≤ x) = Fε(x) = 1 − g(x). This can be easily

justified by writing S(t|Z) = P (h(T ) > h(t)|Z) = P (−βTZ + ε > h(t)|Z).

When g(·) is completely specified, Chen et al. (2002) proposed an estimation procedure

for the analysis of right-censored data. The procedure proposed by Chen et al. (2002) is

easily implemented numerically and the estimator is the same as the Cox partial likelihood

estimator in the case of the proportional hazards model. Shen (2012) extended Chen et al.’s

approach to left-truncated and right -censored data. In this article, when the distribution

function of V can be parameterized as G(x; θ), we demonstrated that the approach of Chen

et al. (2002) can be used to obtain consistent estimators of β and h(·). The asymptotic prop-

erties of the proposed estimators are derived. In Section 3, a simulation study is conducted

to investigate the performance of the proposed estimators.

2. The Proposed Estimators

Let F (t|Z) = P (T ≤ t|Z) denote the cumulative distribution function of T given Z. Suppose

that the left and right endpoints of T are independent of Z. Let aF and bF denote the left and

right endpoints of F , and similarly, define (aG, bG) as the left and right endpoint of V . We

assume that both T and V are continuous. Furthermore, for identifiabilities of F (t|Z), we

assume that aG ≤ aF and bG ≤ bF . First, we consider the case when there is no assumption

on G. Let (Ti, Vi, Zi) (i = 1, . . . , n) be the observed truncated sample. Let Yi(t) = I[Vi≤t≤Ti]

and Ni(t) = I[Ti≤t]. Let p(Zi) = P (V ≤ T |Zi). Note that E[Yi(t)|Zi] = P (Vi ≤ t ≤ Ti|Zi) =

p(Zi)
−1P (V ≤ t|Zi)P (T ≥ t|Zi) and E[Ni(t)|Zi] = p(Zi)

−1P (V ≤ T, T ≤ t|Zi). Let F(t)

denote the filtration generated by

σ{Vi, Zi, Yi(x), I[Vi≤Ti], I[Vi<Ti≤t], x ≤ t; i = 1, . . . , n},
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where σ{A} denotes the complete σ-field generated by A. Let Λε(·) denote the cumulative

hazard functions of ε, and h0(·) and β0 are the true values of h(·) and β, respectively. Under

model (1.1), since

E[dNi(t)|Zi,Ft−] = P (t ≤ Ti < t+ dt|Zi,Ft−) = P (t ≤ Ti < t+ dt, Vi < t|Zi,Ft−)

= Yi(t)dΛε(β
TZi + h0(t)),

it follows that Mi(t) is a martingale process with respect to Ft. Using the approach of Chen

et al. (2002), Shen (2012) considered the following two estimating equations:

U(β, h) =
n∑
i=1

∫ ∞
0

Zi[dNi(t)− Yi(t)dΛε(β
TZi + h(t))] = 0, (2.1)

and
n∑
i=1

[dNi(t)− Yi(t)dΛε(β
TZi + h(t))] = 0, (2.2)

Step 0: Choose an initial value of β, denoted by β̂(0).

Step 1: Let t1 < t2 < · · · < tn denote the ordered failure time . Based on (2.2), we obtain

ĥ(0)(t1; β̂
(0)) by solving

n∑
i=1

Yi(t1)Λ(βTZi + h(t1)) = 1,

with β = β̂(0). Then, obtain ĥ(tk) for k = 2, . . . , n, one-by-one by solving the equation

n∑
i=1

Yi(tk)Λ(βTZi + h(tk)) = 1 +
n∑
i=1

Yi(tk)Λ(βtZi + h(tk−)),

with β = β̂(0)

Step 2: Obtain a new estimate of β by solving (2.1) with h(tk) = ĥ(0)(tk; β̂
(0)).

Step 3: Set β̂(0) to be the estimate obtained in Step 2 and repeat Steps 1 and 2 until

prescribed convergence criteria are met.

Let (β̂n, ĥn) denote the solution of (2.1) and (2.2). It is then clear that ĥn(·) ∈ H. Note

that ĥn(·) is a step function in t that rises at the distinct jump points of {I[Ti≤t]; i = 1, . . . , n}.
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Similar to Proposition of Chen et al. (2002), under suitable regularity conditions, it follows

that n
1
2 (β̂n − β0)→ N(0,Σβ̂n

) in distribution, as n→∞, where Σβ̂n
= Σ−12 Σ1(Σ

−1
2 )T

Σ1 = E

[∫ ∞
0

[Z1 − µz(t; β0)]⊗2λε(h0(t) + βT0 )Y1(t)]dh0(t)

]
,

Σ2 = E

[∫ ∞
0

[Z1 − µz(t; β0)]ZT
1 λ̇ε(h0(t) + βT0 )Y1(t)]dh0(t)

]
,

where x⊗2 = xxT ,

µz(t; β0) =
E[Z1λε(h0(T1) + βT0 Z1)Y1(t)B(t;T1)]

E[λε(h0(t) + βT0 Z1)Y1(t)]
,

where λε(·) is the hazard functions of ε, λ̇ε(x) = dλε(x)/dx and

B(t, s) = exp

(∫ t

s

E[λ̇ε(h0(x) + βT0 Z1)Y1(x)]

E[λε(h0(x) + βT0 Z1)Y1(x)
dh0(x)

)
.

Note that Σ1 and Σ2 can be consistently estimated by

Σ̂1n = n−1
n∑
i=1

∫ ∞
0

[Zi − Z̄(t; β̂n)]⊗2λ(β̂TnZi + ĥn(t))Yi(t)dĥn(t),

and

Σ̂2n = n−1
n∑
i=1

∫ ∞
0

[Zi − Z̄(t; β̂n)]ZT
i λ̇ε(β̂

T
nZi + ĥn(t))Yi(t)dĥn(t),

respectively, where

Z̄(t; β̂n) =
n∑
i=1

Ziλε(β̂
T
nZi + ĥn(t))Yi(t)B̂n(t, Ti)∑n

i=1 λ(β̂TnZi + ĥn(t))Yi(t)
,

B̂n(t, s) = exp

(∫ t

s

∑n
i=1 λ̇(β̂TnZi + ĥn(x))Yi(x)∑n
i=1 λ(β̂TnZi + ĥn(x))Yi(x)

dĥn(x)

)
.

Hence, a consistent estimator of Σβ̂n
is given by Σ̂β̂n

= Σ̂−12n Σ̂1n(Σ̂−12n )T .

Now, under the assumption that V ∼ G(x; θ), we shall propose an alternative estimator

which incorporates the available information on the truncation distribution. Let θ0 be the

true value of θ. Let FG(t) denote the filtration generated by

σ{Zi, Ỹi(x; θ0), I[Ti≤x], ;x ≤ t},
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where Ỹi(x; θ0) = I[Ti≥x]G(x; θ0)/G(Ti; θ0). Define

M̃i(t) = Ni(t)−
∫ t

0

Ỹi(x; θ0)dΛε(β
T
0 Zi + h0(t)) (i = 1, . . . , n).

Notice that under the assumption that V ∼ G(x; θ0), we have

E[I[Vi<x≤Ti]|Ti] = I[Ti≥x]P (V < x|V ≤ Ti)

= I[Ti≥x]G(x; θ0)/G(Ti; θ0).

Hence, given Ti, the conditional distribution of I[Vi<x≤Ti] is the same as that of Ỹi(x; θ0). It

follows that

P (dNi(t) = 1|Fw(t−)) = Ỹi(t; θ0)dΛε(β
T
0 Zi + h0(t)).

Hence, under model (1.1) and the assumption that V ∼ G(x; θ0), M̃i(t) is a martingale

with respect to FG(t). Based on the arguments above, given G(·; θ0), the estimators, say

(β̃n(θ0), h̃(·, β̃n(θ0)) can be obtained by simultaneously solving the following two equations:

Ũ10(β, h(·)) =
n∑
i=1

∫ ∞
0

Zi[dNi(t)− Ỹi(t; θ0)dΛε(β
TZi + h(t))] = 0, (2.3)

and

Ũ20(β, h(·)) =
n∑
i=1

[dNi(t)− Ỹi(t; θ0)dΛε(β
TZi + h(t))] = 0. (2.4)

For the special case of length-biased data and Cox model, i.e. G(x; θ) = x/θ and λε = exp(t),

it then follows from (2.3) and (2.4) that Ỹi(t; θ0) = Ỹi(t) = I[Ti≥t]t/Ti and the estimator β̃n(θ0)

satisfies the following equation:

n∑
i=1

∫ ∞
0

{
Zi −

∑n
j=1 ZjỸj(t)exp(βTZj)∑n
j=1 Ỹj(t)exp(βTZj)

}
dNi(t) = 0,

which is precisely the Cox partial likelihood score equation for length-biased data (Wang

(1996)).

Next, we consider the estimation of θ. Using the approach of Wang (1989), we consider

the conditional likelihood of Vi’s given Ti’s as follows:

Lc(θ) =
n∏
i=1

g(Vi; θ)

G(Ti; θ)
,
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where g(x; θ) is the probability density function of G(x; θ). Let θ̂n be the maximizer of the

estimated likelihood Lc(θ). Hence, given θ̂n, alternative estimators of β0 and h0(t), denoted

by (β̃n, h̃n(·, β̃n)), can be obtained by simultaneously solving the following two equations:

Ũ1n(β, h(·)) =
n∑
i=1

∫ ∞
0

Zi[dNi(t)− Ỹi(t; θ̂n)dΛε(β
TZi + h(t))] = 0, (2.5)

and

Ũ2n(β, h(·)) =
n∑
i=1

[dNi(t)− Ỹi(t; θ̂n)dΛε(β
TZi + h(t))] = 0. (2.6)

For the special case of the Cox model, it then follows from (2.5) and (2.6) that the estimator

β̃n satisfies the following equation:

n∑
i=1

∫ ∞
0

{
Zi −

∑n
j=1 ZjỸj(t; θ̂n)exp(βTZj)∑n
j=1 Ỹj(t; θ̂n)exp(βTZj)

}
dNi(t) = 0,

which is precisely the Cox partial likelihood score equation for length-biased data (Wang

(1996)).

Next, the following theorem can derived based on the argument of Chen et al. (2002, see

Appendix)

Theorem 1. Under regularity conditions (Fleming and Harrington, 1991) for ensuring the

central limit theorem for counting process martingales holds and assuming that (a) G(x; θ)

is continuous in x for each θ ∈ Θ. (b) θ̂n → θ0 implies G(x; θ̂n) → G(x; θ0) for each x

and (c) Zi is bounded, then (i) n1/2(β̃n − β0) converges in distribution to N(0, Σ̃β̃n
), where

Σ̃β̃n
= Σ̃−12 Σ̃1(Σ̃

−1
2 )T , Σ̃1 and Σ̃2 are given in (2.7) and (2.8), respectively, and (ii) h̃(·, β̃n) is

consistent under the metric d(·, ·), where for any two nondecreasing functions h1 and h2 on

[0,∞) such that h1(0) = h2(0) = −∞, d(h1, h2) = sup(|exp{h1(t)}−exp{h2(t)}| : t ∈ [0,∞))

Σ̃1 = E

[∫ ∞
0

[Z1 − µ̃z(t; β0)]⊗2λε(h0(t) + βT0 )Ỹ1(t; θ0)]dh0(t)

]
, (2.7)

where

µ̃z(t; β0) =
E[Z1λε(h0(T1) + βT0 Z1)Ỹ1(t; θ0)B̃(t;T1)]

E[λε(h0(t) + βT0 Z1)Ỹ1(t; θ0)]]
.
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Next, similar to Step A4 of Chen et al. (2002), we have

Ũ10(β0, h̃(·, β0)) =
n∑
i=1

∫ ∞
0

ZidM̃i(t)−
n∑
i=1

Zi[Λε(β
T
0 Zi + h̃(Ti, β0))− Λε(β

T
0 Zi + h0(Ti))]

=
n∑
i=1

∫ ∞
0

ZidM̃i(t)−
n∑
i=1

Ziλε(β
T
0 Zi + h0(Ti))

λ∗(h0(Ti))
[Λ∗(h̃(Ti, β0))− Λ∗(h0(Ti))] + op(n

1/2)

=
n∑
i=1

∫ ∞
0

[Zi − µ̃z(t)]dM̃i(t) + op(n
1/2).

Σ̃2 = E

[∫ ∞
0

[Z1 − µ̃z(t; β0)]ZT
1 λ̇ε(h0(t) + βT0 )Ỹ1(t; θ0)]dh0(t)

]
. (2.8)

Note that Σ̃1 and Σ̃2 can be consistently estimated by

Σ̃1n = n−1
n∑
i=1

∫ ∞
0

[Zi − Z̄(t; β̃n)]⊗2λ(β̃TnZi + h̃n(t))Ỹi(t)∆i(t; θ̂n)dh̃n(t),

and

Σ̃2n = n−1
n∑
i=1

∫ ∞
0

[Zi − Z̄(t; β̃n)]ZT
i λ̇ε(β̃

T
nZi + h̃n(t))Ỹi(t)∆i(t; θ̂n)dh̃n(t),

respectively, where

Z̄(t; β̃n) =
n∑
i=1

Ziλε(β̃
T
nZi + h̃n(t))Ỹi(t)∆i(t; θ̂n)B̃n(t, Ti)∑n

i=1 λ(β̃TnZi + h̃n(t))Ỹi(t)∆i(t; θ̂n)
,

B̃n(t, s) = exp

(∫ t

s

∑n
i=1 λ̇(β̃TnZi + h̃n(x))Ỹi(x)∆i(x; θ̂n)∑n
i=1 λ(β̃TnZi + h̃n(x))Ỹi(x)∆i(x; θ̂n)

dh̃n(x)

)
.

Hence, a consistent estimator of Σβ̃n
is given by Σ̃β̃n

= Σ̃−12n Σ̃1n(Σ̃−12n )T .

3. Simulation study

A simulation study is conducted to compare the performance of the two estimators, β̂n

and β̃n. We generated T following the proportional odds model with h(t) = log(t/10) and

β = (β1 = 1, β2 = 1)T . The resulting T has the survivorship function

P (T > t|Z1, Z2) =
1

1 + exp{log(t/10) + Z1 + Z2}
,
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where Z1 is an ordinal variable with P (Z1 = i) = 0.25 for i = 1, 2, 3, 4 and Z2 is a Bernoulli

random variable with probability 0.5. Note that under this set-up, the pth percentile of T at

(Z1, Z2) is tp = 10exp{log((1− p)/p)− (Z1 + Z2)}, which decreases as Z1 or Z2 increases.

Case 1: G(x; θv) = 1− e−θvx

The truncation variable V was generated from an exponential distribution with mean

equal to θv = 10, 2.0, 0.6 such that the truncation probabilities are equal to 0.2, 0.5 and

0.7, respectively. Sample size is set at n = 100, 200, 300. The replication time is 1000.

Using Σ̂β̂n
and Σ̃β̃n

, we also calculated the estimated standard deviations of β̂n = (β̂1n, β̂2n)T

and β̃n = (β̃1n, β̃2n)T , denoted by estd(β̂n) and estd(β̃n), respectively. For i = 1, 2, an

approximate 95% confidence interval for β is also constructed using β̂in ± z0.025estd(β̂in)

(or β̃in ± z0.025estd(β̃in)), where z0.025 is the 0.025 upper percentile point of the standard

normal distribution. Let C(β̂in) and C(β̃in) denote the empirical coverage using the above

procedure. Table 1 shows the simulated biases, simulated standard deviations (std), the

estimated standard deviation (estd), C(β̂in), C(β̃in) and the ratio of the simulated root

mean squared error (rmse) of β̂in to that of β̃in (denoted by ratio). Table 1 also shows the

proportion of left-truncation P (T < V ) (denoted by q).

Case 2: G(x; θ) = 1− e−(θvx)γ

The simulation set-up is the same as Case 1 except that the truncation variable V was

generated from a Weibull distribution with scale parameter θv and shape parameter γ equal

to (θv, γ) = (11.6, 2.0), (2.86, 2.0), (0.2, 0.46) such that the truncation probabilities are equal

to 0.2, 0.5 and 0.7, respectively. The simulation results are listed in Table 2.
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Table 1. simulated biases, std., estd and coverages of β̂n and β̃n (Case 1)

β̂1n β̃1n
θv q n bias std estd C(β̂1n) bias std estd C(β̃1n) ratio
10 0.2 100 0.013 0.231 0.212 0.939 0.014 0.223 0.209 0.942 0.965
10 0.2 200 0.017 0.164 0.152 0.943 0.010 0.157 0.150 0.946 0.954
10 0.2 300 0.011 0.143 0.136 0.949 0.012 0.141 0.134 0.951 0.986
2.0 0.5 100 0.016 0.289 0.264 0.937 -0.014 0.263 0.248 0.941 0.909
2.0 0.5 200 0.018 0.199 0.188 0.941 0.013 0.175 0.167 0.942 0.878
2.0 0.5 300 0.012 0.166 0.158 0.946 0.008 0.154 0.147 0.949 0.926
0.6 0.7 100 -0.037 0.395 0.364 0.935 -0.031 0.316 0.299 0.939 0.800
0.6 0.7 200 0.011 0.318 0.297 0.941 0.016 0.239 0.226 0.945 0.753
0.6 0.7 300 0.019 0.215 0.205 0.945 0.004 0.173 0.200 0.948 0.801

β̂2n β̃2n
θv q n bias std estd C(β̂1n) bias std estd C(β̃1n) ratio
10 0.2 100 0.053 0.477 0.449 0.939 0.027 0.462 0.440 0.942 0.963
10 0.2 200 0.016 0.350 0.329 0.943 -0.007 0.337 0.322 0.944 0.962
10 0.2 300 -0.009 0.296 0.286 0.948 0.011 0.278 0.270 0.951 0.939
2.0 0.5 100 0.050 0.606 0.565 0.937 0.040 0.525 0.502 0.942 0.865
2.0 0.5 200 0.044 0.455 0.425 0.942 0.022 0.417 0.399 0.945 0.913
2.0 0.5 300 0.013 0.354 0.337 0.946 -0.015 0.325 0.312 0.949 0.918
0.6 0.7 100 -0.081 0.821 0.769 0.935 -0.085 0.674 0.641 0.939 0.823
0.6 0.7 200 0.063 0.602 0.570 0.942 0.054 0.540 0.517 0.942 0.896
0.6 0.7 300 0.049 0.433 0.417 0.944 0.021 0.374 0.361 0.947 0.830
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Table 2. simulated biases, std., estd and coverages of β̂n and β̃n (Case 2)

β̂1n β̃1n
θv γ q n bias std estd C(β̂1n) bias std estd C(β̃1n) ratio

11.6 2.0 0.2 100 0.025 0.199 0.185 0.938 -0.030 0.195 0.186 0.940 0.983
11.6 2.0 0.2 200 0.014 0.174 0.166 0.942 -0.010 0.172 0.165 0.943 0.982
11.6 2.0 0.2 300 -0.013 0.150 0.145 0.947 -0.007 0.147 0.142 0.947 0.976
1.00 2.0 0.5 100 0.042 0.280 0.263 0.936 0.011 0.247 0.237 0.938 0.873
1.00 2.0 0.5 200 0.018 0.178 0.169 0.941 0.016 0.152 0.146 0.942 0.854
1.00 2.0 0.5 300 0.022 0.134 0.129 0.945 0.015 0.125 0.121 0.946 0.926
0.07 0.5 0.7 100 0.062 0.288 0.272 0.935 0.023 0.241 0.229 0.937 0.821
0.07 0.5 0.7 200 0.016 0.183 0.176 0.941 -0.003 0.154 0.146 0.942 0.792
0.07 0.5 0.7 300 0.003 0.157 0.151 0.945 0.008 0.129 0.124 0.945 0.823

β̂2n β̃2n
θv γ q n bias std estd C(β̂2n) bias std estd C(β̃2n) ratio

11.6 2.0 0.2 100 0.063 0.490 0.457 0.939 -0.067 0.478 0.427 0.941 0.977
11.6 2.0 0.2 200 -0.048 0.344 0.331 0.943 -0.042 0.337 0.325 0.944 0.978
11.6 2.0 0.2 300 -0.038 0.288 0.280 0.947 -0.020 0.275 0.269 0.948 0.949
1.00 2.0 0.5 100 0.027 0.502 0.476 0.936 0.011 0.451 0.429 0.937 0.897
1.00 2.0 0.5 200 0.030 0.384 0.367 0.940 0.014 0.340 0.332 0.942 0.883
1.00 2.0 0.5 300 0.008 0.323 0.314 0.946 -0.005 0.288 0.275 0.946 0.889
0.07 0.5 0.7 100 0.007 0.559 0.528 0.935 0.006 0.457 0.433 0.937 0.817
0.07 0.5 0.7 200 0.016 0.364 0.346 0.940 0.014 0.292 0.282 0.941 0.802
0.07 0.5 0.7 300 0.010 0.308 0.295 0.945 -0.009 0.252 0.244 0.945 0.820

Based on the results of Tables 1 and 2, we have the following conclusions:

(1) The standard deviations of both estimators increase as the proportion of left-truncation

q increases. When truncation is severe (i.e. q = 0.7) and n = 100, the biases of both

estimators can be large. In terms of root mean squared error, the estimator β̃n outperforms

β̂n for all the cases considered. The improvement in using β̃n can be very significant when

truncation is severe (i.e. q = 0.7). For case 1, the ratio of squared root mean squared error

of β̃n to that of β̂n ranges from 0.753 to 0.986. For case 2, the ratio of squared root mean

squared error of β̃2n to that of β̂2n ranges from 0.792 to 0.983.

(2) When n = 100, the estimated standard deviations are smaller that the empirical standard

deviations, which makes the coverage of 95% confidence intervals smaller than the nominal

11



level. However, when n = 300, the coverage of 95% confidence intervals is close to the

nominal level for all the cases considered.

4. Discussion

The semiparametric estimators proposed in this article are designed to incorporate both

information contained in the data and the available information on the truncation distribu-

tion, and are expected to have better performance than nonparametric methods. Our simu-

lation study indicates that under the additional assumption G(x) = G(x; θ), the estimators

β̃n can perform better than the estimators β̂n. In practice the validity of the assumption

V ∼ G(x; θ) can be checked by plotting Ĝn(x) against Ĝ(x; θ̂n), where Ĝn(x) is the NPMLE

of G(x) (see Wang (1987)) and given by

Ĝn(x) =

[
n∑
i=1

1

1− F̂n(Vi−)

]−1 n∑
i=1

I[Vi≤x]

1− F̂n(Vi−)
,

where

F̂n(x) = 1−
∏
u≤x

[
1− NF (du)

Y (u)

]
.

where Y (u) =
∑n

i=1 Yi(u), NF (u) =
∑n1

i=1Ni(u) and NF (du) = NF (u) − NF (u−). Besides,

for large samples, Wang (1991) studied the properties of the NPMLE Ĝn(x) and showed

that its asymptotic distribution is Gaussian. This can be used for testing the null hypothesis

H0 : G(x) = G(x; θ0). Let I1 = [V(1) ≡ a0, a1], Ij = (aj−1, aj] (j = 1, . . . ,M − 1) and IM =

(aM−1, aM ≡ V(n)] be a partition of the interval [V(1), V(n)], where V(1) and V(n) denote the

smallest and largest observation of Vi’s. For j = 1, . . . ,M , let Ĝn(Ij) = Ĝn(aj)−Ĝn(aj−1) and

G(Ij; θ0) = G(aj; θ0)−G(aj−1; θ0). Then η =
√
n{Ĝn(I1)−G(I1; θ0), . . . , Ĝn(IM)−G(IM ; θ0)}

has an asymptotic mean zero normal distribution with covariance matrix Σ (see Theorem 4.1

of Wang (1991)). Thus under H0, the statistic T̂W = ηT Σ̂−1η has an asymptotic chi-square

distribution with M − 1 degrees of freedom, where Σ̂ is a consistent estimator for Σ.

It requires further research to extend our approach to left-truncated and right-censored

data.
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